| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <limits.h> |
| #include <float.h> |
| #include <math.h> |
| #include <stdbool.h> |
| #include <stdio.h> |
| |
| #include "config/aom_config.h" |
| #include "config/aom_dsp_rtcd.h" |
| #include "config/av1_rtcd.h" |
| |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "aom_dsp/binary_codes_writer.h" |
| #include "aom_ports/mem.h" |
| #include "aom_ports/aom_timer.h" |
| #include "aom_ports/system_state.h" |
| |
| #if CONFIG_MISMATCH_DEBUG |
| #include "aom_util/debug_util.h" |
| #endif // CONFIG_MISMATCH_DEBUG |
| |
| #include "av1/common/cfl.h" |
| #include "av1/common/common.h" |
| #include "av1/common/entropy.h" |
| #include "av1/common/entropymode.h" |
| #include "av1/common/idct.h" |
| #include "av1/common/mv.h" |
| #include "av1/common/mvref_common.h" |
| #include "av1/common/pred_common.h" |
| #include "av1/common/quant_common.h" |
| #include "av1/common/reconintra.h" |
| #include "av1/common/reconinter.h" |
| #include "av1/common/seg_common.h" |
| #include "av1/common/tile_common.h" |
| #include "av1/common/warped_motion.h" |
| |
| #include "av1/encoder/aq_complexity.h" |
| #include "av1/encoder/aq_cyclicrefresh.h" |
| #include "av1/encoder/aq_variance.h" |
| #include "av1/encoder/corner_detect.h" |
| #include "av1/encoder/global_motion.h" |
| #include "av1/encoder/encodeframe.h" |
| #include "av1/encoder/encodemb.h" |
| #include "av1/encoder/encodemv.h" |
| #include "av1/encoder/encodetxb.h" |
| #include "av1/encoder/ethread.h" |
| #include "av1/encoder/extend.h" |
| #include "av1/encoder/ml.h" |
| #include "av1/encoder/motion_search_facade.h" |
| #include "av1/encoder/partition_strategy.h" |
| #if !CONFIG_REALTIME_ONLY |
| #include "av1/encoder/partition_model_weights.h" |
| #endif |
| #include "av1/encoder/rd.h" |
| #include "av1/encoder/rdopt.h" |
| #include "av1/encoder/reconinter_enc.h" |
| #include "av1/encoder/segmentation.h" |
| #include "av1/encoder/tokenize.h" |
| #include "av1/encoder/tpl_model.h" |
| #include "av1/encoder/var_based_part.h" |
| |
| #if CONFIG_TUNE_VMAF |
| #include "av1/encoder/tune_vmaf.h" |
| #endif |
| |
| static AOM_INLINE void encode_superblock(const AV1_COMP *const cpi, |
| TileDataEnc *tile_data, ThreadData *td, |
| TokenExtra **t, RUN_TYPE dry_run, |
| BLOCK_SIZE bsize, int *rate); |
| |
| // This is used as a reference when computing the source variance for the |
| // purposes of activity masking. |
| // Eventually this should be replaced by custom no-reference routines, |
| // which will be faster. |
| const uint8_t AV1_VAR_OFFS[MAX_SB_SIZE] = { |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128 |
| }; |
| |
| static const uint16_t AV1_HIGH_VAR_OFFS_8[MAX_SB_SIZE] = { |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128 |
| }; |
| |
| static const uint16_t AV1_HIGH_VAR_OFFS_10[MAX_SB_SIZE] = { |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4 |
| }; |
| |
| static const uint16_t AV1_HIGH_VAR_OFFS_12[MAX_SB_SIZE] = { |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16 |
| }; |
| |
| typedef struct { |
| ENTROPY_CONTEXT a[MAX_MIB_SIZE * MAX_MB_PLANE]; |
| ENTROPY_CONTEXT l[MAX_MIB_SIZE * MAX_MB_PLANE]; |
| PARTITION_CONTEXT sa[MAX_MIB_SIZE]; |
| PARTITION_CONTEXT sl[MAX_MIB_SIZE]; |
| TXFM_CONTEXT *p_ta; |
| TXFM_CONTEXT *p_tl; |
| TXFM_CONTEXT ta[MAX_MIB_SIZE]; |
| TXFM_CONTEXT tl[MAX_MIB_SIZE]; |
| } RD_SEARCH_MACROBLOCK_CONTEXT; |
| |
| enum { PICK_MODE_RD = 0, PICK_MODE_NONRD }; |
| |
| enum { |
| SB_SINGLE_PASS, // Single pass encoding: all ctxs get updated normally |
| SB_DRY_PASS, // First pass of multi-pass: does not update the ctxs |
| SB_WET_PASS // Second pass of multi-pass: finalize and update the ctx |
| } UENUM1BYTE(SB_MULTI_PASS_MODE); |
| |
| // This struct is used to store the statistics used by sb-level multi-pass |
| // encoding. Currently, this is only used to make a copy of the state before we |
| // perform the first pass |
| typedef struct SB_FIRST_PASS_STATS { |
| RD_SEARCH_MACROBLOCK_CONTEXT x_ctx; |
| RD_COUNTS rd_count; |
| |
| int split_count; |
| FRAME_COUNTS fc; |
| InterModeRdModel inter_mode_rd_models[BLOCK_SIZES_ALL]; |
| int thresh_freq_fact[BLOCK_SIZES_ALL][MAX_MODES]; |
| int current_qindex; |
| |
| #if CONFIG_INTERNAL_STATS |
| unsigned int mode_chosen_counts[MAX_MODES]; |
| #endif // CONFIG_INTERNAL_STATS |
| } SB_FIRST_PASS_STATS; |
| |
| unsigned int av1_get_sby_perpixel_variance(const AV1_COMP *cpi, |
| const struct buf_2d *ref, |
| BLOCK_SIZE bs) { |
| unsigned int sse; |
| const unsigned int var = |
| cpi->fn_ptr[bs].vf(ref->buf, ref->stride, AV1_VAR_OFFS, 0, &sse); |
| return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]); |
| } |
| |
| unsigned int av1_high_get_sby_perpixel_variance(const AV1_COMP *cpi, |
| const struct buf_2d *ref, |
| BLOCK_SIZE bs, int bd) { |
| unsigned int var, sse; |
| assert(bd == 8 || bd == 10 || bd == 12); |
| const int off_index = (bd - 8) >> 1; |
| const uint16_t *high_var_offs[3] = { AV1_HIGH_VAR_OFFS_8, |
| AV1_HIGH_VAR_OFFS_10, |
| AV1_HIGH_VAR_OFFS_12 }; |
| var = |
| cpi->fn_ptr[bs].vf(ref->buf, ref->stride, |
| CONVERT_TO_BYTEPTR(high_var_offs[off_index]), 0, &sse); |
| return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]); |
| } |
| |
| static unsigned int get_sby_perpixel_diff_variance(const AV1_COMP *const cpi, |
| const struct buf_2d *ref, |
| int mi_row, int mi_col, |
| BLOCK_SIZE bs) { |
| unsigned int sse, var; |
| uint8_t *last_y; |
| const YV12_BUFFER_CONFIG *last = |
| get_ref_frame_yv12_buf(&cpi->common, LAST_FRAME); |
| |
| assert(last != NULL); |
| last_y = |
| &last->y_buffer[mi_row * MI_SIZE * last->y_stride + mi_col * MI_SIZE]; |
| var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride, last_y, last->y_stride, &sse); |
| return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]); |
| } |
| |
| static BLOCK_SIZE get_rd_var_based_fixed_partition(AV1_COMP *cpi, MACROBLOCK *x, |
| int mi_row, int mi_col) { |
| unsigned int var = get_sby_perpixel_diff_variance( |
| cpi, &x->plane[0].src, mi_row, mi_col, BLOCK_64X64); |
| if (var < 8) |
| return BLOCK_64X64; |
| else if (var < 128) |
| return BLOCK_32X32; |
| else if (var < 2048) |
| return BLOCK_16X16; |
| else |
| return BLOCK_8X8; |
| } |
| |
| static int set_deltaq_rdmult(const AV1_COMP *const cpi, |
| const MACROBLOCK *const x) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const CommonQuantParams *quant_params = &cm->quant_params; |
| return av1_compute_rd_mult(cpi, quant_params->base_qindex + x->delta_qindex + |
| quant_params->y_dc_delta_q); |
| } |
| |
| static AOM_INLINE void set_ssim_rdmult(const AV1_COMP *const cpi, |
| MvCosts *const mv_costs, |
| const BLOCK_SIZE bsize, const int mi_row, |
| const int mi_col, int *const rdmult) { |
| const AV1_COMMON *const cm = &cpi->common; |
| |
| const int bsize_base = BLOCK_16X16; |
| const int num_mi_w = mi_size_wide[bsize_base]; |
| const int num_mi_h = mi_size_high[bsize_base]; |
| const int num_cols = (cm->mi_params.mi_cols + num_mi_w - 1) / num_mi_w; |
| const int num_rows = (cm->mi_params.mi_rows + num_mi_h - 1) / num_mi_h; |
| const int num_bcols = (mi_size_wide[bsize] + num_mi_w - 1) / num_mi_w; |
| const int num_brows = (mi_size_high[bsize] + num_mi_h - 1) / num_mi_h; |
| int row, col; |
| double num_of_mi = 0.0; |
| double geom_mean_of_scale = 0.0; |
| |
| assert(cpi->oxcf.tuning == AOM_TUNE_SSIM); |
| |
| aom_clear_system_state(); |
| for (row = mi_row / num_mi_w; |
| row < num_rows && row < mi_row / num_mi_w + num_brows; ++row) { |
| for (col = mi_col / num_mi_h; |
| col < num_cols && col < mi_col / num_mi_h + num_bcols; ++col) { |
| const int index = row * num_cols + col; |
| geom_mean_of_scale += log(cpi->ssim_rdmult_scaling_factors[index]); |
| num_of_mi += 1.0; |
| } |
| } |
| geom_mean_of_scale = exp(geom_mean_of_scale / num_of_mi); |
| |
| *rdmult = (int)((double)(*rdmult) * geom_mean_of_scale + 0.5); |
| *rdmult = AOMMAX(*rdmult, 0); |
| av1_set_error_per_bit(mv_costs, *rdmult); |
| aom_clear_system_state(); |
| } |
| |
| static int get_hier_tpl_rdmult(const AV1_COMP *const cpi, MACROBLOCK *const x, |
| const BLOCK_SIZE bsize, const int mi_row, |
| const int mi_col, int orig_rdmult) { |
| const AV1_COMMON *const cm = &cpi->common; |
| assert(IMPLIES(cpi->gf_group.size > 0, |
| cpi->gf_group.index < cpi->gf_group.size)); |
| const int tpl_idx = cpi->gf_group.index; |
| const TplDepFrame *tpl_frame = &cpi->tpl_data.tpl_frame[tpl_idx]; |
| const int deltaq_rdmult = set_deltaq_rdmult(cpi, x); |
| if (tpl_frame->is_valid == 0) return deltaq_rdmult; |
| if (!is_frame_tpl_eligible((AV1_COMP *)cpi)) return deltaq_rdmult; |
| if (tpl_idx >= MAX_TPL_FRAME_IDX) return deltaq_rdmult; |
| if (cpi->superres_mode != AOM_SUPERRES_NONE) return deltaq_rdmult; |
| if (cpi->oxcf.aq_mode != NO_AQ) return deltaq_rdmult; |
| |
| const int bsize_base = BLOCK_16X16; |
| const int num_mi_w = mi_size_wide[bsize_base]; |
| const int num_mi_h = mi_size_high[bsize_base]; |
| const int num_cols = (cm->mi_params.mi_cols + num_mi_w - 1) / num_mi_w; |
| const int num_rows = (cm->mi_params.mi_rows + num_mi_h - 1) / num_mi_h; |
| const int num_bcols = (mi_size_wide[bsize] + num_mi_w - 1) / num_mi_w; |
| const int num_brows = (mi_size_high[bsize] + num_mi_h - 1) / num_mi_h; |
| int row, col; |
| double base_block_count = 0.0; |
| double geom_mean_of_scale = 0.0; |
| aom_clear_system_state(); |
| for (row = mi_row / num_mi_w; |
| row < num_rows && row < mi_row / num_mi_w + num_brows; ++row) { |
| for (col = mi_col / num_mi_h; |
| col < num_cols && col < mi_col / num_mi_h + num_bcols; ++col) { |
| const int index = row * num_cols + col; |
| geom_mean_of_scale += log(cpi->tpl_sb_rdmult_scaling_factors[index]); |
| base_block_count += 1.0; |
| } |
| } |
| geom_mean_of_scale = exp(geom_mean_of_scale / base_block_count); |
| int rdmult = (int)((double)orig_rdmult * geom_mean_of_scale + 0.5); |
| rdmult = AOMMAX(rdmult, 0); |
| av1_set_error_per_bit(&x->mv_costs, rdmult); |
| aom_clear_system_state(); |
| if (bsize == cm->seq_params.sb_size) { |
| const int rdmult_sb = set_deltaq_rdmult(cpi, x); |
| assert(rdmult_sb == rdmult); |
| (void)rdmult_sb; |
| } |
| return rdmult; |
| } |
| |
| static int set_segment_rdmult(const AV1_COMP *const cpi, MACROBLOCK *const x, |
| int8_t segment_id) { |
| const AV1_COMMON *const cm = &cpi->common; |
| av1_init_plane_quantizers(cpi, x, segment_id); |
| aom_clear_system_state(); |
| const int segment_qindex = |
| av1_get_qindex(&cm->seg, segment_id, cm->quant_params.base_qindex); |
| return av1_compute_rd_mult(cpi, |
| segment_qindex + cm->quant_params.y_dc_delta_q); |
| } |
| |
| static AOM_INLINE void setup_block_rdmult(const AV1_COMP *const cpi, |
| MACROBLOCK *const x, int mi_row, |
| int mi_col, BLOCK_SIZE bsize, |
| AQ_MODE aq_mode, MB_MODE_INFO *mbmi) { |
| x->rdmult = cpi->rd.RDMULT; |
| |
| if (aq_mode != NO_AQ) { |
| assert(mbmi != NULL); |
| if (aq_mode == VARIANCE_AQ) { |
| if (cpi->vaq_refresh) { |
| const int energy = bsize <= BLOCK_16X16 |
| ? x->mb_energy |
| : av1_log_block_var(cpi, x, bsize); |
| mbmi->segment_id = energy; |
| } |
| x->rdmult = set_segment_rdmult(cpi, x, mbmi->segment_id); |
| } else if (aq_mode == COMPLEXITY_AQ) { |
| x->rdmult = set_segment_rdmult(cpi, x, mbmi->segment_id); |
| } else if (aq_mode == CYCLIC_REFRESH_AQ) { |
| // If segment is boosted, use rdmult for that segment. |
| if (cyclic_refresh_segment_id_boosted(mbmi->segment_id)) |
| x->rdmult = av1_cyclic_refresh_get_rdmult(cpi->cyclic_refresh); |
| } |
| } |
| |
| const AV1_COMMON *const cm = &cpi->common; |
| if (cm->delta_q_info.delta_q_present_flag && |
| !cpi->sf.rt_sf.use_nonrd_pick_mode) { |
| x->rdmult = get_hier_tpl_rdmult(cpi, x, bsize, mi_row, mi_col, x->rdmult); |
| } |
| |
| if (cpi->oxcf.tuning == AOM_TUNE_SSIM) { |
| set_ssim_rdmult(cpi, &x->mv_costs, bsize, mi_row, mi_col, &x->rdmult); |
| } |
| #if CONFIG_TUNE_VMAF |
| if (cpi->oxcf.tuning == AOM_TUNE_VMAF_WITHOUT_PREPROCESSING || |
| cpi->oxcf.tuning == AOM_TUNE_VMAF_MAX_GAIN) { |
| av1_set_vmaf_rdmult(cpi, x, bsize, mi_row, mi_col, &x->rdmult); |
| } |
| #endif |
| } |
| |
| static AOM_INLINE void set_offsets_without_segment_id( |
| const AV1_COMP *const cpi, const TileInfo *const tile, MACROBLOCK *const x, |
| int mi_row, int mi_col, BLOCK_SIZE bsize) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| MACROBLOCKD *const xd = &x->e_mbd; |
| assert(bsize < BLOCK_SIZES_ALL); |
| const int mi_width = mi_size_wide[bsize]; |
| const int mi_height = mi_size_high[bsize]; |
| |
| set_mode_info_offsets(&cpi->common.mi_params, &cpi->mbmi_ext_info, x, xd, |
| mi_row, mi_col); |
| |
| set_entropy_context(xd, mi_row, mi_col, num_planes); |
| xd->above_txfm_context = cm->above_contexts.txfm[tile->tile_row] + mi_col; |
| xd->left_txfm_context = |
| xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); |
| |
| // Set up destination pointers. |
| av1_setup_dst_planes(xd->plane, bsize, &cm->cur_frame->buf, mi_row, mi_col, 0, |
| num_planes); |
| |
| // Set up limit values for MV components. |
| // Mv beyond the range do not produce new/different prediction block. |
| av1_set_mv_limits(&cm->mi_params, &x->mv_limits, mi_row, mi_col, mi_height, |
| mi_width, cpi->oxcf.border_in_pixels); |
| |
| set_plane_n4(xd, mi_width, mi_height, num_planes); |
| |
| // Set up distance of MB to edge of frame in 1/8th pel units. |
| assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1))); |
| set_mi_row_col(xd, tile, mi_row, mi_height, mi_col, mi_width, |
| cm->mi_params.mi_rows, cm->mi_params.mi_cols); |
| |
| // Set up source buffers. |
| av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes, bsize); |
| |
| // required by av1_append_sub8x8_mvs_for_idx() and av1_find_best_ref_mvs() |
| xd->tile = *tile; |
| } |
| |
| static AOM_INLINE void set_offsets(const AV1_COMP *const cpi, |
| const TileInfo *const tile, |
| MACROBLOCK *const x, int mi_row, int mi_col, |
| BLOCK_SIZE bsize) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const struct segmentation *const seg = &cm->seg; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi; |
| |
| set_offsets_without_segment_id(cpi, tile, x, mi_row, mi_col, bsize); |
| |
| // Setup segment ID. |
| mbmi = xd->mi[0]; |
| mbmi->segment_id = 0; |
| if (seg->enabled) { |
| if (seg->enabled && !cpi->vaq_refresh) { |
| const uint8_t *const map = |
| seg->update_map ? cpi->enc_seg.map : cm->last_frame_seg_map; |
| mbmi->segment_id = |
| map ? get_segment_id(&cm->mi_params, map, bsize, mi_row, mi_col) : 0; |
| } |
| av1_init_plane_quantizers(cpi, x, mbmi->segment_id); |
| } |
| } |
| |
| static AOM_INLINE void update_filter_type_count(FRAME_COUNTS *counts, |
| const MACROBLOCKD *xd, |
| const MB_MODE_INFO *mbmi) { |
| int dir; |
| for (dir = 0; dir < 2; ++dir) { |
| const int ctx = av1_get_pred_context_switchable_interp(xd, dir); |
| InterpFilter filter = av1_extract_interp_filter(mbmi->interp_filters, dir); |
| ++counts->switchable_interp[ctx][filter]; |
| } |
| } |
| |
| static AOM_INLINE void update_filter_type_cdf(const MACROBLOCKD *xd, |
| const MB_MODE_INFO *mbmi) { |
| int dir; |
| for (dir = 0; dir < 2; ++dir) { |
| const int ctx = av1_get_pred_context_switchable_interp(xd, dir); |
| InterpFilter filter = av1_extract_interp_filter(mbmi->interp_filters, dir); |
| update_cdf(xd->tile_ctx->switchable_interp_cdf[ctx], filter, |
| SWITCHABLE_FILTERS); |
| } |
| } |
| |
| static AOM_INLINE void update_global_motion_used(PREDICTION_MODE mode, |
| BLOCK_SIZE bsize, |
| const MB_MODE_INFO *mbmi, |
| RD_COUNTS *rdc) { |
| if (mode == GLOBALMV || mode == GLOBAL_GLOBALMV) { |
| const int num_4x4s = mi_size_wide[bsize] * mi_size_high[bsize]; |
| int ref; |
| for (ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) { |
| rdc->global_motion_used[mbmi->ref_frame[ref]] += num_4x4s; |
| } |
| } |
| } |
| |
| static AOM_INLINE void reset_tx_size(MACROBLOCK *x, MB_MODE_INFO *mbmi, |
| const TX_MODE tx_mode) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| TxfmSearchInfo *txfm_info = &x->txfm_search_info; |
| if (xd->lossless[mbmi->segment_id]) { |
| mbmi->tx_size = TX_4X4; |
| } else if (tx_mode != TX_MODE_SELECT) { |
| mbmi->tx_size = tx_size_from_tx_mode(mbmi->sb_type, tx_mode); |
| } else { |
| BLOCK_SIZE bsize = mbmi->sb_type; |
| TX_SIZE min_tx_size = depth_to_tx_size(MAX_TX_DEPTH, bsize); |
| mbmi->tx_size = (TX_SIZE)TXSIZEMAX(mbmi->tx_size, min_tx_size); |
| } |
| if (is_inter_block(mbmi)) { |
| memset(mbmi->inter_tx_size, mbmi->tx_size, sizeof(mbmi->inter_tx_size)); |
| } |
| const int stride = xd->tx_type_map_stride; |
| const int bw = mi_size_wide[mbmi->sb_type]; |
| for (int row = 0; row < mi_size_high[mbmi->sb_type]; ++row) { |
| memset(xd->tx_type_map + row * stride, DCT_DCT, |
| bw * sizeof(xd->tx_type_map[0])); |
| } |
| av1_zero(txfm_info->blk_skip); |
| txfm_info->skip_txfm = 0; |
| } |
| |
| // This function will copy the best reference mode information from |
| // MB_MODE_INFO_EXT_FRAME to MB_MODE_INFO_EXT. |
| static INLINE void copy_mbmi_ext_frame_to_mbmi_ext( |
| MB_MODE_INFO_EXT *mbmi_ext, |
| const MB_MODE_INFO_EXT_FRAME *const mbmi_ext_best, uint8_t ref_frame_type) { |
| memcpy(mbmi_ext->ref_mv_stack[ref_frame_type], mbmi_ext_best->ref_mv_stack, |
| sizeof(mbmi_ext->ref_mv_stack[USABLE_REF_MV_STACK_SIZE])); |
| memcpy(mbmi_ext->weight[ref_frame_type], mbmi_ext_best->weight, |
| sizeof(mbmi_ext->weight[USABLE_REF_MV_STACK_SIZE])); |
| mbmi_ext->mode_context[ref_frame_type] = mbmi_ext_best->mode_context; |
| mbmi_ext->ref_mv_count[ref_frame_type] = mbmi_ext_best->ref_mv_count; |
| memcpy(mbmi_ext->global_mvs, mbmi_ext_best->global_mvs, |
| sizeof(mbmi_ext->global_mvs)); |
| } |
| |
| static AOM_INLINE void update_state(const AV1_COMP *const cpi, ThreadData *td, |
| const PICK_MODE_CONTEXT *const ctx, |
| int mi_row, int mi_col, BLOCK_SIZE bsize, |
| RUN_TYPE dry_run) { |
| int i, x_idx, y; |
| const AV1_COMMON *const cm = &cpi->common; |
| const CommonModeInfoParams *const mi_params = &cm->mi_params; |
| const int num_planes = av1_num_planes(cm); |
| RD_COUNTS *const rdc = &td->rd_counts; |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| struct macroblock_plane *const p = x->plane; |
| struct macroblockd_plane *const pd = xd->plane; |
| const MB_MODE_INFO *const mi = &ctx->mic; |
| MB_MODE_INFO *const mi_addr = xd->mi[0]; |
| const struct segmentation *const seg = &cm->seg; |
| const int bw = mi_size_wide[mi->sb_type]; |
| const int bh = mi_size_high[mi->sb_type]; |
| const int mis = mi_params->mi_stride; |
| const int mi_width = mi_size_wide[bsize]; |
| const int mi_height = mi_size_high[bsize]; |
| TxfmSearchInfo *txfm_info = &x->txfm_search_info; |
| |
| assert(mi->sb_type == bsize); |
| |
| *mi_addr = *mi; |
| copy_mbmi_ext_frame_to_mbmi_ext(x->mbmi_ext, &ctx->mbmi_ext_best, |
| av1_ref_frame_type(ctx->mic.ref_frame)); |
| |
| memcpy(txfm_info->blk_skip, ctx->blk_skip, |
| sizeof(txfm_info->blk_skip[0]) * ctx->num_4x4_blk); |
| |
| txfm_info->skip_txfm = ctx->rd_stats.skip_txfm; |
| |
| xd->tx_type_map = ctx->tx_type_map; |
| xd->tx_type_map_stride = mi_size_wide[bsize]; |
| // If not dry_run, copy the transform type data into the frame level buffer. |
| // Encoder will fetch tx types when writing bitstream. |
| if (!dry_run) { |
| const int grid_idx = get_mi_grid_idx(mi_params, mi_row, mi_col); |
| uint8_t *const tx_type_map = mi_params->tx_type_map + grid_idx; |
| const int mi_stride = mi_params->mi_stride; |
| for (int blk_row = 0; blk_row < bh; ++blk_row) { |
| av1_copy_array(tx_type_map + blk_row * mi_stride, |
| xd->tx_type_map + blk_row * xd->tx_type_map_stride, bw); |
| } |
| xd->tx_type_map = tx_type_map; |
| xd->tx_type_map_stride = mi_stride; |
| } |
| |
| // If segmentation in use |
| if (seg->enabled) { |
| // For in frame complexity AQ copy the segment id from the segment map. |
| if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) { |
| const uint8_t *const map = |
| seg->update_map ? cpi->enc_seg.map : cm->last_frame_seg_map; |
| mi_addr->segment_id = |
| map ? get_segment_id(mi_params, map, bsize, mi_row, mi_col) : 0; |
| reset_tx_size(x, mi_addr, x->txfm_search_params.tx_mode_search_type); |
| } |
| // Else for cyclic refresh mode update the segment map, set the segment id |
| // and then update the quantizer. |
| if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) { |
| av1_cyclic_refresh_update_segment(cpi, mi_addr, mi_row, mi_col, bsize, |
| ctx->rd_stats.rate, ctx->rd_stats.dist, |
| txfm_info->skip_txfm); |
| } |
| if (mi_addr->uv_mode == UV_CFL_PRED && !is_cfl_allowed(xd)) |
| mi_addr->uv_mode = UV_DC_PRED; |
| } |
| |
| for (i = 0; i < num_planes; ++i) { |
| p[i].coeff = ctx->coeff[i]; |
| p[i].qcoeff = ctx->qcoeff[i]; |
| p[i].dqcoeff = ctx->dqcoeff[i]; |
| p[i].eobs = ctx->eobs[i]; |
| p[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i]; |
| } |
| for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i]; |
| // Restore the coding context of the MB to that that was in place |
| // when the mode was picked for it |
| for (y = 0; y < mi_height; y++) { |
| for (x_idx = 0; x_idx < mi_width; x_idx++) { |
| if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > x_idx && |
| (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > y) { |
| xd->mi[x_idx + y * mis] = mi_addr; |
| } |
| } |
| } |
| |
| if (cpi->oxcf.aq_mode) av1_init_plane_quantizers(cpi, x, mi_addr->segment_id); |
| |
| if (dry_run) return; |
| |
| #if CONFIG_INTERNAL_STATS |
| { |
| unsigned int *const mode_chosen_counts = |
| (unsigned int *)cpi->mode_chosen_counts; // Cast const away. |
| if (frame_is_intra_only(cm)) { |
| static const int kf_mode_index[] = { |
| THR_DC /*DC_PRED*/, |
| THR_V_PRED /*V_PRED*/, |
| THR_H_PRED /*H_PRED*/, |
| THR_D45_PRED /*D45_PRED*/, |
| THR_D135_PRED /*D135_PRED*/, |
| THR_D113_PRED /*D113_PRED*/, |
| THR_D157_PRED /*D157_PRED*/, |
| THR_D203_PRED /*D203_PRED*/, |
| THR_D67_PRED /*D67_PRED*/, |
| THR_SMOOTH, /*SMOOTH_PRED*/ |
| THR_SMOOTH_V, /*SMOOTH_V_PRED*/ |
| THR_SMOOTH_H, /*SMOOTH_H_PRED*/ |
| THR_PAETH /*PAETH_PRED*/, |
| }; |
| ++mode_chosen_counts[kf_mode_index[mi_addr->mode]]; |
| } else { |
| // Note how often each mode chosen as best |
| ++mode_chosen_counts[ctx->best_mode_index]; |
| } |
| } |
| #endif |
| if (!frame_is_intra_only(cm)) { |
| if (is_inter_block(mi_addr)) { |
| // TODO(sarahparker): global motion stats need to be handled per-tile |
| // to be compatible with tile-based threading. |
| update_global_motion_used(mi_addr->mode, bsize, mi_addr, rdc); |
| } |
| |
| if (cm->features.interp_filter == SWITCHABLE && |
| mi_addr->motion_mode != WARPED_CAUSAL && |
| !is_nontrans_global_motion(xd, xd->mi[0])) { |
| update_filter_type_count(td->counts, xd, mi_addr); |
| } |
| |
| rdc->comp_pred_diff[SINGLE_REFERENCE] += ctx->single_pred_diff; |
| rdc->comp_pred_diff[COMPOUND_REFERENCE] += ctx->comp_pred_diff; |
| rdc->comp_pred_diff[REFERENCE_MODE_SELECT] += ctx->hybrid_pred_diff; |
| } |
| |
| const int x_mis = AOMMIN(bw, mi_params->mi_cols - mi_col); |
| const int y_mis = AOMMIN(bh, mi_params->mi_rows - mi_row); |
| if (cm->seq_params.order_hint_info.enable_ref_frame_mvs) |
| av1_copy_frame_mvs(cm, mi, mi_row, mi_col, x_mis, y_mis); |
| } |
| |
| void av1_setup_src_planes(MACROBLOCK *x, const YV12_BUFFER_CONFIG *src, |
| int mi_row, int mi_col, const int num_planes, |
| BLOCK_SIZE bsize) { |
| // Set current frame pointer. |
| x->e_mbd.cur_buf = src; |
| |
| // We use AOMMIN(num_planes, MAX_MB_PLANE) instead of num_planes to quiet |
| // the static analysis warnings. |
| for (int i = 0; i < AOMMIN(num_planes, MAX_MB_PLANE); i++) { |
| const int is_uv = i > 0; |
| setup_pred_plane( |
| &x->plane[i].src, bsize, src->buffers[i], src->crop_widths[is_uv], |
| src->crop_heights[is_uv], src->strides[is_uv], mi_row, mi_col, NULL, |
| x->e_mbd.plane[i].subsampling_x, x->e_mbd.plane[i].subsampling_y); |
| } |
| } |
| |
| static EdgeInfo edge_info(const struct buf_2d *ref, const BLOCK_SIZE bsize, |
| const bool high_bd, const int bd) { |
| const int width = block_size_wide[bsize]; |
| const int height = block_size_high[bsize]; |
| // Implementation requires width to be a multiple of 8. It also requires |
| // height to be a multiple of 4, but this is always the case. |
| assert(height % 4 == 0); |
| if (width % 8 != 0) { |
| EdgeInfo ei = { .magnitude = 0, .x = 0, .y = 0 }; |
| return ei; |
| } |
| return av1_edge_exists(ref->buf, ref->stride, width, height, high_bd, bd); |
| } |
| |
| static int use_pb_simple_motion_pred_sse(const AV1_COMP *const cpi) { |
| // TODO(debargha, yuec): Not in use, need to implement a speed feature |
| // utilizing this data point, and replace '0' by the corresponding speed |
| // feature flag. |
| return 0 && !frame_is_intra_only(&cpi->common); |
| } |
| |
| static void hybrid_intra_mode_search(AV1_COMP *cpi, MACROBLOCK *const x, |
| RD_STATS *rd_cost, BLOCK_SIZE bsize, |
| PICK_MODE_CONTEXT *ctx) { |
| // TODO(jianj): Investigate the failure of ScalabilityTest in AOM_Q mode, |
| // which sets base_qindex to 0 on keyframe. |
| if (cpi->oxcf.rc_mode != AOM_CBR || !cpi->sf.rt_sf.hybrid_intra_pickmode || |
| bsize < BLOCK_16X16) |
| av1_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, INT64_MAX); |
| else |
| av1_pick_intra_mode(cpi, x, rd_cost, bsize, ctx); |
| } |
| |
| static AOM_INLINE void pick_sb_modes(AV1_COMP *const cpi, |
| TileDataEnc *tile_data, |
| MACROBLOCK *const x, int mi_row, |
| int mi_col, RD_STATS *rd_cost, |
| PARTITION_TYPE partition, BLOCK_SIZE bsize, |
| PICK_MODE_CONTEXT *ctx, RD_STATS best_rd, |
| int pick_mode_type) { |
| if (best_rd.rdcost < 0) { |
| ctx->rd_stats.rdcost = INT64_MAX; |
| ctx->rd_stats.skip_txfm = 0; |
| av1_invalid_rd_stats(rd_cost); |
| return; |
| } |
| |
| set_offsets(cpi, &tile_data->tile_info, x, mi_row, mi_col, bsize); |
| |
| if (ctx->rd_mode_is_ready) { |
| assert(ctx->mic.sb_type == bsize); |
| assert(ctx->mic.partition == partition); |
| rd_cost->rate = ctx->rd_stats.rate; |
| rd_cost->dist = ctx->rd_stats.dist; |
| rd_cost->rdcost = ctx->rd_stats.rdcost; |
| return; |
| } |
| |
| AV1_COMMON *const cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi; |
| struct macroblock_plane *const p = x->plane; |
| struct macroblockd_plane *const pd = xd->plane; |
| const AQ_MODE aq_mode = cpi->oxcf.aq_mode; |
| TxfmSearchInfo *txfm_info = &x->txfm_search_info; |
| |
| int i; |
| |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| start_timing(cpi, rd_pick_sb_modes_time); |
| #endif |
| |
| aom_clear_system_state(); |
| |
| mbmi = xd->mi[0]; |
| mbmi->sb_type = bsize; |
| mbmi->partition = partition; |
| |
| #if CONFIG_RD_DEBUG |
| mbmi->mi_row = mi_row; |
| mbmi->mi_col = mi_col; |
| #endif |
| |
| // Sets up the tx_type_map buffer in MACROBLOCKD. |
| xd->tx_type_map = txfm_info->tx_type_map_; |
| xd->tx_type_map_stride = mi_size_wide[bsize]; |
| |
| for (i = 0; i < num_planes; ++i) { |
| p[i].coeff = ctx->coeff[i]; |
| p[i].qcoeff = ctx->qcoeff[i]; |
| p[i].dqcoeff = ctx->dqcoeff[i]; |
| p[i].eobs = ctx->eobs[i]; |
| p[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i]; |
| } |
| |
| for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i]; |
| |
| ctx->skippable = 0; |
| // Set to zero to make sure we do not use the previous encoded frame stats |
| mbmi->skip_txfm = 0; |
| // Reset skip mode flag. |
| mbmi->skip_mode = 0; |
| |
| if (is_cur_buf_hbd(xd)) { |
| x->source_variance = av1_high_get_sby_perpixel_variance( |
| cpi, &x->plane[0].src, bsize, xd->bd); |
| } else { |
| x->source_variance = |
| av1_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize); |
| } |
| if (use_pb_simple_motion_pred_sse(cpi)) { |
| const FULLPEL_MV start_mv = kZeroFullMv; |
| unsigned int var = 0; |
| av1_simple_motion_sse_var(cpi, x, mi_row, mi_col, bsize, start_mv, 0, |
| &x->simple_motion_pred_sse, &var); |
| } |
| |
| // If the threshold for disabling wedge search is zero, it means the feature |
| // should not be used. Use a value that will always succeed in the check. |
| if (cpi->sf.inter_sf.disable_wedge_search_edge_thresh == 0) { |
| x->edge_strength = UINT16_MAX; |
| x->edge_strength_x = UINT16_MAX; |
| x->edge_strength_y = UINT16_MAX; |
| } else { |
| EdgeInfo ei = |
| edge_info(&x->plane[0].src, bsize, is_cur_buf_hbd(xd), xd->bd); |
| x->edge_strength = ei.magnitude; |
| x->edge_strength_x = ei.x; |
| x->edge_strength_y = ei.y; |
| } |
| |
| // Initialize default mode evaluation params |
| set_mode_eval_params(cpi, x, DEFAULT_EVAL); |
| |
| // Save rdmult before it might be changed, so it can be restored later. |
| const int orig_rdmult = x->rdmult; |
| setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, aq_mode, mbmi); |
| // Set error per bit for current rdmult |
| av1_set_error_per_bit(&x->mv_costs, x->rdmult); |
| av1_rd_cost_update(x->rdmult, &best_rd); |
| |
| // Find best coding mode & reconstruct the MB so it is available |
| // as a predictor for MBs that follow in the SB |
| if (frame_is_intra_only(cm)) { |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| start_timing(cpi, av1_rd_pick_intra_mode_sb_time); |
| #endif |
| switch (pick_mode_type) { |
| case PICK_MODE_RD: |
| av1_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, best_rd.rdcost); |
| break; |
| case PICK_MODE_NONRD: |
| hybrid_intra_mode_search(cpi, x, rd_cost, bsize, ctx); |
| break; |
| default: assert(0 && "Unknown pick mode type."); |
| } |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| end_timing(cpi, av1_rd_pick_intra_mode_sb_time); |
| #endif |
| } else { |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| start_timing(cpi, av1_rd_pick_inter_mode_sb_time); |
| #endif |
| if (segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { |
| av1_rd_pick_inter_mode_sb_seg_skip(cpi, tile_data, x, mi_row, mi_col, |
| rd_cost, bsize, ctx, best_rd.rdcost); |
| } else { |
| // TODO(kyslov): do the same for pick_inter_mode_sb_seg_skip |
| switch (pick_mode_type) { |
| case PICK_MODE_RD: |
| av1_rd_pick_inter_mode_sb(cpi, tile_data, x, rd_cost, bsize, ctx, |
| best_rd.rdcost); |
| break; |
| case PICK_MODE_NONRD: |
| av1_nonrd_pick_inter_mode_sb(cpi, tile_data, x, rd_cost, bsize, ctx, |
| best_rd.rdcost); |
| break; |
| default: assert(0 && "Unknown pick mode type."); |
| } |
| } |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| end_timing(cpi, av1_rd_pick_inter_mode_sb_time); |
| #endif |
| } |
| |
| // Examine the resulting rate and for AQ mode 2 make a segment choice. |
| if (rd_cost->rate != INT_MAX && aq_mode == COMPLEXITY_AQ && |
| bsize >= BLOCK_16X16) { |
| av1_caq_select_segment(cpi, x, bsize, mi_row, mi_col, rd_cost->rate); |
| } |
| |
| x->rdmult = orig_rdmult; |
| |
| // TODO(jingning) The rate-distortion optimization flow needs to be |
| // refactored to provide proper exit/return handle. |
| if (rd_cost->rate == INT_MAX) rd_cost->rdcost = INT64_MAX; |
| |
| ctx->rd_stats.rate = rd_cost->rate; |
| ctx->rd_stats.dist = rd_cost->dist; |
| ctx->rd_stats.rdcost = rd_cost->rdcost; |
| |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| end_timing(cpi, rd_pick_sb_modes_time); |
| #endif |
| } |
| |
| static AOM_INLINE void update_inter_mode_stats(FRAME_CONTEXT *fc, |
| FRAME_COUNTS *counts, |
| PREDICTION_MODE mode, |
| int16_t mode_context) { |
| (void)counts; |
| |
| int16_t mode_ctx = mode_context & NEWMV_CTX_MASK; |
| if (mode == NEWMV) { |
| #if CONFIG_ENTROPY_STATS |
| ++counts->newmv_mode[mode_ctx][0]; |
| #endif |
| update_cdf(fc->newmv_cdf[mode_ctx], 0, 2); |
| return; |
| } |
| |
| #if CONFIG_ENTROPY_STATS |
| ++counts->newmv_mode[mode_ctx][1]; |
| #endif |
| update_cdf(fc->newmv_cdf[mode_ctx], 1, 2); |
| |
| mode_ctx = (mode_context >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK; |
| if (mode == GLOBALMV) { |
| #if CONFIG_ENTROPY_STATS |
| ++counts->zeromv_mode[mode_ctx][0]; |
| #endif |
| update_cdf(fc->zeromv_cdf[mode_ctx], 0, 2); |
| return; |
| } |
| |
| #if CONFIG_ENTROPY_STATS |
| ++counts->zeromv_mode[mode_ctx][1]; |
| #endif |
| update_cdf(fc->zeromv_cdf[mode_ctx], 1, 2); |
| |
| mode_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK; |
| #if CONFIG_ENTROPY_STATS |
| ++counts->refmv_mode[mode_ctx][mode != NEARESTMV]; |
| #endif |
| update_cdf(fc->refmv_cdf[mode_ctx], mode != NEARESTMV, 2); |
| } |
| |
| static AOM_INLINE void update_palette_cdf(MACROBLOCKD *xd, |
| const MB_MODE_INFO *const mbmi, |
| FRAME_COUNTS *counts) { |
| FRAME_CONTEXT *fc = xd->tile_ctx; |
| const BLOCK_SIZE bsize = mbmi->sb_type; |
| const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; |
| const int palette_bsize_ctx = av1_get_palette_bsize_ctx(bsize); |
| |
| (void)counts; |
| |
| if (mbmi->mode == DC_PRED) { |
| const int n = pmi->palette_size[0]; |
| const int palette_mode_ctx = av1_get_palette_mode_ctx(xd); |
| |
| #if CONFIG_ENTROPY_STATS |
| ++counts->palette_y_mode[palette_bsize_ctx][palette_mode_ctx][n > 0]; |
| #endif |
| update_cdf(fc->palette_y_mode_cdf[palette_bsize_ctx][palette_mode_ctx], |
| n > 0, 2); |
| if (n > 0) { |
| #if CONFIG_ENTROPY_STATS |
| ++counts->palette_y_size[palette_bsize_ctx][n - PALETTE_MIN_SIZE]; |
| #endif |
| update_cdf(fc->palette_y_size_cdf[palette_bsize_ctx], |
| n - PALETTE_MIN_SIZE, PALETTE_SIZES); |
| } |
| } |
| |
| if (mbmi->uv_mode == UV_DC_PRED) { |
| const int n = pmi->palette_size[1]; |
| const int palette_uv_mode_ctx = (pmi->palette_size[0] > 0); |
| |
| #if CONFIG_ENTROPY_STATS |
| ++counts->palette_uv_mode[palette_uv_mode_ctx][n > 0]; |
| #endif |
| update_cdf(fc->palette_uv_mode_cdf[palette_uv_mode_ctx], n > 0, 2); |
| |
| if (n > 0) { |
| #if CONFIG_ENTROPY_STATS |
| ++counts->palette_uv_size[palette_bsize_ctx][n - PALETTE_MIN_SIZE]; |
| #endif |
| update_cdf(fc->palette_uv_size_cdf[palette_bsize_ctx], |
| n - PALETTE_MIN_SIZE, PALETTE_SIZES); |
| } |
| } |
| } |
| |
| static AOM_INLINE void sum_intra_stats(const AV1_COMMON *const cm, |
| FRAME_COUNTS *counts, MACROBLOCKD *xd, |
| const MB_MODE_INFO *const mbmi, |
| const MB_MODE_INFO *above_mi, |
| const MB_MODE_INFO *left_mi, |
| const int intraonly) { |
| FRAME_CONTEXT *fc = xd->tile_ctx; |
| const PREDICTION_MODE y_mode = mbmi->mode; |
| (void)counts; |
| const BLOCK_SIZE bsize = mbmi->sb_type; |
| |
| if (intraonly) { |
| #if CONFIG_ENTROPY_STATS |
| const PREDICTION_MODE above = av1_above_block_mode(above_mi); |
| const PREDICTION_MODE left = av1_left_block_mode(left_mi); |
| const int above_ctx = intra_mode_context[above]; |
| const int left_ctx = intra_mode_context[left]; |
| ++counts->kf_y_mode[above_ctx][left_ctx][y_mode]; |
| #endif // CONFIG_ENTROPY_STATS |
| update_cdf(get_y_mode_cdf(fc, above_mi, left_mi), y_mode, INTRA_MODES); |
| } else { |
| #if CONFIG_ENTROPY_STATS |
| ++counts->y_mode[size_group_lookup[bsize]][y_mode]; |
| #endif // CONFIG_ENTROPY_STATS |
| update_cdf(fc->y_mode_cdf[size_group_lookup[bsize]], y_mode, INTRA_MODES); |
| } |
| |
| if (av1_filter_intra_allowed(cm, mbmi)) { |
| const int use_filter_intra_mode = |
| mbmi->filter_intra_mode_info.use_filter_intra; |
| #if CONFIG_ENTROPY_STATS |
| ++counts->filter_intra[mbmi->sb_type][use_filter_intra_mode]; |
| if (use_filter_intra_mode) { |
| ++counts |
| ->filter_intra_mode[mbmi->filter_intra_mode_info.filter_intra_mode]; |
| } |
| #endif // CONFIG_ENTROPY_STATS |
| update_cdf(fc->filter_intra_cdfs[mbmi->sb_type], use_filter_intra_mode, 2); |
| if (use_filter_intra_mode) { |
| update_cdf(fc->filter_intra_mode_cdf, |
| mbmi->filter_intra_mode_info.filter_intra_mode, |
| FILTER_INTRA_MODES); |
| } |
| } |
| if (av1_is_directional_mode(mbmi->mode) && av1_use_angle_delta(bsize)) { |
| #if CONFIG_ENTROPY_STATS |
| ++counts->angle_delta[mbmi->mode - V_PRED] |
| [mbmi->angle_delta[PLANE_TYPE_Y] + MAX_ANGLE_DELTA]; |
| #endif |
| update_cdf(fc->angle_delta_cdf[mbmi->mode - V_PRED], |
| mbmi->angle_delta[PLANE_TYPE_Y] + MAX_ANGLE_DELTA, |
| 2 * MAX_ANGLE_DELTA + 1); |
| } |
| |
| if (!xd->is_chroma_ref) return; |
| |
| const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode; |
| const CFL_ALLOWED_TYPE cfl_allowed = is_cfl_allowed(xd); |
| #if CONFIG_ENTROPY_STATS |
| ++counts->uv_mode[cfl_allowed][y_mode][uv_mode]; |
| #endif // CONFIG_ENTROPY_STATS |
| update_cdf(fc->uv_mode_cdf[cfl_allowed][y_mode], uv_mode, |
| UV_INTRA_MODES - !cfl_allowed); |
| if (uv_mode == UV_CFL_PRED) { |
| const int8_t joint_sign = mbmi->cfl_alpha_signs; |
| const uint8_t idx = mbmi->cfl_alpha_idx; |
| |
| #if CONFIG_ENTROPY_STATS |
| ++counts->cfl_sign[joint_sign]; |
| #endif |
| update_cdf(fc->cfl_sign_cdf, joint_sign, CFL_JOINT_SIGNS); |
| if (CFL_SIGN_U(joint_sign) != CFL_SIGN_ZERO) { |
| aom_cdf_prob *cdf_u = fc->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)]; |
| |
| #if CONFIG_ENTROPY_STATS |
| ++counts->cfl_alpha[CFL_CONTEXT_U(joint_sign)][CFL_IDX_U(idx)]; |
| #endif |
| update_cdf(cdf_u, CFL_IDX_U(idx), CFL_ALPHABET_SIZE); |
| } |
| if (CFL_SIGN_V(joint_sign) != CFL_SIGN_ZERO) { |
| aom_cdf_prob *cdf_v = fc->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)]; |
| |
| #if CONFIG_ENTROPY_STATS |
| ++counts->cfl_alpha[CFL_CONTEXT_V(joint_sign)][CFL_IDX_V(idx)]; |
| #endif |
| update_cdf(cdf_v, CFL_IDX_V(idx), CFL_ALPHABET_SIZE); |
| } |
| } |
| if (av1_is_directional_mode(get_uv_mode(uv_mode)) && |
| av1_use_angle_delta(bsize)) { |
| #if CONFIG_ENTROPY_STATS |
| ++counts->angle_delta[uv_mode - UV_V_PRED] |
| [mbmi->angle_delta[PLANE_TYPE_UV] + MAX_ANGLE_DELTA]; |
| #endif |
| update_cdf(fc->angle_delta_cdf[uv_mode - UV_V_PRED], |
| mbmi->angle_delta[PLANE_TYPE_UV] + MAX_ANGLE_DELTA, |
| 2 * MAX_ANGLE_DELTA + 1); |
| } |
| if (av1_allow_palette(cm->features.allow_screen_content_tools, bsize)) { |
| update_palette_cdf(xd, mbmi, counts); |
| } |
| } |
| |
| static AOM_INLINE void update_stats(const AV1_COMMON *const cm, |
| ThreadData *td) { |
| MACROBLOCK *x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; |
| const CurrentFrame *const current_frame = &cm->current_frame; |
| const BLOCK_SIZE bsize = mbmi->sb_type; |
| FRAME_CONTEXT *fc = xd->tile_ctx; |
| const int seg_ref_active = |
| segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_REF_FRAME); |
| |
| if (current_frame->skip_mode_info.skip_mode_flag && !seg_ref_active && |
| is_comp_ref_allowed(bsize)) { |
| const int skip_mode_ctx = av1_get_skip_mode_context(xd); |
| #if CONFIG_ENTROPY_STATS |
| td->counts->skip_mode[skip_mode_ctx][mbmi->skip_mode]++; |
| #endif |
| update_cdf(fc->skip_mode_cdfs[skip_mode_ctx], mbmi->skip_mode, 2); |
| } |
| |
| if (!mbmi->skip_mode && !seg_ref_active) { |
| const int skip_ctx = av1_get_skip_txfm_context(xd); |
| #if CONFIG_ENTROPY_STATS |
| td->counts->skip_txfm[skip_ctx][mbmi->skip_txfm]++; |
| #endif |
| update_cdf(fc->skip_txfm_cdfs[skip_ctx], mbmi->skip_txfm, 2); |
| } |
| |
| #if CONFIG_ENTROPY_STATS |
| // delta quant applies to both intra and inter |
| const int super_block_upper_left = |
| ((xd->mi_row & (cm->seq_params.mib_size - 1)) == 0) && |
| ((xd->mi_col & (cm->seq_params.mib_size - 1)) == 0); |
| const DeltaQInfo *const delta_q_info = &cm->delta_q_info; |
| if (delta_q_info->delta_q_present_flag && |
| (bsize != cm->seq_params.sb_size || !mbmi->skip_txfm) && |
| super_block_upper_left) { |
| const int dq = (mbmi->current_qindex - xd->current_base_qindex) / |
| delta_q_info->delta_q_res; |
| const int absdq = abs(dq); |
| for (int i = 0; i < AOMMIN(absdq, DELTA_Q_SMALL); ++i) { |
| td->counts->delta_q[i][1]++; |
| } |
| if (absdq < DELTA_Q_SMALL) td->counts->delta_q[absdq][0]++; |
| if (delta_q_info->delta_lf_present_flag) { |
| if (delta_q_info->delta_lf_multi) { |
| const int frame_lf_count = |
| av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2; |
| for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) { |
| const int delta_lf = (mbmi->delta_lf[lf_id] - xd->delta_lf[lf_id]) / |
| delta_q_info->delta_lf_res; |
| const int abs_delta_lf = abs(delta_lf); |
| for (int i = 0; i < AOMMIN(abs_delta_lf, DELTA_LF_SMALL); ++i) { |
| td->counts->delta_lf_multi[lf_id][i][1]++; |
| } |
| if (abs_delta_lf < DELTA_LF_SMALL) |
| td->counts->delta_lf_multi[lf_id][abs_delta_lf][0]++; |
| } |
| } else { |
| const int delta_lf = |
| (mbmi->delta_lf_from_base - xd->delta_lf_from_base) / |
| delta_q_info->delta_lf_res; |
| const int abs_delta_lf = abs(delta_lf); |
| for (int i = 0; i < AOMMIN(abs_delta_lf, DELTA_LF_SMALL); ++i) { |
| td->counts->delta_lf[i][1]++; |
| } |
| if (abs_delta_lf < DELTA_LF_SMALL) |
| td->counts->delta_lf[abs_delta_lf][0]++; |
| } |
| } |
| } |
| #endif |
| |
| if (!is_inter_block(mbmi)) { |
| sum_intra_stats(cm, td->counts, xd, mbmi, xd->above_mbmi, xd->left_mbmi, |
| frame_is_intra_only(cm)); |
| } |
| |
| if (av1_allow_intrabc(cm)) { |
| update_cdf(fc->intrabc_cdf, is_intrabc_block(mbmi), 2); |
| #if CONFIG_ENTROPY_STATS |
| ++td->counts->intrabc[is_intrabc_block(mbmi)]; |
| #endif // CONFIG_ENTROPY_STATS |
| } |
| |
| if (frame_is_intra_only(cm) || mbmi->skip_mode) return; |
| |
| FRAME_COUNTS *const counts = td->counts; |
| const int inter_block = is_inter_block(mbmi); |
| |
| if (!seg_ref_active) { |
| #if CONFIG_ENTROPY_STATS |
| counts->intra_inter[av1_get_intra_inter_context(xd)][inter_block]++; |
| #endif |
| update_cdf(fc->intra_inter_cdf[av1_get_intra_inter_context(xd)], |
| inter_block, 2); |
| // If the segment reference feature is enabled we have only a single |
| // reference frame allowed for the segment so exclude it from |
| // the reference frame counts used to work out probabilities. |
| if (inter_block) { |
| const MV_REFERENCE_FRAME ref0 = mbmi->ref_frame[0]; |
| const MV_REFERENCE_FRAME ref1 = mbmi->ref_frame[1]; |
| if (current_frame->reference_mode == REFERENCE_MODE_SELECT) { |
| if (is_comp_ref_allowed(bsize)) { |
| #if CONFIG_ENTROPY_STATS |
| counts->comp_inter[av1_get_reference_mode_context(xd)] |
| [has_second_ref(mbmi)]++; |
| #endif // CONFIG_ENTROPY_STATS |
| update_cdf(av1_get_reference_mode_cdf(xd), has_second_ref(mbmi), 2); |
| } |
| } |
| |
| if (has_second_ref(mbmi)) { |
| const COMP_REFERENCE_TYPE comp_ref_type = has_uni_comp_refs(mbmi) |
| ? UNIDIR_COMP_REFERENCE |
| : BIDIR_COMP_REFERENCE; |
| update_cdf(av1_get_comp_reference_type_cdf(xd), comp_ref_type, |
| COMP_REFERENCE_TYPES); |
| #if CONFIG_ENTROPY_STATS |
| counts->comp_ref_type[av1_get_comp_reference_type_context(xd)] |
| [comp_ref_type]++; |
| #endif // CONFIG_ENTROPY_STATS |
| |
| if (comp_ref_type == UNIDIR_COMP_REFERENCE) { |
| const int bit = (ref0 == BWDREF_FRAME); |
| update_cdf(av1_get_pred_cdf_uni_comp_ref_p(xd), bit, 2); |
| #if CONFIG_ENTROPY_STATS |
| counts |
| ->uni_comp_ref[av1_get_pred_context_uni_comp_ref_p(xd)][0][bit]++; |
| #endif // CONFIG_ENTROPY_STATS |
| if (!bit) { |
| const int bit1 = (ref1 == LAST3_FRAME || ref1 == GOLDEN_FRAME); |
| update_cdf(av1_get_pred_cdf_uni_comp_ref_p1(xd), bit1, 2); |
| #if CONFIG_ENTROPY_STATS |
| counts->uni_comp_ref[av1_get_pred_context_uni_comp_ref_p1(xd)][1] |
| [bit1]++; |
| #endif // CONFIG_ENTROPY_STATS |
| if (bit1) { |
| update_cdf(av1_get_pred_cdf_uni_comp_ref_p2(xd), |
| ref1 == GOLDEN_FRAME, 2); |
| #if CONFIG_ENTROPY_STATS |
| counts->uni_comp_ref[av1_get_pred_context_uni_comp_ref_p2(xd)][2] |
| [ref1 == GOLDEN_FRAME]++; |
| #endif // CONFIG_ENTROPY_STATS |
| } |
| } |
| } else { |
| const int bit = (ref0 == GOLDEN_FRAME || ref0 == LAST3_FRAME); |
| update_cdf(av1_get_pred_cdf_comp_ref_p(xd), bit, 2); |
| #if CONFIG_ENTROPY_STATS |
| counts->comp_ref[av1_get_pred_context_comp_ref_p(xd)][0][bit]++; |
| #endif // CONFIG_ENTROPY_STATS |
| if (!bit) { |
| update_cdf(av1_get_pred_cdf_comp_ref_p1(xd), ref0 == LAST2_FRAME, |
| 2); |
| #if CONFIG_ENTROPY_STATS |
| counts->comp_ref[av1_get_pred_context_comp_ref_p1(xd)][1] |
| [ref0 == LAST2_FRAME]++; |
| #endif // CONFIG_ENTROPY_STATS |
| } else { |
| update_cdf(av1_get_pred_cdf_comp_ref_p2(xd), ref0 == GOLDEN_FRAME, |
| 2); |
| #if CONFIG_ENTROPY_STATS |
| counts->comp_ref[av1_get_pred_context_comp_ref_p2(xd)][2] |
| [ref0 == GOLDEN_FRAME]++; |
| #endif // CONFIG_ENTROPY_STATS |
| } |
| update_cdf(av1_get_pred_cdf_comp_bwdref_p(xd), ref1 == ALTREF_FRAME, |
| 2); |
| #if CONFIG_ENTROPY_STATS |
| counts->comp_bwdref[av1_get_pred_context_comp_bwdref_p(xd)][0] |
| [ref1 == ALTREF_FRAME]++; |
| #endif // CONFIG_ENTROPY_STATS |
| if (ref1 != ALTREF_FRAME) { |
| update_cdf(av1_get_pred_cdf_comp_bwdref_p1(xd), |
| ref1 == ALTREF2_FRAME, 2); |
| #if CONFIG_ENTROPY_STATS |
| counts->comp_bwdref[av1_get_pred_context_comp_bwdref_p1(xd)][1] |
| [ref1 == ALTREF2_FRAME]++; |
| #endif // CONFIG_ENTROPY_STATS |
| } |
| } |
| } else { |
| const int bit = (ref0 >= BWDREF_FRAME); |
| update_cdf(av1_get_pred_cdf_single_ref_p1(xd), bit, 2); |
| #if CONFIG_ENTROPY_STATS |
| counts->single_ref[av1_get_pred_context_single_ref_p1(xd)][0][bit]++; |
| #endif // CONFIG_ENTROPY_STATS |
| if (bit) { |
| assert(ref0 <= ALTREF_FRAME); |
| update_cdf(av1_get_pred_cdf_single_ref_p2(xd), ref0 == ALTREF_FRAME, |
| 2); |
| #if CONFIG_ENTROPY_STATS |
| counts->single_ref[av1_get_pred_context_single_ref_p2(xd)][1] |
| [ref0 == ALTREF_FRAME]++; |
| #endif // CONFIG_ENTROPY_STATS |
| if (ref0 != ALTREF_FRAME) { |
| update_cdf(av1_get_pred_cdf_single_ref_p6(xd), |
| ref0 == ALTREF2_FRAME, 2); |
| #if CONFIG_ENTROPY_STATS |
| counts->single_ref[av1_get_pred_context_single_ref_p6(xd)][5] |
| [ref0 == ALTREF2_FRAME]++; |
| #endif // CONFIG_ENTROPY_STATS |
| } |
| } else { |
| const int bit1 = !(ref0 == LAST2_FRAME || ref0 == LAST_FRAME); |
| update_cdf(av1_get_pred_cdf_single_ref_p3(xd), bit1, 2); |
| #if CONFIG_ENTROPY_STATS |
| counts->single_ref[av1_get_pred_context_single_ref_p3(xd)][2][bit1]++; |
| #endif // CONFIG_ENTROPY_STATS |
| if (!bit1) { |
| update_cdf(av1_get_pred_cdf_single_ref_p4(xd), ref0 != LAST_FRAME, |
| 2); |
| #if CONFIG_ENTROPY_STATS |
| counts->single_ref[av1_get_pred_context_single_ref_p4(xd)][3] |
| [ref0 != LAST_FRAME]++; |
| #endif // CONFIG_ENTROPY_STATS |
| } else { |
| update_cdf(av1_get_pred_cdf_single_ref_p5(xd), ref0 != LAST3_FRAME, |
| 2); |
| #if CONFIG_ENTROPY_STATS |
| counts->single_ref[av1_get_pred_context_single_ref_p5(xd)][4] |
| [ref0 != LAST3_FRAME]++; |
| #endif // CONFIG_ENTROPY_STATS |
| } |
| } |
| } |
| |
| if (cm->seq_params.enable_interintra_compound && |
| is_interintra_allowed(mbmi)) { |
| const int bsize_group = size_group_lookup[bsize]; |
| if (mbmi->ref_frame[1] == INTRA_FRAME) { |
| #if CONFIG_ENTROPY_STATS |
| counts->interintra[bsize_group][1]++; |
| #endif |
| update_cdf(fc->interintra_cdf[bsize_group], 1, 2); |
| #if CONFIG_ENTROPY_STATS |
| counts->interintra_mode[bsize_group][mbmi->interintra_mode]++; |
| #endif |
| update_cdf(fc->interintra_mode_cdf[bsize_group], |
| mbmi->interintra_mode, INTERINTRA_MODES); |
| if (av1_is_wedge_used(bsize)) { |
| #if CONFIG_ENTROPY_STATS |
| counts->wedge_interintra[bsize][mbmi->use_wedge_interintra]++; |
| #endif |
| update_cdf(fc->wedge_interintra_cdf[bsize], |
| mbmi->use_wedge_interintra, 2); |
| if (mbmi->use_wedge_interintra) { |
| #if CONFIG_ENTROPY_STATS |
| counts->wedge_idx[bsize][mbmi->interintra_wedge_index]++; |
| #endif |
| update_cdf(fc->wedge_idx_cdf[bsize], mbmi->interintra_wedge_index, |
| 16); |
| } |
| } |
| } else { |
| #if CONFIG_ENTROPY_STATS |
| counts->interintra[bsize_group][0]++; |
| #endif |
| update_cdf(fc->interintra_cdf[bsize_group], 0, 2); |
| } |
| } |
| |
| const MOTION_MODE motion_allowed = |
| cm->features.switchable_motion_mode |
| ? motion_mode_allowed(xd->global_motion, xd, mbmi, |
| cm->features.allow_warped_motion) |
| : SIMPLE_TRANSLATION; |
| if (mbmi->ref_frame[1] != INTRA_FRAME) { |
| if (motion_allowed == WARPED_CAUSAL) { |
| #if CONFIG_ENTROPY_STATS |
| counts->motion_mode[bsize][mbmi->motion_mode]++; |
| #endif |
| update_cdf(fc->motion_mode_cdf[bsize], mbmi->motion_mode, |
| MOTION_MODES); |
| } else if (motion_allowed == OBMC_CAUSAL) { |
| #if CONFIG_ENTROPY_STATS |
| counts->obmc[bsize][mbmi->motion_mode == OBMC_CAUSAL]++; |
| #endif |
| update_cdf(fc->obmc_cdf[bsize], mbmi->motion_mode == OBMC_CAUSAL, 2); |
| } |
| } |
| |
| if (has_second_ref(mbmi)) { |
| assert(current_frame->reference_mode != SINGLE_REFERENCE && |
| is_inter_compound_mode(mbmi->mode) && |
| mbmi->motion_mode == SIMPLE_TRANSLATION); |
| |
| const int masked_compound_used = is_any_masked_compound_used(bsize) && |
| cm->seq_params.enable_masked_compound; |
| if (masked_compound_used) { |
| const int comp_group_idx_ctx = get_comp_group_idx_context(xd); |
| #if CONFIG_ENTROPY_STATS |
| ++counts->comp_group_idx[comp_group_idx_ctx][mbmi->comp_group_idx]; |
| #endif |
| update_cdf(fc->comp_group_idx_cdf[comp_group_idx_ctx], |
| mbmi->comp_group_idx, 2); |
| } |
| |
| if (mbmi->comp_group_idx == 0) { |
| const int comp_index_ctx = get_comp_index_context(cm, xd); |
| #if CONFIG_ENTROPY_STATS |
| ++counts->compound_index[comp_index_ctx][mbmi->compound_idx]; |
| #endif |
| update_cdf(fc->compound_index_cdf[comp_index_ctx], mbmi->compound_idx, |
| 2); |
| } else { |
| assert(masked_compound_used); |
| if (is_interinter_compound_used(COMPOUND_WEDGE, bsize)) { |
| #if CONFIG_ENTROPY_STATS |
| ++counts->compound_type[bsize][mbmi->interinter_comp.type - |
| COMPOUND_WEDGE]; |
| #endif |
| update_cdf(fc->compound_type_cdf[bsize], |
| mbmi->interinter_comp.type - COMPOUND_WEDGE, |
| MASKED_COMPOUND_TYPES); |
| } |
| } |
| } |
| if (mbmi->interinter_comp.type == COMPOUND_WEDGE) { |
| if (is_interinter_compound_used(COMPOUND_WEDGE, bsize)) { |
| #if CONFIG_ENTROPY_STATS |
| counts->wedge_idx[bsize][mbmi->interinter_comp.wedge_index]++; |
| #endif |
| update_cdf(fc->wedge_idx_cdf[bsize], |
| mbmi->interinter_comp.wedge_index, 16); |
| } |
| } |
| } |
| } |
| |
| if (inter_block && cm->features.interp_filter == SWITCHABLE && |
| mbmi->motion_mode != WARPED_CAUSAL && |
| !is_nontrans_global_motion(xd, mbmi)) { |
| update_filter_type_cdf(xd, mbmi); |
| } |
| if (inter_block && |
| !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { |
| const PREDICTION_MODE mode = mbmi->mode; |
| const int16_t mode_ctx = |
| av1_mode_context_analyzer(mbmi_ext->mode_context, mbmi->ref_frame); |
| if (has_second_ref(mbmi)) { |
| #if CONFIG_ENTROPY_STATS |
| ++counts->inter_compound_mode[mode_ctx][INTER_COMPOUND_OFFSET(mode)]; |
| #endif |
| update_cdf(fc->inter_compound_mode_cdf[mode_ctx], |
| INTER_COMPOUND_OFFSET(mode), INTER_COMPOUND_MODES); |
| } else { |
| update_inter_mode_stats(fc, counts, mode, mode_ctx); |
| } |
| |
| const int new_mv = mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV; |
| if (new_mv) { |
| const uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); |
| for (int idx = 0; idx < 2; ++idx) { |
| if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) { |
| const uint8_t drl_ctx = |
| av1_drl_ctx(mbmi_ext->weight[ref_frame_type], idx); |
| update_cdf(fc->drl_cdf[drl_ctx], mbmi->ref_mv_idx != idx, 2); |
| #if CONFIG_ENTROPY_STATS |
| ++counts->drl_mode[drl_ctx][mbmi->ref_mv_idx != idx]; |
| #endif |
| if (mbmi->ref_mv_idx == idx) break; |
| } |
| } |
| } |
| |
| if (have_nearmv_in_inter_mode(mbmi->mode)) { |
| const uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); |
| for (int idx = 1; idx < 3; ++idx) { |
| if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) { |
| const uint8_t drl_ctx = |
| av1_drl_ctx(mbmi_ext->weight[ref_frame_type], idx); |
| update_cdf(fc->drl_cdf[drl_ctx], mbmi->ref_mv_idx != idx - 1, 2); |
| #if CONFIG_ENTROPY_STATS |
| ++counts->drl_mode[drl_ctx][mbmi->ref_mv_idx != idx - 1]; |
| #endif |
| if (mbmi->ref_mv_idx == idx - 1) break; |
| } |
| } |
| } |
| if (have_newmv_in_inter_mode(mbmi->mode)) { |
| const int allow_hp = cm->features.cur_frame_force_integer_mv |
| ? MV_SUBPEL_NONE |
| : cm->features.allow_high_precision_mv; |
| if (new_mv) { |
| for (int ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) { |
| const int_mv ref_mv = av1_get_ref_mv(x, ref); |
| av1_update_mv_stats(&mbmi->mv[ref].as_mv, &ref_mv.as_mv, &fc->nmvc, |
| allow_hp); |
| } |
| } else if (mbmi->mode == NEAREST_NEWMV || mbmi->mode == NEAR_NEWMV) { |
| const int ref = 1; |
| const int_mv ref_mv = av1_get_ref_mv(x, ref); |
| av1_update_mv_stats(&mbmi->mv[ref].as_mv, &ref_mv.as_mv, &fc->nmvc, |
| allow_hp); |
| } else if (mbmi->mode == NEW_NEARESTMV || mbmi->mode == NEW_NEARMV) { |
| const int ref = 0; |
| const int_mv ref_mv = av1_get_ref_mv(x, ref); |
| av1_update_mv_stats(&mbmi->mv[ref].as_mv, &ref_mv.as_mv, &fc->nmvc, |
| allow_hp); |
| } |
| } |
| } |
| } |
| |
| static AOM_INLINE void restore_context(MACROBLOCK *x, |
| const RD_SEARCH_MACROBLOCK_CONTEXT *ctx, |
| int mi_row, int mi_col, BLOCK_SIZE bsize, |
| const int num_planes) { |
| MACROBLOCKD *xd = &x->e_mbd; |
| int p; |
| const int num_4x4_blocks_wide = mi_size_wide[bsize]; |
| const int num_4x4_blocks_high = mi_size_high[bsize]; |
| int mi_width = mi_size_wide[bsize]; |
| int mi_height = mi_size_high[bsize]; |
| for (p = 0; p < num_planes; p++) { |
| int tx_col = mi_col; |
| int tx_row = mi_row & MAX_MIB_MASK; |
| memcpy( |
| xd->above_entropy_context[p] + (tx_col >> xd->plane[p].subsampling_x), |
| ctx->a + num_4x4_blocks_wide * p, |
| (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >> |
| xd->plane[p].subsampling_x); |
| memcpy(xd->left_entropy_context[p] + (tx_row >> xd->plane[p].subsampling_y), |
| ctx->l + num_4x4_blocks_high * p, |
| (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >> |
| xd->plane[p].subsampling_y); |
| } |
| memcpy(xd->above_partition_context + mi_col, ctx->sa, |
| sizeof(*xd->above_partition_context) * mi_width); |
| memcpy(xd->left_partition_context + (mi_row & MAX_MIB_MASK), ctx->sl, |
| sizeof(xd->left_partition_context[0]) * mi_height); |
| xd->above_txfm_context = ctx->p_ta; |
| xd->left_txfm_context = ctx->p_tl; |
| memcpy(xd->above_txfm_context, ctx->ta, |
| sizeof(*xd->above_txfm_context) * mi_width); |
| memcpy(xd->left_txfm_context, ctx->tl, |
| sizeof(*xd->left_txfm_context) * mi_height); |
| } |
| |
| static AOM_INLINE void save_context(const MACROBLOCK *x, |
| RD_SEARCH_MACROBLOCK_CONTEXT *ctx, |
| int mi_row, int mi_col, BLOCK_SIZE bsize, |
| const int num_planes) { |
| const MACROBLOCKD *xd = &x->e_mbd; |
| int p; |
| int mi_width = mi_size_wide[bsize]; |
| int mi_height = mi_size_high[bsize]; |
| |
| // buffer the above/left context information of the block in search. |
| for (p = 0; p < num_planes; ++p) { |
| int tx_col = mi_col; |
| int tx_row = mi_row & MAX_MIB_MASK; |
| memcpy( |
| ctx->a + mi_width * p, |
| xd->above_entropy_context[p] + (tx_col >> xd->plane[p].subsampling_x), |
| (sizeof(ENTROPY_CONTEXT) * mi_width) >> xd->plane[p].subsampling_x); |
| memcpy(ctx->l + mi_height * p, |
| xd->left_entropy_context[p] + (tx_row >> xd->plane[p].subsampling_y), |
| (sizeof(ENTROPY_CONTEXT) * mi_height) >> xd->plane[p].subsampling_y); |
| } |
| memcpy(ctx->sa, xd->above_partition_context + mi_col, |
| sizeof(*xd->above_partition_context) * mi_width); |
| memcpy(ctx->sl, xd->left_partition_context + (mi_row & MAX_MIB_MASK), |
| sizeof(xd->left_partition_context[0]) * mi_height); |
| memcpy(ctx->ta, xd->above_txfm_context, |
| sizeof(*xd->above_txfm_context) * mi_width); |
| memcpy(ctx->tl, xd->left_txfm_context, |
| sizeof(*xd->left_txfm_context) * mi_height); |
| ctx->p_ta = xd->above_txfm_context; |
| ctx->p_tl = xd->left_txfm_context; |
| } |
| |
| static AOM_INLINE void encode_b(const AV1_COMP *const cpi, |
| TileDataEnc *tile_data, ThreadData *td, |
| TokenExtra **tp, int mi_row, int mi_col, |
| RUN_TYPE dry_run, BLOCK_SIZE bsize, |
| PARTITION_TYPE partition, |
| PICK_MODE_CONTEXT *const ctx, int *rate) { |
| TileInfo *const tile = &tile_data->tile_info; |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *xd = &x->e_mbd; |
| |
| set_offsets_without_segment_id(cpi, tile, x, mi_row, mi_col, bsize); |
| const int origin_mult = x->rdmult; |
| setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL); |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| mbmi->partition = partition; |
| update_state(cpi, td, ctx, mi_row, mi_col, bsize, dry_run); |
| |
| if (!dry_run) { |
| x->mbmi_ext_frame->cb_offset = x->cb_offset; |
| assert(x->cb_offset < |
| (1 << num_pels_log2_lookup[cpi->common.seq_params.sb_size])); |
| } |
| |
| encode_superblock(cpi, tile_data, td, tp, dry_run, bsize, rate); |
| |
| if (!dry_run) { |
| const AV1_COMMON *const cm = &cpi->common; |
| x->cb_offset += block_size_wide[bsize] * block_size_high[bsize]; |
| if (bsize == cpi->common.seq_params.sb_size && mbmi->skip_txfm == 1 && |
| cm->delta_q_info.delta_lf_present_flag) { |
| const int frame_lf_count = |
| av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2; |
| for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) |
| mbmi->delta_lf[lf_id] = xd->delta_lf[lf_id]; |
| mbmi->delta_lf_from_base = xd->delta_lf_from_base; |
| } |
| if (has_second_ref(mbmi)) { |
| if (mbmi->compound_idx == 0 || |
| mbmi->interinter_comp.type == COMPOUND_AVERAGE) |
| mbmi->comp_group_idx = 0; |
| else |
| mbmi->comp_group_idx = 1; |
| } |
| |
| // delta quant applies to both intra and inter |
| const int super_block_upper_left = |
| ((mi_row & (cm->seq_params.mib_size - 1)) == 0) && |
| ((mi_col & (cm->seq_params.mib_size - 1)) == 0); |
| const DeltaQInfo *const delta_q_info = &cm->delta_q_info; |
| if (delta_q_info->delta_q_present_flag && |
| (bsize != cm->seq_params.sb_size || !mbmi->skip_txfm) && |
| super_block_upper_left) { |
| xd->current_base_qindex = mbmi->current_qindex; |
| if (delta_q_info->delta_lf_present_flag) { |
| if (delta_q_info->delta_lf_multi) { |
| const int frame_lf_count = |
| av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2; |
| for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) { |
| xd->delta_lf[lf_id] = mbmi->delta_lf[lf_id]; |
| } |
| } else { |
| xd->delta_lf_from_base = mbmi->delta_lf_from_base; |
| } |
| } |
| } |
| |
| RD_COUNTS *rdc = &td->rd_counts; |
| if (mbmi->skip_mode) { |
| assert(!frame_is_intra_only(cm)); |
| rdc->skip_mode_used_flag = 1; |
| if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT) { |
| assert(has_second_ref(mbmi)); |
| rdc->compound_ref_used_flag = 1; |
| } |
| set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); |
| } else { |
| const int seg_ref_active = |
| segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_REF_FRAME); |
| if (!seg_ref_active) { |
| // If the segment reference feature is enabled we have only a single |
| // reference frame allowed for the segment so exclude it from |
| // the reference frame counts used to work out probabilities. |
| if (is_inter_block(mbmi)) { |
| av1_collect_neighbors_ref_counts(xd); |
| if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT) { |
| if (has_second_ref(mbmi)) { |
| // This flag is also updated for 4x4 blocks |
| rdc->compound_ref_used_flag = 1; |
| } |
| } |
| set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); |
| } |
| } |
| } |
| |
| if (tile_data->allow_update_cdf) update_stats(&cpi->common, td); |
| |
| // Gather obmc and warped motion count to update the probability. |
| if ((!cpi->sf.inter_sf.disable_obmc && |
| cpi->sf.inter_sf.prune_obmc_prob_thresh > 0) || |
| (cm->features.allow_warped_motion && |
| cpi->sf.inter_sf.prune_warped_prob_thresh > 0)) { |
| const int inter_block = is_inter_block(mbmi); |
| const int seg_ref_active = |
| segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_REF_FRAME); |
| if (!seg_ref_active && inter_block) { |
| const MOTION_MODE motion_allowed = |
| cm->features.switchable_motion_mode |
| ? motion_mode_allowed(xd->global_motion, xd, mbmi, |
| cm->features.allow_warped_motion) |
| : SIMPLE_TRANSLATION; |
| |
| if (mbmi->ref_frame[1] != INTRA_FRAME) { |
| if (motion_allowed >= OBMC_CAUSAL) { |
| td->rd_counts.obmc_used[bsize][mbmi->motion_mode == OBMC_CAUSAL]++; |
| } |
| if (motion_allowed == WARPED_CAUSAL) { |
| td->rd_counts.warped_used[mbmi->motion_mode == WARPED_CAUSAL]++; |
| } |
| } |
| } |
| } |
| } |
| // TODO(Ravi/Remya): Move this copy function to a better logical place |
| // This function will copy the best mode information from block |
| // level (x->mbmi_ext) to frame level (cpi->mbmi_ext_info.frame_base). This |
| // frame level buffer (cpi->mbmi_ext_info.frame_base) will be used during |
| // bitstream preparation. |
| av1_copy_mbmi_ext_to_mbmi_ext_frame(x->mbmi_ext_frame, x->mbmi_ext, |
| av1_ref_frame_type(xd->mi[0]->ref_frame)); |
| x->rdmult = origin_mult; |
| } |
| |
| static AOM_INLINE void encode_sb(const AV1_COMP *const cpi, ThreadData *td, |
| TileDataEnc *tile_data, TokenExtra **tp, |
| int mi_row, int mi_col, RUN_TYPE dry_run, |
| BLOCK_SIZE bsize, PC_TREE *pc_tree, |
| int *rate) { |
| assert(bsize < BLOCK_SIZES_ALL); |
| const AV1_COMMON *const cm = &cpi->common; |
| const CommonModeInfoParams *const mi_params = &cm->mi_params; |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| assert(bsize < BLOCK_SIZES_ALL); |
| const int hbs = mi_size_wide[bsize] / 2; |
| const int is_partition_root = bsize >= BLOCK_8X8; |
| const int ctx = is_partition_root |
| ? partition_plane_context(xd, mi_row, mi_col, bsize) |
| : -1; |
| const PARTITION_TYPE partition = pc_tree->partitioning; |
| const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition); |
| int quarter_step = mi_size_wide[bsize] / 4; |
| int i; |
| BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT); |
| |
| if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) return; |
| if (subsize == BLOCK_INVALID) return; |
| |
| if (!dry_run && ctx >= 0) { |
| const int has_rows = (mi_row + hbs) < mi_params->mi_rows; |
| const int has_cols = (mi_col + hbs) < mi_params->mi_cols; |
| |
| if (has_rows && has_cols) { |
| #if CONFIG_ENTROPY_STATS |
| td->counts->partition[ctx][partition]++; |
| #endif |
| |
| if (tile_data->allow_update_cdf) { |
| FRAME_CONTEXT *fc = xd->tile_ctx; |
| update_cdf(fc->partition_cdf[ctx], partition, |
| partition_cdf_length(bsize)); |
| } |
| } |
| } |
| |
| switch (partition) { |
| case PARTITION_NONE: |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize, |
| partition, pc_tree->none, rate); |
| break; |
| case PARTITION_VERT: |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize, |
| partition, pc_tree->vertical[0], rate); |
| if (mi_col + hbs < mi_params->mi_cols) { |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, subsize, |
| partition, pc_tree->vertical[1], rate); |
| } |
| break; |
| case PARTITION_HORZ: |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize, |
| partition, pc_tree->horizontal[0], rate); |
| if (mi_row + hbs < mi_params->mi_rows) { |
| encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, subsize, |
| partition, pc_tree->horizontal[1], rate); |
| } |
| break; |
| case PARTITION_SPLIT: |
| encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, dry_run, subsize, |
| pc_tree->split[0], rate); |
| encode_sb(cpi, td, tile_data, tp, mi_row, mi_col + hbs, dry_run, subsize, |
| pc_tree->split[1], rate); |
| encode_sb(cpi, td, tile_data, tp, mi_row + hbs, mi_col, dry_run, subsize, |
| pc_tree->split[2], rate); |
| encode_sb(cpi, td, tile_data, tp, mi_row + hbs, mi_col + hbs, dry_run, |
| subsize, pc_tree->split[3], rate); |
| break; |
| |
| case PARTITION_HORZ_A: |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, bsize2, |
| partition, pc_tree->horizontala[0], rate); |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, bsize2, |
| partition, pc_tree->horizontala[1], rate); |
| encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, subsize, |
| partition, pc_tree->horizontala[2], rate); |
| break; |
| case PARTITION_HORZ_B: |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize, |
| partition, pc_tree->horizontalb[0], rate); |
| encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, bsize2, |
| partition, pc_tree->horizontalb[1], rate); |
| encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col + hbs, dry_run, |
| bsize2, partition, pc_tree->horizontalb[2], rate); |
| break; |
| case PARTITION_VERT_A: |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, bsize2, |
| partition, pc_tree->verticala[0], rate); |
| encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, bsize2, |
| partition, pc_tree->verticala[1], rate); |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, subsize, |
| partition, pc_tree->verticala[2], rate); |
| |
| break; |
| case PARTITION_VERT_B: |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize, |
| partition, pc_tree->verticalb[0], rate); |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, bsize2, |
| partition, pc_tree->verticalb[1], rate); |
| encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col + hbs, dry_run, |
| bsize2, partition, pc_tree->verticalb[2], rate); |
| break; |
| case PARTITION_HORZ_4: |
| for (i = 0; i < 4; ++i) { |
| int this_mi_row = mi_row + i * quarter_step; |
| if (i > 0 && this_mi_row >= mi_params->mi_rows) break; |
| |
| encode_b(cpi, tile_data, td, tp, this_mi_row, mi_col, dry_run, subsize, |
| partition, pc_tree->horizontal4[i], rate); |
| } |
| break; |
| case PARTITION_VERT_4: |
| for (i = 0; i < 4; ++i) { |
| int this_mi_col = mi_col + i * quarter_step; |
| if (i > 0 && this_mi_col >= mi_params->mi_cols) break; |
| encode_b(cpi, tile_data, td, tp, mi_row, this_mi_col, dry_run, subsize, |
| partition, pc_tree->vertical4[i], rate); |
| } |
| break; |
| default: assert(0 && "Invalid partition type."); break; |
| } |
| |
| update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition); |
| } |
| |
| static AOM_INLINE void set_partial_sb_partition( |
| const AV1_COMMON *const cm, MB_MODE_INFO *mi, int bh_in, int bw_in, |
| int mi_rows_remaining, int mi_cols_remaining, BLOCK_SIZE bsize, |
| MB_MODE_INFO **mib) { |
| int bh = bh_in; |
| int r, c; |
| for (r = 0; r < cm->seq_params.mib_size; r += bh) { |
| int bw = bw_in; |
| for (c = 0; c < cm->seq_params.mib_size; c += bw) { |
| const int grid_index = get_mi_grid_idx(&cm->mi_params, r, c); |
| const int mi_index = get_alloc_mi_idx(&cm->mi_params, r, c); |
| mib[grid_index] = mi + mi_index; |
| mib[grid_index]->sb_type = find_partition_size( |
| bsize, mi_rows_remaining - r, mi_cols_remaining - c, &bh, &bw); |
| } |
| } |
| } |
| |
| // This function attempts to set all mode info entries in a given superblock |
| // to the same block partition size. |
| // However, at the bottom and right borders of the image the requested size |
| // may not be allowed in which case this code attempts to choose the largest |
| // allowable partition. |
| static AOM_INLINE void set_fixed_partitioning(AV1_COMP *cpi, |
| const TileInfo *const tile, |
| MB_MODE_INFO **mib, int mi_row, |
| int mi_col, BLOCK_SIZE bsize) { |
| AV1_COMMON *const cm = &cpi->common; |
| const CommonModeInfoParams *const mi_params = &cm->mi_params; |
| const int mi_rows_remaining = tile->mi_row_end - mi_row; |
| const int mi_cols_remaining = tile->mi_col_end - mi_col; |
| MB_MODE_INFO *const mi_upper_left = |
| mi_params->mi_alloc + get_alloc_mi_idx(mi_params, mi_row, mi_col); |
| int bh = mi_size_high[bsize]; |
| int bw = mi_size_wide[bsize]; |
| |
| assert(bsize >= mi_params->mi_alloc_bsize && |
| "Attempted to use bsize < mi_params->mi_alloc_bsize"); |
| assert((mi_rows_remaining > 0) && (mi_cols_remaining > 0)); |
| |
| // Apply the requested partition size to the SB if it is all "in image" |
| if ((mi_cols_remaining >= cm->seq_params.mib_size) && |
| (mi_rows_remaining >= cm->seq_params.mib_size)) { |
| for (int block_row = 0; block_row < cm->seq_params.mib_size; |
| block_row += bh) { |
| for (int block_col = 0; block_col < cm->seq_params.mib_size; |
| block_col += bw) { |
| const int grid_index = get_mi_grid_idx(mi_params, block_row, block_col); |
| const int mi_index = get_alloc_mi_idx(mi_params, block_row, block_col); |
| mib[grid_index] = mi_upper_left + mi_index; |
| mib[grid_index]->sb_type = bsize; |
| } |
| } |
| } else { |
| // Else this is a partial SB. |
| set_partial_sb_partition(cm, mi_upper_left, bh, bw, mi_rows_remaining, |
| mi_cols_remaining, bsize, mib); |
| } |
| } |
| |
| // Encode the block by applying pre-calculated partition patterns that are |
| // represented by coding block sizes stored in the mbmi array. Minor partition |
| // adjustments are tested and applied if they lead to lower rd costs. The |
| // partition types are limited to a basic set: none, horz, vert, and split. |
| // |
| // Inputs: |
| // cpi: the global compressor setting |
| // td: thread data |
| // tile_data: tile data |
| // mib: the array representing MB_MODE_INFO pointers for mi blocks starting |
| // from the first pixel of the current block |
| // tp: the pointer to the start token |
| // mi_row: row coordinate of the block in a step size of MI_SIZE |
| // mi_col: column coordinate of the block in a step size of MI_SIZE |
| // bsize: block size |
| // rate: the pointer to the final rate for encoding the current block |
| // dist: the pointer to the final distortion of the current block |
| // do_recon: whether the reconstruction function needs to be run, either for |
| // finalizing a superblock or providing reference for future |
| // sub-partitions |
| // pc_tree: the pointer to the PC_TREE node storing the picked partitions |
| // and mode info for the current block |
| static AOM_INLINE void rd_use_partition( |
| AV1_COMP *cpi, ThreadData *td, TileDataEnc *tile_data, MB_MODE_INFO **mib, |
| TokenExtra **tp, int mi_row, int mi_col, BLOCK_SIZE bsize, int *rate, |
| int64_t *dist, int do_recon, PC_TREE *pc_tree) { |
| AV1_COMMON *const cm = &cpi->common; |
| const CommonModeInfoParams *const mi_params = &cm->mi_params; |
| const int num_planes = av1_num_planes(cm); |
| TileInfo *const tile_info = &tile_data->tile_info; |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const ModeCosts *mode_costs = &x->mode_costs; |
| const int bs = mi_size_wide[bsize]; |
| const int hbs = bs / 2; |
| const int pl = (bsize >= BLOCK_8X8) |
| ? partition_plane_context(xd, mi_row, mi_col, bsize) |
| : 0; |
| const PARTITION_TYPE partition = |
| (bsize >= BLOCK_8X8) ? get_partition(cm, mi_row, mi_col, bsize) |
| : PARTITION_NONE; |
| const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition); |
| RD_SEARCH_MACROBLOCK_CONTEXT x_ctx; |
| RD_STATS last_part_rdc, none_rdc, chosen_rdc, invalid_rdc; |
| BLOCK_SIZE sub_subsize = BLOCK_4X4; |
| int splits_below = 0; |
| BLOCK_SIZE bs_type = mib[0]->sb_type; |
| |
| if (pc_tree->none == NULL) { |
| pc_tree->none = av1_alloc_pmc(cm, bsize, &td->shared_coeff_buf); |
| } |
| PICK_MODE_CONTEXT *ctx_none = pc_tree->none; |
| |
| if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) return; |
| |
| assert(mi_size_wide[bsize] == mi_size_high[bsize]); |
| |
| av1_invalid_rd_stats(&last_part_rdc); |
| av1_invalid_rd_stats(&none_rdc); |
| av1_invalid_rd_stats(&chosen_rdc); |
| av1_invalid_rd_stats(&invalid_rdc); |
| |
| pc_tree->partitioning = partition; |
| |
| xd->above_txfm_context = |
| cm->above_contexts.txfm[tile_info->tile_row] + mi_col; |
| xd->left_txfm_context = |
| xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); |
| save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| |
| if (bsize == BLOCK_16X16 && cpi->vaq_refresh) { |
| set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); |
| x->mb_energy = av1_log_block_var(cpi, x, bsize); |
| } |
| |
| // Save rdmult before it might be changed, so it can be restored later. |
| const int orig_rdmult = x->rdmult; |
| setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL); |
| |
| if (cpi->sf.part_sf.partition_search_type == VAR_BASED_PARTITION && |
| (cpi->sf.part_sf.adjust_var_based_rd_partitioning == 2 || |
| (cpi->sf.part_sf.adjust_var_based_rd_partitioning == 1 && |
| cm->quant_params.base_qindex > 190 && bsize <= BLOCK_32X32 && |
| !frame_is_intra_only(cm)))) { |
| // Check if any of the sub blocks are further split. |
| if (partition == PARTITION_SPLIT && subsize > BLOCK_8X8) { |
| sub_subsize = get_partition_subsize(subsize, PARTITION_SPLIT); |
| splits_below = 1; |
| for (int i = 0; i < 4; i++) { |
| int jj = i >> 1, ii = i & 0x01; |
| MB_MODE_INFO *this_mi = mib[jj * hbs * mi_params->mi_stride + ii * hbs]; |
| if (this_mi && this_mi->sb_type >= sub_subsize) { |
| splits_below = 0; |
| } |
| } |
| } |
| |
| // If partition is not none try none unless each of the 4 splits are split |
| // even further.. |
| if (partition != PARTITION_NONE && !splits_below && |
| mi_row + hbs < mi_params->mi_rows && |
| mi_col + hbs < mi_params->mi_cols) { |
| pc_tree->partitioning = PARTITION_NONE; |
| pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &none_rdc, |
| PARTITION_NONE, bsize, ctx_none, invalid_rdc, PICK_MODE_RD); |
| |
| if (none_rdc.rate < INT_MAX) { |
| none_rdc.rate += mode_costs->partition_cost[pl][PARTITION_NONE]; |
| none_rdc.rdcost = RDCOST(x->rdmult, none_rdc.rate, none_rdc.dist); |
| } |
| |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| mib[0]->sb_type = bs_type; |
| pc_tree->partitioning = partition; |
| } |
| } |
| |
| for (int i = 0; i < 4; ++i) { |
| pc_tree->split[i] = av1_alloc_pc_tree_node(subsize); |
| pc_tree->split[i]->index = i; |
| } |
| switch (partition) { |
| case PARTITION_NONE: |
| pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc, |
| PARTITION_NONE, bsize, ctx_none, invalid_rdc, PICK_MODE_RD); |
| break; |
| case PARTITION_HORZ: |
| for (int i = 0; i < 2; ++i) { |
| pc_tree->horizontal[i] = |
| av1_alloc_pmc(cm, subsize, &td->shared_coeff_buf); |
| } |
| pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc, |
| PARTITION_HORZ, subsize, pc_tree->horizontal[0], |
| invalid_rdc, PICK_MODE_RD); |
| if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 && |
| mi_row + hbs < mi_params->mi_rows) { |
| RD_STATS tmp_rdc; |
| const PICK_MODE_CONTEXT *const ctx_h = pc_tree->horizontal[0]; |
| av1_init_rd_stats(&tmp_rdc); |
| update_state(cpi, td, ctx_h, mi_row, mi_col, subsize, 1); |
| encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, subsize, |
| NULL); |
| pick_sb_modes(cpi, tile_data, x, mi_row + hbs, mi_col, &tmp_rdc, |
| PARTITION_HORZ, subsize, pc_tree->horizontal[1], |
| invalid_rdc, PICK_MODE_RD); |
| if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) { |
| av1_invalid_rd_stats(&last_part_rdc); |
| break; |
| } |
| last_part_rdc.rate += tmp_rdc.rate; |
| last_part_rdc.dist += tmp_rdc.dist; |
| last_part_rdc.rdcost += tmp_rdc.rdcost; |
| } |
| break; |
| case PARTITION_VERT: |
| for (int i = 0; i < 2; ++i) { |
| pc_tree->vertical[i] = |
| av1_alloc_pmc(cm, subsize, &td->shared_coeff_buf); |
| } |
| pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc, |
| PARTITION_VERT, subsize, pc_tree->vertical[0], invalid_rdc, |
| PICK_MODE_RD); |
| if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 && |
| mi_col + hbs < mi_params->mi_cols) { |
| RD_STATS tmp_rdc; |
| const PICK_MODE_CONTEXT *const ctx_v = pc_tree->vertical[0]; |
| av1_init_rd_stats(&tmp_rdc); |
| update_state(cpi, td, ctx_v, mi_row, mi_col, subsize, 1); |
| encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, subsize, |
| NULL); |
| pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + hbs, &tmp_rdc, |
| PARTITION_VERT, subsize, |
| pc_tree->vertical[bsize > BLOCK_8X8], invalid_rdc, |
| PICK_MODE_RD); |
| if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) { |
| av1_invalid_rd_stats(&last_part_rdc); |
| break; |
| } |
| last_part_rdc.rate += tmp_rdc.rate; |
| last_part_rdc.dist += tmp_rdc.dist; |
| last_part_rdc.rdcost += tmp_rdc.rdcost; |
| } |
| break; |
| case PARTITION_SPLIT: |
| if (cpi->sf.part_sf.adjust_var_based_rd_partitioning == 1 && |
| none_rdc.rate < INT_MAX && none_rdc.skip_txfm == 1) { |
| av1_invalid_rd_stats(&last_part_rdc); |
| break; |
| } |
| last_part_rdc.rate = 0; |
| last_part_rdc.dist = 0; |
| last_part_rdc.rdcost = 0; |
| for (int i = 0; i < 4; i++) { |
| int x_idx = (i & 1) * hbs; |
| int y_idx = (i >> 1) * hbs; |
| int jj = i >> 1, ii = i & 0x01; |
| RD_STATS tmp_rdc; |
| if ((mi_row + y_idx >= mi_params->mi_rows) || |
| (mi_col + x_idx >= mi_params->mi_cols)) |
| continue; |
| |
| av1_init_rd_stats(&tmp_rdc); |
| rd_use_partition(cpi, td, tile_data, |
| mib + jj * hbs * mi_params->mi_stride + ii * hbs, tp, |
| mi_row + y_idx, mi_col + x_idx, subsize, &tmp_rdc.rate, |
| &tmp_rdc.dist, i != 3, pc_tree->split[i]); |
| if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) { |
| av1_invalid_rd_stats(&last_part_rdc); |
| break; |
| } |
| last_part_rdc.rate += tmp_rdc.rate; |
| last_part_rdc.dist += tmp_rdc.dist; |
| } |
| break; |
| case PARTITION_VERT_A: |
| case PARTITION_VERT_B: |
| case PARTITION_HORZ_A: |
| case PARTITION_HORZ_B: |
| case PARTITION_HORZ_4: |
| case PARTITION_VERT_4: |
| assert(0 && "Cannot handle extended partition types"); |
| default: assert(0); break; |
| } |
| |
| if (last_part_rdc.rate < INT_MAX) { |
| last_part_rdc.rate += mode_costs->partition_cost[pl][partition]; |
| last_part_rdc.rdcost = |
| RDCOST(x->rdmult, last_part_rdc.rate, last_part_rdc.dist); |
| } |
| |
| if ((cpi->sf.part_sf.partition_search_type == VAR_BASED_PARTITION && |
| cpi->sf.part_sf.adjust_var_based_rd_partitioning > 2) && |
| partition != PARTITION_SPLIT && bsize > BLOCK_8X8 && |
| (mi_row + bs < mi_params->mi_rows || |
| mi_row + hbs == mi_params->mi_rows) && |
| (mi_col + bs < mi_params->mi_cols || |
| mi_col + hbs == mi_params->mi_cols)) { |
| BLOCK_SIZE split_subsize = get_partition_subsize(bsize, PARTITION_SPLIT); |
| chosen_rdc.rate = 0; |
| chosen_rdc.dist = 0; |
| |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| pc_tree->partitioning = PARTITION_SPLIT; |
| |
| // Split partition. |
| for (int i = 0; i < 4; i++) { |
| int x_idx = (i & 1) * hbs; |
| int y_idx = (i >> 1) * hbs; |
| RD_STATS tmp_rdc; |
| |
| if ((mi_row + y_idx >= mi_params->mi_rows) || |
| (mi_col + x_idx >= mi_params->mi_cols)) |
| continue; |
| |
| save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| pc_tree->split[i]->partitioning = PARTITION_NONE; |
| if (pc_tree->split[i]->none == NULL) |
| pc_tree->split[i]->none = |
| av1_alloc_pmc(cm, split_subsize, &td->shared_coeff_buf); |
| pick_sb_modes(cpi, tile_data, x, mi_row + y_idx, mi_col + x_idx, &tmp_rdc, |
| PARTITION_SPLIT, split_subsize, pc_tree->split[i]->none, |
| invalid_rdc, PICK_MODE_RD); |
| |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) { |
| av1_invalid_rd_stats(&chosen_rdc); |
| break; |
| } |
| |
| chosen_rdc.rate += tmp_rdc.rate; |
| chosen_rdc.dist += tmp_rdc.dist; |
| |
| if (i != 3) |
| encode_sb(cpi, td, tile_data, tp, mi_row + y_idx, mi_col + x_idx, |
| OUTPUT_ENABLED, split_subsize, pc_tree->split[i], NULL); |
| |
| chosen_rdc.rate += mode_costs->partition_cost[pl][PARTITION_NONE]; |
| } |
| if (chosen_rdc.rate < INT_MAX) { |
| chosen_rdc.rate += mode_costs->partition_cost[pl][PARTITION_SPLIT]; |
| chosen_rdc.rdcost = RDCOST(x->rdmult, chosen_rdc.rate, chosen_rdc.dist); |
| } |
| } |
| |
| // If last_part is better set the partitioning to that. |
| if (last_part_rdc.rdcost < chosen_rdc.rdcost) { |
| mib[0]->sb_type = bsize; |
| if (bsize >= BLOCK_8X8) pc_tree->partitioning = partition; |
| chosen_rdc = last_part_rdc; |
| } |
| // If none was better set the partitioning to that. |
| if (none_rdc.rdcost < chosen_rdc.rdcost) { |
| if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE; |
| chosen_rdc = none_rdc; |
| } |
| |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| |
| // We must have chosen a partitioning and encoding or we'll fail later on. |
| // No other opportunities for success. |
| if (bsize == cm->seq_params.sb_size) |
| assert(chosen_rdc.rate < INT_MAX && chosen_rdc.dist < INT64_MAX); |
| |
| if (do_recon) { |
| if (bsize == cm->seq_params.sb_size) { |
| // NOTE: To get estimate for rate due to the tokens, use: |
| // int rate_coeffs = 0; |
| // encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_COSTCOEFFS, |
| // bsize, pc_tree, &rate_coeffs); |
| x->cb_offset = 0; |
| encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, OUTPUT_ENABLED, bsize, |
| pc_tree, NULL); |
| } else { |
| encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize, |
| pc_tree, NULL); |
| } |
| } |
| |
| *rate = chosen_rdc.rate; |
| *dist = chosen_rdc.dist; |
| x->rdmult = orig_rdmult; |
| } |
| |
| static int is_leaf_split_partition(AV1_COMMON *cm, int mi_row, int mi_col, |
| BLOCK_SIZE bsize) { |
| const int bs = mi_size_wide[bsize]; |
| const int hbs = bs / 2; |
| assert(bsize >= BLOCK_8X8); |
| const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT); |
| |
| for (int i = 0; i < 4; i++) { |
| int x_idx = (i & 1) * hbs; |
| int y_idx = (i >> 1) * hbs; |
| if ((mi_row + y_idx >= cm->mi_params.mi_rows) || |
| (mi_col + x_idx >= cm->mi_params.mi_cols)) |
| return 0; |
| if (get_partition(cm, mi_row + y_idx, mi_col + x_idx, subsize) != |
| PARTITION_NONE && |
| subsize != BLOCK_8X8) |
| return 0; |
| } |
| return 1; |
| } |
| |
| static AOM_INLINE int do_slipt_check(BLOCK_SIZE bsize) { |
| return (bsize == BLOCK_16X16 || bsize == BLOCK_32X32); |
| } |
| |
| // Encode the block by applying pre-calculated partition patterns that are |
| // represented by coding block sizes stored in the mbmi array. The only |
| // partition adjustment allowed is merging leaf split nodes if it leads to a |
| // lower rd cost. The partition types are limited to a basic set: none, horz, |
| // vert, and split. This function is only used in the real-time mode. |
| // |
| // Inputs: |
| // cpi: the global compressor setting |
| // td: thread data |
| // tile_data: tile data |
| // mib: the array representing MB_MODE_INFO pointers for mi blocks starting |
| // from the first pixel of the current block |
| // tp: the pointer to the start token |
| // mi_row: row coordinate of the block in a step size of MI_SIZE |
| // mi_col: column coordinate of the block in a step size of MI_SIZE |
| // bsize: block size |
| // pc_tree: the pointer to the PC_TREE node storing the picked partitions |
| // and mode info for the current block |
| static AOM_INLINE void nonrd_use_partition(AV1_COMP *cpi, ThreadData *td, |
| TileDataEnc *tile_data, |
| MB_MODE_INFO **mib, TokenExtra **tp, |
| int mi_row, int mi_col, |
| BLOCK_SIZE bsize, PC_TREE *pc_tree) { |
| AV1_COMMON *const cm = &cpi->common; |
| const CommonModeInfoParams *const mi_params = &cm->mi_params; |
| TileInfo *const tile_info = &tile_data->tile_info; |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const ModeCosts *mode_costs = &x->mode_costs; |
| // Only square blocks from 8x8 to 128x128 are supported |
| assert(bsize >= BLOCK_8X8 && bsize <= BLOCK_128X128); |
| const int bs = mi_size_wide[bsize]; |
| const int hbs = bs / 2; |
| const PARTITION_TYPE partition = |
| (bsize >= BLOCK_8X8) ? get_partition(cm, mi_row, mi_col, bsize) |
| : PARTITION_NONE; |
| BLOCK_SIZE subsize = get_partition_subsize(bsize, partition); |
| assert(subsize <= BLOCK_LARGEST); |
| const int pl = (bsize >= BLOCK_8X8) |
| ? partition_plane_context(xd, mi_row, mi_col, bsize) |
| : 0; |
| |
| RD_STATS dummy_cost; |
| av1_invalid_rd_stats(&dummy_cost); |
| RD_STATS invalid_rd; |
| av1_invalid_rd_stats(&invalid_rd); |
| |
| if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) return; |
| |
| assert(mi_size_wide[bsize] == mi_size_high[bsize]); |
| |
| pc_tree->partitioning = partition; |
| |
| xd->above_txfm_context = |
| cm->above_contexts.txfm[tile_info->tile_row] + mi_col; |
| xd->left_txfm_context = |
| xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); |
| |
| switch (partition) { |
| case PARTITION_NONE: |
| pc_tree->none = av1_alloc_pmc(cm, bsize, &td->shared_coeff_buf); |
| if (cpi->sf.rt_sf.nonrd_check_partition_split && do_slipt_check(bsize) && |
| !frame_is_intra_only(cm)) { |
| RD_STATS split_rdc, none_rdc, block_rdc; |
| RD_SEARCH_MACROBLOCK_CONTEXT x_ctx; |
| |
| av1_init_rd_stats(&split_rdc); |
| av1_invalid_rd_stats(&none_rdc); |
| |
| save_context(x, &x_ctx, mi_row, mi_col, bsize, 3); |
| subsize = get_partition_subsize(bsize, PARTITION_SPLIT); |
| pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &none_rdc, |
| PARTITION_NONE, bsize, pc_tree->none, invalid_rd, |
| PICK_MODE_NONRD); |
| none_rdc.rate += mode_costs->partition_cost[pl][PARTITION_NONE]; |
| none_rdc.rdcost = RDCOST(x->rdmult, none_rdc.rate, none_rdc.dist); |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize, 3); |
| |
| for (int i = 0; i < 4; i++) { |
| av1_invalid_rd_stats(&block_rdc); |
| const int x_idx = (i & 1) * hbs; |
| const int y_idx = (i >> 1) * hbs; |
| if (mi_row + y_idx >= mi_params->mi_rows || |
| mi_col + x_idx >= mi_params->mi_cols) |
| continue; |
| xd->above_txfm_context = |
| cm->above_contexts.txfm[tile_info->tile_row] + mi_col + x_idx; |
| xd->left_txfm_context = |
| xd->left_txfm_context_buffer + ((mi_row + y_idx) & MAX_MIB_MASK); |
| pc_tree->split[i]->partitioning = PARTITION_NONE; |
| pick_sb_modes(cpi, tile_data, x, mi_row + y_idx, mi_col + x_idx, |
| &block_rdc, PARTITION_NONE, subsize, |
| pc_tree->split[i]->none, invalid_rd, PICK_MODE_NONRD); |
| split_rdc.rate += block_rdc.rate; |
| split_rdc.dist += block_rdc.dist; |
| |
| encode_b(cpi, tile_data, td, tp, mi_row + y_idx, mi_col + x_idx, 1, |
| subsize, PARTITION_NONE, pc_tree->split[i]->none, NULL); |
| } |
| split_rdc.rate += mode_costs->partition_cost[pl][PARTITION_SPLIT]; |
| split_rdc.rdcost = RDCOST(x->rdmult, split_rdc.rate, split_rdc.dist); |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize, 3); |
| |
| if (none_rdc.rdcost < split_rdc.rdcost) { |
| mib[0]->sb_type = bsize; |
| pc_tree->partitioning = PARTITION_NONE; |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col, 0, bsize, partition, |
| pc_tree->none, NULL); |
| } else { |
| mib[0]->sb_type = subsize; |
| pc_tree->partitioning = PARTITION_SPLIT; |
| for (int i = 0; i < 4; i++) { |
| const int x_idx = (i & 1) * hbs; |
| const int y_idx = (i >> 1) * hbs; |
| if (mi_row + y_idx >= mi_params->mi_rows || |
| mi_col + x_idx >= mi_params->mi_cols) |
| continue; |
| |
| encode_b(cpi, tile_data, td, tp, mi_row + y_idx, mi_col + x_idx, 0, |
| subsize, PARTITION_NONE, pc_tree->split[i]->none, NULL); |
| } |
| } |
| |
| } else { |
| pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &dummy_cost, |
| PARTITION_NONE, bsize, pc_tree->none, invalid_rd, |
| PICK_MODE_NONRD); |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col, 0, bsize, partition, |
| pc_tree->none, NULL); |
| } |
| break; |
| case PARTITION_VERT: |
| for (int i = 0; i < 2; ++i) { |
| pc_tree->vertical[i] = |
| av1_alloc_pmc(cm, subsize, &td->shared_coeff_buf); |
| } |
| pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &dummy_cost, |
| PARTITION_VERT, subsize, pc_tree->vertical[0], invalid_rd, |
| PICK_MODE_NONRD); |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col, 0, subsize, |
| PARTITION_VERT, pc_tree->vertical[0], NULL); |
| if (mi_col + hbs < mi_params->mi_cols && bsize > BLOCK_8X8) { |
| pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + hbs, &dummy_cost, |
| PARTITION_VERT, subsize, pc_tree->vertical[1], invalid_rd, |
| PICK_MODE_NONRD); |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, 0, subsize, |
| PARTITION_VERT, pc_tree->vertical[1], NULL); |
| } |
| break; |
| case PARTITION_HORZ: |
| for (int i = 0; i < 2; ++i) { |
| pc_tree->horizontal[i] = |
| av1_alloc_pmc(cm, subsize, &td->shared_coeff_buf); |
| } |
| pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &dummy_cost, |
| PARTITION_HORZ, subsize, pc_tree->horizontal[0], invalid_rd, |
| PICK_MODE_NONRD); |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col, 0, subsize, |
| PARTITION_HORZ, pc_tree->horizontal[0], NULL); |
| |
| if (mi_row + hbs < mi_params->mi_rows && bsize > BLOCK_8X8) { |
| pick_sb_modes(cpi, tile_data, x, mi_row + hbs, mi_col, &dummy_cost, |
| PARTITION_HORZ, subsize, pc_tree->horizontal[1], |
| invalid_rd, PICK_MODE_NONRD); |
| encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, 0, subsize, |
| PARTITION_HORZ, pc_tree->horizontal[1], NULL); |
| } |
| break; |
| case PARTITION_SPLIT: |
| for (int i = 0; i < 4; ++i) { |
| pc_tree->split[i] = av1_alloc_pc_tree_node(subsize); |
| pc_tree->split[i]->index = i; |
| } |
| if (cpi->sf.rt_sf.nonrd_check_partition_merge_mode && |
| is_leaf_split_partition(cm, mi_row, mi_col, bsize) && |
| !frame_is_intra_only(cm) && bsize <= BLOCK_32X32) { |
| RD_SEARCH_MACROBLOCK_CONTEXT x_ctx; |
| RD_STATS split_rdc, none_rdc; |
| av1_invalid_rd_stats(&split_rdc); |
| av1_invalid_rd_stats(&none_rdc); |
| save_context(x, &x_ctx, mi_row, mi_col, bsize, 3); |
| xd->above_txfm_context = |
| cm->above_contexts.txfm[tile_info->tile_row] + mi_col; |
| xd->left_txfm_context = |
| xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); |
| pc_tree->partitioning = PARTITION_NONE; |
| pc_tree->none = av1_alloc_pmc(cm, bsize, &td->shared_coeff_buf); |
| pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &none_rdc, |
| PARTITION_NONE, bsize, pc_tree->none, invalid_rd, |
| PICK_MODE_NONRD); |
| none_rdc.rate += mode_costs->partition_cost[pl][PARTITION_NONE]; |
| none_rdc.rdcost = RDCOST(x->rdmult, none_rdc.rate, none_rdc.dist); |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize, 3); |
| if (cpi->sf.rt_sf.nonrd_check_partition_merge_mode != 2 || |
| none_rdc.skip_txfm != 1 || pc_tree->none->mic.mode == NEWMV) { |
| av1_init_rd_stats(&split_rdc); |
| for (int i = 0; i < 4; i++) { |
| RD_STATS block_rdc; |
| av1_invalid_rd_stats(&block_rdc); |
| int x_idx = (i & 1) * hbs; |
| int y_idx = (i >> 1) * hbs; |
| if ((mi_row + y_idx >= mi_params->mi_rows) || |
| (mi_col + x_idx >= mi_params->mi_cols)) |
| continue; |
| xd->above_txfm_context = |
| cm->above_contexts.txfm[tile_info->tile_row] + mi_col + x_idx; |
| xd->left_txfm_context = xd->left_txfm_context_buffer + |
| ((mi_row + y_idx) & MAX_MIB_MASK); |
| if (pc_tree->split[i]->none == NULL) |
| pc_tree->split[i]->none = |
| av1_alloc_pmc(cm, subsize, &td->shared_coeff_buf); |
| pc_tree->split[i]->partitioning = PARTITION_NONE; |
| pick_sb_modes(cpi, tile_data, x, mi_row + y_idx, mi_col + x_idx, |
| &block_rdc, PARTITION_NONE, subsize, |
| pc_tree->split[i]->none, invalid_rd, PICK_MODE_NONRD); |
| split_rdc.rate += block_rdc.rate; |
| split_rdc.dist += block_rdc.dist; |
| |
| encode_b(cpi, tile_data, td, tp, mi_row + y_idx, mi_col + x_idx, 1, |
| subsize, PARTITION_NONE, pc_tree->split[i]->none, NULL); |
| } |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize, 3); |
| split_rdc.rate += mode_costs->partition_cost[pl][PARTITION_SPLIT]; |
| split_rdc.rdcost = RDCOST(x->rdmult, split_rdc.rate, split_rdc.dist); |
| } |
| if (none_rdc.rdcost < split_rdc.rdcost) { |
| mib[0]->sb_type = bsize; |
| pc_tree->partitioning = PARTITION_NONE; |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col, 0, bsize, partition, |
| pc_tree->none, NULL); |
| } else { |
| mib[0]->sb_type = subsize; |
| pc_tree->partitioning = PARTITION_SPLIT; |
| for (int i = 0; i < 4; i++) { |
| int x_idx = (i & 1) * hbs; |
| int y_idx = (i >> 1) * hbs; |
| if ((mi_row + y_idx >= mi_params->mi_rows) || |
| (mi_col + x_idx >= mi_params->mi_cols)) |
| continue; |
| |
| if (pc_tree->split[i]->none == NULL) |
| pc_tree->split[i]->none = |
| av1_alloc_pmc(cm, subsize, &td->shared_coeff_buf); |
| encode_b(cpi, tile_data, td, tp, mi_row + y_idx, mi_col + x_idx, 0, |
| subsize, PARTITION_NONE, pc_tree->split[i]->none, NULL); |
| } |
| } |
| } else { |
| for (int i = 0; i < 4; i++) { |
| int x_idx = (i & 1) * hbs; |
| int y_idx = (i >> 1) * hbs; |
| int jj = i >> 1, ii = i & 0x01; |
| if ((mi_row + y_idx >= mi_params->mi_rows) || |
| (mi_col + x_idx >= mi_params->mi_cols)) |
| continue; |
| nonrd_use_partition(cpi, td, tile_data, |
| mib + jj * hbs * mi_params->mi_stride + ii * hbs, |
| tp, mi_row + y_idx, mi_col + x_idx, subsize, |
| pc_tree->split[i]); |
| } |
| } |
| break; |
| case PARTITION_VERT_A: |
| case PARTITION_VERT_B: |
| case PARTITION_HORZ_A: |
| case PARTITION_HORZ_B: |
| case PARTITION_HORZ_4: |
| case PARTITION_VERT_4: |
| assert(0 && "Cannot handle extended partition types"); |
| default: assert(0); break; |
| } |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| static const FIRSTPASS_STATS *read_one_frame_stats(const TWO_PASS *p, int frm) { |
| assert(frm >= 0); |
| if (frm < 0 || |
| p->stats_buf_ctx->stats_in_start + frm > p->stats_buf_ctx->stats_in_end) { |
| return NULL; |
| } |
| |
| return &p->stats_buf_ctx->stats_in_start[frm]; |
| } |
| // Checks to see if a super block is on a horizontal image edge. |
| // In most cases this is the "real" edge unless there are formatting |
| // bars embedded in the stream. |
| static int active_h_edge(const AV1_COMP *cpi, int mi_row, int mi_step) { |
| int top_edge = 0; |
| int bottom_edge = cpi->common.mi_params.mi_rows; |
| int is_active_h_edge = 0; |
| |
| // For two pass account for any formatting bars detected. |
| if (is_stat_consumption_stage_twopass(cpi)) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const FIRSTPASS_STATS *const this_frame_stats = read_one_frame_stats( |
| &cpi->twopass, cm->current_frame.display_order_hint); |
| if (this_frame_stats == NULL) return AOM_CODEC_ERROR; |
| |
| // The inactive region is specified in MBs not mi units. |
| // The image edge is in the following MB row. |
| top_edge += (int)(this_frame_stats->inactive_zone_rows * 4); |
| |
| bottom_edge -= (int)(this_frame_stats->inactive_zone_rows * 4); |
| bottom_edge = AOMMAX(top_edge, bottom_edge); |
| } |
| |
| if (((top_edge >= mi_row) && (top_edge < (mi_row + mi_step))) || |
| ((bottom_edge >= mi_row) && (bottom_edge < (mi_row + mi_step)))) { |
| is_active_h_edge = 1; |
| } |
| return is_active_h_edge; |
| } |
| |
| // Checks to see if a super block is on a vertical image edge. |
| // In most cases this is the "real" edge unless there are formatting |
| // bars embedded in the stream. |
| static int active_v_edge(const AV1_COMP *cpi, int mi_col, int mi_step) { |
| int left_edge = 0; |
| int right_edge = cpi->common.mi_params.mi_cols; |
| int is_active_v_edge = 0; |
| |
| // For two pass account for any formatting bars detected. |
| if (is_stat_consumption_stage_twopass(cpi)) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const FIRSTPASS_STATS *const this_frame_stats = read_one_frame_stats( |
| &cpi->twopass, cm->current_frame.display_order_hint); |
| if (this_frame_stats == NULL) return AOM_CODEC_ERROR; |
| |
| // The inactive region is specified in MBs not mi units. |
| // The image edge is in the following MB row. |
| left_edge += (int)(this_frame_stats->inactive_zone_cols * 4); |
| |
| right_edge -= (int)(this_frame_stats->inactive_zone_cols * 4); |
| right_edge = AOMMAX(left_edge, right_edge); |
| } |
| |
| if (((left_edge >= mi_col) && (left_edge < (mi_col + mi_step))) || |
| ((right_edge >= mi_col) && (right_edge < (mi_col + mi_step)))) { |
| is_active_v_edge = 1; |
| } |
| return is_active_v_edge; |
| } |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| static INLINE void store_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) { |
| memcpy(ctx->pred_mv, x->pred_mv, sizeof(x->pred_mv)); |
| } |
| |
| static INLINE void load_pred_mv(MACROBLOCK *x, |
| const PICK_MODE_CONTEXT *const ctx) { |
| memcpy(x->pred_mv, ctx->pred_mv, sizeof(x->pred_mv)); |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| // Try searching for an encoding for the given subblock. Returns zero if the |
| // rdcost is already too high (to tell the caller not to bother searching for |
| // encodings of further subblocks). |
| static int rd_try_subblock(AV1_COMP *const cpi, ThreadData *td, |
| TileDataEnc *tile_data, TokenExtra **tp, int is_last, |
| int mi_row, int mi_col, BLOCK_SIZE subsize, |
| RD_STATS best_rdcost, RD_STATS *sum_rdc, |
| PARTITION_TYPE partition, |
| const PICK_MODE_CONTEXT *const prev_ctx, |
| PICK_MODE_CONTEXT *this_ctx) { |
| MACROBLOCK *const x = &td->mb; |
| const int orig_mult = x->rdmult; |
| setup_block_rdmult(cpi, x, mi_row, mi_col, subsize, NO_AQ, NULL); |
| |
| av1_rd_cost_update(x->rdmult, &best_rdcost); |
| if (cpi->sf.mv_sf.adaptive_motion_search) load_pred_mv(x, prev_ctx); |
| |
| RD_STATS rdcost_remaining; |
| av1_rd_stats_subtraction(x->rdmult, &best_rdcost, sum_rdc, &rdcost_remaining); |
| RD_STATS this_rdc; |
| pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, partition, |
| subsize, this_ctx, rdcost_remaining, PICK_MODE_RD); |
| |
| if (this_rdc.rate == INT_MAX) { |
| sum_rdc->rdcost = INT64_MAX; |
| } else { |
| sum_rdc->rate += this_rdc.rate; |
| sum_rdc->dist += this_rdc.dist; |
| av1_rd_cost_update(x->rdmult, sum_rdc); |
| } |
| |
| if (sum_rdc->rdcost >= best_rdcost.rdcost) { |
| x->rdmult = orig_mult; |
| return 0; |
| } |
| |
| if (!is_last) { |
| update_state(cpi, td, this_ctx, mi_row, mi_col, subsize, 1); |
| encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, subsize, NULL); |
| } |
| |
| x->rdmult = orig_mult; |
| return 1; |
| } |
| |
| // Tests an AB partition, and updates the encoder status, the pick mode |
| // contexts, the best rdcost, and the best partition. |
| static bool rd_test_partition3( |
| AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, |
| TokenExtra **tp, PC_TREE *pc_tree, RD_STATS *best_rdc, |
| PICK_MODE_CONTEXT *ctxs[3], const PICK_MODE_CONTEXT *const ctx, int mi_row, |
| int mi_col, BLOCK_SIZE bsize, PARTITION_TYPE partition, int mi_row0, |
| int mi_col0, BLOCK_SIZE subsize0, int mi_row1, int mi_col1, |
| BLOCK_SIZE subsize1, int mi_row2, int mi_col2, BLOCK_SIZE subsize2) { |
| const MACROBLOCK *const x = &td->mb; |
| const MACROBLOCKD *const xd = &x->e_mbd; |
| const int pl = partition_plane_context(xd, mi_row, mi_col, bsize); |
| RD_STATS sum_rdc; |
| av1_init_rd_stats(&sum_rdc); |
| sum_rdc.rate = x->mode_costs.partition_cost[pl][partition]; |
| sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0); |
| if (!rd_try_subblock(cpi, td, tile_data, tp, 0, mi_row0, mi_col0, subsize0, |
| *best_rdc, &sum_rdc, partition, ctx, ctxs[0])) |
| return false; |
| |
| if (!rd_try_subblock(cpi, td, tile_data, tp, 0, mi_row1, mi_col1, subsize1, |
| *best_rdc, &sum_rdc, partition, ctxs[0], ctxs[1])) |
| return false; |
| |
| if (!rd_try_subblock(cpi, td, tile_data, tp, 1, mi_row2, mi_col2, subsize2, |
| *best_rdc, &sum_rdc, partition, ctxs[1], ctxs[2])) |
| return false; |
| |
| av1_rd_cost_update(x->rdmult, &sum_rdc); |
| if (sum_rdc.rdcost >= best_rdc->rdcost) return false; |
| sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist); |
| if (sum_rdc.rdcost >= best_rdc->rdcost) return false; |
| |
| *best_rdc = sum_rdc; |
| pc_tree->partitioning = partition; |
| return true; |
| } |
| |
| static AOM_INLINE void reset_simple_motion_tree_partition( |
| SIMPLE_MOTION_DATA_TREE *sms_tree, BLOCK_SIZE bsize) { |
| sms_tree->partitioning = PARTITION_NONE; |
| |
| if (bsize >= BLOCK_8X8) { |
| BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT); |
| for (int idx = 0; idx < 4; ++idx) |
| reset_simple_motion_tree_partition(sms_tree->split[idx], subsize); |
| } |
| } |
| |
| // Record the ref frames that have been selected by square partition blocks. |
| static AOM_INLINE void update_picked_ref_frames_mask(MACROBLOCK *const x, |
| int ref_type, |
| BLOCK_SIZE bsize, |
| int mib_size, int mi_row, |
| int mi_col) { |
| assert(mi_size_wide[bsize] == mi_size_high[bsize]); |
| const int sb_size_mask = mib_size - 1; |
| const int mi_row_in_sb = mi_row & sb_size_mask; |
| const int mi_col_in_sb = mi_col & sb_size_mask; |
| const int mi_size = mi_size_wide[bsize]; |
| for (int i = mi_row_in_sb; i < mi_row_in_sb + mi_size; ++i) { |
| for (int j = mi_col_in_sb; j < mi_col_in_sb + mi_size; ++j) { |
| x->picked_ref_frames_mask[i * 32 + j] |= 1 << ref_type; |
| } |
| } |
| } |
| |
| // Structure to keep win flags for HORZ and VERT partition evaluations |
| typedef struct { |
| bool horz_win; |
| bool vert_win; |
| } RD_RECT_PART_WIN_INFO; |
| |
| // Decide whether to evaluate the AB partition specified by part_type based on |
| // split and HORZ/VERT info |
| int evaluate_ab_partition_based_on_split( |
| PC_TREE *pc_tree, PARTITION_TYPE rect_part, |
| RD_RECT_PART_WIN_INFO *rect_part_win_info, int qindex, int split_idx1, |
| int split_idx2) { |
| int num_win = 0; |
| // Threshold for number of winners |
| // Conservative pruning for high quantizers |
| const int num_win_thresh = AOMMIN(3 * (2 * (MAXQ - qindex) / MAXQ), 3); |
| bool sub_part_win = (rect_part_win_info == NULL) |
| ? (pc_tree->partitioning == rect_part) |
| : (rect_part == PARTITION_HORZ) |
| ? rect_part_win_info->horz_win |
| : rect_part_win_info->vert_win; |
| num_win += (sub_part_win) ? 1 : 0; |
| if (pc_tree->split[split_idx1]) { |
| num_win += |
| (pc_tree->split[split_idx1]->partitioning == PARTITION_NONE) ? 1 : 0; |
| } else { |
| num_win += 1; |
| } |
| if (pc_tree->split[split_idx2]) { |
| num_win += |
| (pc_tree->split[split_idx2]->partitioning == PARTITION_NONE) ? 1 : 0; |
| } else { |
| num_win += 1; |
| } |
| if (num_win < num_win_thresh) { |
| return 0; |
| } |
| return 1; |
| } |
| |
| #ifndef NDEBUG |
| static AOM_INLINE int is_bsize_square(BLOCK_SIZE bsize) { |
| return block_size_wide[bsize] == block_size_high[bsize]; |
| } |
| #endif // NDEBUG |
| |
| // Searches for the best partition pattern for a block based on the |
| // rate-distortion cost, and returns a bool value to indicate whether a valid |
| // partition pattern is found. The partition can recursively go down to |
| // the smallest block size. |
| // |
| // Inputs: |
| // cpi: the global compressor setting |
| // td: thread data |
| // tile_data: tile data |
| // tp: the pointer to the start token |
| // mi_row: row coordinate of the block in a step size of MI_SIZE |
| // mi_col: column coordinate of the block in a step size of MI_SIZE |
| // bsize: block size |
| // rd_cost: the pointer to the final rd cost of the current block |
| // best_rdc: the upper bound of rd cost for a valid partition |
| // pc_tree: the pointer to the PC_TREE node storing the picked partitions |
| // and mode info for the current block |
| // sms_tree: the pointer to the SIMPLE_MOTION_DATA_TREE node storing the |
| // simple motion search data for the current block |
| // none_rd: the pointer to the rd cost in the case of not splitting the |
| // current block |
| // multi_pass_mode: SB_SINGLE_PASS/SB_DRY_PASS/SB_WET_PASS |
| // rect_part_win_info: the pointer to a struct storing whether horz/vert |
| // partition outperforms previously tested partitions |
| // |
| // Output: |
| // a bool value indicating whether a valid partition is found |
| static bool rd_pick_partition(AV1_COMP *const cpi, ThreadData *td, |
| TileDataEnc *tile_data, TokenExtra **tp, |
| int mi_row, int mi_col, BLOCK_SIZE bsize, |
| RD_STATS *rd_cost, RD_STATS best_rdc, |
| PC_TREE *pc_tree, |
| SIMPLE_MOTION_DATA_TREE *sms_tree, |
| int64_t *none_rd, |
| SB_MULTI_PASS_MODE multi_pass_mode, |
| RD_RECT_PART_WIN_INFO *rect_part_win_info) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const CommonModeInfoParams *const mi_params = &cm->mi_params; |
| const int num_planes = av1_num_planes(cm); |
| TileInfo *const tile_info = &tile_data->tile_info; |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| PartitionSearchInfo *part_info = &x->part_search_info; |
| const int mi_step = mi_size_wide[bsize] / 2; |
| RD_SEARCH_MACROBLOCK_CONTEXT x_ctx; |
| const TokenExtra *const tp_orig = *tp; |
| int tmp_partition_cost[PARTITION_TYPES]; |
| BLOCK_SIZE subsize; |
| BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT); |
| const int bsize_at_least_8x8 = (bsize >= BLOCK_8X8); |
| int do_square_split = bsize_at_least_8x8; |
| const int xss = x->e_mbd.plane[1].subsampling_x; |
| const int yss = x->e_mbd.plane[1].subsampling_y; |
| const int pl = bsize_at_least_8x8 |
| ? partition_plane_context(xd, mi_row, mi_col, bsize) |
| : 0; |
| const ModeCosts *mode_costs = &x->mode_costs; |
| const int *partition_cost = mode_costs->partition_cost[pl]; |
| RD_STATS this_rdc, sum_rdc; |
| |
| int do_rectangular_split = cpi->oxcf.enable_rect_partitions; |
| int64_t cur_none_rd = 0; |
| int64_t split_rd[4] = { 0, 0, 0, 0 }; |
| int64_t horz_rd[2] = { 0, 0 }; |
| int64_t vert_rd[2] = { 0, 0 }; |
| int prune_horz = 0; |
| int prune_vert = 0; |
| int terminate_partition_search = 0; |
| |
| int split_ctx_is_ready[2] = { 0, 0 }; |
| int horz_ctx_is_ready = 0; |
| int vert_ctx_is_ready = 0; |
| |
| // Initialise HORZ and VERT win flags as true for all split partitions. |
| RD_RECT_PART_WIN_INFO split_part_rect_win[4] = { |
| { true, true }, { true, true }, { true, true }, { true, true } |
| }; |
| |
| sms_tree->partitioning = PARTITION_NONE; |
| |
| // Reset the flag indicating whether a partition leading to a rdcost lower |
| // than the bound best_rdc has been found. |
| bool found_best_partition = false; |
| if (best_rdc.rdcost < 0) { |
| av1_invalid_rd_stats(rd_cost); |
| return found_best_partition; |
| } |
| if (bsize == cm->seq_params.sb_size) x->must_find_valid_partition = 0; |
| |
| // Prepare for segmentation CNN-based partitioning for intra-frame. |
| if (frame_is_intra_only(cm) && bsize == BLOCK_64X64) { |
| part_info->quad_tree_idx = 0; |
| part_info->cnn_output_valid = 0; |
| } |
| |
| // Override skipping rectangular partition operations for edge blocks. |
| const int has_rows = (mi_row + mi_step < mi_params->mi_rows); |
| const int has_cols = (mi_col + mi_step < mi_params->mi_cols); |
| |
| if (none_rd) *none_rd = 0; |
| int partition_none_allowed = has_rows && has_cols; |
| int partition_horz_allowed = |
| has_cols && bsize_at_least_8x8 && cpi->oxcf.enable_rect_partitions && |
| get_plane_block_size(get_partition_subsize(bsize, PARTITION_HORZ), xss, |
| yss) != BLOCK_INVALID; |
| int partition_vert_allowed = |
| has_rows && bsize_at_least_8x8 && cpi->oxcf.enable_rect_partitions && |
| get_plane_block_size(get_partition_subsize(bsize, PARTITION_VERT), xss, |
| yss) != BLOCK_INVALID; |
| |
| (void)*tp_orig; |
| |
| #if CONFIG_COLLECT_PARTITION_STATS |
| int partition_decisions[EXT_PARTITION_TYPES] = { 0 }; |
| int partition_attempts[EXT_PARTITION_TYPES] = { 0 }; |
| int64_t partition_times[EXT_PARTITION_TYPES] = { 0 }; |
| struct aom_usec_timer partition_timer = { 0 }; |
| int partition_timer_on = 0; |
| #if CONFIG_COLLECT_PARTITION_STATS == 2 |
| PartitionStats *part_stats = &cpi->partition_stats; |
| #endif |
| #endif |
| |
| // Override partition costs at the edges of the frame in the same |
| // way as in read_partition (see decodeframe.c). |
| if (!(has_rows && has_cols)) { |
| assert(bsize_at_least_8x8 && pl >= 0); |
| const aom_cdf_prob *partition_cdf = cm->fc->partition_cdf[pl]; |
| const int max_cost = av1_cost_symbol(0); |
| for (int i = 0; i < PARTITION_TYPES; ++i) tmp_partition_cost[i] = max_cost; |
| if (has_cols) { |
| // At the bottom, the two possibilities are HORZ and SPLIT. |
| aom_cdf_prob bot_cdf[2]; |
| partition_gather_vert_alike(bot_cdf, partition_cdf, bsize); |
| static const int bot_inv_map[2] = { PARTITION_HORZ, PARTITION_SPLIT }; |
| av1_cost_tokens_from_cdf(tmp_partition_cost, bot_cdf, bot_inv_map); |
| } else if (has_rows) { |
| // At the right, the two possibilities are VERT and SPLIT. |
| aom_cdf_prob rhs_cdf[2]; |
| partition_gather_horz_alike(rhs_cdf, partition_cdf, bsize); |
| static const int rhs_inv_map[2] = { PARTITION_VERT, PARTITION_SPLIT }; |
| av1_cost_tokens_from_cdf(tmp_partition_cost, rhs_cdf, rhs_inv_map); |
| } else { |
| // At the bottom right, we always split. |
| tmp_partition_cost[PARTITION_SPLIT] = 0; |
| } |
| |
| partition_cost = tmp_partition_cost; |
| } |
| |
| // Disable rectangular partitions for inner blocks when the current block is |
| // forced to only use square partitions. |
| if (bsize > cpi->sf.part_sf.use_square_partition_only_threshold) { |
| partition_horz_allowed &= !has_rows; |
| partition_vert_allowed &= !has_cols; |
| } |
| |
| #ifndef NDEBUG |
| // Nothing should rely on the default value of this array (which is just |
| // leftover from encoding the previous block. Setting it to fixed pattern |
| // when debugging. |
| // bit 0, 1, 2 are blk_skip of each plane |
| // bit 4, 5, 6 are initialization checking of each plane |
| memset(x->txfm_search_info.blk_skip, 0x77, |
| sizeof(x->txfm_search_info.blk_skip)); |
| #endif // NDEBUG |
| |
| assert(mi_size_wide[bsize] == mi_size_high[bsize]); |
| |
| // Set buffers and offsets. |
| set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); |
| |
| // Initialize the rd cost. |
| av1_init_rd_stats(&this_rdc); |
| |
| // Save rdmult before it might be changed, so it can be restored later. |
| const int orig_rdmult = x->rdmult; |
| setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL); |
| |
| // Update rd cost of the bound using the current multiplier. |
| av1_rd_cost_update(x->rdmult, &best_rdc); |
| |
| if (bsize == BLOCK_16X16 && cpi->vaq_refresh) |
| x->mb_energy = av1_log_block_var(cpi, x, bsize); |
| |
| // Set the context. |
| xd->above_txfm_context = |
| cm->above_contexts.txfm[tile_info->tile_row] + mi_col; |
| xd->left_txfm_context = |
| xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); |
| save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| |
| // A CNN-based speed feature pruning out either split or all non-split |
| // partition in INTRA frame coding. |
| const int try_intra_cnn_split = |
| !cpi->is_screen_content_type && frame_is_intra_only(cm) && |
| cpi->sf.part_sf.intra_cnn_split && |
| cm->seq_params.sb_size >= BLOCK_64X64 && bsize <= BLOCK_64X64 && |
| bsize >= BLOCK_8X8 && |
| mi_row + mi_size_high[bsize] <= mi_params->mi_rows && |
| mi_col + mi_size_wide[bsize] <= mi_params->mi_cols; |
| |
| if (try_intra_cnn_split) { |
| av1_intra_mode_cnn_partition( |
| &cpi->common, x, bsize, part_info->quad_tree_idx, |
| &partition_none_allowed, &partition_horz_allowed, |
| &partition_vert_allowed, &do_rectangular_split, &do_square_split); |
| } |
| |
| // Use simple motion search to prune out split or non-split partitions. This |
| // must be done prior to PARTITION_SPLIT to propagate the initial mvs to a |
| // smaller blocksize. |
| const int try_split_only = |
| !cpi->is_screen_content_type && |
| cpi->sf.part_sf.simple_motion_search_split && do_square_split && |
| bsize >= BLOCK_8X8 && |
| mi_row + mi_size_high[bsize] <= mi_params->mi_rows && |
| mi_col + mi_size_wide[bsize] <= mi_params->mi_cols && |
| !frame_is_intra_only(cm) && !av1_superres_scaled(cm); |
| |
| if (try_split_only) { |
| av1_simple_motion_search_based_split( |
| cpi, x, sms_tree, mi_row, mi_col, bsize, &partition_none_allowed, |
| &partition_horz_allowed, &partition_vert_allowed, &do_rectangular_split, |
| &do_square_split); |
| } |
| |
| // Use simple motion search to prune out rectangular partition in one |
| // direction. The results are stored in prune_horz and prune_vert in order to |
| // bypass future related pruning checks if a pruning decision has been made. |
| const int try_prune_rect = |
| !cpi->is_screen_content_type && |
| cpi->sf.part_sf.simple_motion_search_prune_rect && |
| !frame_is_intra_only(cm) && do_rectangular_split && |
| (do_square_split || partition_none_allowed || |
| (prune_horz && prune_vert)) && |
| (partition_horz_allowed || partition_vert_allowed) && bsize >= BLOCK_8X8; |
| |
| if (try_prune_rect) { |
| av1_simple_motion_search_prune_rect( |
| cpi, x, sms_tree, mi_row, mi_col, bsize, &partition_horz_allowed, |
| &partition_vert_allowed, &prune_horz, &prune_vert); |
| } |
| |
| // Max and min square partition levels are defined as the partition nodes that |
| // the recursive function rd_pick_partition() can reach. To implement this: |
| // only PARTITION_NONE is allowed if the current node equals |
| // max_partition_size, only PARTITION_SPLIT is allowed if the current node |
| // exceeds max_partition_size. |
| SuperBlockEnc *sb_enc = &x->sb_enc; |
| assert(is_bsize_square(sb_enc->max_partition_size)); |
| assert(is_bsize_square(sb_enc->min_partition_size)); |
| assert(sb_enc->min_partition_size <= sb_enc->max_partition_size); |
| assert(is_bsize_square(bsize)); |
| const int max_partition_size = block_size_wide[sb_enc->max_partition_size]; |
| const int min_partition_size = block_size_wide[sb_enc->min_partition_size]; |
| const int blksize = block_size_wide[bsize]; |
| assert(min_partition_size <= max_partition_size); |
| const int is_le_min_sq_part = blksize <= min_partition_size; |
| const int is_gt_max_sq_part = blksize > max_partition_size; |
| if (is_gt_max_sq_part) { |
| // If current block size is larger than max, only allow split. |
| partition_none_allowed = 0; |
| partition_horz_allowed = 0; |
| partition_vert_allowed = 0; |
| do_square_split = 1; |
| } else if (is_le_min_sq_part) { |
| // If current block size is less or equal to min, only allow none if valid |
| // block large enough; only allow split otherwise. |
| partition_horz_allowed = 0; |
| partition_vert_allowed = 0; |
| // only disable square split when current block is not at the picture |
| // boundary. otherwise, inherit the square split flag from previous logic. |
| if (has_rows && has_cols) do_square_split = 0; |
| partition_none_allowed = !do_square_split; |
| } |
| |
| // Partition search |
| BEGIN_PARTITION_SEARCH: |
| // If a valid partition is required, usually when the first round cannot find |
| // a valid one under the cost limit after pruning, reset the limitations on |
| // partition types. |
| if (x->must_find_valid_partition) { |
| do_square_split = bsize_at_least_8x8 && (blksize > min_partition_size); |
| partition_none_allowed = |
| has_rows && has_cols && (blksize >= min_partition_size); |
| partition_horz_allowed = |
| has_cols && bsize_at_least_8x8 && cpi->oxcf.enable_rect_partitions && |
| (blksize > min_partition_size) && |
| get_plane_block_size(get_partition_subsize(bsize, PARTITION_HORZ), xss, |
| yss) != BLOCK_INVALID; |
| partition_vert_allowed = |
| has_rows && bsize_at_least_8x8 && cpi->oxcf.enable_rect_partitions && |
| (blksize > min_partition_size) && |
| get_plane_block_size(get_partition_subsize(bsize, PARTITION_VERT), xss, |
| yss) != BLOCK_INVALID; |
| terminate_partition_search = 0; |
| } |
| |
| // Partition block source pixel variance. |
| unsigned int pb_source_variance = UINT_MAX; |
| |
| // Partition block sse after simple motion compensation, not in use now, |
| // but will be used for upcoming speed features. |
| unsigned int pb_simple_motion_pred_sse = UINT_MAX; |
| (void)pb_simple_motion_pred_sse; |
| |
| // PARTITION_NONE |
| if (pc_tree->none == NULL) |
| pc_tree->none = av1_alloc_pmc(cm, bsize, &td->shared_coeff_buf); |
| PICK_MODE_CONTEXT *ctx_none = pc_tree->none; |
| if (is_le_min_sq_part && has_rows && has_cols) partition_none_allowed = 1; |
| assert(terminate_partition_search == 0); |
| int64_t part_none_rd = INT64_MAX; |
| if (cpi->is_screen_content_type) |
| partition_none_allowed = has_rows && has_cols; |
| if (partition_none_allowed && !is_gt_max_sq_part) { |
| int pt_cost = 0; |
| if (bsize_at_least_8x8) { |
| pt_cost = partition_cost[PARTITION_NONE] < INT_MAX |
| ? partition_cost[PARTITION_NONE] |
| : 0; |
| } |
| RD_STATS partition_rdcost; |
| av1_init_rd_stats(&partition_rdcost); |
| partition_rdcost.rate = pt_cost; |
| av1_rd_cost_update(x->rdmult, &partition_rdcost); |
| RD_STATS best_remain_rdcost; |
| av1_rd_stats_subtraction(x->rdmult, &best_rdc, &partition_rdcost, |
| &best_remain_rdcost); |
| #if CONFIG_COLLECT_PARTITION_STATS |
| if (best_remain_rdcost >= 0) { |
| partition_attempts[PARTITION_NONE] += 1; |
| aom_usec_timer_start(&partition_timer); |
| partition_timer_on = 1; |
| } |
| #endif |
| pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, PARTITION_NONE, |
| bsize, ctx_none, best_remain_rdcost, PICK_MODE_RD); |
| av1_rd_cost_update(x->rdmult, &this_rdc); |
| #if CONFIG_COLLECT_PARTITION_STATS |
| if (partition_timer_on) { |
| aom_usec_timer_mark(&partition_timer); |
| int64_t time = aom_usec_timer_elapsed(&partition_timer); |
| partition_times[PARTITION_NONE] += time; |
| partition_timer_on = 0; |
| } |
| #endif |
| pb_source_variance = x->source_variance; |
| pb_simple_motion_pred_sse = x->simple_motion_pred_sse; |
| if (none_rd) *none_rd = this_rdc.rdcost; |
| cur_none_rd = this_rdc.rdcost; |
| if (this_rdc.rate != INT_MAX) { |
| // Record picked ref frame to prune ref frames for other partition types. |
| if (cpi->sf.inter_sf.prune_ref_frame_for_rect_partitions) { |
| const int ref_type = av1_ref_frame_type(ctx_none->mic.ref_frame); |
| update_picked_ref_frames_mask(x, ref_type, bsize, |
| cm->seq_params.mib_size, mi_row, mi_col); |
| } |
| |
| // Calculate the total cost and update the best partition. |
| if (bsize_at_least_8x8) { |
| this_rdc.rate += pt_cost; |
| this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist); |
| } |
| part_none_rd = this_rdc.rdcost; |
| if (this_rdc.rdcost < best_rdc.rdcost) { |
| // Adjust dist breakout threshold according to the partition size. |
| const int64_t dist_breakout_thr = |
| cpi->sf.part_sf.partition_search_breakout_dist_thr >> |
| ((2 * (MAX_SB_SIZE_LOG2 - 2)) - |
| (mi_size_wide_log2[bsize] + mi_size_high_log2[bsize])); |
| const int rate_breakout_thr = |
| cpi->sf.part_sf.partition_search_breakout_rate_thr * |
| num_pels_log2_lookup[bsize]; |
| |
| best_rdc = this_rdc; |
| found_best_partition = true; |
| if (bsize_at_least_8x8) { |
| pc_tree->partitioning = PARTITION_NONE; |
| } |
| |
| // Early termination: if the rd cost is very low, early terminate at |
| // PARTITION_NONE and skip all other partitions. |
| if (!frame_is_intra_only(cm) && |
| (do_square_split || do_rectangular_split) && |
| !x->e_mbd.lossless[xd->mi[0]->segment_id] && ctx_none->skippable) { |
| const int use_ml_based_breakout = |
| bsize <= cpi->sf.part_sf.use_square_partition_only_threshold && |
| bsize > BLOCK_4X4 && xd->bd == 8; |
| if (use_ml_based_breakout) { |
| if (av1_ml_predict_breakout(cpi, bsize, x, &this_rdc, |
| pb_source_variance)) { |
| do_square_split = 0; |
| do_rectangular_split = 0; |
| } |
| } |
| |
| // If all y, u, v transform blocks in this partition are skippable, |
| // and the dist & rate are within the thresholds, the partition |
| // search is terminated for current branch of the partition search |
| // tree. The dist & rate thresholds are set to 0 at speed 0 to |
| // disable the early termination at that speed. |
| if (best_rdc.dist < dist_breakout_thr && |
| best_rdc.rate < rate_breakout_thr) { |
| do_square_split = 0; |
| do_rectangular_split = 0; |
| } |
| } |
| |
| // Early termination: using simple_motion_search features and the |
| // rate, distortion, and rdcost of PARTITION_NONE, a DNN will make a |
| // decision on early terminating at PARTITION_NONE. |
| if (cpi->sf.part_sf.simple_motion_search_early_term_none && |
| cm->show_frame && !frame_is_intra_only(cm) && |
| bsize >= BLOCK_16X16 && mi_row + mi_step < mi_params->mi_rows && |
| mi_col + mi_step < mi_params->mi_cols && |
| this_rdc.rdcost < INT64_MAX && this_rdc.rdcost >= 0 && |
| this_rdc.rate < INT_MAX && this_rdc.rate >= 0 && |
| (do_square_split || do_rectangular_split)) { |
| av1_simple_motion_search_early_term_none(cpi, x, sms_tree, mi_row, |
| mi_col, bsize, &this_rdc, |
| &terminate_partition_search); |
| } |
| } |
| } |
| |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| } |
| |
| // Store estimated motion vector. |
| if (cpi->sf.mv_sf.adaptive_motion_search) store_pred_mv(x, ctx_none); |
| |
| // PARTITION_SPLIT |
| int64_t part_split_rd = INT64_MAX; |
| subsize = get_partition_subsize(bsize, PARTITION_SPLIT); |
| if ((!terminate_partition_search && do_square_split) || is_gt_max_sq_part) { |
| for (int i = 0; i < 4; ++i) { |
| if (pc_tree->split[i] == NULL) |
| pc_tree->split[i] = av1_alloc_pc_tree_node(subsize); |
| pc_tree->split[i]->index = i; |
| } |
| av1_init_rd_stats(&sum_rdc); |
| sum_rdc.rate = partition_cost[PARTITION_SPLIT]; |
| sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0); |
| |
| int idx; |
| #if CONFIG_COLLECT_PARTITION_STATS |
| if (best_rdc.rdcost - sum_rdc.rdcost >= 0) { |
| partition_attempts[PARTITION_SPLIT] += 1; |
| aom_usec_timer_start(&partition_timer); |
| partition_timer_on = 1; |
| } |
| #endif |
| // Recursive partition search on 4 sub-blocks. |
| for (idx = 0; idx < 4 && sum_rdc.rdcost < best_rdc.rdcost; ++idx) { |
| const int x_idx = (idx & 1) * mi_step; |
| const int y_idx = (idx >> 1) * mi_step; |
| |
| if (mi_row + y_idx >= mi_params->mi_rows || |
| mi_col + x_idx >= mi_params->mi_cols) |
| continue; |
| |
| if (cpi->sf.mv_sf.adaptive_motion_search) load_pred_mv(x, ctx_none); |
| |
| pc_tree->split[idx]->index = idx; |
| int64_t *p_split_rd = &split_rd[idx]; |
| |
| RD_STATS best_remain_rdcost; |
| av1_rd_stats_subtraction(x->rdmult, &best_rdc, &sum_rdc, |
| &best_remain_rdcost); |
| |
| int curr_quad_tree_idx = 0; |
| if (frame_is_intra_only(cm) && bsize <= BLOCK_64X64) { |
| curr_quad_tree_idx = part_info->quad_tree_idx; |
| part_info->quad_tree_idx = 4 * curr_quad_tree_idx + idx + 1; |
| } |
| if (!rd_pick_partition(cpi, td, tile_data, tp, mi_row + y_idx, |
| mi_col + x_idx, subsize, &this_rdc, |
| best_remain_rdcost, pc_tree->split[idx], |
| sms_tree->split[idx], p_split_rd, multi_pass_mode, |
| &split_part_rect_win[idx])) { |
| av1_invalid_rd_stats(&sum_rdc); |
| break; |
| } |
| if (frame_is_intra_only(cm) && bsize <= BLOCK_64X64) { |
| part_info->quad_tree_idx = curr_quad_tree_idx; |
| } |
| |
| sum_rdc.rate += this_rdc.rate; |
| sum_rdc.dist += this_rdc.dist; |
| av1_rd_cost_update(x->rdmult, &sum_rdc); |
| if (idx <= 1 && (bsize <= BLOCK_8X8 || |
| pc_tree->split[idx]->partitioning == PARTITION_NONE)) { |
| const MB_MODE_INFO *const mbmi = &pc_tree->split[idx]->none->mic; |
| const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; |
| // Neither palette mode nor cfl predicted. |
| if (pmi->palette_size[0] == 0 && pmi->palette_size[1] == 0) { |
| if (mbmi->uv_mode != UV_CFL_PRED) split_ctx_is_ready[idx] = 1; |
| } |
| } |
| } |
| #if CONFIG_COLLECT_PARTITION_STATS |
| if (partition_timer_on) { |
| aom_usec_timer_mark(&partition_timer); |
| int64_t time = aom_usec_timer_elapsed(&partition_timer); |
| partition_times[PARTITION_SPLIT] += time; |
| partition_timer_on = 0; |
| } |
| #endif |
| const int reached_last_index = (idx == 4); |
| |
| // Calculate the total cost and update the best partition. |
| part_split_rd = sum_rdc.rdcost; |
| if (reached_last_index && sum_rdc.rdcost < best_rdc.rdcost) { |
| sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist); |
| if (sum_rdc.rdcost < best_rdc.rdcost) { |
| best_rdc = sum_rdc; |
| found_best_partition = true; |
| pc_tree->partitioning = PARTITION_SPLIT; |
| } |
| } else if (cpi->sf.part_sf.less_rectangular_check_level > 0) { |
| // Skip rectangular partition test when partition type none gives better |
| // rd than partition type split. |
| if (cpi->sf.part_sf.less_rectangular_check_level == 2 || idx <= 2) { |
| const int partition_none_valid = cur_none_rd > 0; |
| const int partition_none_better = cur_none_rd < sum_rdc.rdcost; |
| do_rectangular_split &= |
| !(partition_none_valid && partition_none_better); |
| } |
| } |
| |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| } // if (do_split) |
| |
| // Early termination: using the rd costs of PARTITION_NONE and subblocks |
| // from PARTITION_SPLIT to determine an early breakout. |
| if (cpi->sf.part_sf.ml_early_term_after_part_split_level && |
| !frame_is_intra_only(cm) && !terminate_partition_search && |
| do_rectangular_split && |
| (partition_horz_allowed || partition_vert_allowed)) { |
| av1_ml_early_term_after_split(cpi, x, sms_tree, bsize, best_rdc.rdcost, |
| part_none_rd, part_split_rd, split_rd, mi_row, |
| mi_col, &terminate_partition_search); |
| } |
| |
| // Pruning: using the rd costs of PARTITION_NONE and subblocks from |
| // PARTITION_SPLIT to prune out rectangular partitions in one direction. |
| if (!cpi->sf.part_sf.ml_early_term_after_part_split_level && |
| cpi->sf.part_sf.ml_prune_rect_partition && !frame_is_intra_only(cm) && |
| (partition_horz_allowed || partition_vert_allowed) && |
| !(prune_horz || prune_vert) && !terminate_partition_search) { |
| av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes, bsize); |
| av1_ml_prune_rect_partition(cpi, x, bsize, best_rdc.rdcost, cur_none_rd, |
| split_rd, &prune_horz, &prune_vert); |
| } |
| |
| // PARTITION_HORZ |
| assert(IMPLIES(!cpi->oxcf.enable_rect_partitions, !partition_horz_allowed)); |
| if (!terminate_partition_search && partition_horz_allowed && !prune_horz && |
| (do_rectangular_split || active_h_edge(cpi, mi_row, mi_step)) && |
| !is_gt_max_sq_part) { |
| av1_init_rd_stats(&sum_rdc); |
| subsize = get_partition_subsize(bsize, PARTITION_HORZ); |
| for (int i = 0; i < 2; ++i) { |
| if (pc_tree->horizontal[i] == NULL) { |
| pc_tree->horizontal[i] = |
| av1_alloc_pmc(cm, subsize, &td->shared_coeff_buf); |
| } |
| } |
| if (cpi->sf.mv_sf.adaptive_motion_search) load_pred_mv(x, ctx_none); |
| sum_rdc.rate = partition_cost[PARTITION_HORZ]; |
| sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0); |
| RD_STATS best_remain_rdcost; |
| av1_rd_stats_subtraction(x->rdmult, &best_rdc, &sum_rdc, |
| &best_remain_rdcost); |
| #if CONFIG_COLLECT_PARTITION_STATS |
| if (best_remain_rdcost >= 0) { |
| partition_attempts[PARTITION_HORZ] += 1; |
| aom_usec_timer_start(&partition_timer); |
| partition_timer_on = 1; |
| } |
| #endif |
| pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, PARTITION_HORZ, |
| subsize, pc_tree->horizontal[0], best_remain_rdcost, |
| PICK_MODE_RD); |
| av1_rd_cost_update(x->rdmult, &this_rdc); |
| |
| if (this_rdc.rate == INT_MAX) { |
| sum_rdc.rdcost = INT64_MAX; |
| } else { |
| sum_rdc.rate += this_rdc.rate; |
| sum_rdc.dist += this_rdc.dist; |
| av1_rd_cost_update(x->rdmult, &sum_rdc); |
| } |
| horz_rd[0] = this_rdc.rdcost; |
| |
| if (sum_rdc.rdcost < best_rdc.rdcost && has_rows) { |
| const PICK_MODE_CONTEXT *const ctx_h = pc_tree->horizontal[0]; |
| const MB_MODE_INFO *const mbmi = &pc_tree->horizontal[0]->mic; |
| const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; |
| // Neither palette mode nor cfl predicted. |
| if (pmi->palette_size[0] == 0 && pmi->palette_size[1] == 0) { |
| if (mbmi->uv_mode != UV_CFL_PRED) horz_ctx_is_ready = 1; |
| } |
| update_state(cpi, td, ctx_h, mi_row, mi_col, subsize, 1); |
| encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, subsize, NULL); |
| |
| if (cpi->sf.mv_sf.adaptive_motion_search) load_pred_mv(x, ctx_h); |
| |
| av1_rd_stats_subtraction(x->rdmult, &best_rdc, &sum_rdc, |
| &best_remain_rdcost); |
| |
| pick_sb_modes(cpi, tile_data, x, mi_row + mi_step, mi_col, &this_rdc, |
| PARTITION_HORZ, subsize, pc_tree->horizontal[1], |
| best_remain_rdcost, PICK_MODE_RD); |
| av1_rd_cost_update(x->rdmult, &this_rdc); |
| horz_rd[1] = this_rdc.rdcost; |
| |
| if (this_rdc.rate == INT_MAX) { |
| sum_rdc.rdcost = INT64_MAX; |
| } else { |
| sum_rdc.rate += this_rdc.rate; |
| sum_rdc.dist += this_rdc.dist; |
| av1_rd_cost_update(x->rdmult, &sum_rdc); |
| } |
| } |
| #if CONFIG_COLLECT_PARTITION_STATS |
| if (partition_timer_on) { |
| aom_usec_timer_mark(&partition_timer); |
| int64_t time = aom_usec_timer_elapsed(&partition_timer); |
| partition_times[PARTITION_HORZ] += time; |
| partition_timer_on = 0; |
| } |
| #endif |
| |
| // Update the best partition. |
| if (sum_rdc.rdcost < best_rdc.rdcost) { |
| sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist); |
| if (sum_rdc.rdcost < best_rdc.rdcost) { |
| best_rdc = sum_rdc; |
| found_best_partition = true; |
| pc_tree->partitioning = PARTITION_HORZ; |
| } |
| } else { |
| // Update HORZ win flag. |
| if (rect_part_win_info != NULL) { |
| rect_part_win_info->horz_win = false; |
| } |
| } |
| |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| } |
| |
| // PARTITION_VERT |
| assert(IMPLIES(!cpi->oxcf.enable_rect_partitions, !partition_vert_allowed)); |
| if (!terminate_partition_search && partition_vert_allowed && !prune_vert && |
| (do_rectangular_split || active_v_edge(cpi, mi_col, mi_step)) && |
| !is_gt_max_sq_part) { |
| av1_init_rd_stats(&sum_rdc); |
| subsize = get_partition_subsize(bsize, PARTITION_VERT); |
| for (int i = 0; i < 2; ++i) { |
| if (pc_tree->vertical[i] == NULL) { |
| pc_tree->vertical[i] = |
| av1_alloc_pmc(cm, subsize, &td->shared_coeff_buf); |
| } |
| } |
| |
| if (cpi->sf.mv_sf.adaptive_motion_search) load_pred_mv(x, ctx_none); |
| |
| sum_rdc.rate = partition_cost[PARTITION_VERT]; |
| sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0); |
| RD_STATS best_remain_rdcost; |
| av1_rd_stats_subtraction(x->rdmult, &best_rdc, &sum_rdc, |
| &best_remain_rdcost); |
| #if CONFIG_COLLECT_PARTITION_STATS |
| if (best_remain_rdcost >= 0) { |
| partition_attempts[PARTITION_VERT] += 1; |
| aom_usec_timer_start(&partition_timer); |
| partition_timer_on = 1; |
| } |
| #endif |
| pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, PARTITION_VERT, |
| subsize, pc_tree->vertical[0], best_remain_rdcost, |
| PICK_MODE_RD); |
| av1_rd_cost_update(x->rdmult, &this_rdc); |
| |
| if (this_rdc.rate == INT_MAX) { |
| sum_rdc.rdcost = INT64_MAX; |
| } else { |
| sum_rdc.rate += this_rdc.rate; |
| sum_rdc.dist += this_rdc.dist; |
| av1_rd_cost_update(x->rdmult, &sum_rdc); |
| } |
| vert_rd[0] = this_rdc.rdcost; |
| if (sum_rdc.rdcost < best_rdc.rdcost && has_cols) { |
| const MB_MODE_INFO *const mbmi = &pc_tree->vertical[0]->mic; |
| const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; |
| // Neither palette mode nor cfl predicted. |
| if (pmi->palette_size[0] == 0 && pmi->palette_size[1] == 0) { |
| if (mbmi->uv_mode != UV_CFL_PRED) vert_ctx_is_ready = 1; |
| } |
| update_state(cpi, td, pc_tree->vertical[0], mi_row, mi_col, subsize, 1); |
| encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, subsize, NULL); |
| |
| if (cpi->sf.mv_sf.adaptive_motion_search) load_pred_mv(x, ctx_none); |
| |
| av1_rd_stats_subtraction(x->rdmult, &best_rdc, &sum_rdc, |
| &best_remain_rdcost); |
| pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + mi_step, &this_rdc, |
| PARTITION_VERT, subsize, pc_tree->vertical[1], |
| best_remain_rdcost, PICK_MODE_RD); |
| av1_rd_cost_update(x->rdmult, &this_rdc); |
| vert_rd[1] = this_rdc.rdcost; |
| |
| if (this_rdc.rate == INT_MAX) { |
| sum_rdc.rdcost = INT64_MAX; |
| } else { |
| sum_rdc.rate += this_rdc.rate; |
| sum_rdc.dist += this_rdc.dist; |
| av1_rd_cost_update(x->rdmult, &sum_rdc); |
| } |
| } |
| #if CONFIG_COLLECT_PARTITION_STATS |
| if (partition_timer_on) { |
| aom_usec_timer_mark(&partition_timer); |
| int64_t time = aom_usec_timer_elapsed(&partition_timer); |
| partition_times[PARTITION_VERT] += time; |
| partition_timer_on = 0; |
| } |
| #endif |
| |
| // Calculate the total cost and update the best partition. |
| av1_rd_cost_update(x->rdmult, &sum_rdc); |
| if (sum_rdc.rdcost < best_rdc.rdcost) { |
| best_rdc = sum_rdc; |
| found_best_partition = true; |
| pc_tree->partitioning = PARTITION_VERT; |
| } else { |
| // Update VERT win flag. |
| if (rect_part_win_info != NULL) { |
| rect_part_win_info->vert_win = false; |
| } |
| } |
| |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| } |
| |
| if (pb_source_variance == UINT_MAX) { |
| av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes, bsize); |
| if (is_cur_buf_hbd(xd)) { |
| pb_source_variance = av1_high_get_sby_perpixel_variance( |
| cpi, &x->plane[0].src, bsize, xd->bd); |
| } else { |
| pb_source_variance = |
| av1_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize); |
| } |
| } |
| |
| // Update prediction errors from simple motion search. |
| if (use_pb_simple_motion_pred_sse(cpi) && |
| pb_simple_motion_pred_sse == UINT_MAX) { |
| const FULLPEL_MV start_mv = kZeroFullMv; |
| unsigned int var = 0; |
| |
| av1_simple_motion_sse_var(cpi, x, mi_row, mi_col, bsize, start_mv, 0, |
| &pb_simple_motion_pred_sse, &var); |
| } |
| |
| assert(IMPLIES(!cpi->oxcf.enable_rect_partitions, !do_rectangular_split)); |
| |
| const int ext_partition_allowed = |
| do_rectangular_split && |
| bsize > cpi->sf.part_sf.ext_partition_eval_thresh && has_rows && has_cols; |
| |
| // The standard AB partitions are allowed initially if ext-partition-types are |
| // allowed. |
| int horzab_partition_allowed = |
| ext_partition_allowed & cpi->oxcf.enable_ab_partitions; |
| int vertab_partition_allowed = |
| ext_partition_allowed & cpi->oxcf.enable_ab_partitions; |
| |
| // Pruning: pruning out AB partitions on one main direction based on the |
| // current best partition and source variance. |
| if (cpi->sf.part_sf.prune_ext_partition_types_search_level) { |
| if (cpi->sf.part_sf.prune_ext_partition_types_search_level == 1) { |
| // TODO(debargha,huisu@google.com): may need to tune the threshold for |
| // pb_source_variance. |
| horzab_partition_allowed &= (pc_tree->partitioning == PARTITION_HORZ || |
| (pc_tree->partitioning == PARTITION_NONE && |
| pb_source_variance < 32) || |
| pc_tree->partitioning == PARTITION_SPLIT); |
| vertab_partition_allowed &= (pc_tree->partitioning == PARTITION_VERT || |
| (pc_tree->partitioning == PARTITION_NONE && |
| pb_source_variance < 32) || |
| pc_tree->partitioning == PARTITION_SPLIT); |
| } else { |
| horzab_partition_allowed &= (pc_tree->partitioning == PARTITION_HORZ || |
| pc_tree->partitioning == PARTITION_SPLIT); |
| vertab_partition_allowed &= (pc_tree->partitioning == PARTITION_VERT || |
| pc_tree->partitioning == PARTITION_SPLIT); |
| } |
| horz_rd[0] = (horz_rd[0] < INT64_MAX ? horz_rd[0] : 0); |
| horz_rd[1] = (horz_rd[1] < INT64_MAX ? horz_rd[1] : 0); |
| vert_rd[0] = (vert_rd[0] < INT64_MAX ? vert_rd[0] : 0); |
| vert_rd[1] = (vert_rd[1] < INT64_MAX ? vert_rd[1] : 0); |
| split_rd[0] = (split_rd[0] < INT64_MAX ? split_rd[0] : 0); |
| split_rd[1] = (split_rd[1] < INT64_MAX ? split_rd[1] : 0); |
| split_rd[2] = (split_rd[2] < INT64_MAX ? split_rd[2] : 0); |
| split_rd[3] = (split_rd[3] < INT64_MAX ? split_rd[3] : 0); |
| } |
| |
| // Pruning: pruning out horz_a or horz_b if the combined rdcost of its |
| // subblocks estimated from previous partitions is much higher than the best |
| // rd so far. |
| int horza_partition_allowed = horzab_partition_allowed; |
| int horzb_partition_allowed = horzab_partition_allowed; |
| if (cpi->sf.part_sf.prune_ext_partition_types_search_level) { |
| const int64_t horz_a_rd = horz_rd[1] + split_rd[0] + split_rd[1]; |
| const int64_t horz_b_rd = horz_rd[0] + split_rd[2] + split_rd[3]; |
| switch (cpi->sf.part_sf.prune_ext_partition_types_search_level) { |
| case 1: |
| horza_partition_allowed &= (horz_a_rd / 16 * 14 < best_rdc.rdcost); |
| horzb_partition_allowed &= (horz_b_rd / 16 * 14 < best_rdc.rdcost); |
| break; |
| case 2: |
| default: |
| horza_partition_allowed &= (horz_a_rd / 16 * 15 < best_rdc.rdcost); |
| horzb_partition_allowed &= (horz_b_rd / 16 * 15 < best_rdc.rdcost); |
| break; |
| } |
| } |
| |
| // Pruning: pruning out vert_a or vert_b if the combined rdcost of its |
| // subblocks estimated from previous partitions is much higher than the best |
| // rd so far. |
| int verta_partition_allowed = vertab_partition_allowed; |
| int vertb_partition_allowed = vertab_partition_allowed; |
| if (cpi->sf.part_sf.prune_ext_partition_types_search_level) { |
| const int64_t vert_a_rd = vert_rd[1] + split_rd[0] + split_rd[2]; |
| const int64_t vert_b_rd = vert_rd[0] + split_rd[1] + split_rd[3]; |
| switch (cpi->sf.part_sf.prune_ext_partition_types_search_level) { |
| case 1: |
| verta_partition_allowed &= (vert_a_rd / 16 * 14 < best_rdc.rdcost); |
| vertb_partition_allowed &= (vert_b_rd / 16 * 14 < best_rdc.rdcost); |
| break; |
| case 2: |
| default: |
| verta_partition_allowed &= (vert_a_rd / 16 * 15 < best_rdc.rdcost); |
| vertb_partition_allowed &= (vert_b_rd / 16 * 15 < best_rdc.rdcost); |
| break; |
| } |
| } |
| |
| // Pruning: pruning out some ab partitions using a DNN taking rd costs of |
| // sub-blocks from previous basic partition types. |
| if (cpi->sf.part_sf.ml_prune_ab_partition && ext_partition_allowed && |
| partition_horz_allowed && partition_vert_allowed) { |
| // TODO(huisu@google.com): x->source_variance may not be the current |
| // block's variance. The correct one to use is pb_source_variance. Need to |
| // re-train the model to fix it. |
| av1_ml_prune_ab_partition( |
| bsize, pc_tree->partitioning, get_unsigned_bits(x->source_variance), |
| best_rdc.rdcost, horz_rd, vert_rd, split_rd, &horza_partition_allowed, |
| &horzb_partition_allowed, &verta_partition_allowed, |
| &vertb_partition_allowed); |
| } |
| |
| // Disable ab partitions if they are disabled by the encoder parameter. |
| horza_partition_allowed &= cpi->oxcf.enable_ab_partitions; |
| horzb_partition_allowed &= cpi->oxcf.enable_ab_partitions; |
| verta_partition_allowed &= cpi->oxcf.enable_ab_partitions; |
| vertb_partition_allowed &= cpi->oxcf.enable_ab_partitions; |
| |
| if (cpi->sf.part_sf.prune_ab_partition_using_split_info && |
| horza_partition_allowed) { |
| horza_partition_allowed &= evaluate_ab_partition_based_on_split( |
| pc_tree, PARTITION_HORZ, rect_part_win_info, x->qindex, 0, 1); |
| } |
| |
| // PARTITION_HORZ_A |
| if (!terminate_partition_search && partition_horz_allowed && |
| horza_partition_allowed && !is_gt_max_sq_part) { |
| subsize = get_partition_subsize(bsize, PARTITION_HORZ_A); |
| |
| pc_tree->horizontala[0] = av1_alloc_pmc(cm, bsize2, &td->shared_coeff_buf); |
| pc_tree->horizontala[1] = av1_alloc_pmc(cm, bsize2, &td->shared_coeff_buf); |
| pc_tree->horizontala[2] = av1_alloc_pmc(cm, subsize, &td->shared_coeff_buf); |
| |
| pc_tree->horizontala[0]->rd_mode_is_ready = 0; |
| pc_tree->horizontala[1]->rd_mode_is_ready = 0; |
| pc_tree->horizontala[2]->rd_mode_is_ready = 0; |
| // Copy the mode search results of the first two square sub-blocks from |
| // PARTITION_SPLIT. |
| if (split_ctx_is_ready[0]) { |
| av1_copy_tree_context(pc_tree->horizontala[0], pc_tree->split[0]->none); |
| pc_tree->horizontala[0]->mic.partition = PARTITION_HORZ_A; |
| pc_tree->horizontala[0]->rd_mode_is_ready = 1; |
| if (split_ctx_is_ready[1]) { |
| av1_copy_tree_context(pc_tree->horizontala[1], pc_tree->split[1]->none); |
| pc_tree->horizontala[1]->mic.partition = PARTITION_HORZ_A; |
| pc_tree->horizontala[1]->rd_mode_is_ready = 1; |
| } |
| } |
| #if CONFIG_COLLECT_PARTITION_STATS |
| { |
| RD_STATS tmp_sum_rdc; |
| av1_init_rd_stats(&tmp_sum_rdc); |
| tmp_sum_rdc.rate = x->partition_cost[pl][PARTITION_HORZ_A]; |
| tmp_sum_rdc.rdcost = RDCOST(x->rdmult, tmp_sum_rdc.rate, 0); |
| if (best_rdc.rdcost - tmp_sum_rdc.rdcost >= 0) { |
| partition_attempts[PARTITION_HORZ_A] += 1; |
| aom_usec_timer_start(&partition_timer); |
| partition_timer_on = 1; |
| } |
| } |
| #endif |
| // Test this partition and update the best partition. |
| found_best_partition |= rd_test_partition3( |
| cpi, td, tile_data, tp, pc_tree, &best_rdc, pc_tree->horizontala, |
| ctx_none, mi_row, mi_col, bsize, PARTITION_HORZ_A, mi_row, mi_col, |
| bsize2, mi_row, mi_col + mi_step, bsize2, mi_row + mi_step, mi_col, |
| subsize); |
| #if CONFIG_COLLECT_PARTITION_STATS |
| if (partition_timer_on) { |
| aom_usec_timer_mark(&partition_timer); |
| int64_t time = aom_usec_timer_elapsed(&partition_timer); |
| partition_times[PARTITION_HORZ_A] += time; |
| partition_timer_on = 0; |
| } |
| #endif |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| } |
| |
| if (cpi->sf.part_sf.prune_ab_partition_using_split_info && |
| horzb_partition_allowed) { |
| horzb_partition_allowed &= evaluate_ab_partition_based_on_split( |
| pc_tree, PARTITION_HORZ, rect_part_win_info, x->qindex, 2, 3); |
| } |
| |
| // PARTITION_HORZ_B. |
| if (!terminate_partition_search && partition_horz_allowed && |
| horzb_partition_allowed && !is_gt_max_sq_part) { |
| subsize = get_partition_subsize(bsize, PARTITION_HORZ_B); |
| |
| pc_tree->horizontalb[0] = av1_alloc_pmc(cm, subsize, &td->shared_coeff_buf); |
| pc_tree->horizontalb[1] = av1_alloc_pmc(cm, bsize2, &td->shared_coeff_buf); |
| pc_tree->horizontalb[2] = av1_alloc_pmc(cm, bsize2, &td->shared_coeff_buf); |
| |
| pc_tree->horizontalb[0]->rd_mode_is_ready = 0; |
| pc_tree->horizontalb[1]->rd_mode_is_ready = 0; |
| pc_tree->horizontalb[2]->rd_mode_is_ready = 0; |
| // Copy the mode search results of the top sub-block from PARTITION_HORZ. |
| if (horz_ctx_is_ready) { |
| av1_copy_tree_context(pc_tree->horizontalb[0], pc_tree->horizontal[0]); |
| pc_tree->horizontalb[0]->mic.partition = PARTITION_HORZ_B; |
| pc_tree->horizontalb[0]->rd_mode_is_ready = 1; |
| } |
| #if CONFIG_COLLECT_PARTITION_STATS |
| { |
| RD_STATS tmp_sum_rdc; |
| av1_init_rd_stats(&tmp_sum_rdc); |
| tmp_sum_rdc.rate = x->partition_cost[pl][PARTITION_HORZ_B]; |
| tmp_sum_rdc.rdcost = RDCOST(x->rdmult, tmp_sum_rdc.rate, 0); |
| if (best_rdc.rdcost - tmp_sum_rdc.rdcost >= 0) { |
| partition_attempts[PARTITION_HORZ_B] += 1; |
| aom_usec_timer_start(&partition_timer); |
| partition_timer_on = 1; |
| } |
| } |
| #endif |
| // Test this partition and update the best partition. |
| found_best_partition |= rd_test_partition3( |
| cpi, td, tile_data, tp, pc_tree, &best_rdc, pc_tree->horizontalb, |
| ctx_none, mi_row, mi_col, bsize, PARTITION_HORZ_B, mi_row, mi_col, |
| subsize, mi_row + mi_step, mi_col, bsize2, mi_row + mi_step, |
| mi_col + mi_step, bsize2); |
| |
| #if CONFIG_COLLECT_PARTITION_STATS |
| if (partition_timer_on) { |
| aom_usec_timer_mark(&partition_timer); |
| int64_t time = aom_usec_timer_elapsed(&partition_timer); |
| partition_times[PARTITION_HORZ_B] += time; |
| partition_timer_on = 0; |
| } |
| #endif |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| } |
| |
| if (cpi->sf.part_sf.prune_ab_partition_using_split_info && |
| verta_partition_allowed) { |
| verta_partition_allowed &= evaluate_ab_partition_based_on_split( |
| pc_tree, PARTITION_VERT, rect_part_win_info, x->qindex, 0, 2); |
| } |
| |
| // PARTITION_VERT_A |
| if (!terminate_partition_search && partition_vert_allowed && |
| verta_partition_allowed && !is_gt_max_sq_part) { |
| subsize = get_partition_subsize(bsize, PARTITION_VERT_A); |
| |
| pc_tree->verticala[0] = av1_alloc_pmc(cm, bsize2, &td->shared_coeff_buf); |
| pc_tree->verticala[1] = av1_alloc_pmc(cm, bsize2, &td->shared_coeff_buf); |
| pc_tree->verticala[2] = av1_alloc_pmc(cm, subsize, &td->shared_coeff_buf); |
| |
| pc_tree->verticala[0]->rd_mode_is_ready = 0; |
| pc_tree->verticala[1]->rd_mode_is_ready = 0; |
| pc_tree->verticala[2]->rd_mode_is_ready = 0; |
| // Copy the mode search result of the first square sub-block from |
| // PARTITION_SPLIT. |
| if (split_ctx_is_ready[0]) { |
| av1_copy_tree_context(pc_tree->verticala[0], pc_tree->split[0]->none); |
| pc_tree->verticala[0]->mic.partition = PARTITION_VERT_A; |
| pc_tree->verticala[0]->rd_mode_is_ready = 1; |
| } |
| #if CONFIG_COLLECT_PARTITION_STATS |
| { |
| RD_STATS tmp_sum_rdc; |
| av1_init_rd_stats(&tmp_sum_rdc); |
| tmp_sum_rdc.rate = x->partition_cost[pl][PARTITION_VERT_A]; |
| tmp_sum_rdc.rdcost = RDCOST(x->rdmult, tmp_sum_rdc.rate, 0); |
| if (best_rdc.rdcost - tmp_sum_rdc.rdcost >= 0) { |
| partition_attempts[PARTITION_VERT_A] += 1; |
| aom_usec_timer_start(&partition_timer); |
| partition_timer_on = 1; |
| } |
| } |
| #endif |
| // Test this partition and update the best partition. |
| found_best_partition |= rd_test_partition3( |
| cpi, td, tile_data, tp, pc_tree, &best_rdc, pc_tree->verticala, |
| ctx_none, mi_row, mi_col, bsize, PARTITION_VERT_A, mi_row, mi_col, |
| bsize2, mi_row + mi_step, mi_col, bsize2, mi_row, mi_col + mi_step, |
| subsize); |
| #if CONFIG_COLLECT_PARTITION_STATS |
| if (partition_timer_on) { |
| aom_usec_timer_mark(&partition_timer); |
| int64_t time = aom_usec_timer_elapsed(&partition_timer); |
| partition_times[PARTITION_VERT_A] += time; |
| partition_timer_on = 0; |
| } |
| #endif |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| } |
| |
| if (cpi->sf.part_sf.prune_ab_partition_using_split_info && |
| vertb_partition_allowed) { |
| vertb_partition_allowed &= evaluate_ab_partition_based_on_split( |
| pc_tree, PARTITION_VERT, rect_part_win_info, x->qindex, 1, 3); |
| } |
| |
| // PARTITION_VERT_B |
| if (!terminate_partition_search && partition_vert_allowed && |
| vertb_partition_allowed && !is_gt_max_sq_part) { |
| subsize = get_partition_subsize(bsize, PARTITION_VERT_B); |
| |
| pc_tree->verticalb[0] = av1_alloc_pmc(cm, subsize, &td->shared_coeff_buf); |
| pc_tree->verticalb[1] = av1_alloc_pmc(cm, bsize2, &td->shared_coeff_buf); |
| pc_tree->verticalb[2] = av1_alloc_pmc(cm, bsize2, &td->shared_coeff_buf); |
| |
| pc_tree->verticalb[0]->rd_mode_is_ready = 0; |
| pc_tree->verticalb[1]->rd_mode_is_ready = 0; |
| pc_tree->verticalb[2]->rd_mode_is_ready = 0; |
| // Copy the mode search result of the left sub-block from PARTITION_VERT. |
| if (vert_ctx_is_ready) { |
| av1_copy_tree_context(pc_tree->verticalb[0], pc_tree->vertical[0]); |
| pc_tree->verticalb[0]->mic.partition = PARTITION_VERT_B; |
| pc_tree->verticalb[0]->rd_mode_is_ready = 1; |
| } |
| #if CONFIG_COLLECT_PARTITION_STATS |
| { |
| RD_STATS tmp_sum_rdc; |
| av1_init_rd_stats(&tmp_sum_rdc); |
| tmp_sum_rdc.rate = x->partition_cost[pl][PARTITION_VERT_B]; |
| tmp_sum_rdc.rdcost = RDCOST(x->rdmult, tmp_sum_rdc.rate, 0); |
| if (!frame_is_intra_only(cm) && |
| best_rdc.rdcost - tmp_sum_rdc.rdcost >= 0) { |
| partition_attempts[PARTITION_VERT_B] += 1; |
| aom_usec_timer_start(&partition_timer); |
| partition_timer_on = 1; |
| } |
| } |
| #endif |
| // Test this partition and update the best partition. |
| found_best_partition |= rd_test_partition3( |
| cpi, td, tile_data, tp, pc_tree, &best_rdc, pc_tree->verticalb, |
| ctx_none, mi_row, mi_col, bsize, PARTITION_VERT_B, mi_row, mi_col, |
| subsize, mi_row, mi_col + mi_step, bsize2, mi_row + mi_step, |
| mi_col + mi_step, bsize2); |
| #if CONFIG_COLLECT_PARTITION_STATS |
| if (partition_timer_on) { |
| aom_usec_timer_mark(&partition_timer); |
| int64_t time = aom_usec_timer_elapsed(&partition_timer); |
| partition_times[PARTITION_VERT_B] += time; |
| partition_timer_on = 0; |
| } |
| #endif |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| } |
| |
| // partition4_allowed is 1 if we can use a PARTITION_HORZ_4 or |
| // PARTITION_VERT_4 for this block. This is almost the same as |
| // ext_partition_allowed, except that we don't allow 128x32 or 32x128 |
| // blocks, so we require that bsize is not BLOCK_128X128. |
| const int partition4_allowed = cpi->oxcf.enable_1to4_partitions && |
| ext_partition_allowed && |
| bsize != BLOCK_128X128; |
| |
| int partition_horz4_allowed = |
| partition4_allowed && partition_horz_allowed && |
| get_plane_block_size(get_partition_subsize(bsize, PARTITION_HORZ_4), xss, |
| yss) != BLOCK_INVALID; |
| int partition_vert4_allowed = |
| partition4_allowed && partition_vert_allowed && |
| get_plane_block_size(get_partition_subsize(bsize, PARTITION_VERT_4), xss, |
| yss) != BLOCK_INVALID; |
| |
| // Pruning: pruning out 4-way partitions based on the current best partition. |
| if (cpi->sf.part_sf.prune_ext_partition_types_search_level == 2) { |
| partition_horz4_allowed &= (pc_tree->partitioning == PARTITION_HORZ || |
| pc_tree->partitioning == PARTITION_HORZ_A || |
| pc_tree->partitioning == PARTITION_HORZ_B || |
| pc_tree->partitioning == PARTITION_SPLIT || |
| pc_tree->partitioning == PARTITION_NONE); |
| partition_vert4_allowed &= (pc_tree->partitioning == PARTITION_VERT || |
| pc_tree->partitioning == PARTITION_VERT_A || |
| pc_tree->partitioning == PARTITION_VERT_B || |
| pc_tree->partitioning == PARTITION_SPLIT || |
| pc_tree->partitioning == PARTITION_NONE); |
| } |
| |
| // Pruning: pruning out some 4-way partitions using a DNN taking rd costs of |
| // sub-blocks from basic partition types. |
| if (cpi->sf.part_sf.ml_prune_4_partition && partition4_allowed && |
| partition_horz_allowed && partition_vert_allowed) { |
| av1_ml_prune_4_partition(cpi, x, bsize, pc_tree->partitioning, |
| best_rdc.rdcost, horz_rd, vert_rd, split_rd, |
| &partition_horz4_allowed, &partition_vert4_allowed, |
| pb_source_variance, mi_row, mi_col); |
| } |
| |
| if (blksize < (min_partition_size << 2)) { |
| partition_horz4_allowed = 0; |
| partition_vert4_allowed = 0; |
| } |
| |
| // Pruning: pruning out 4-way partitions based on the number of horz/vert wins |
| // in the current block and sub-blocks in PARTITION_SPLIT. |
| if (cpi->sf.part_sf.prune_4_partition_using_split_info && |
| (partition_horz4_allowed || partition_vert4_allowed)) { |
| // Count of child blocks in which HORZ or VERT partition has won |
| int num_child_horz_win = 0, num_child_vert_win = 0; |
| for (int idx = 0; idx < 4; idx++) { |
| num_child_horz_win += (split_part_rect_win[idx].horz_win) ? 1 : 0; |
| num_child_vert_win += (split_part_rect_win[idx].vert_win) ? 1 : 0; |
| } |
| |
| // Prune HORZ4/VERT4 partitions based on number of HORZ/VERT winners of |
| // split partiitons. |
| // Conservative pruning for high quantizers. |
| const int num_win_thresh = AOMMIN(3 * (MAXQ - x->qindex) / MAXQ + 1, 3); |
| if (num_child_horz_win < num_win_thresh) { |
| partition_horz4_allowed = 0; |
| } |
| if (num_child_vert_win < num_win_thresh) { |
| partition_vert4_allowed = 0; |
| } |
| } |
| |
| // PARTITION_HORZ_4 |
| assert(IMPLIES(!cpi->oxcf.enable_rect_partitions, !partition_horz4_allowed)); |
| if (!terminate_partition_search && partition_horz4_allowed && has_rows && |
| (do_rectangular_split || active_h_edge(cpi, mi_row, mi_step)) && |
| !is_gt_max_sq_part) { |
| av1_init_rd_stats(&sum_rdc); |
| const int quarter_step = mi_size_high[bsize] / 4; |
| PICK_MODE_CONTEXT *ctx_prev = ctx_none; |
| |
| subsize = get_partition_subsize(bsize, PARTITION_HORZ_4); |
| sum_rdc.rate = partition_cost[PARTITION_HORZ_4]; |
| sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0); |
| |
| for (int i = 0; i < 4; ++i) { |
| pc_tree->horizontal4[i] = |
| av1_alloc_pmc(cm, subsize, &td->shared_coeff_buf); |
| } |
| |
| #if CONFIG_COLLECT_PARTITION_STATS |
| if (best_rdc.rdcost - sum_rdc.rdcost >= 0) { |
| partition_attempts[PARTITION_HORZ_4] += 1; |
| aom_usec_timer_start(&partition_timer); |
| partition_timer_on = 1; |
| } |
| #endif |
| for (int i = 0; i < 4; ++i) { |
| const int this_mi_row = mi_row + i * quarter_step; |
| |
| if (i > 0 && this_mi_row >= mi_params->mi_rows) break; |
| |
| PICK_MODE_CONTEXT *ctx_this = pc_tree->horizontal4[i]; |
| |
| ctx_this->rd_mode_is_ready = 0; |
| if (!rd_try_subblock(cpi, td, tile_data, tp, (i == 3), this_mi_row, |
| mi_col, subsize, best_rdc, &sum_rdc, |
| PARTITION_HORZ_4, ctx_prev, ctx_this)) { |
| av1_invalid_rd_stats(&sum_rdc); |
| break; |
| } |
| |
| ctx_prev = ctx_this; |
| } |
| |
| // Calculate the total cost and update the best partition. |
| av1_rd_cost_update(x->rdmult, &sum_rdc); |
| if (sum_rdc.rdcost < best_rdc.rdcost) { |
| best_rdc = sum_rdc; |
| found_best_partition = true; |
| pc_tree->partitioning = PARTITION_HORZ_4; |
| } |
| |
| #if CONFIG_COLLECT_PARTITION_STATS |
| if (partition_timer_on) { |
| aom_usec_timer_mark(&partition_timer); |
| int64_t time = aom_usec_timer_elapsed(&partition_timer); |
| partition_times[PARTITION_HORZ_4] += time; |
| partition_timer_on = 0; |
| } |
| #endif |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| } |
| |
| // PARTITION_VERT_4 |
| assert(IMPLIES(!cpi->oxcf.enable_rect_partitions, !partition_vert4_allowed)); |
| if (!terminate_partition_search && partition_vert4_allowed && has_cols && |
| (do_rectangular_split || active_v_edge(cpi, mi_row, mi_step)) && |
| !is_gt_max_sq_part) { |
| av1_init_rd_stats(&sum_rdc); |
| const int quarter_step = mi_size_wide[bsize] / 4; |
| PICK_MODE_CONTEXT *ctx_prev = ctx_none; |
| |
| subsize = get_partition_subsize(bsize, PARTITION_VERT_4); |
| sum_rdc.rate = partition_cost[PARTITION_VERT_4]; |
| sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0); |
| |
| for (int i = 0; i < 4; ++i) |
| pc_tree->vertical4[i] = av1_alloc_pmc(cm, subsize, &td->shared_coeff_buf); |
| |
| #if CONFIG_COLLECT_PARTITION_STATS |
| if (best_rdc.rdcost - sum_rdc.rdcost >= 0) { |
| partition_attempts[PARTITION_VERT_4] += 1; |
| aom_usec_timer_start(&partition_timer); |
| partition_timer_on = 1; |
| } |
| #endif |
| for (int i = 0; i < 4; ++i) { |
| const int this_mi_col = mi_col + i * quarter_step; |
| |
| if (i > 0 && this_mi_col >= mi_params->mi_cols) break; |
| |
| PICK_MODE_CONTEXT *ctx_this = pc_tree->vertical4[i]; |
| |
| ctx_this->rd_mode_is_ready = 0; |
| if (!rd_try_subblock(cpi, td, tile_data, tp, (i == 3), mi_row, |
| this_mi_col, subsize, best_rdc, &sum_rdc, |
| PARTITION_VERT_4, ctx_prev, ctx_this)) { |
| av1_invalid_rd_stats(&sum_rdc); |
| break; |
| } |
| |
| ctx_prev = ctx_this; |
| } |
| |
| // Calculate the total cost and update the best partition |
| av1_rd_cost_update(x->rdmult, &sum_rdc); |
| if (sum_rdc.rdcost < best_rdc.rdcost) { |
| best_rdc = sum_rdc; |
| found_best_partition = true; |
| pc_tree->partitioning = PARTITION_VERT_4; |
| } |
| #if CONFIG_COLLECT_PARTITION_STATS |
| if (partition_timer_on) { |
| aom_usec_timer_mark(&partition_timer); |
| int64_t time = aom_usec_timer_elapsed(&partition_timer); |
| partition_times[PARTITION_VERT_4] += time; |
| partition_timer_on = 0; |
| } |
| #endif |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| } |
| |
| if (bsize == cm->seq_params.sb_size && !found_best_partition) { |
| // Did not find a valid partition, go back and search again, with less |
| // constraint on which partition types to search. |
| x->must_find_valid_partition = 1; |
| #if CONFIG_COLLECT_PARTITION_STATS == 2 |
| part_stats->partition_redo += 1; |
| #endif |
| goto BEGIN_PARTITION_SEARCH; |
| } |
| |
| // Store the final rd cost |
| *rd_cost = best_rdc; |
| |
| // Also record the best partition in simple motion data tree because it is |
| // necessary for the related speed features. |
| sms_tree->partitioning = pc_tree->partitioning; |
| |
| #if CONFIG_COLLECT_PARTITION_STATS |
| if (best_rdc.rate < INT_MAX && best_rdc.dist < INT64_MAX) { |
| partition_decisions[pc_tree->partitioning] += 1; |
| } |
| #endif |
| |
| #if CONFIG_COLLECT_PARTITION_STATS == 1 |
| // If CONFIG_COLLECT_PARTITION_STATS is 1, then print out the stats for each |
| // prediction block. |
| FILE *f = fopen("data.csv", "a"); |
| fprintf(f, "%d,%d,%d,", bsize, cm->show_frame, frame_is_intra_only(cm)); |
| for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) { |
| fprintf(f, "%d,", partition_decisions[idx]); |
| } |
| for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) { |
| fprintf(f, "%d,", partition_attempts[idx]); |
| } |
| for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) { |
| fprintf(f, "%ld,", partition_times[idx]); |
| } |
| fprintf(f, "\n"); |
| fclose(f); |
| #endif |
| |
| #if CONFIG_COLLECT_PARTITION_STATS == 2 |
| // If CONFIG_COLLECTION_PARTITION_STATS is 2, then we print out the stats for |
| // the whole clip. So we need to pass the information upstream to the encoder. |
| const int bsize_idx = av1_get_bsize_idx_for_part_stats(bsize); |
| int *agg_attempts = part_stats->partition_attempts[bsize_idx]; |
| int *agg_decisions = part_stats->partition_decisions[bsize_idx]; |
| int64_t *agg_times = part_stats->partition_times[bsize_idx]; |
| for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) { |
| agg_attempts[idx] += partition_attempts[idx]; |
| agg_decisions[idx] += partition_decisions[idx]; |
| agg_times[idx] += partition_times[idx]; |
| } |
| #endif |
| |
| // Reset the PC_TREE deallocation flag. |
| int pc_tree_dealloc = 0; |
| |
| // If a valid partition is found and reconstruction is required for future |
| // sub-blocks in the same group. |
| if (found_best_partition && pc_tree->index != 3) { |
| if (bsize == cm->seq_params.sb_size) { |
| // Encode the superblock. |
| const int emit_output = multi_pass_mode != SB_DRY_PASS; |
| const RUN_TYPE run_type = emit_output ? OUTPUT_ENABLED : DRY_RUN_NORMAL; |
| |
| x->cb_offset = 0; |
| encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, run_type, bsize, |
| pc_tree, NULL); |
| // Dealloc the whole PC_TREE after a superblock is done. |
| av1_free_pc_tree_recursive(pc_tree, num_planes, 0, 0); |
| pc_tree_dealloc = 1; |
| } else { |
| // Encode the smaller blocks in DRY_RUN mode. |
| encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize, |
| pc_tree, NULL); |
| } |
| } |
| |
| // If the tree still exists (non-superblock), dealloc most nodes, only keep |
| // nodes for the best partition and PARTITION_NONE. |
| if (pc_tree_dealloc == 0) |
| av1_free_pc_tree_recursive(pc_tree, num_planes, 1, 1); |
| |
| if (bsize == cm->seq_params.sb_size) { |
| assert(best_rdc.rate < INT_MAX); |
| assert(best_rdc.dist < INT64_MAX); |
| } else { |
| assert(tp_orig == *tp); |
| } |
| |
| // Restore the rd multiplier. |
| x->rdmult = orig_rdmult; |
| return found_best_partition; |
| } |
| #endif // !CONFIG_REALTIME_ONLY |
| #undef NUM_SIMPLE_MOTION_FEATURES |
| |
| #if !CONFIG_REALTIME_ONLY |
| |
| static int get_rdmult_delta(AV1_COMP *cpi, BLOCK_SIZE bsize, int analysis_type, |
| int mi_row, int mi_col, int orig_rdmult) { |
| AV1_COMMON *const cm = &cpi->common; |
| assert(IMPLIES(cpi->gf_group.size > 0, |
| cpi->gf_group.index < cpi->gf_group.size)); |
| const int tpl_idx = cpi->gf_group.index; |
| TplParams *const tpl_data = &cpi->tpl_data; |
| TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_idx]; |
| TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr; |
| const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2; |
| int tpl_stride = tpl_frame->stride; |
| int64_t intra_cost = 0; |
| int64_t mc_dep_cost = 0; |
| const int mi_wide = mi_size_wide[bsize]; |
| const int mi_high = mi_size_high[bsize]; |
| |
| if (tpl_frame->is_valid == 0) return orig_rdmult; |
| |
| if (!is_frame_tpl_eligible(cpi)) return orig_rdmult; |
| |
| if (cpi->gf_group.index >= MAX_TPL_FRAME_IDX) return orig_rdmult; |
| |
| int64_t mc_count = 0, mc_saved = 0; |
| int mi_count = 0; |
| const int mi_col_sr = |
| coded_to_superres_mi(mi_col, cm->superres_scale_denominator); |
| const int mi_col_end_sr = |
| coded_to_superres_mi(mi_col + mi_wide, cm->superres_scale_denominator); |
| const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width); |
| const int step = 1 << block_mis_log2; |
| for (int row = mi_row; row < mi_row + mi_high; row += step) { |
| for (int col = mi_col_sr; col < mi_col_end_sr; col += step) { |
| if (row >= cm->mi_params.mi_rows || col >= mi_cols_sr) continue; |
| TplDepStats *this_stats = |
| &tpl_stats[av1_tpl_ptr_pos(row, col, tpl_stride, block_mis_log2)]; |
| int64_t mc_dep_delta = |
| RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate, |
| this_stats->mc_dep_dist); |
| intra_cost += this_stats->recrf_dist << RDDIV_BITS; |
| mc_dep_cost += (this_stats->recrf_dist << RDDIV_BITS) + mc_dep_delta; |
| mc_count += this_stats->mc_count; |
| mc_saved += this_stats->mc_saved; |
| mi_count++; |
| } |
| } |
| |
| aom_clear_system_state(); |
| |
| double beta = 1.0; |
| if (analysis_type == 0) { |
| if (mc_dep_cost > 0 && intra_cost > 0) { |
| const double r0 = cpi->rd.r0; |
| const double rk = (double)intra_cost / mc_dep_cost; |
| beta = (r0 / rk); |
| } |
| } else if (analysis_type == 1) { |
| const double mc_count_base = (mi_count * cpi->rd.mc_count_base); |
| beta = (mc_count + 1.0) / (mc_count_base + 1.0); |
| beta = pow(beta, 0.5); |
| } else if (analysis_type == 2) { |
| const double mc_saved_base = (mi_count * cpi->rd.mc_saved_base); |
| beta = (mc_saved + 1.0) / (mc_saved_base + 1.0); |
| beta = pow(beta, 0.5); |
| } |
| |
| int rdmult = av1_get_adaptive_rdmult(cpi, beta); |
| |
| aom_clear_system_state(); |
| |
| rdmult = AOMMIN(rdmult, orig_rdmult * 3 / 2); |
| rdmult = AOMMAX(rdmult, orig_rdmult * 1 / 2); |
| |
| rdmult = AOMMAX(1, rdmult); |
| |
| return rdmult; |
| } |
| |
| static void get_tpl_stats_sb(AV1_COMP *cpi, BLOCK_SIZE bsize, int mi_row, |
| int mi_col, SuperBlockEnc *sb_enc) { |
| sb_enc->tpl_data_count = 0; |
| |
| if (!cpi->oxcf.enable_tpl_model) return; |
| if (cpi->superres_mode != AOM_SUPERRES_NONE) return; |
| if (cpi->common.current_frame.frame_type == KEY_FRAME) return; |
| const FRAME_UPDATE_TYPE update_type = get_frame_update_type(&cpi->gf_group); |
| if (update_type == INTNL_OVERLAY_UPDATE || update_type == OVERLAY_UPDATE) |
| return; |
| assert(IMPLIES(cpi->gf_group.size > 0, |
| cpi->gf_group.index < cpi->gf_group.size)); |
| |
| AV1_COMMON *const cm = &cpi->common; |
| const int gf_group_index = cpi->gf_group.index; |
| TplParams *const tpl_data = &cpi->tpl_data; |
| TplDepFrame *tpl_frame = &tpl_data->tpl_frame[gf_group_index]; |
| TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr; |
| int tpl_stride = tpl_frame->stride; |
| const int mi_wide = mi_size_wide[bsize]; |
| const int mi_high = mi_size_high[bsize]; |
| |
| if (tpl_frame->is_valid == 0) return; |
| if (gf_group_index >= MAX_TPL_FRAME_IDX) return; |
| |
| int mi_count = 0; |
| int count = 0; |
| const int mi_col_sr = |
| coded_to_superres_mi(mi_col, cm->superres_scale_denominator); |
| const int mi_col_end_sr = |
| coded_to_superres_mi(mi_col + mi_wide, cm->superres_scale_denominator); |
| // mi_cols_sr is mi_cols at superres case. |
| const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width); |
| |
| // TPL store unit size is not the same as the motion estimation unit size. |
| // Here always use motion estimation size to avoid getting repetitive inter/ |
| // intra cost. |
| const BLOCK_SIZE tpl_bsize = convert_length_to_bsize(MC_FLOW_BSIZE_1D); |
| const int step = mi_size_wide[tpl_bsize]; |
| assert(mi_size_wide[tpl_bsize] == mi_size_high[tpl_bsize]); |
| |
| // Stride is only based on SB size, and we fill in values for every 16x16 |
| // block in a SB. |
| sb_enc->tpl_stride = (mi_col_end_sr - mi_col_sr) / step; |
| |
| for (int row = mi_row; row < mi_row + mi_high; row += step) { |
| for (int col = mi_col_sr; col < mi_col_end_sr; col += step) { |
| // Handle partial SB, so that no invalid values are used later. |
| if (row >= cm->mi_params.mi_rows || col >= mi_cols_sr) { |
| sb_enc->tpl_inter_cost[count] = INT64_MAX; |
| sb_enc->tpl_intra_cost[count] = INT64_MAX; |
| for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) { |
| sb_enc->tpl_mv[count][i].as_int = INVALID_MV; |
| } |
| count++; |
| continue; |
| } |
| |
| TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos( |
| row, col, tpl_stride, tpl_data->tpl_stats_block_mis_log2)]; |
| sb_enc->tpl_inter_cost[count] = this_stats->inter_cost; |
| sb_enc->tpl_intra_cost[count] = this_stats->intra_cost; |
| memcpy(sb_enc->tpl_mv[count], this_stats->mv, sizeof(this_stats->mv)); |
| mi_count++; |
| count++; |
| } |
| } |
| |
| sb_enc->tpl_data_count = mi_count; |
| } |
| |
| // analysis_type 0: Use mc_dep_cost and intra_cost |
| // analysis_type 1: Use count of best inter predictor chosen |
| // analysis_type 2: Use cost reduction from intra to inter for best inter |
| // predictor chosen |
| static int get_q_for_deltaq_objective(AV1_COMP *const cpi, BLOCK_SIZE bsize, |
| int mi_row, int mi_col) { |
| AV1_COMMON *const cm = &cpi->common; |
| assert(IMPLIES(cpi->gf_group.size > 0, |
| cpi->gf_group.index < cpi->gf_group.size)); |
| const int tpl_idx = cpi->gf_group.index; |
| TplParams *const tpl_data = &cpi->tpl_data; |
| TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_idx]; |
| TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr; |
| const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2; |
| int tpl_stride = tpl_frame->stride; |
| int64_t intra_cost = 0; |
| int64_t mc_dep_cost = 0; |
| const int mi_wide = mi_size_wide[bsize]; |
| const int mi_high = mi_size_high[bsize]; |
| const int base_qindex = cm->quant_params.base_qindex; |
| |
| if (tpl_frame->is_valid == 0) return base_qindex; |
| |
| if (!is_frame_tpl_eligible(cpi)) return base_qindex; |
| |
| if (cpi->gf_group.index >= MAX_TPL_FRAME_IDX) return base_qindex; |
| |
| int64_t mc_count = 0, mc_saved = 0; |
| int mi_count = 0; |
| const int mi_col_sr = |
| coded_to_superres_mi(mi_col, cm->superres_scale_denominator); |
| const int mi_col_end_sr = |
| coded_to_superres_mi(mi_col + mi_wide, cm->superres_scale_denominator); |
| const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width); |
| const int step = 1 << block_mis_log2; |
| for (int row = mi_row; row < mi_row + mi_high; row += step) { |
| for (int col = mi_col_sr; col < mi_col_end_sr; col += step) { |
| if (row >= cm->mi_params.mi_rows || col >= mi_cols_sr) continue; |
| TplDepStats *this_stats = |
| &tpl_stats[av1_tpl_ptr_pos(row, col, tpl_stride, block_mis_log2)]; |
| int64_t mc_dep_delta = |
| RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate, |
| this_stats->mc_dep_dist); |
| intra_cost += this_stats->recrf_dist << RDDIV_BITS; |
| mc_dep_cost += (this_stats->recrf_dist << RDDIV_BITS) + mc_dep_delta; |
| mc_count += this_stats->mc_count; |
| mc_saved += this_stats->mc_saved; |
| mi_count++; |
| } |
| } |
| |
| aom_clear_system_state(); |
| |
| int offset = 0; |
| double beta = 1.0; |
| if (mc_dep_cost > 0 && intra_cost > 0) { |
| const double r0 = cpi->rd.r0; |
| const double rk = (double)intra_cost / mc_dep_cost; |
| beta = (r0 / rk); |
| assert(beta > 0.0); |
| } |
| offset = av1_get_deltaq_offset(cpi, base_qindex, beta); |
| aom_clear_system_state(); |
| |
| const DeltaQInfo *const delta_q_info = &cm->delta_q_info; |
| offset = AOMMIN(offset, delta_q_info->delta_q_res * 9 - 1); |
| offset = AOMMAX(offset, -delta_q_info->delta_q_res * 9 + 1); |
| int qindex = cm->quant_params.base_qindex + offset; |
| qindex = AOMMIN(qindex, MAXQ); |
| qindex = AOMMAX(qindex, MINQ); |
| |
| return qindex; |
| } |
| |
| static AOM_INLINE void setup_delta_q(AV1_COMP *const cpi, ThreadData *td, |
| MACROBLOCK *const x, |
| const TileInfo *const tile_info, |
| int mi_row, int mi_col, int num_planes) { |
| AV1_COMMON *const cm = &cpi->common; |
| const CommonModeInfoParams *const mi_params = &cm->mi_params; |
| const DeltaQInfo *const delta_q_info = &cm->delta_q_info; |
| assert(delta_q_info->delta_q_present_flag); |
| |
| const BLOCK_SIZE sb_size = cm->seq_params.sb_size; |
| // Delta-q modulation based on variance |
| av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes, sb_size); |
| |
| int current_qindex = cm->quant_params.base_qindex; |
| if (cpi->oxcf.deltaq_mode == DELTA_Q_PERCEPTUAL) { |
| if (DELTA_Q_PERCEPTUAL_MODULATION == 1) { |
| const int block_wavelet_energy_level = |
| av1_block_wavelet_energy_level(cpi, x, sb_size); |
| x->sb_energy_level = block_wavelet_energy_level; |
| current_qindex = av1_compute_q_from_energy_level_deltaq_mode( |
| cpi, block_wavelet_energy_level); |
| } else { |
| const int block_var_level = av1_log_block_var(cpi, x, sb_size); |
| x->sb_energy_level = block_var_level; |
| current_qindex = |
| av1_compute_q_from_energy_level_deltaq_mode(cpi, block_var_level); |
| } |
| } else if (cpi->oxcf.deltaq_mode == DELTA_Q_OBJECTIVE && |
| cpi->oxcf.enable_tpl_model) { |
| // Setup deltaq based on tpl stats |
| current_qindex = get_q_for_deltaq_objective(cpi, sb_size, mi_row, mi_col); |
| } |
| |
| const int delta_q_res = delta_q_info->delta_q_res; |
| // Right now aq only works with tpl model. So if tpl is disabled, we set the |
| // current_qindex to base_qindex. |
| if (cpi->oxcf.enable_tpl_model && cpi->oxcf.deltaq_mode != NO_DELTA_Q) { |
| current_qindex = |
| clamp(current_qindex, delta_q_res, 256 - delta_q_info->delta_q_res); |
| } else { |
| current_qindex = cm->quant_params.base_qindex; |
| } |
| |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const int sign_deltaq_index = |
| current_qindex - xd->current_base_qindex >= 0 ? 1 : -1; |
| const int deltaq_deadzone = delta_q_res / 4; |
| const int qmask = ~(delta_q_res - 1); |
| int abs_deltaq_index = abs(current_qindex - xd->current_base_qindex); |
| abs_deltaq_index = (abs_deltaq_index + deltaq_deadzone) & qmask; |
| current_qindex = |
| xd->current_base_qindex + sign_deltaq_index * abs_deltaq_index; |
| current_qindex = AOMMAX(current_qindex, MINQ + 1); |
| assert(current_qindex > 0); |
| |
| x->delta_qindex = current_qindex - cm->quant_params.base_qindex; |
| set_offsets(cpi, tile_info, x, mi_row, mi_col, sb_size); |
| xd->mi[0]->current_qindex = current_qindex; |
| av1_init_plane_quantizers(cpi, x, xd->mi[0]->segment_id); |
| |
| // keep track of any non-zero delta-q used |
| td->deltaq_used |= (x->delta_qindex != 0); |
| |
| if (cpi->oxcf.deltalf_mode) { |
| const int delta_lf_res = delta_q_info->delta_lf_res; |
| const int lfmask = ~(delta_lf_res - 1); |
| const int delta_lf_from_base = |
| ((x->delta_qindex / 2 + delta_lf_res / 2) & lfmask); |
| const int8_t delta_lf = |
| (int8_t)clamp(delta_lf_from_base, -MAX_LOOP_FILTER, MAX_LOOP_FILTER); |
| const int frame_lf_count = |
| av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2; |
| const int mib_size = cm->seq_params.mib_size; |
| |
| // pre-set the delta lf for loop filter. Note that this value is set |
| // before mi is assigned for each block in current superblock |
| for (int j = 0; j < AOMMIN(mib_size, mi_params->mi_rows - mi_row); j++) { |
| for (int k = 0; k < AOMMIN(mib_size, mi_params->mi_cols - mi_col); k++) { |
| const int grid_idx = get_mi_grid_idx(mi_params, mi_row + j, mi_col + k); |
| mi_params->mi_grid_base[grid_idx]->delta_lf_from_base = delta_lf; |
| for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) { |
| mi_params->mi_grid_base[grid_idx]->delta_lf[lf_id] = delta_lf; |
| } |
| } |
| } |
| } |
| } |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| #define AVG_CDF_WEIGHT_LEFT 3 |
| #define AVG_CDF_WEIGHT_TOP_RIGHT 1 |
| |
| static AOM_INLINE void avg_cdf_symbol(aom_cdf_prob *cdf_ptr_left, |
| aom_cdf_prob *cdf_ptr_tr, int num_cdfs, |
| int cdf_stride, int nsymbs, int wt_left, |
| int wt_tr) { |
| for (int i = 0; i < num_cdfs; i++) { |
| for (int j = 0; j <= nsymbs; j++) { |
| cdf_ptr_left[i * cdf_stride + j] = |
| (aom_cdf_prob)(((int)cdf_ptr_left[i * cdf_stride + j] * wt_left + |
| (int)cdf_ptr_tr[i * cdf_stride + j] * wt_tr + |
| ((wt_left + wt_tr) / 2)) / |
| (wt_left + wt_tr)); |
| assert(cdf_ptr_left[i * cdf_stride + j] >= 0 && |
| cdf_ptr_left[i * cdf_stride + j] < CDF_PROB_TOP); |
| } |
| } |
| } |
| |
| #define AVERAGE_CDF(cname_left, cname_tr, nsymbs) \ |
| AVG_CDF_STRIDE(cname_left, cname_tr, nsymbs, CDF_SIZE(nsymbs)) |
| |
| #define AVG_CDF_STRIDE(cname_left, cname_tr, nsymbs, cdf_stride) \ |
| do { \ |
| aom_cdf_prob *cdf_ptr_left = (aom_cdf_prob *)cname_left; \ |
| aom_cdf_prob *cdf_ptr_tr = (aom_cdf_prob *)cname_tr; \ |
| int array_size = (int)sizeof(cname_left) / sizeof(aom_cdf_prob); \ |
| int num_cdfs = array_size / cdf_stride; \ |
| avg_cdf_symbol(cdf_ptr_left, cdf_ptr_tr, num_cdfs, cdf_stride, nsymbs, \ |
| wt_left, wt_tr); \ |
| } while (0) |
| |
| static AOM_INLINE void avg_nmv(nmv_context *nmv_left, nmv_context *nmv_tr, |
| int wt_left, int wt_tr) { |
| AVERAGE_CDF(nmv_left->joints_cdf, nmv_tr->joints_cdf, 4); |
| for (int i = 0; i < 2; i++) { |
| AVERAGE_CDF(nmv_left->comps[i].classes_cdf, nmv_tr->comps[i].classes_cdf, |
| MV_CLASSES); |
| AVERAGE_CDF(nmv_left->comps[i].class0_fp_cdf, |
| nmv_tr->comps[i].class0_fp_cdf, MV_FP_SIZE); |
| AVERAGE_CDF(nmv_left->comps[i].fp_cdf, nmv_tr->comps[i].fp_cdf, MV_FP_SIZE); |
| AVERAGE_CDF(nmv_left->comps[i].sign_cdf, nmv_tr->comps[i].sign_cdf, 2); |
| AVERAGE_CDF(nmv_left->comps[i].class0_hp_cdf, |
| nmv_tr->comps[i].class0_hp_cdf, 2); |
| AVERAGE_CDF(nmv_left->comps[i].hp_cdf, nmv_tr->comps[i].hp_cdf, 2); |
| AVERAGE_CDF(nmv_left->comps[i].class0_cdf, nmv_tr->comps[i].class0_cdf, |
| CLASS0_SIZE); |
| AVERAGE_CDF(nmv_left->comps[i].bits_cdf, nmv_tr->comps[i].bits_cdf, 2); |
| } |
| } |
| |
| // In case of row-based multi-threading of encoder, since we always |
| // keep a top - right sync, we can average the top - right SB's CDFs and |
| // the left SB's CDFs and use the same for current SB's encoding to |
| // improve the performance. This function facilitates the averaging |
| // of CDF and used only when row-mt is enabled in encoder. |
| static AOM_INLINE void avg_cdf_symbols(FRAME_CONTEXT *ctx_left, |
| FRAME_CONTEXT *ctx_tr, int wt_left, |
| int wt_tr) { |
| AVERAGE_CDF(ctx_left->txb_skip_cdf, ctx_tr->txb_skip_cdf, 2); |
| AVERAGE_CDF(ctx_left->eob_extra_cdf, ctx_tr->eob_extra_cdf, 2); |
| AVERAGE_CDF(ctx_left->dc_sign_cdf, ctx_tr->dc_sign_cdf, 2); |
| AVERAGE_CDF(ctx_left->eob_flag_cdf16, ctx_tr->eob_flag_cdf16, 5); |
| AVERAGE_CDF(ctx_left->eob_flag_cdf32, ctx_tr->eob_flag_cdf32, 6); |
| AVERAGE_CDF(ctx_left->eob_flag_cdf64, ctx_tr->eob_flag_cdf64, 7); |
| AVERAGE_CDF(ctx_left->eob_flag_cdf128, ctx_tr->eob_flag_cdf128, 8); |
| AVERAGE_CDF(ctx_left->eob_flag_cdf256, ctx_tr->eob_flag_cdf256, 9); |
| AVERAGE_CDF(ctx_left->eob_flag_cdf512, ctx_tr->eob_flag_cdf512, 10); |
| AVERAGE_CDF(ctx_left->eob_flag_cdf1024, ctx_tr->eob_flag_cdf1024, 11); |
| AVERAGE_CDF(ctx_left->coeff_base_eob_cdf, ctx_tr->coeff_base_eob_cdf, 3); |
| AVERAGE_CDF(ctx_left->coeff_base_cdf, ctx_tr->coeff_base_cdf, 4); |
| AVERAGE_CDF(ctx_left->coeff_br_cdf, ctx_tr->coeff_br_cdf, BR_CDF_SIZE); |
| AVERAGE_CDF(ctx_left->newmv_cdf, ctx_tr->newmv_cdf, 2); |
| AVERAGE_CDF(ctx_left->zeromv_cdf, ctx_tr->zeromv_cdf, 2); |
| AVERAGE_CDF(ctx_left->refmv_cdf, ctx_tr->refmv_cdf, 2); |
| AVERAGE_CDF(ctx_left->drl_cdf, ctx_tr->drl_cdf, 2); |
| AVERAGE_CDF(ctx_left->inter_compound_mode_cdf, |
| ctx_tr->inter_compound_mode_cdf, INTER_COMPOUND_MODES); |
| AVERAGE_CDF(ctx_left->compound_type_cdf, ctx_tr->compound_type_cdf, |
| MASKED_COMPOUND_TYPES); |
| AVERAGE_CDF(ctx_left->wedge_idx_cdf, ctx_tr->wedge_idx_cdf, 16); |
| AVERAGE_CDF(ctx_left->interintra_cdf, ctx_tr->interintra_cdf, 2); |
| AVERAGE_CDF(ctx_left->wedge_interintra_cdf, ctx_tr->wedge_interintra_cdf, 2); |
| AVERAGE_CDF(ctx_left->interintra_mode_cdf, ctx_tr->interintra_mode_cdf, |
| INTERINTRA_MODES); |
| AVERAGE_CDF(ctx_left->motion_mode_cdf, ctx_tr->motion_mode_cdf, MOTION_MODES); |
| AVERAGE_CDF(ctx_left->obmc_cdf, ctx_tr->obmc_cdf, 2); |
| AVERAGE_CDF(ctx_left->palette_y_size_cdf, ctx_tr->palette_y_size_cdf, |
| PALETTE_SIZES); |
| AVERAGE_CDF(ctx_left->palette_uv_size_cdf, ctx_tr->palette_uv_size_cdf, |
| PALETTE_SIZES); |
| for (int j = 0; j < PALETTE_SIZES; j++) { |
| int nsymbs = j + PALETTE_MIN_SIZE; |
| AVG_CDF_STRIDE(ctx_left->palette_y_color_index_cdf[j], |
| ctx_tr->palette_y_color_index_cdf[j], nsymbs, |
| CDF_SIZE(PALETTE_COLORS)); |
| AVG_CDF_STRIDE(ctx_left->palette_uv_color_index_cdf[j], |
| ctx_tr->palette_uv_color_index_cdf[j], nsymbs, |
| CDF_SIZE(PALETTE_COLORS)); |
| } |
| AVERAGE_CDF(ctx_left->palette_y_mode_cdf, ctx_tr->palette_y_mode_cdf, 2); |
| AVERAGE_CDF(ctx_left->palette_uv_mode_cdf, ctx_tr->palette_uv_mode_cdf, 2); |
| AVERAGE_CDF(ctx_left->comp_inter_cdf, ctx_tr->comp_inter_cdf, 2); |
| AVERAGE_CDF(ctx_left->single_ref_cdf, ctx_tr->single_ref_cdf, 2); |
| AVERAGE_CDF(ctx_left->comp_ref_type_cdf, ctx_tr->comp_ref_type_cdf, 2); |
| AVERAGE_CDF(ctx_left->uni_comp_ref_cdf, ctx_tr->uni_comp_ref_cdf, 2); |
| AVERAGE_CDF(ctx_left->comp_ref_cdf, ctx_tr->comp_ref_cdf, 2); |
| AVERAGE_CDF(ctx_left->comp_bwdref_cdf, ctx_tr->comp_bwdref_cdf, 2); |
| AVERAGE_CDF(ctx_left->txfm_partition_cdf, ctx_tr->txfm_partition_cdf, 2); |
| AVERAGE_CDF(ctx_left->compound_index_cdf, ctx_tr->compound_index_cdf, 2); |
| AVERAGE_CDF(ctx_left->comp_group_idx_cdf, ctx_tr->comp_group_idx_cdf, 2); |
| AVERAGE_CDF(ctx_left->skip_mode_cdfs, ctx_tr->skip_mode_cdfs, 2); |
| AVERAGE_CDF(ctx_left->skip_txfm_cdfs, ctx_tr->skip_txfm_cdfs, 2); |
| AVERAGE_CDF(ctx_left->intra_inter_cdf, ctx_tr->intra_inter_cdf, 2); |
| avg_nmv(&ctx_left->nmvc, &ctx_tr->nmvc, wt_left, wt_tr); |
| avg_nmv(&ctx_left->ndvc, &ctx_tr->ndvc, wt_left, wt_tr); |
| AVERAGE_CDF(ctx_left->intrabc_cdf, ctx_tr->intrabc_cdf, 2); |
| AVERAGE_CDF(ctx_left->seg.tree_cdf, ctx_tr->seg.tree_cdf, MAX_SEGMENTS); |
| AVERAGE_CDF(ctx_left->seg.pred_cdf, ctx_tr->seg.pred_cdf, 2); |
| AVERAGE_CDF(ctx_left->seg.spatial_pred_seg_cdf, |
| ctx_tr->seg.spatial_pred_seg_cdf, MAX_SEGMENTS); |
| AVERAGE_CDF(ctx_left->filter_intra_cdfs, ctx_tr->filter_intra_cdfs, 2); |
| AVERAGE_CDF(ctx_left->filter_intra_mode_cdf, ctx_tr->filter_intra_mode_cdf, |
| FILTER_INTRA_MODES); |
| AVERAGE_CDF(ctx_left->switchable_restore_cdf, ctx_tr->switchable_restore_cdf, |
| RESTORE_SWITCHABLE_TYPES); |
| AVERAGE_CDF(ctx_left->wiener_restore_cdf, ctx_tr->wiener_restore_cdf, 2); |
| AVERAGE_CDF(ctx_left->sgrproj_restore_cdf, ctx_tr->sgrproj_restore_cdf, 2); |
| AVERAGE_CDF(ctx_left->y_mode_cdf, ctx_tr->y_mode_cdf, INTRA_MODES); |
| AVG_CDF_STRIDE(ctx_left->uv_mode_cdf[0], ctx_tr->uv_mode_cdf[0], |
| UV_INTRA_MODES - 1, CDF_SIZE(UV_INTRA_MODES)); |
| AVERAGE_CDF(ctx_left->uv_mode_cdf[1], ctx_tr->uv_mode_cdf[1], UV_INTRA_MODES); |
| for (int i = 0; i < PARTITION_CONTEXTS; i++) { |
| if (i < 4) { |
| AVG_CDF_STRIDE(ctx_left->partition_cdf[i], ctx_tr->partition_cdf[i], 4, |
| CDF_SIZE(10)); |
| } else if (i < 16) { |
| AVERAGE_CDF(ctx_left->partition_cdf[i], ctx_tr->partition_cdf[i], 10); |
| } else { |
| AVG_CDF_STRIDE(ctx_left->partition_cdf[i], ctx_tr->partition_cdf[i], 8, |
| CDF_SIZE(10)); |
| } |
| } |
| AVERAGE_CDF(ctx_left->switchable_interp_cdf, ctx_tr->switchable_interp_cdf, |
| SWITCHABLE_FILTERS); |
| AVERAGE_CDF(ctx_left->kf_y_cdf, ctx_tr->kf_y_cdf, INTRA_MODES); |
| AVERAGE_CDF(ctx_left->angle_delta_cdf, ctx_tr->angle_delta_cdf, |
| 2 * MAX_ANGLE_DELTA + 1); |
| AVG_CDF_STRIDE(ctx_left->tx_size_cdf[0], ctx_tr->tx_size_cdf[0], MAX_TX_DEPTH, |
| CDF_SIZE(MAX_TX_DEPTH + 1)); |
| AVERAGE_CDF(ctx_left->tx_size_cdf[1], ctx_tr->tx_size_cdf[1], |
| MAX_TX_DEPTH + 1); |
| AVERAGE_CDF(ctx_left->tx_size_cdf[2], ctx_tr->tx_size_cdf[2], |
| MAX_TX_DEPTH + 1); |
| AVERAGE_CDF(ctx_left->tx_size_cdf[3], ctx_tr->tx_size_cdf[3], |
| MAX_TX_DEPTH + 1); |
| AVERAGE_CDF(ctx_left->delta_q_cdf, ctx_tr->delta_q_cdf, DELTA_Q_PROBS + 1); |
| AVERAGE_CDF(ctx_left->delta_lf_cdf, ctx_tr->delta_lf_cdf, DELTA_LF_PROBS + 1); |
| for (int i = 0; i < FRAME_LF_COUNT; i++) { |
| AVERAGE_CDF(ctx_left->delta_lf_multi_cdf[i], ctx_tr->delta_lf_multi_cdf[i], |
| DELTA_LF_PROBS + 1); |
| } |
| AVG_CDF_STRIDE(ctx_left->intra_ext_tx_cdf[1], ctx_tr->intra_ext_tx_cdf[1], 7, |
| CDF_SIZE(TX_TYPES)); |
| AVG_CDF_STRIDE(ctx_left->intra_ext_tx_cdf[2], ctx_tr->intra_ext_tx_cdf[2], 5, |
| CDF_SIZE(TX_TYPES)); |
| AVG_CDF_STRIDE(ctx_left->inter_ext_tx_cdf[1], ctx_tr->inter_ext_tx_cdf[1], 16, |
| CDF_SIZE(TX_TYPES)); |
| AVG_CDF_STRIDE(ctx_left->inter_ext_tx_cdf[2], ctx_tr->inter_ext_tx_cdf[2], 12, |
| CDF_SIZE(TX_TYPES)); |
| AVG_CDF_STRIDE(ctx_left->inter_ext_tx_cdf[3], ctx_tr->inter_ext_tx_cdf[3], 2, |
| CDF_SIZE(TX_TYPES)); |
| AVERAGE_CDF(ctx_left->cfl_sign_cdf, ctx_tr->cfl_sign_cdf, CFL_JOINT_SIGNS); |
| AVERAGE_CDF(ctx_left->cfl_alpha_cdf, ctx_tr->cfl_alpha_cdf, |
| CFL_ALPHABET_SIZE); |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| static AOM_INLINE void adjust_rdmult_tpl_model(AV1_COMP *cpi, MACROBLOCK *x, |
| int mi_row, int mi_col) { |
| const BLOCK_SIZE sb_size = cpi->common.seq_params.sb_size; |
| const int orig_rdmult = cpi->rd.RDMULT; |
| |
| assert(IMPLIES(cpi->gf_group.size > 0, |
| cpi->gf_group.index < cpi->gf_group.size)); |
| const int gf_group_index = cpi->gf_group.index; |
| if (cpi->oxcf.enable_tpl_model && cpi->oxcf.aq_mode == NO_AQ && |
| cpi->oxcf.deltaq_mode == NO_DELTA_Q && gf_group_index > 0 && |
| cpi->gf_group.update_type[gf_group_index] == ARF_UPDATE) { |
| const int dr = |
| get_rdmult_delta(cpi, sb_size, 0, mi_row, mi_col, orig_rdmult); |
| x->rdmult = dr; |
| } |
| } |
| #endif |
| |
| // Grade the temporal variation of the source by comparing the current sb and |
| // its collocated block in the last frame. |
| static void source_content_sb(AV1_COMP *cpi, MACROBLOCK *x, int offset) { |
| unsigned int tmp_sse; |
| unsigned int tmp_variance; |
| const BLOCK_SIZE bsize = cpi->common.seq_params.sb_size; |
| uint8_t *src_y = cpi->source->y_buffer; |
| int src_ystride = cpi->source->y_stride; |
| uint8_t *last_src_y = cpi->last_source->y_buffer; |
| int last_src_ystride = cpi->last_source->y_stride; |
| uint64_t avg_source_sse_threshold = 100000; // ~5*5*(64*64) |
| uint64_t avg_source_sse_threshold_high = 1000000; // ~15*15*(64*64) |
| uint64_t sum_sq_thresh = 10000; // sum = sqrt(thresh / 64*64)) ~1.5 |
| #if CONFIG_AV1_HIGHBITDEPTH |
| MACROBLOCKD *xd = &x->e_mbd; |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) return; |
| #endif |
| src_y += offset; |
| last_src_y += offset; |
| tmp_variance = cpi->fn_ptr[bsize].vf(src_y, src_ystride, last_src_y, |
| last_src_ystride, &tmp_sse); |
| // Note: tmp_sse - tmp_variance = ((sum * sum) >> 12) |
| // Detect large lighting change. |
| if (tmp_variance < (tmp_sse >> 1) && (tmp_sse - tmp_variance) > sum_sq_thresh) |
| x->content_state_sb = kLowVarHighSumdiff; |
| else if (tmp_sse < avg_source_sse_threshold) |
| x->content_state_sb = kLowSad; |
| else if (tmp_sse > avg_source_sse_threshold_high) |
| x->content_state_sb = kHighSad; |
| } |
| |
| // Encodes the superblock by a pre-determined partition pattern, only minor |
| // rd-based searches are allowed to adjust the initial pattern. It is only used |
| // by realtime encoding. |
| static AOM_INLINE void encode_nonrd_sb(AV1_COMP *cpi, ThreadData *td, |
| TileDataEnc *tile_data, TokenExtra **tp, |
| const int mi_row, const int mi_col, |
| const int seg_skip) { |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCK *const x = &td->mb; |
| const SPEED_FEATURES *const sf = &cpi->sf; |
| const TileInfo *const tile_info = &tile_data->tile_info; |
| MB_MODE_INFO **mi = cm->mi_params.mi_grid_base + |
| get_mi_grid_idx(&cm->mi_params, mi_row, mi_col); |
| const BLOCK_SIZE sb_size = cm->seq_params.sb_size; |
| |
| // Grade the temporal variation of the sb, the grade will be used to decide |
| // fast mode search strategy for coding blocks |
| if (sf->rt_sf.source_metrics_sb_nonrd && |
| cpi->svc.number_spatial_layers <= 1 && |
| cm->current_frame.frame_type != KEY_FRAME) { |
| int offset = cpi->source->y_stride * (mi_row << 2) + (mi_col << 2); |
| source_content_sb(cpi, x, offset); |
| } |
| |
| // Set the partition |
| if (sf->part_sf.partition_search_type == FIXED_PARTITION || seg_skip) { |
| // set a fixed-size partition |
| set_offsets(cpi, tile_info, x, mi_row, mi_col, sb_size); |
| const BLOCK_SIZE bsize = |
| seg_skip ? sb_size : sf->part_sf.always_this_block_size; |
| set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize); |
| } else if (cpi->partition_search_skippable_frame) { |
| // set a fixed-size partition for which the size is determined by the source |
| // variance |
| set_offsets(cpi, tile_info, x, mi_row, mi_col, sb_size); |
| const BLOCK_SIZE bsize = |
| get_rd_var_based_fixed_partition(cpi, x, mi_row, mi_col); |
| set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize); |
| } else if (sf->part_sf.partition_search_type == VAR_BASED_PARTITION) { |
| // set a variance-based partition |
| set_offsets_without_segment_id(cpi, tile_info, x, mi_row, mi_col, sb_size); |
| av1_choose_var_based_partitioning(cpi, tile_info, td, x, mi_row, mi_col); |
| } |
| assert(sf->part_sf.partition_search_type == FIXED_PARTITION || seg_skip || |
| cpi->partition_search_skippable_frame || |
| sf->part_sf.partition_search_type == VAR_BASED_PARTITION); |
| td->mb.cb_offset = 0; |
| |
| // Adjust and encode the superblock |
| PC_TREE *const pc_root = av1_alloc_pc_tree_node(sb_size); |
| nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, sb_size, |
| pc_root); |
| av1_free_pc_tree_recursive(pc_root, av1_num_planes(cm), 0, 0); |
| } |
| |
| // Memset the mbmis at the current superblock to 0 |
| static INLINE void reset_mbmi(CommonModeInfoParams *const mi_params, |
| BLOCK_SIZE sb_size, int mi_row, int mi_col) { |
| // size of sb in unit of mi (BLOCK_4X4) |
| const int sb_size_mi = mi_size_wide[sb_size]; |
| const int mi_alloc_size_1d = mi_size_wide[mi_params->mi_alloc_bsize]; |
| // size of sb in unit of allocated mi size |
| const int sb_size_alloc_mi = mi_size_wide[sb_size] / mi_alloc_size_1d; |
| assert(mi_params->mi_alloc_stride % sb_size_alloc_mi == 0 && |
| "mi is not allocated as a multiple of sb!"); |
| assert(mi_params->mi_stride % sb_size_mi == 0 && |
| "mi_grid_base is not allocated as a multiple of sb!"); |
| |
| const int mi_rows = mi_size_high[sb_size]; |
| for (int cur_mi_row = 0; cur_mi_row < mi_rows; cur_mi_row++) { |
| assert(get_mi_grid_idx(mi_params, 0, mi_col + mi_alloc_size_1d) < |
| mi_params->mi_stride); |
| const int mi_grid_idx = |
| get_mi_grid_idx(mi_params, mi_row + cur_mi_row, mi_col); |
| const int alloc_mi_idx = |
| get_alloc_mi_idx(mi_params, mi_row + cur_mi_row, mi_col); |
| memset(&mi_params->mi_grid_base[mi_grid_idx], 0, |
| sb_size_mi * sizeof(*mi_params->mi_grid_base)); |
| memset(&mi_params->tx_type_map[mi_grid_idx], 0, |
| sb_size_mi * sizeof(*mi_params->tx_type_map)); |
| if (cur_mi_row % mi_alloc_size_1d == 0) { |
| memset(&mi_params->mi_alloc[alloc_mi_idx], 0, |
| sb_size_alloc_mi * sizeof(*mi_params->mi_alloc)); |
| } |
| } |
| } |
| |
| static INLINE void backup_sb_state(SB_FIRST_PASS_STATS *sb_fp_stats, |
| const AV1_COMP *cpi, ThreadData *td, |
| const TileDataEnc *tile_data, int mi_row, |
| int mi_col) { |
| MACROBLOCK *x = &td->mb; |
| MACROBLOCKD *xd = &x->e_mbd; |
| const TileInfo *tile_info = &tile_data->tile_info; |
| |
| const AV1_COMMON *cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| const BLOCK_SIZE sb_size = cm->seq_params.sb_size; |
| |
| xd->above_txfm_context = |
| cm->above_contexts.txfm[tile_info->tile_row] + mi_col; |
| xd->left_txfm_context = |
| xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); |
| save_context(x, &sb_fp_stats->x_ctx, mi_row, mi_col, sb_size, num_planes); |
| |
| sb_fp_stats->rd_count = cpi->td.rd_counts; |
| sb_fp_stats->split_count = x->txfm_search_info.txb_split_count; |
| |
| sb_fp_stats->fc = *td->counts; |
| |
| memcpy(sb_fp_stats->inter_mode_rd_models, tile_data->inter_mode_rd_models, |
| sizeof(sb_fp_stats->inter_mode_rd_models)); |
| |
| memcpy(sb_fp_stats->thresh_freq_fact, x->thresh_freq_fact, |
| sizeof(sb_fp_stats->thresh_freq_fact)); |
| |
| const int alloc_mi_idx = get_alloc_mi_idx(&cm->mi_params, mi_row, mi_col); |
| sb_fp_stats->current_qindex = |
| cm->mi_params.mi_alloc[alloc_mi_idx].current_qindex; |
| |
| #if CONFIG_INTERNAL_STATS |
| memcpy(sb_fp_stats->mode_chosen_counts, cpi->mode_chosen_counts, |
| sizeof(sb_fp_stats->mode_chosen_counts)); |
| #endif // CONFIG_INTERNAL_STATS |
| } |
| |
| static INLINE void restore_sb_state(const SB_FIRST_PASS_STATS *sb_fp_stats, |
| AV1_COMP *cpi, ThreadData *td, |
| TileDataEnc *tile_data, int mi_row, |
| int mi_col) { |
| MACROBLOCK *x = &td->mb; |
| |
| const AV1_COMMON *cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| const BLOCK_SIZE sb_size = cm->seq_params.sb_size; |
| |
| restore_context(x, &sb_fp_stats->x_ctx, mi_row, mi_col, sb_size, num_planes); |
| |
| cpi->td.rd_counts = sb_fp_stats->rd_count; |
| x->txfm_search_info.txb_split_count = sb_fp_stats->split_count; |
| |
| *td->counts = sb_fp_stats->fc; |
| |
| memcpy(tile_data->inter_mode_rd_models, sb_fp_stats->inter_mode_rd_models, |
| sizeof(sb_fp_stats->inter_mode_rd_models)); |
| memcpy(x->thresh_freq_fact, sb_fp_stats->thresh_freq_fact, |
| sizeof(sb_fp_stats->thresh_freq_fact)); |
| |
| const int alloc_mi_idx = get_alloc_mi_idx(&cm->mi_params, mi_row, mi_col); |
| cm->mi_params.mi_alloc[alloc_mi_idx].current_qindex = |
| sb_fp_stats->current_qindex; |
| |
| #if CONFIG_INTERNAL_STATS |
| memcpy(cpi->mode_chosen_counts, sb_fp_stats->mode_chosen_counts, |
| sizeof(sb_fp_stats->mode_chosen_counts)); |
| #endif // CONFIG_INTERNAL_STATS |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| static void init_ref_frame_space(AV1_COMP *cpi, ThreadData *td, int mi_row, |
| int mi_col) { |
| const AV1_COMMON *cm = &cpi->common; |
| const CommonModeInfoParams *const mi_params = &cm->mi_params; |
| MACROBLOCK *x = &td->mb; |
| const int frame_idx = cpi->gf_group.index; |
| TplParams *const tpl_data = &cpi->tpl_data; |
| TplDepFrame *tpl_frame = &tpl_data->tpl_frame[frame_idx]; |
| const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2; |
| |
| av1_zero(x->tpl_keep_ref_frame); |
| |
| if (tpl_frame->is_valid == 0) return; |
| if (!is_frame_tpl_eligible(cpi)) return; |
| if (frame_idx >= MAX_TPL_FRAME_IDX) return; |
| if (cpi->superres_mode != AOM_SUPERRES_NONE) return; |
| if (cpi->oxcf.aq_mode != NO_AQ) return; |
| |
| const int is_overlay = cpi->gf_group.update_type[frame_idx] == OVERLAY_UPDATE; |
| if (is_overlay) { |
| memset(x->tpl_keep_ref_frame, 1, sizeof(x->tpl_keep_ref_frame)); |
| return; |
| } |
| |
| TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr; |
| const int tpl_stride = tpl_frame->stride; |
| int64_t inter_cost[INTER_REFS_PER_FRAME] = { 0 }; |
| const int step = 1 << block_mis_log2; |
| const BLOCK_SIZE sb_size = cm->seq_params.sb_size; |
| const int mi_row_end = |
| AOMMIN(mi_size_high[sb_size] + mi_row, mi_params->mi_rows); |
| const int mi_col_end = |
| AOMMIN(mi_size_wide[sb_size] + mi_col, mi_params->mi_cols); |
| |
| for (int row = mi_row; row < mi_row_end; row += step) { |
| for (int col = mi_col; col < mi_col_end; col += step) { |
| const TplDepStats *this_stats = |
| &tpl_stats[av1_tpl_ptr_pos(row, col, tpl_stride, block_mis_log2)]; |
| int64_t tpl_pred_error[INTER_REFS_PER_FRAME] = { 0 }; |
| // Find the winner ref frame idx for the current block |
| int64_t best_inter_cost = this_stats->pred_error[0]; |
| int best_rf_idx = 0; |
| for (int idx = 1; idx < INTER_REFS_PER_FRAME; ++idx) { |
| if ((this_stats->pred_error[idx] < best_inter_cost) && |
| (this_stats->pred_error[idx] != 0)) { |
| best_inter_cost = this_stats->pred_error[idx]; |
| best_rf_idx = idx; |
| } |
| } |
| // tpl_pred_error is the pred_error reduction of best_ref w.r.t. |
| // LAST_FRAME. |
| tpl_pred_error[best_rf_idx] = this_stats->pred_error[best_rf_idx] - |
| this_stats->pred_error[LAST_FRAME - 1]; |
| |
| for (int rf_idx = 1; rf_idx < INTER_REFS_PER_FRAME; ++rf_idx) |
| inter_cost[rf_idx] += tpl_pred_error[rf_idx]; |
| } |
| } |
| |
| int rank_index[INTER_REFS_PER_FRAME - 1]; |
| for (int idx = 0; idx < INTER_REFS_PER_FRAME - 1; ++idx) { |
| rank_index[idx] = idx + 1; |
| for (int i = idx; i > 0; --i) { |
| if (inter_cost[rank_index[i - 1]] > inter_cost[rank_index[i]]) { |
| const int tmp = rank_index[i - 1]; |
| rank_index[i - 1] = rank_index[i]; |
| rank_index[i] = tmp; |
| } |
| } |
| } |
| |
| x->tpl_keep_ref_frame[INTRA_FRAME] = 1; |
| x->tpl_keep_ref_frame[LAST_FRAME] = 1; |
| |
| int cutoff_ref = 0; |
| for (int idx = 0; idx < INTER_REFS_PER_FRAME - 1; ++idx) { |
| x->tpl_keep_ref_frame[rank_index[idx] + LAST_FRAME] = 1; |
| if (idx > 2) { |
| if (!cutoff_ref) { |
| // If the predictive coding gains are smaller than the previous more |
| // relevant frame over certain amount, discard this frame and all the |
| // frames afterwards. |
| if (llabs(inter_cost[rank_index[idx]]) < |
| llabs(inter_cost[rank_index[idx - 1]]) / 8 || |
| inter_cost[rank_index[idx]] == 0) |
| cutoff_ref = 1; |
| } |
| |
| if (cutoff_ref) x->tpl_keep_ref_frame[rank_index[idx] + LAST_FRAME] = 0; |
| } |
| } |
| } |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| // This function initializes the stats for encode_rd_sb. |
| static INLINE void init_encode_rd_sb(AV1_COMP *cpi, ThreadData *td, |
| const TileDataEnc *tile_data, |
| SIMPLE_MOTION_DATA_TREE *sms_root, |
| RD_STATS *rd_cost, int mi_row, int mi_col, |
| int gather_tpl_data) { |
| const AV1_COMMON *cm = &cpi->common; |
| const TileInfo *tile_info = &tile_data->tile_info; |
| MACROBLOCK *x = &td->mb; |
| |
| const SPEED_FEATURES *sf = &cpi->sf; |
| const int use_simple_motion_search = |
| (sf->part_sf.simple_motion_search_split || |
| sf->part_sf.simple_motion_search_prune_rect || |
| sf->part_sf.simple_motion_search_early_term_none || |
| sf->part_sf.ml_early_term_after_part_split_level) && |
| !frame_is_intra_only(cm); |
| if (use_simple_motion_search) { |
| init_simple_motion_search_mvs(sms_root); |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| init_ref_frame_space(cpi, td, mi_row, mi_col); |
| x->sb_energy_level = 0; |
| x->part_search_info.cnn_output_valid = 0; |
| if (gather_tpl_data) { |
| if (cm->delta_q_info.delta_q_present_flag) { |
| const int num_planes = av1_num_planes(cm); |
| const BLOCK_SIZE sb_size = cm->seq_params.sb_size; |
| setup_delta_q(cpi, td, x, tile_info, mi_row, mi_col, num_planes); |
| av1_tpl_rdmult_setup_sb(cpi, x, sb_size, mi_row, mi_col); |
| } |
| if (cpi->oxcf.enable_tpl_model) { |
| adjust_rdmult_tpl_model(cpi, x, mi_row, mi_col); |
| } |
| } |
| #else |
| (void)tile_info; |
| (void)mi_row; |
| (void)mi_col; |
| (void)gather_tpl_data; |
| #endif |
| |
| // Reset hash state for transform/mode rd hash information |
| reset_hash_records(&x->txfm_search_info, cpi->sf.tx_sf.use_inter_txb_hash); |
| av1_zero(x->picked_ref_frames_mask); |
| av1_zero(x->pred_mv); |
| av1_invalid_rd_stats(rd_cost); |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| static AOM_INLINE BLOCK_SIZE dim_to_size(int dim) { |
| switch (dim) { |
| case 4: return BLOCK_4X4; |
| case 8: return BLOCK_8X8; |
| case 16: return BLOCK_16X16; |
| case 32: return BLOCK_32X32; |
| case 64: return BLOCK_64X64; |
| case 128: return BLOCK_128X128; |
| default: assert(0); return 0; |
| } |
| } |
| |
| static AOM_INLINE void set_max_min_partition_size(SuperBlockEnc *sb_enc, |
| AV1_COMP *cpi, MACROBLOCK *x, |
| const SPEED_FEATURES *sf, |
| BLOCK_SIZE sb_size, |
| int mi_row, int mi_col) { |
| const AV1_COMMON *cm = &cpi->common; |
| |
| sb_enc->max_partition_size = |
| AOMMIN(sf->part_sf.default_max_partition_size, |
| dim_to_size(cpi->oxcf.max_partition_size)); |
| sb_enc->min_partition_size = |
| AOMMAX(sf->part_sf.default_min_partition_size, |
| dim_to_size(cpi->oxcf.min_partition_size)); |
| sb_enc->max_partition_size = |
| AOMMIN(sb_enc->max_partition_size, cm->seq_params.sb_size); |
| sb_enc->min_partition_size = |
| AOMMIN(sb_enc->min_partition_size, cm->seq_params.sb_size); |
| |
| if (use_auto_max_partition(cpi, sb_size, mi_row, mi_col)) { |
| float features[FEATURE_SIZE_MAX_MIN_PART_PRED] = { 0.0f }; |
| |
| av1_get_max_min_partition_features(cpi, x, mi_row, mi_col, features); |
| sb_enc->max_partition_size = |
| AOMMAX(AOMMIN(av1_predict_max_partition(cpi, x, features), |
| sb_enc->max_partition_size), |
| sb_enc->min_partition_size); |
| } |
| } |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| // Conducts partition search for a superblock, based on rate-distortion costs, |
| // from scratch or adjusting from a pre-calculated partition pattern. |
| static AOM_INLINE void encode_rd_sb(AV1_COMP *cpi, ThreadData *td, |
| TileDataEnc *tile_data, TokenExtra **tp, |
| const int mi_row, const int mi_col, |
| const int seg_skip) { |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCK *const x = &td->mb; |
| const SPEED_FEATURES *const sf = &cpi->sf; |
| const TileInfo *const tile_info = &tile_data->tile_info; |
| MB_MODE_INFO **mi = cm->mi_params.mi_grid_base + |
| get_mi_grid_idx(&cm->mi_params, mi_row, mi_col); |
| const BLOCK_SIZE sb_size = cm->seq_params.sb_size; |
| const int num_planes = av1_num_planes(cm); |
| int dummy_rate; |
| int64_t dummy_dist; |
| RD_STATS dummy_rdc; |
| SIMPLE_MOTION_DATA_TREE *const sms_root = td->sms_root; |
| |
| #if CONFIG_REALTIME_ONLY |
| (void)seg_skip; |
| #endif // CONFIG_REALTIME_ONLY |
| |
| init_encode_rd_sb(cpi, td, tile_data, sms_root, &dummy_rdc, mi_row, mi_col, |
| 1); |
| |
| // Encode the superblock |
| if (sf->part_sf.partition_search_type == VAR_BASED_PARTITION) { |
| // partition search starting from a variance-based partition |
| set_offsets_without_segment_id(cpi, tile_info, x, mi_row, mi_col, sb_size); |
| av1_choose_var_based_partitioning(cpi, tile_info, td, x, mi_row, mi_col); |
| PC_TREE *const pc_root = av1_alloc_pc_tree_node(sb_size); |
| rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, sb_size, |
| &dummy_rate, &dummy_dist, 1, pc_root); |
| av1_free_pc_tree_recursive(pc_root, num_planes, 0, 0); |
| } |
| #if !CONFIG_REALTIME_ONLY |
| else if (sf->part_sf.partition_search_type == FIXED_PARTITION || seg_skip) { |
| // partition search by adjusting a fixed-size partition |
| set_offsets(cpi, tile_info, x, mi_row, mi_col, sb_size); |
| const BLOCK_SIZE bsize = |
| seg_skip ? sb_size : sf->part_sf.always_this_block_size; |
| set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize); |
| PC_TREE *const pc_root = av1_alloc_pc_tree_node(sb_size); |
| rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, sb_size, |
| &dummy_rate, &dummy_dist, 1, pc_root); |
| av1_free_pc_tree_recursive(pc_root, num_planes, 0, 0); |
| } else if (cpi->partition_search_skippable_frame) { |
| // partition search by adjusting a fixed-size partition for which the size |
| // is determined by the source variance |
| set_offsets(cpi, tile_info, x, mi_row, mi_col, sb_size); |
| const BLOCK_SIZE bsize = |
| get_rd_var_based_fixed_partition(cpi, x, mi_row, mi_col); |
| set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize); |
| PC_TREE *const pc_root = av1_alloc_pc_tree_node(sb_size); |
| rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, sb_size, |
| &dummy_rate, &dummy_dist, 1, pc_root); |
| av1_free_pc_tree_recursive(pc_root, num_planes, 0, 0); |
| } else { |
| // The most exhaustive recursive partition search |
| SuperBlockEnc *sb_enc = &x->sb_enc; |
| // No stats for overlay frames. Exclude key frame. |
| get_tpl_stats_sb(cpi, sb_size, mi_row, mi_col, sb_enc); |
| |
| // Reset the tree for simple motion search data |
| reset_simple_motion_tree_partition(sms_root, sb_size); |
| |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| start_timing(cpi, rd_pick_partition_time); |
| #endif |
| |
| // Estimate the maximum square partition block size, which will be used |
| // as the starting block size for partitioning the sb |
| set_max_min_partition_size(sb_enc, cpi, x, sf, sb_size, mi_row, mi_col); |
| |
| // The superblock can be searched only once, or twice consecutively for |
| // better quality. Note that the meaning of passes here is different from |
| // the general concept of 1-pass/2-pass encoders. |
| const int num_passes = cpi->oxcf.sb_multipass_unit_test ? 2 : 1; |
| |
| if (num_passes == 1) { |
| PC_TREE *const pc_root = av1_alloc_pc_tree_node(sb_size); |
| rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, sb_size, |
| &dummy_rdc, dummy_rdc, pc_root, sms_root, NULL, |
| SB_SINGLE_PASS, NULL); |
| } else { |
| // First pass |
| SB_FIRST_PASS_STATS sb_fp_stats; |
| backup_sb_state(&sb_fp_stats, cpi, td, tile_data, mi_row, mi_col); |
| PC_TREE *const pc_root_p0 = av1_alloc_pc_tree_node(sb_size); |
| rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, sb_size, |
| &dummy_rdc, dummy_rdc, pc_root_p0, sms_root, NULL, |
| SB_DRY_PASS, NULL); |
| |
| // Second pass |
| init_encode_rd_sb(cpi, td, tile_data, sms_root, &dummy_rdc, mi_row, |
| mi_col, 0); |
| reset_mbmi(&cm->mi_params, sb_size, mi_row, mi_col); |
| reset_simple_motion_tree_partition(sms_root, sb_size); |
| |
| restore_sb_state(&sb_fp_stats, cpi, td, tile_data, mi_row, mi_col); |
| |
| PC_TREE *const pc_root_p1 = av1_alloc_pc_tree_node(sb_size); |
| rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, sb_size, |
| &dummy_rdc, dummy_rdc, pc_root_p1, sms_root, NULL, |
| SB_WET_PASS, NULL); |
| } |
| // Reset to 0 so that it wouldn't be used elsewhere mistakenly. |
| sb_enc->tpl_data_count = 0; |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| end_timing(cpi, rd_pick_partition_time); |
| #endif |
| } |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| // Update the inter rd model |
| // TODO(angiebird): Let inter_mode_rd_model_estimation support multi-tile. |
| if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 1 && |
| cm->tiles.cols == 1 && cm->tiles.rows == 1) { |
| av1_inter_mode_data_fit(tile_data, x->rdmult); |
| } |
| } |
| |
| // Update the rate costs of some symbols according to the frequency directed |
| // by speed features |
| static AOM_INLINE void set_cost_upd_freq(AV1_COMP *cpi, ThreadData *td, |
| const TileInfo *const tile_info, |
| const int mi_row, const int mi_col) { |
| AV1_COMMON *const cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| |
| switch (cpi->oxcf.coeff_cost_upd_freq) { |
| case COST_UPD_TILE: // Tile level |
| if (mi_row != tile_info->mi_row_start) break; |
| AOM_FALLTHROUGH_INTENDED; |
| case COST_UPD_SBROW: // SB row level in tile |
| if (mi_col != tile_info->mi_col_start) break; |
| AOM_FALLTHROUGH_INTENDED; |
| case COST_UPD_SB: // SB level |
| if (cpi->sf.inter_sf.disable_sb_level_coeff_cost_upd && |
| mi_col != tile_info->mi_col_start) |
| break; |
| av1_fill_coeff_costs(&x->coeff_costs, xd->tile_ctx, num_planes); |
| break; |
| default: assert(0); |
| } |
| |
| switch (cpi->oxcf.mode_cost_upd_freq) { |
| case COST_UPD_TILE: // Tile level |
| if (mi_row != tile_info->mi_row_start) break; |
| AOM_FALLTHROUGH_INTENDED; |
| case COST_UPD_SBROW: // SB row level in tile |
| if (mi_col != tile_info->mi_col_start) break; |
| AOM_FALLTHROUGH_INTENDED; |
| case COST_UPD_SB: // SB level |
| av1_fill_mode_rates(cm, &x->mode_costs, xd->tile_ctx); |
| break; |
| default: assert(0); |
| } |
| switch (cpi->oxcf.mv_cost_upd_freq) { |
| case COST_UPD_OFF: break; |
| case COST_UPD_TILE: // Tile level |
| if (mi_row != tile_info->mi_row_start) break; |
| AOM_FALLTHROUGH_INTENDED; |
| case COST_UPD_SBROW: // SB row level in tile |
| if (mi_col != tile_info->mi_col_start) break; |
| AOM_FALLTHROUGH_INTENDED; |
| case COST_UPD_SB: // SB level |
| if (cpi->sf.inter_sf.disable_sb_level_mv_cost_upd && |
| mi_col != tile_info->mi_col_start) |
| break; |
| av1_fill_mv_costs(xd->tile_ctx, cm->features.cur_frame_force_integer_mv, |
| cm->features.allow_high_precision_mv, &x->mv_costs); |
| break; |
| default: assert(0); |
| } |
| } |
| |
| // Do partition and mode search for an sb row: one row of superblocks filling up |
| // the width of the current tile. |
| static AOM_INLINE void encode_sb_row(AV1_COMP *cpi, ThreadData *td, |
| TileDataEnc *tile_data, int mi_row, |
| TokenExtra **tp) { |
| AV1_COMMON *const cm = &cpi->common; |
| const TileInfo *const tile_info = &tile_data->tile_info; |
| MultiThreadInfo *const mt_info = &cpi->mt_info; |
| AV1EncRowMultiThreadInfo *const enc_row_mt = &mt_info->enc_row_mt; |
| AV1EncRowMultiThreadSync *const row_mt_sync = &tile_data->row_mt_sync; |
| bool row_mt_enabled = mt_info->row_mt_enabled; |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const int sb_cols_in_tile = av1_get_sb_cols_in_tile(cm, tile_data->tile_info); |
| const BLOCK_SIZE sb_size = cm->seq_params.sb_size; |
| const int mib_size = cm->seq_params.mib_size; |
| const int mib_size_log2 = cm->seq_params.mib_size_log2; |
| const int sb_row = (mi_row - tile_info->mi_row_start) >> mib_size_log2; |
| const int use_nonrd_mode = cpi->sf.rt_sf.use_nonrd_pick_mode; |
| |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| start_timing(cpi, encode_sb_time); |
| #endif |
| |
| // Initialize the left context for the new SB row |
| av1_zero_left_context(xd); |
| |
| // Reset delta for quantizer and loof filters at the beginning of every tile |
| if (mi_row == tile_info->mi_row_start || row_mt_enabled) { |
| if (cm->delta_q_info.delta_q_present_flag) |
| xd->current_base_qindex = cm->quant_params.base_qindex; |
| if (cm->delta_q_info.delta_lf_present_flag) { |
| av1_reset_loop_filter_delta(xd, av1_num_planes(cm)); |
| } |
| } |
| |
| reset_thresh_freq_fact(x); |
| |
| // Code each SB in the row |
| for (int mi_col = tile_info->mi_col_start, sb_col_in_tile = 0; |
| mi_col < tile_info->mi_col_end; mi_col += mib_size, sb_col_in_tile++) { |
| (*(enc_row_mt->sync_read_ptr))(row_mt_sync, sb_row, sb_col_in_tile); |
| |
| if (tile_data->allow_update_cdf && row_mt_enabled && |
| (tile_info->mi_row_start != mi_row)) { |
| if ((tile_info->mi_col_start == mi_col)) { |
| // restore frame context at the 1st column sb |
| memcpy(xd->tile_ctx, x->row_ctx, sizeof(*xd->tile_ctx)); |
| } else { |
| // update context |
| int wt_left = AVG_CDF_WEIGHT_LEFT; |
| int wt_tr = AVG_CDF_WEIGHT_TOP_RIGHT; |
| if (tile_info->mi_col_end > (mi_col + mib_size)) |
| avg_cdf_symbols(xd->tile_ctx, x->row_ctx + sb_col_in_tile, wt_left, |
| wt_tr); |
| else |
| avg_cdf_symbols(xd->tile_ctx, x->row_ctx + sb_col_in_tile - 1, |
| wt_left, wt_tr); |
| } |
| } |
| |
| // Update the rate cost tables for some symbols |
| set_cost_upd_freq(cpi, td, tile_info, mi_row, mi_col); |
| |
| // Reset color coding related parameters |
| x->color_sensitivity[0] = 0; |
| x->color_sensitivity[1] = 0; |
| x->content_state_sb = 0; |
| |
| xd->cur_frame_force_integer_mv = cm->features.cur_frame_force_integer_mv; |
| x->source_variance = UINT_MAX; |
| x->simple_motion_pred_sse = UINT_MAX; |
| td->mb.cb_coef_buff = av1_get_cb_coeff_buffer(cpi, mi_row, mi_col); |
| |
| // Get segment id and skip flag |
| const struct segmentation *const seg = &cm->seg; |
| int seg_skip = 0; |
| if (seg->enabled) { |
| const uint8_t *const map = |
| seg->update_map ? cpi->enc_seg.map : cm->last_frame_seg_map; |
| const int segment_id = |
| map ? get_segment_id(&cm->mi_params, map, sb_size, mi_row, mi_col) |
| : 0; |
| seg_skip = segfeature_active(seg, segment_id, SEG_LVL_SKIP); |
| } |
| |
| // encode the superblock |
| if (use_nonrd_mode) { |
| encode_nonrd_sb(cpi, td, tile_data, tp, mi_row, mi_col, seg_skip); |
| } else { |
| encode_rd_sb(cpi, td, tile_data, tp, mi_row, mi_col, seg_skip); |
| } |
| |
| // Update the top-right context in row_mt coding |
| if (tile_data->allow_update_cdf && row_mt_enabled && |
| (tile_info->mi_row_end > (mi_row + mib_size))) { |
| if (sb_cols_in_tile == 1) |
| memcpy(x->row_ctx, xd->tile_ctx, sizeof(*xd->tile_ctx)); |
| else if (sb_col_in_tile >= 1) |
| memcpy(x->row_ctx + sb_col_in_tile - 1, xd->tile_ctx, |
| sizeof(*xd->tile_ctx)); |
| } |
| (*(enc_row_mt->sync_write_ptr))(row_mt_sync, sb_row, sb_col_in_tile, |
| sb_cols_in_tile); |
| } |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| end_timing(cpi, encode_sb_time); |
| #endif |
| } |
| |
| static AOM_INLINE void init_encode_frame_mb_context(AV1_COMP *cpi) { |
| AV1_COMMON *const cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| MACROBLOCK *const x = &cpi->td.mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| |
| // Copy data over into macro block data structures. |
| av1_setup_src_planes(x, cpi->source, 0, 0, num_planes, |
| cm->seq_params.sb_size); |
| |
| av1_setup_block_planes(xd, cm->seq_params.subsampling_x, |
| cm->seq_params.subsampling_y, num_planes); |
| } |
| |
| void av1_alloc_tile_data(AV1_COMP *cpi) { |
| AV1_COMMON *const cm = &cpi->common; |
| const int tile_cols = cm->tiles.cols; |
| const int tile_rows = cm->tiles.rows; |
| |
| if (cpi->tile_data != NULL) aom_free(cpi->tile_data); |
| CHECK_MEM_ERROR( |
| cm, cpi->tile_data, |
| aom_memalign(32, tile_cols * tile_rows * sizeof(*cpi->tile_data))); |
| |
| cpi->allocated_tiles = tile_cols * tile_rows; |
| } |
| |
| void av1_init_tile_data(AV1_COMP *cpi) { |
| AV1_COMMON *const cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| const int tile_cols = cm->tiles.cols; |
| const int tile_rows = cm->tiles.rows; |
| int tile_col, tile_row; |
| TokenInfo *const token_info = &cpi->token_info; |
| TokenExtra *pre_tok = token_info->tile_tok[0][0]; |
| TokenList *tplist = token_info->tplist[0][0]; |
| unsigned int tile_tok = 0; |
| int tplist_count = 0; |
| |
| for (tile_row = 0; tile_row < tile_rows; ++tile_row) { |
| for (tile_col = 0; tile_col < tile_cols; ++tile_col) { |
| TileDataEnc *const tile_data = |
| &cpi->tile_data[tile_row * tile_cols + tile_col]; |
| TileInfo *const tile_info = &tile_data->tile_info; |
| av1_tile_init(tile_info, cm, tile_row, tile_col); |
| tile_data->firstpass_top_mv = kZeroMv; |
| |
| if (pre_tok != NULL && tplist != NULL) { |
| token_info->tile_tok[tile_row][tile_col] = pre_tok + tile_tok; |
| pre_tok = token_info->tile_tok[tile_row][tile_col]; |
| tile_tok = allocated_tokens(*tile_info, |
| cm->seq_params.mib_size_log2 + MI_SIZE_LOG2, |
| num_planes); |
| token_info->tplist[tile_row][tile_col] = tplist + tplist_count; |
| tplist = token_info->tplist[tile_row][tile_col]; |
| tplist_count = av1_get_sb_rows_in_tile(cm, tile_data->tile_info); |
| } |
| tile_data->allow_update_cdf = !cm->tiles.large_scale; |
| tile_data->allow_update_cdf = |
| tile_data->allow_update_cdf && !cm->features.disable_cdf_update; |
| tile_data->tctx = *cm->fc; |
| } |
| } |
| } |
| |
| void av1_encode_sb_row(AV1_COMP *cpi, ThreadData *td, int tile_row, |
| int tile_col, int mi_row) { |
| AV1_COMMON *const cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| const int tile_cols = cm->tiles.cols; |
| TileDataEnc *this_tile = &cpi->tile_data[tile_row * tile_cols + tile_col]; |
| const TileInfo *const tile_info = &this_tile->tile_info; |
| TokenExtra *tok = NULL; |
| TokenList *const tplist = cpi->token_info.tplist[tile_row][tile_col]; |
| const int sb_row_in_tile = |
| (mi_row - tile_info->mi_row_start) >> cm->seq_params.mib_size_log2; |
| const int tile_mb_cols = |
| (tile_info->mi_col_end - tile_info->mi_col_start + 2) >> 2; |
| const int num_mb_rows_in_sb = |
| ((1 << (cm->seq_params.mib_size_log2 + MI_SIZE_LOG2)) + 8) >> 4; |
| |
| get_start_tok(cpi, tile_row, tile_col, mi_row, &tok, |
| cm->seq_params.mib_size_log2 + MI_SIZE_LOG2, num_planes); |
| tplist[sb_row_in_tile].start = tok; |
| |
| encode_sb_row(cpi, td, this_tile, mi_row, &tok); |
| |
| tplist[sb_row_in_tile].count = |
| (unsigned int)(tok - tplist[sb_row_in_tile].start); |
| |
| assert((unsigned int)(tok - tplist[sb_row_in_tile].start) <= |
| get_token_alloc(num_mb_rows_in_sb, tile_mb_cols, |
| cm->seq_params.mib_size_log2 + MI_SIZE_LOG2, |
| num_planes)); |
| |
| (void)tile_mb_cols; |
| (void)num_mb_rows_in_sb; |
| } |
| |
| void av1_encode_tile(AV1_COMP *cpi, ThreadData *td, int tile_row, |
| int tile_col) { |
| AV1_COMMON *const cm = &cpi->common; |
| TileDataEnc *const this_tile = |
| &cpi->tile_data[tile_row * cm->tiles.cols + tile_col]; |
| const TileInfo *const tile_info = &this_tile->tile_info; |
| |
| if (!cpi->sf.rt_sf.use_nonrd_pick_mode) av1_inter_mode_data_init(this_tile); |
| |
| av1_zero_above_context(cm, &td->mb.e_mbd, tile_info->mi_col_start, |
| tile_info->mi_col_end, tile_row); |
| av1_init_above_context(&cm->above_contexts, av1_num_planes(cm), tile_row, |
| &td->mb.e_mbd); |
| |
| if (cpi->oxcf.enable_cfl_intra) cfl_init(&td->mb.e_mbd.cfl, &cm->seq_params); |
| |
| av1_crc32c_calculator_init( |
| &td->mb.txfm_search_info.mb_rd_record.crc_calculator); |
| |
| for (int mi_row = tile_info->mi_row_start; mi_row < tile_info->mi_row_end; |
| mi_row += cm->seq_params.mib_size) { |
| av1_encode_sb_row(cpi, td, tile_row, tile_col, mi_row); |
| } |
| } |
| |
| static AOM_INLINE void encode_tiles(AV1_COMP *cpi) { |
| AV1_COMMON *const cm = &cpi->common; |
| const int tile_cols = cm->tiles.cols; |
| const int tile_rows = cm->tiles.rows; |
| int tile_col, tile_row; |
| |
| assert(IMPLIES(cpi->tile_data == NULL, |
| cpi->allocated_tiles < tile_cols * tile_rows)); |
| if (cpi->allocated_tiles < tile_cols * tile_rows) av1_alloc_tile_data(cpi); |
| |
| av1_init_tile_data(cpi); |
| |
| for (tile_row = 0; tile_row < tile_rows; ++tile_row) { |
| for (tile_col = 0; tile_col < tile_cols; ++tile_col) { |
| TileDataEnc *const this_tile = |
| &cpi->tile_data[tile_row * cm->tiles.cols + tile_col]; |
| cpi->td.intrabc_used = 0; |
| cpi->td.deltaq_used = 0; |
| cpi->td.mb.e_mbd.tile_ctx = &this_tile->tctx; |
| cpi->td.mb.tile_pb_ctx = &this_tile->tctx; |
| av1_encode_tile(cpi, &cpi->td, tile_row, tile_col); |
| cpi->intrabc_used |= cpi->td.intrabc_used; |
| cpi->deltaq_used |= cpi->td.deltaq_used; |
| } |
| } |
| } |
| |
| #define GLOBAL_TRANS_TYPES_ENC 3 // highest motion model to search |
| static int gm_get_params_cost(const WarpedMotionParams *gm, |
| const WarpedMotionParams *ref_gm, int allow_hp) { |
| int params_cost = 0; |
| int trans_bits, trans_prec_diff; |
| switch (gm->wmtype) { |
| case AFFINE: |
| case ROTZOOM: |
| params_cost += aom_count_signed_primitive_refsubexpfin( |
| GM_ALPHA_MAX + 1, SUBEXPFIN_K, |
| (ref_gm->wmmat[2] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS), |
| (gm->wmmat[2] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS)); |
| params_cost += aom_count_signed_primitive_refsubexpfin( |
| GM_ALPHA_MAX + 1, SUBEXPFIN_K, |
| (ref_gm->wmmat[3] >> GM_ALPHA_PREC_DIFF), |
| (gm->wmmat[3] >> GM_ALPHA_PREC_DIFF)); |
| if (gm->wmtype >= AFFINE) { |
| params_cost += aom_count_signed_primitive_refsubexpfin( |
| GM_ALPHA_MAX + 1, SUBEXPFIN_K, |
| (ref_gm->wmmat[4] >> GM_ALPHA_PREC_DIFF), |
| (gm->wmmat[4] >> GM_ALPHA_PREC_DIFF)); |
| params_cost += aom_count_signed_primitive_refsubexpfin( |
| GM_ALPHA_MAX + 1, SUBEXPFIN_K, |
| (ref_gm->wmmat[5] >> GM_ALPHA_PREC_DIFF) - |
| (1 << GM_ALPHA_PREC_BITS), |
| (gm->wmmat[5] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS)); |
| } |
| AOM_FALLTHROUGH_INTENDED; |
| case TRANSLATION: |
| trans_bits = (gm->wmtype == TRANSLATION) |
| ? GM_ABS_TRANS_ONLY_BITS - !allow_hp |
| : GM_ABS_TRANS_BITS; |
| trans_prec_diff = (gm->wmtype == TRANSLATION) |
| ? GM_TRANS_ONLY_PREC_DIFF + !allow_hp |
| : GM_TRANS_PREC_DIFF; |
| params_cost += aom_count_signed_primitive_refsubexpfin( |
| (1 << trans_bits) + 1, SUBEXPFIN_K, |
| (ref_gm->wmmat[0] >> trans_prec_diff), |
| (gm->wmmat[0] >> trans_prec_diff)); |
| params_cost += aom_count_signed_primitive_refsubexpfin( |
| (1 << trans_bits) + 1, SUBEXPFIN_K, |
| (ref_gm->wmmat[1] >> trans_prec_diff), |
| (gm->wmmat[1] >> trans_prec_diff)); |
| AOM_FALLTHROUGH_INTENDED; |
| case IDENTITY: break; |
| default: assert(0); |
| } |
| return (params_cost << AV1_PROB_COST_SHIFT); |
| } |
| |
| static int do_gm_search_logic(SPEED_FEATURES *const sf, int frame) { |
| (void)frame; |
| switch (sf->gm_sf.gm_search_type) { |
| case GM_FULL_SEARCH: return 1; |
| case GM_REDUCED_REF_SEARCH_SKIP_L2_L3: |
| return !(frame == LAST2_FRAME || frame == LAST3_FRAME); |
| case GM_REDUCED_REF_SEARCH_SKIP_L2_L3_ARF2: |
| return !(frame == LAST2_FRAME || frame == LAST3_FRAME || |
| (frame == ALTREF2_FRAME)); |
| case GM_DISABLE_SEARCH: return 0; |
| default: assert(0); |
| } |
| return 1; |
| } |
| |
| // Set the relative distance of a reference frame w.r.t. current frame |
| static AOM_INLINE void set_rel_frame_dist( |
| const AV1_COMMON *const cm, RefFrameDistanceInfo *const ref_frame_dist_info, |
| const int ref_frame_flags) { |
| const OrderHintInfo *const order_hint_info = &cm->seq_params.order_hint_info; |
| MV_REFERENCE_FRAME ref_frame; |
| int min_past_dist = INT32_MAX, min_future_dist = INT32_MAX; |
| ref_frame_dist_info->nearest_past_ref = NONE_FRAME; |
| ref_frame_dist_info->nearest_future_ref = NONE_FRAME; |
| for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { |
| ref_frame_dist_info->ref_relative_dist[ref_frame - LAST_FRAME] = 0; |
| if (ref_frame_flags & av1_ref_frame_flag_list[ref_frame]) { |
| int dist = av1_encoder_get_relative_dist( |
| order_hint_info, |
| cm->cur_frame->ref_display_order_hint[ref_frame - LAST_FRAME], |
| cm->current_frame.display_order_hint); |
| ref_frame_dist_info->ref_relative_dist[ref_frame - LAST_FRAME] = dist; |
| // Get the nearest ref_frame in the past |
| if (abs(dist) < min_past_dist && dist < 0) { |
| ref_frame_dist_info->nearest_past_ref = ref_frame; |
| min_past_dist = abs(dist); |
| } |
| // Get the nearest ref_frame in the future |
| if (dist < min_future_dist && dist > 0) { |
| ref_frame_dist_info->nearest_future_ref = ref_frame; |
| min_future_dist = dist; |
| } |
| } |
| } |
| } |
| |
| static INLINE int refs_are_one_sided(const AV1_COMMON *cm) { |
| assert(!frame_is_intra_only(cm)); |
| |
| int one_sided_refs = 1; |
| for (int ref = LAST_FRAME; ref <= ALTREF_FRAME; ++ref) { |
| const RefCntBuffer *const buf = get_ref_frame_buf(cm, ref); |
| if (buf == NULL) continue; |
| |
| const int ref_display_order_hint = buf->display_order_hint; |
| if (av1_encoder_get_relative_dist( |
| &cm->seq_params.order_hint_info, ref_display_order_hint, |
| (int)cm->current_frame.display_order_hint) > 0) { |
| one_sided_refs = 0; // bwd reference |
| break; |
| } |
| } |
| return one_sided_refs; |
| } |
| |
| static INLINE void get_skip_mode_ref_offsets(const AV1_COMMON *cm, |
| int ref_order_hint[2]) { |
| const SkipModeInfo *const skip_mode_info = &cm->current_frame.skip_mode_info; |
| ref_order_hint[0] = ref_order_hint[1] = 0; |
| if (!skip_mode_info->skip_mode_allowed) return; |
| |
| const RefCntBuffer *const buf_0 = |
| get_ref_frame_buf(cm, LAST_FRAME + skip_mode_info->ref_frame_idx_0); |
| const RefCntBuffer *const buf_1 = |
| get_ref_frame_buf(cm, LAST_FRAME + skip_mode_info->ref_frame_idx_1); |
| assert(buf_0 != NULL && buf_1 != NULL); |
| |
| ref_order_hint[0] = buf_0->order_hint; |
| ref_order_hint[1] = buf_1->order_hint; |
| } |
| |
| static int check_skip_mode_enabled(AV1_COMP *const cpi) { |
| AV1_COMMON *const cm = &cpi->common; |
| |
| av1_setup_skip_mode_allowed(cm); |
| if (!cm->current_frame.skip_mode_info.skip_mode_allowed) return 0; |
| |
| // Turn off skip mode if the temporal distances of the reference pair to the |
| // current frame are different by more than 1 frame. |
| const int cur_offset = (int)cm->current_frame.order_hint; |
| int ref_offset[2]; |
| get_skip_mode_ref_offsets(cm, ref_offset); |
| const int cur_to_ref0 = get_relative_dist(&cm->seq_params.order_hint_info, |
| cur_offset, ref_offset[0]); |
| const int cur_to_ref1 = abs(get_relative_dist(&cm->seq_params.order_hint_info, |
| cur_offset, ref_offset[1])); |
| if (abs(cur_to_ref0 - cur_to_ref1) > 1) return 0; |
| |
| // High Latency: Turn off skip mode if all refs are fwd. |
| if (cpi->all_one_sided_refs && cpi->oxcf.lag_in_frames > 0) return 0; |
| |
| static const int flag_list[REF_FRAMES] = { 0, |
| AOM_LAST_FLAG, |
| AOM_LAST2_FLAG, |
| AOM_LAST3_FLAG, |
| AOM_GOLD_FLAG, |
| AOM_BWD_FLAG, |
| AOM_ALT2_FLAG, |
| AOM_ALT_FLAG }; |
| const int ref_frame[2] = { |
| cm->current_frame.skip_mode_info.ref_frame_idx_0 + LAST_FRAME, |
| cm->current_frame.skip_mode_info.ref_frame_idx_1 + LAST_FRAME |
| }; |
| if (!(cpi->ref_frame_flags & flag_list[ref_frame[0]]) || |
| !(cpi->ref_frame_flags & flag_list[ref_frame[1]])) |
| return 0; |
| |
| return 1; |
| } |
| |
| // Function to decide if we can skip the global motion parameter computation |
| // for a particular ref frame |
| static INLINE int skip_gm_frame(AV1_COMMON *const cm, int ref_frame) { |
| if ((ref_frame == LAST3_FRAME || ref_frame == LAST2_FRAME) && |
| cm->global_motion[GOLDEN_FRAME].wmtype != IDENTITY) { |
| return get_relative_dist( |
| &cm->seq_params.order_hint_info, |
| cm->cur_frame->ref_order_hints[ref_frame - LAST_FRAME], |
| cm->cur_frame->ref_order_hints[GOLDEN_FRAME - LAST_FRAME]) <= 0; |
| } |
| return 0; |
| } |
| |
| static AOM_INLINE void set_default_interp_skip_flags( |
| const AV1_COMMON *cm, InterpSearchFlags *interp_search_flags) { |
| const int num_planes = av1_num_planes(cm); |
| interp_search_flags->default_interp_skip_flags = |
| (num_planes == 1) ? INTERP_SKIP_LUMA_EVAL_CHROMA |
| : INTERP_SKIP_LUMA_SKIP_CHROMA; |
| } |
| |
| // TODO(Remya): Can include erroradv_prod_tr[] for threshold calculation |
| static INLINE int64_t calc_erroradv_threshold(AV1_COMP *cpi, |
| int64_t ref_frame_error) { |
| if (!cpi->sf.gm_sf.disable_adaptive_warp_error_thresh) |
| return (int64_t)( |
| ref_frame_error * erroradv_tr[cpi->sf.gm_sf.gm_erroradv_type] + 0.5); |
| else |
| return INT64_MAX; |
| } |
| |
| static void compute_global_motion_for_ref_frame( |
| AV1_COMP *cpi, YV12_BUFFER_CONFIG *ref_buf[REF_FRAMES], int frame, |
| int num_src_corners, int *src_corners, unsigned char *src_buffer, |
| MotionModel *params_by_motion, uint8_t *segment_map, |
| const int segment_map_w, const int segment_map_h, |
| const WarpedMotionParams *ref_params) { |
| ThreadData *const td = &cpi->td; |
| MACROBLOCK *const x = &td->mb; |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| int i; |
| int src_width = cpi->source->y_width; |
| int src_height = cpi->source->y_height; |
| int src_stride = cpi->source->y_stride; |
| // clang-format off |
| static const double kIdentityParams[MAX_PARAMDIM - 1] = { |
| 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0 |
| }; |
| // clang-format on |
| WarpedMotionParams tmp_wm_params; |
| const double *params_this_motion; |
| int inliers_by_motion[RANSAC_NUM_MOTIONS]; |
| assert(ref_buf[frame] != NULL); |
| TransformationType model; |
| |
| aom_clear_system_state(); |
| |
| // TODO(sarahparker, debargha): Explore do_adaptive_gm_estimation = 1 |
| const int do_adaptive_gm_estimation = 0; |
| |
| const int ref_frame_dist = get_relative_dist( |
| &cm->seq_params.order_hint_info, cm->current_frame.order_hint, |
| cm->cur_frame->ref_order_hints[frame - LAST_FRAME]); |
| const GlobalMotionEstimationType gm_estimation_type = |
| cm->seq_params.order_hint_info.enable_order_hint && |
| abs(ref_frame_dist) <= 2 && do_adaptive_gm_estimation |
| ? GLOBAL_MOTION_DISFLOW_BASED |
| : GLOBAL_MOTION_FEATURE_BASED; |
| for (model = ROTZOOM; model < GLOBAL_TRANS_TYPES_ENC; ++model) { |
| int64_t best_warp_error = INT64_MAX; |
| // Initially set all params to identity. |
| for (i = 0; i < RANSAC_NUM_MOTIONS; ++i) { |
| memcpy(params_by_motion[i].params, kIdentityParams, |
| (MAX_PARAMDIM - 1) * sizeof(*(params_by_motion[i].params))); |
| params_by_motion[i].num_inliers = 0; |
| } |
| |
| av1_compute_global_motion(model, src_buffer, src_width, src_height, |
| src_stride, src_corners, num_src_corners, |
| ref_buf[frame], cpi->common.seq_params.bit_depth, |
| gm_estimation_type, inliers_by_motion, |
| params_by_motion, RANSAC_NUM_MOTIONS); |
| int64_t ref_frame_error = 0; |
| for (i = 0; i < RANSAC_NUM_MOTIONS; ++i) { |
| if (inliers_by_motion[i] == 0) continue; |
| |
| params_this_motion = params_by_motion[i].params; |
| av1_convert_model_to_params(params_this_motion, &tmp_wm_params); |
| |
| if (tmp_wm_params.wmtype != IDENTITY) { |
| av1_compute_feature_segmentation_map( |
| segment_map, segment_map_w, segment_map_h, |
| params_by_motion[i].inliers, params_by_motion[i].num_inliers); |
| |
| ref_frame_error = av1_segmented_frame_error( |
| is_cur_buf_hbd(xd), xd->bd, ref_buf[frame]->y_buffer, |
| ref_buf[frame]->y_stride, cpi->source->y_buffer, src_width, |
| src_height, src_stride, segment_map, segment_map_w); |
| |
| int64_t erroradv_threshold = |
| calc_erroradv_threshold(cpi, ref_frame_error); |
| |
| const int64_t warp_error = av1_refine_integerized_param( |
| &tmp_wm_params, tmp_wm_params.wmtype, is_cur_buf_hbd(xd), xd->bd, |
| ref_buf[frame]->y_buffer, ref_buf[frame]->y_width, |
| ref_buf[frame]->y_height, ref_buf[frame]->y_stride, |
| cpi->source->y_buffer, src_width, src_height, src_stride, |
| GM_REFINEMENT_COUNT, best_warp_error, segment_map, segment_map_w, |
| erroradv_threshold); |
| |
| if (warp_error < best_warp_error) { |
| best_warp_error = warp_error; |
| // Save the wm_params modified by |
| // av1_refine_integerized_param() rather than motion index to |
| // avoid rerunning refine() below. |
| memcpy(&(cm->global_motion[frame]), &tmp_wm_params, |
| sizeof(WarpedMotionParams)); |
| } |
| } |
| } |
| if (cm->global_motion[frame].wmtype <= AFFINE) |
| if (!av1_get_shear_params(&cm->global_motion[frame])) |
| cm->global_motion[frame] = default_warp_params; |
| |
| if (cm->global_motion[frame].wmtype == TRANSLATION) { |
| cm->global_motion[frame].wmmat[0] = |
| convert_to_trans_prec(cm->features.allow_high_precision_mv, |
| cm->global_motion[frame].wmmat[0]) * |
| GM_TRANS_ONLY_DECODE_FACTOR; |
| cm->global_motion[frame].wmmat[1] = |
| convert_to_trans_prec(cm->features.allow_high_precision_mv, |
| cm->global_motion[frame].wmmat[1]) * |
| GM_TRANS_ONLY_DECODE_FACTOR; |
| } |
| |
| if (cm->global_motion[frame].wmtype == IDENTITY) continue; |
| |
| if (ref_frame_error == 0) continue; |
| |
| // If the best error advantage found doesn't meet the threshold for |
| // this motion type, revert to IDENTITY. |
| if (!av1_is_enough_erroradvantage( |
| (double)best_warp_error / ref_frame_error, |
| gm_get_params_cost(&cm->global_motion[frame], ref_params, |
| cm->features.allow_high_precision_mv), |
| cpi->sf.gm_sf.gm_erroradv_type)) { |
| cm->global_motion[frame] = default_warp_params; |
| } |
| |
| if (cm->global_motion[frame].wmtype != IDENTITY) break; |
| } |
| |
| aom_clear_system_state(); |
| } |
| |
| static INLINE void update_valid_ref_frames_for_gm( |
| AV1_COMP *cpi, YV12_BUFFER_CONFIG *ref_buf[REF_FRAMES], |
| FrameDistPair reference_frames[MAX_DIRECTIONS][REF_FRAMES - 1], |
| int *num_ref_frames) { |
| AV1_COMMON *const cm = &cpi->common; |
| const OrderHintInfo *const order_hint_info = &cm->seq_params.order_hint_info; |
| int *num_past_ref_frames = &num_ref_frames[0]; |
| int *num_future_ref_frames = &num_ref_frames[1]; |
| for (int frame = ALTREF_FRAME; frame >= LAST_FRAME; --frame) { |
| const MV_REFERENCE_FRAME ref_frame[2] = { frame, NONE_FRAME }; |
| RefCntBuffer *buf = get_ref_frame_buf(cm, frame); |
| const int ref_disabled = |
| !(cpi->ref_frame_flags & av1_ref_frame_flag_list[frame]); |
| ref_buf[frame] = NULL; |
| cm->global_motion[frame] = default_warp_params; |
| // Skip global motion estimation for invalid ref frames |
| if (buf == NULL || |
| (ref_disabled && cpi->sf.hl_sf.recode_loop != DISALLOW_RECODE)) { |
| cpi->gm_info.params_cost[frame] = 0; |
| continue; |
| } else { |
| ref_buf[frame] = &buf->buf; |
| } |
| |
| if (ref_buf[frame]->y_crop_width == cpi->source->y_crop_width && |
| ref_buf[frame]->y_crop_height == cpi->source->y_crop_height && |
| do_gm_search_logic(&cpi->sf, frame) && |
| !prune_ref_by_selective_ref_frame( |
| cpi, NULL, ref_frame, cm->cur_frame->ref_display_order_hint) && |
| !(cpi->sf.gm_sf.selective_ref_gm && skip_gm_frame(cm, frame))) { |
| assert(ref_buf[frame] != NULL); |
| int relative_frame_dist = av1_encoder_get_relative_dist( |
| order_hint_info, buf->display_order_hint, |
| cm->cur_frame->display_order_hint); |
| // Populate past and future ref frames. |
| // reference_frames[0][] indicates past direction and |
| // reference_frames[1][] indicates future direction. |
| if (relative_frame_dist <= 0) { |
| reference_frames[0][*num_past_ref_frames].distance = |
| abs(relative_frame_dist); |
| reference_frames[0][*num_past_ref_frames].frame = frame; |
| (*num_past_ref_frames)++; |
| } else { |
| reference_frames[1][*num_future_ref_frames].distance = |
| abs(relative_frame_dist); |
| reference_frames[1][*num_future_ref_frames].frame = frame; |
| (*num_future_ref_frames)++; |
| } |
| } |
| } |
| } |
| |
| void av1_compute_gm_for_valid_ref_frames( |
| AV1_COMP *cpi, YV12_BUFFER_CONFIG *ref_buf[REF_FRAMES], int frame, |
| int num_src_corners, int *src_corners, unsigned char *src_buffer, |
| MotionModel *params_by_motion, uint8_t *segment_map, int segment_map_w, |
| int segment_map_h) { |
| AV1_COMMON *const cm = &cpi->common; |
| GlobalMotionInfo *const gm_info = &cpi->gm_info; |
| const WarpedMotionParams *ref_params = |
| cm->prev_frame ? &cm->prev_frame->global_motion[frame] |
| : &default_warp_params; |
| |
| compute_global_motion_for_ref_frame( |
| cpi, ref_buf, frame, num_src_corners, src_corners, src_buffer, |
| params_by_motion, segment_map, segment_map_w, segment_map_h, ref_params); |
| |
| gm_info->params_cost[frame] = |
| gm_get_params_cost(&cm->global_motion[frame], ref_params, |
| cm->features.allow_high_precision_mv) + |
| gm_info->type_cost[cm->global_motion[frame].wmtype] - |
| gm_info->type_cost[IDENTITY]; |
| } |
| |
| static int compare_distance(const void *a, const void *b) { |
| const int diff = |
| ((FrameDistPair *)a)->distance - ((FrameDistPair *)b)->distance; |
| if (diff > 0) |
| return 1; |
| else if (diff < 0) |
| return -1; |
| return 0; |
| } |
| |
| static INLINE void compute_global_motion_for_references( |
| AV1_COMP *cpi, YV12_BUFFER_CONFIG *ref_buf[REF_FRAMES], |
| FrameDistPair reference_frame[REF_FRAMES - 1], int num_ref_frames, |
| int num_src_corners, int *src_corners, unsigned char *src_buffer, |
| MotionModel *params_by_motion, uint8_t *segment_map, |
| const int segment_map_w, const int segment_map_h) { |
| // Computation of frame corners for the source frame will be done already. |
| assert(num_src_corners != -1); |
| AV1_COMMON *const cm = &cpi->common; |
| // Compute global motion w.r.t. reference frames starting from the nearest ref |
| // frame in a given direction. |
| for (int frame = 0; frame < num_ref_frames; frame++) { |
| int ref_frame = reference_frame[frame].frame; |
| av1_compute_gm_for_valid_ref_frames( |
| cpi, ref_buf, ref_frame, num_src_corners, src_corners, src_buffer, |
| params_by_motion, segment_map, segment_map_w, segment_map_h); |
| // If global motion w.r.t. current ref frame is |
| // INVALID/TRANSLATION/IDENTITY, skip the evaluation of global motion w.r.t |
| // the remaining ref frames in that direction. The below exit is disabled |
| // when ref frame distance w.r.t. current frame is zero. E.g.: |
| // source_alt_ref_frame w.r.t. ARF frames. |
| if (cpi->sf.gm_sf.prune_ref_frame_for_gm_search && |
| reference_frame[frame].distance != 0 && |
| cm->global_motion[ref_frame].wmtype != ROTZOOM) |
| break; |
| } |
| } |
| |
| static AOM_INLINE void setup_prune_ref_frame_mask(AV1_COMP *cpi) { |
| if (!cpi->sf.rt_sf.use_nonrd_pick_mode && |
| cpi->sf.inter_sf.selective_ref_frame >= 2) { |
| AV1_COMMON *const cm = &cpi->common; |
| const OrderHintInfo *const order_hint_info = |
| &cm->seq_params.order_hint_info; |
| const int cur_frame_display_order_hint = |
| cm->current_frame.display_order_hint; |
| unsigned int *ref_display_order_hint = |
| cm->cur_frame->ref_display_order_hint; |
| const int arf2_dist = av1_encoder_get_relative_dist( |
| order_hint_info, ref_display_order_hint[ALTREF2_FRAME - LAST_FRAME], |
| cur_frame_display_order_hint); |
| const int bwd_dist = av1_encoder_get_relative_dist( |
| order_hint_info, ref_display_order_hint[BWDREF_FRAME - LAST_FRAME], |
| cur_frame_display_order_hint); |
| |
| for (int ref_idx = REF_FRAMES; ref_idx < MODE_CTX_REF_FRAMES; ++ref_idx) { |
| MV_REFERENCE_FRAME rf[2]; |
| av1_set_ref_frame(rf, ref_idx); |
| if (!(cpi->ref_frame_flags & av1_ref_frame_flag_list[rf[0]]) || |
| !(cpi->ref_frame_flags & av1_ref_frame_flag_list[rf[1]])) { |
| continue; |
| } |
| |
| if (!cpi->all_one_sided_refs) { |
| int ref_dist[2]; |
| for (int i = 0; i < 2; ++i) { |
| ref_dist[i] = av1_encoder_get_relative_dist( |
| order_hint_info, ref_display_order_hint[rf[i] - LAST_FRAME], |
| cur_frame_display_order_hint); |
| } |
| |
| // One-sided compound is used only when all reference frames are |
| // one-sided. |
| if ((ref_dist[0] > 0) == (ref_dist[1] > 0)) { |
| cpi->prune_ref_frame_mask |= 1 << ref_idx; |
| } |
| } |
| |
| if (cpi->sf.inter_sf.selective_ref_frame >= 4 && |
| (rf[0] == ALTREF2_FRAME || rf[1] == ALTREF2_FRAME) && |
| (cpi->ref_frame_flags & av1_ref_frame_flag_list[BWDREF_FRAME])) { |
| // Check if both ALTREF2_FRAME and BWDREF_FRAME are future references. |
| if (arf2_dist > 0 && bwd_dist > 0 && bwd_dist <= arf2_dist) { |
| // Drop ALTREF2_FRAME as a reference if BWDREF_FRAME is a closer |
| // reference to the current frame than ALTREF2_FRAME |
| cpi->prune_ref_frame_mask |= 1 << ref_idx; |
| } |
| } |
| } |
| } |
| } |
| |
| #define CHECK_PRECOMPUTED_REF_FRAME_MAP 0 |
| |
| // Allocates and initializes memory for segment_map and MotionModel. |
| static AOM_INLINE void alloc_global_motion_data(MotionModel *params_by_motion, |
| uint8_t **segment_map, |
| const int segment_map_w, |
| const int segment_map_h) { |
| for (int m = 0; m < RANSAC_NUM_MOTIONS; m++) { |
| av1_zero(params_by_motion[m]); |
| params_by_motion[m].inliers = |
| aom_malloc(sizeof(*(params_by_motion[m].inliers)) * 2 * MAX_CORNERS); |
| } |
| |
| *segment_map = (uint8_t *)aom_malloc(sizeof(*segment_map) * segment_map_w * |
| segment_map_h); |
| av1_zero_array(*segment_map, segment_map_w * segment_map_h); |
| } |
| |
| // Deallocates segment_map and inliers. |
| static AOM_INLINE void dealloc_global_motion_data(MotionModel *params_by_motion, |
| uint8_t *segment_map) { |
| aom_free(segment_map); |
| |
| for (int m = 0; m < RANSAC_NUM_MOTIONS; m++) { |
| aom_free(params_by_motion[m].inliers); |
| } |
| } |
| |
| // Initializes parameters used for computing global motion. |
| static AOM_INLINE void setup_global_motion_info_params(AV1_COMP *cpi) { |
| GlobalMotionInfo *const gm_info = &cpi->gm_info; |
| YV12_BUFFER_CONFIG *source = cpi->source; |
| |
| gm_info->src_buffer = source->y_buffer; |
| if (source->flags & YV12_FLAG_HIGHBITDEPTH) { |
| // The source buffer is 16-bit, so we need to convert to 8 bits for the |
| // following code. We cache the result until the source frame is released. |
| gm_info->src_buffer = |
| av1_downconvert_frame(source, cpi->common.seq_params.bit_depth); |
| } |
| |
| gm_info->segment_map_w = |
| (source->y_width + WARP_ERROR_BLOCK) >> WARP_ERROR_BLOCK_LOG; |
| gm_info->segment_map_h = |
| (source->y_height + WARP_ERROR_BLOCK) >> WARP_ERROR_BLOCK_LOG; |
| |
| memset(gm_info->reference_frames, -1, |
| sizeof(gm_info->reference_frames[0][0]) * MAX_DIRECTIONS * |
| (REF_FRAMES - 1)); |
| av1_zero(gm_info->num_ref_frames); |
| |
| // Populate ref_buf for valid ref frames in global motion |
| update_valid_ref_frames_for_gm(cpi, gm_info->ref_buf, |
| gm_info->reference_frames, |
| gm_info->num_ref_frames); |
| |
| // Sort the past and future ref frames in the ascending order of their |
| // distance from the current frame. reference_frames[0] => past direction |
| // and reference_frames[1] => future direction. |
| qsort(gm_info->reference_frames[0], gm_info->num_ref_frames[0], |
| sizeof(gm_info->reference_frames[0][0]), compare_distance); |
| qsort(gm_info->reference_frames[1], gm_info->num_ref_frames[1], |
| sizeof(gm_info->reference_frames[1][0]), compare_distance); |
| |
| gm_info->num_src_corners = -1; |
| // If atleast one valid reference frame exists in past/future directions, |
| // compute interest points of source frame using FAST features. |
| if (gm_info->num_ref_frames[0] > 0 || gm_info->num_ref_frames[1] > 0) { |
| gm_info->num_src_corners = av1_fast_corner_detect( |
| gm_info->src_buffer, source->y_width, source->y_height, |
| source->y_stride, gm_info->src_corners, MAX_CORNERS); |
| } |
| } |
| |
| // Computes global motion w.r.t. valid reference frames. |
| static AOM_INLINE void global_motion_estimation(AV1_COMP *cpi) { |
| GlobalMotionInfo *const gm_info = &cpi->gm_info; |
| MotionModel params_by_motion[RANSAC_NUM_MOTIONS]; |
| uint8_t *segment_map = NULL; |
| |
| alloc_global_motion_data(params_by_motion, &segment_map, |
| gm_info->segment_map_w, gm_info->segment_map_h); |
| |
| // Compute global motion w.r.t. past reference frames and future reference |
| // frames |
| for (int dir = 0; dir < MAX_DIRECTIONS; dir++) { |
| if (gm_info->num_ref_frames[dir] > 0) |
| compute_global_motion_for_references( |
| cpi, gm_info->ref_buf, gm_info->reference_frames[dir], |
| gm_info->num_ref_frames[dir], gm_info->num_src_corners, |
| gm_info->src_corners, gm_info->src_buffer, params_by_motion, |
| segment_map, gm_info->segment_map_w, gm_info->segment_map_h); |
| } |
| |
| dealloc_global_motion_data(params_by_motion, segment_map); |
| } |
| |
| // Computes global motion of the source frame. |
| static AOM_INLINE void compute_global_motion(AV1_COMP *cpi) { |
| AV1_COMMON *const cm = &cpi->common; |
| GlobalMotionInfo *const gm_info = &cpi->gm_info; |
| |
| av1_zero(cpi->td.rd_counts.global_motion_used); |
| av1_zero(gm_info->params_cost); |
| |
| if (cpi->common.current_frame.frame_type == INTER_FRAME && cpi->source && |
| cpi->oxcf.enable_global_motion && !gm_info->search_done) { |
| setup_global_motion_info_params(cpi); |
| if (cpi->mt_info.num_workers > 1) |
| av1_global_motion_estimation_mt(cpi); |
| else |
| global_motion_estimation(cpi); |
| gm_info->search_done = 1; |
| } |
| memcpy(cm->cur_frame->global_motion, cm->global_motion, |
| sizeof(cm->cur_frame->global_motion)); |
| } |
| |
| static AOM_INLINE void encode_frame_internal(AV1_COMP *cpi) { |
| ThreadData *const td = &cpi->td; |
| MACROBLOCK *const x = &td->mb; |
| AV1_COMMON *const cm = &cpi->common; |
| CommonModeInfoParams *const mi_params = &cm->mi_params; |
| FeatureFlags *const features = &cm->features; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| RD_COUNTS *const rdc = &cpi->td.rd_counts; |
| FrameProbInfo *const frame_probs = &cpi->frame_probs; |
| IntraBCHashInfo *const intrabc_hash_info = &x->intrabc_hash_info; |
| MultiThreadInfo *const mt_info = &cpi->mt_info; |
| AV1EncRowMultiThreadInfo *const enc_row_mt = &mt_info->enc_row_mt; |
| int i; |
| |
| if (!cpi->sf.rt_sf.use_nonrd_pick_mode) { |
| mi_params->setup_mi(mi_params); |
| } |
| |
| set_mi_offsets(mi_params, xd, 0, 0); |
| |
| av1_zero(*td->counts); |
| av1_zero(rdc->comp_pred_diff); |
| av1_zero(rdc->tx_type_used); |
| av1_zero(rdc->obmc_used); |
| av1_zero(rdc->warped_used); |
| |
| // Reset the flag. |
| cpi->intrabc_used = 0; |
| // Need to disable intrabc when superres is selected |
| if (av1_superres_scaled(cm)) { |
| features->allow_intrabc = 0; |
| } |
| |
| features->allow_intrabc &= (cpi->oxcf.enable_intrabc); |
| |
| if (features->allow_warped_motion && |
| cpi->sf.inter_sf.prune_warped_prob_thresh > 0) { |
| const FRAME_UPDATE_TYPE update_type = get_frame_update_type(&cpi->gf_group); |
| if (frame_probs->warped_probs[update_type] < |
| cpi->sf.inter_sf.prune_warped_prob_thresh) |
| features->allow_warped_motion = 0; |
| } |
| |
| int hash_table_created = 0; |
| if (!is_stat_generation_stage(cpi) && av1_use_hash_me(cpi) && |
| !cpi->sf.rt_sf.use_nonrd_pick_mode) { |
| // TODO(any): move this outside of the recoding loop to avoid recalculating |
| // the hash table. |
| // add to hash table |
| const int pic_width = cpi->source->y_crop_width; |
| const int pic_height = cpi->source->y_crop_height; |
| uint32_t *block_hash_values[2][2]; |
| int8_t *is_block_same[2][3]; |
| int k, j; |
| |
| for (k = 0; k < 2; k++) { |
| for (j = 0; j < 2; j++) { |
| CHECK_MEM_ERROR(cm, block_hash_values[k][j], |
| aom_malloc(sizeof(uint32_t) * pic_width * pic_height)); |
| } |
| |
| for (j = 0; j < 3; j++) { |
| CHECK_MEM_ERROR(cm, is_block_same[k][j], |
| aom_malloc(sizeof(int8_t) * pic_width * pic_height)); |
| } |
| } |
| |
| av1_hash_table_init(intrabc_hash_info); |
| av1_hash_table_create(&intrabc_hash_info->intrabc_hash_table); |
| hash_table_created = 1; |
| av1_generate_block_2x2_hash_value(intrabc_hash_info, cpi->source, |
| block_hash_values[0], is_block_same[0]); |
| // Hash data generated for screen contents is used for intraBC ME |
| const int min_alloc_size = block_size_wide[mi_params->mi_alloc_bsize]; |
| const int max_sb_size = |
| (1 << (cm->seq_params.mib_size_log2 + MI_SIZE_LOG2)); |
| int src_idx = 0; |
| for (int size = 4; size <= max_sb_size; size *= 2, src_idx = !src_idx) { |
| const int dst_idx = !src_idx; |
| av1_generate_block_hash_value( |
| intrabc_hash_info, cpi->source, size, block_hash_values[src_idx], |
| block_hash_values[dst_idx], is_block_same[src_idx], |
| is_block_same[dst_idx]); |
| if (size >= min_alloc_size) { |
| av1_add_to_hash_map_by_row_with_precal_data( |
| &intrabc_hash_info->intrabc_hash_table, block_hash_values[dst_idx], |
| is_block_same[dst_idx][2], pic_width, pic_height, size); |
| } |
| } |
| |
| for (k = 0; k < 2; k++) { |
| for (j = 0; j < 2; j++) { |
| aom_free(block_hash_values[k][j]); |
| } |
| |
| for (j = 0; j < 3; j++) { |
| aom_free(is_block_same[k][j]); |
| } |
| } |
| } |
| |
| const CommonQuantParams *quant_params = &cm->quant_params; |
| for (i = 0; i < MAX_SEGMENTS; ++i) { |
| const int qindex = |
| cm->seg.enabled ? av1_get_qindex(&cm->seg, i, quant_params->base_qindex) |
| : quant_params->base_qindex; |
| xd->lossless[i] = |
| qindex == 0 && quant_params->y_dc_delta_q == 0 && |
| quant_params->u_dc_delta_q == 0 && quant_params->u_ac_delta_q == 0 && |
| quant_params->v_dc_delta_q == 0 && quant_params->v_ac_delta_q == 0; |
| if (xd->lossless[i]) cpi->enc_seg.has_lossless_segment = 1; |
| xd->qindex[i] = qindex; |
| if (xd->lossless[i]) { |
| cpi->optimize_seg_arr[i] = NO_TRELLIS_OPT; |
| } else { |
| cpi->optimize_seg_arr[i] = cpi->sf.rd_sf.optimize_coefficients; |
| } |
| } |
| features->coded_lossless = is_coded_lossless(cm, xd); |
| features->all_lossless = features->coded_lossless && !av1_superres_scaled(cm); |
| |
| // Fix delta q resolution for the moment |
| cm->delta_q_info.delta_q_res = 0; |
| if (cpi->oxcf.deltaq_mode == DELTA_Q_OBJECTIVE) |
| cm->delta_q_info.delta_q_res = DEFAULT_DELTA_Q_RES_OBJECTIVE; |
| else if (cpi->oxcf.deltaq_mode == DELTA_Q_PERCEPTUAL) |
| cm->delta_q_info.delta_q_res = DEFAULT_DELTA_Q_RES_PERCEPTUAL; |
| // Set delta_q_present_flag before it is used for the first time |
| cm->delta_q_info.delta_lf_res = DEFAULT_DELTA_LF_RES; |
| cm->delta_q_info.delta_q_present_flag = cpi->oxcf.deltaq_mode != NO_DELTA_Q; |
| |
| // Turn off cm->delta_q_info.delta_q_present_flag if objective delta_q is used |
| // for ineligible frames. That effectively will turn off row_mt usage. |
| // Note objective delta_q and tpl eligible frames are only altref frames |
| // currently. |
| if (cm->delta_q_info.delta_q_present_flag) { |
| if (cpi->oxcf.deltaq_mode == DELTA_Q_OBJECTIVE && |
| !is_frame_tpl_eligible(cpi)) |
| cm->delta_q_info.delta_q_present_flag = 0; |
| } |
| |
| // Reset delta_q_used flag |
| cpi->deltaq_used = 0; |
| |
| cm->delta_q_info.delta_lf_present_flag = |
| cm->delta_q_info.delta_q_present_flag && cpi->oxcf.deltalf_mode; |
| cm->delta_q_info.delta_lf_multi = DEFAULT_DELTA_LF_MULTI; |
| |
| // update delta_q_present_flag and delta_lf_present_flag based on |
| // base_qindex |
| cm->delta_q_info.delta_q_present_flag &= quant_params->base_qindex > 0; |
| cm->delta_q_info.delta_lf_present_flag &= quant_params->base_qindex > 0; |
| |
| av1_frame_init_quantizer(cpi); |
| av1_initialize_rd_consts(cpi); |
| av1_set_sad_per_bit(cpi, &x->mv_costs, quant_params->base_qindex); |
| |
| init_encode_frame_mb_context(cpi); |
| set_default_interp_skip_flags(cm, &cpi->interp_search_flags); |
| if (cm->prev_frame && cm->prev_frame->seg.enabled) |
| cm->last_frame_seg_map = cm->prev_frame->seg_map; |
| else |
| cm->last_frame_seg_map = NULL; |
| if (features->allow_intrabc || features->coded_lossless) { |
| av1_set_default_ref_deltas(cm->lf.ref_deltas); |
| av1_set_default_mode_deltas(cm->lf.mode_deltas); |
| } else if (cm->prev_frame) { |
| memcpy(cm->lf.ref_deltas, cm->prev_frame->ref_deltas, REF_FRAMES); |
| memcpy(cm->lf.mode_deltas, cm->prev_frame->mode_deltas, MAX_MODE_LF_DELTAS); |
| } |
| memcpy(cm->cur_frame->ref_deltas, cm->lf.ref_deltas, REF_FRAMES); |
| memcpy(cm->cur_frame->mode_deltas, cm->lf.mode_deltas, MAX_MODE_LF_DELTAS); |
| |
| cpi->all_one_sided_refs = |
| frame_is_intra_only(cm) ? 0 : refs_are_one_sided(cm); |
| |
| cpi->prune_ref_frame_mask = 0; |
| // Figure out which ref frames can be skipped at frame level. |
| setup_prune_ref_frame_mask(cpi); |
| |
| x->txfm_search_info.txb_split_count = 0; |
| #if CONFIG_SPEED_STATS |
| x->txfm_search_info.tx_search_count = 0; |
| #endif // CONFIG_SPEED_STATS |
| |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| start_timing(cpi, av1_compute_global_motion_time); |
| #endif |
| compute_global_motion(cpi); |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| end_timing(cpi, av1_compute_global_motion_time); |
| #endif |
| |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| start_timing(cpi, av1_setup_motion_field_time); |
| #endif |
| if (features->allow_ref_frame_mvs) av1_setup_motion_field(cm); |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| end_timing(cpi, av1_setup_motion_field_time); |
| #endif |
| |
| cm->current_frame.skip_mode_info.skip_mode_flag = |
| check_skip_mode_enabled(cpi); |
| |
| enc_row_mt->sync_read_ptr = av1_row_mt_sync_read_dummy; |
| enc_row_mt->sync_write_ptr = av1_row_mt_sync_write_dummy; |
| mt_info->row_mt_enabled = 0; |
| |
| if (cpi->oxcf.row_mt && (cpi->oxcf.max_threads > 1)) { |
| mt_info->row_mt_enabled = 1; |
| enc_row_mt->sync_read_ptr = av1_row_mt_sync_read; |
| enc_row_mt->sync_write_ptr = av1_row_mt_sync_write; |
| av1_encode_tiles_row_mt(cpi); |
| } else { |
| if (AOMMIN(cpi->oxcf.max_threads, cm->tiles.cols * cm->tiles.rows) > 1) |
| av1_encode_tiles_mt(cpi); |
| else |
| encode_tiles(cpi); |
| } |
| |
| // If intrabc is allowed but never selected, reset the allow_intrabc flag. |
| if (features->allow_intrabc && !cpi->intrabc_used) { |
| features->allow_intrabc = 0; |
| } |
| if (features->allow_intrabc) { |
| cm->delta_q_info.delta_lf_present_flag = 0; |
| } |
| |
| if (cm->delta_q_info.delta_q_present_flag && cpi->deltaq_used == 0) { |
| cm->delta_q_info.delta_q_present_flag = 0; |
| } |
| |
| // Set the transform size appropriately before bitstream creation |
| const MODE_EVAL_TYPE eval_type = |
| cpi->sf.winner_mode_sf.enable_winner_mode_for_tx_size_srch |
| ? WINNER_MODE_EVAL |
| : DEFAULT_EVAL; |
| const TX_SIZE_SEARCH_METHOD tx_search_type = |
| cpi->winner_mode_params.tx_size_search_methods[eval_type]; |
| assert(cpi->oxcf.enable_tx64 || tx_search_type != USE_LARGESTALL); |
| features->tx_mode = select_tx_mode(cm, tx_search_type); |
| |
| if (cpi->sf.tx_sf.tx_type_search.prune_tx_type_using_stats) { |
| const FRAME_UPDATE_TYPE update_type = get_frame_update_type(&cpi->gf_group); |
| |
| for (i = 0; i < TX_SIZES_ALL; i++) { |
| int sum = 0; |
| int j; |
| int left = 1024; |
| |
| for (j = 0; j < TX_TYPES; j++) |
| sum += cpi->td.rd_counts.tx_type_used[i][j]; |
| |
| for (j = TX_TYPES - 1; j >= 0; j--) { |
| const int new_prob = |
| sum ? 1024 * cpi->td.rd_counts.tx_type_used[i][j] / sum |
| : (j ? 0 : 1024); |
| int prob = |
| (frame_probs->tx_type_probs[update_type][i][j] + new_prob) >> 1; |
| left -= prob; |
| if (j == 0) prob += left; |
| frame_probs->tx_type_probs[update_type][i][j] = prob; |
| } |
| } |
| } |
| |
| if (!cpi->sf.inter_sf.disable_obmc && |
| cpi->sf.inter_sf.prune_obmc_prob_thresh > 0) { |
| const FRAME_UPDATE_TYPE update_type = get_frame_update_type(&cpi->gf_group); |
| |
| for (i = 0; i < BLOCK_SIZES_ALL; i++) { |
| int sum = 0; |
| for (int j = 0; j < 2; j++) sum += cpi->td.rd_counts.obmc_used[i][j]; |
| |
| const int new_prob = |
| sum ? 128 * cpi->td.rd_counts.obmc_used[i][1] / sum : 0; |
| frame_probs->obmc_probs[update_type][i] = |
| (frame_probs->obmc_probs[update_type][i] + new_prob) >> 1; |
| } |
| } |
| |
| if (features->allow_warped_motion && |
| cpi->sf.inter_sf.prune_warped_prob_thresh > 0) { |
| const FRAME_UPDATE_TYPE update_type = get_frame_update_type(&cpi->gf_group); |
| int sum = 0; |
| for (i = 0; i < 2; i++) sum += cpi->td.rd_counts.warped_used[i]; |
| const int new_prob = sum ? 128 * cpi->td.rd_counts.warped_used[1] / sum : 0; |
| frame_probs->warped_probs[update_type] = |
| (frame_probs->warped_probs[update_type] + new_prob) >> 1; |
| } |
| |
| if (cm->current_frame.frame_type != KEY_FRAME && |
| cpi->sf.interp_sf.adaptive_interp_filter_search == 2 && |
| features->interp_filter == SWITCHABLE) { |
| const FRAME_UPDATE_TYPE update_type = get_frame_update_type(&cpi->gf_group); |
| |
| for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) { |
| int sum = 0; |
| int j; |
| int left = 1536; |
| |
| for (j = 0; j < SWITCHABLE_FILTERS; j++) { |
| sum += cpi->td.counts->switchable_interp[i][j]; |
| } |
| |
| for (j = SWITCHABLE_FILTERS - 1; j >= 0; j--) { |
| const int new_prob = |
| sum ? 1536 * cpi->td.counts->switchable_interp[i][j] / sum |
| : (j ? 0 : 1536); |
| int prob = (frame_probs->switchable_interp_probs[update_type][i][j] + |
| new_prob) >> |
| 1; |
| left -= prob; |
| if (j == 0) prob += left; |
| frame_probs->switchable_interp_probs[update_type][i][j] = prob; |
| } |
| } |
| } |
| |
| if ((!is_stat_generation_stage(cpi) && av1_use_hash_me(cpi) && |
| !cpi->sf.rt_sf.use_nonrd_pick_mode) || |
| hash_table_created) { |
| av1_hash_table_destroy(&intrabc_hash_info->intrabc_hash_table); |
| } |
| } |
| |
| void av1_encode_frame(AV1_COMP *cpi) { |
| AV1_COMMON *const cm = &cpi->common; |
| CurrentFrame *const current_frame = &cm->current_frame; |
| FeatureFlags *const features = &cm->features; |
| const int num_planes = av1_num_planes(cm); |
| // Indicates whether or not to use a default reduced set for ext-tx |
| // rather than the potential full set of 16 transforms |
| features->reduced_tx_set_used = cpi->oxcf.reduced_tx_type_set; |
| |
| // Make sure segment_id is no larger than last_active_segid. |
| if (cm->seg.enabled && cm->seg.update_map) { |
| const int mi_rows = cm->mi_params.mi_rows; |
| const int mi_cols = cm->mi_params.mi_cols; |
| const int last_active_segid = cm->seg.last_active_segid; |
| uint8_t *map = cpi->enc_seg.map; |
| for (int mi_row = 0; mi_row < mi_rows; ++mi_row) { |
| for (int mi_col = 0; mi_col < mi_cols; ++mi_col) { |
| map[mi_col] = AOMMIN(map[mi_col], last_active_segid); |
| } |
| map += mi_cols; |
| } |
| } |
| |
| av1_setup_frame_buf_refs(cm); |
| enforce_max_ref_frames(cpi, &cpi->ref_frame_flags); |
| set_rel_frame_dist(&cpi->common, &cpi->ref_frame_dist_info, |
| cpi->ref_frame_flags); |
| av1_setup_frame_sign_bias(cm); |
| |
| #if CHECK_PRECOMPUTED_REF_FRAME_MAP |
| GF_GROUP *gf_group = &cpi->gf_group; |
| // TODO(yuec): The check is disabled on OVERLAY frames for now, because info |
| // in cpi->gf_group has been refreshed for the next GOP when the check is |
| // performed for OVERLAY frames. Since we have not support inter-GOP ref |
| // frame map computation, the precomputed ref map for an OVERLAY frame is all |
| // -1 at this point (although it is meaning before gf_group is refreshed). |
| if (!frame_is_intra_only(cm) && gf_group->index != 0) { |
| const RefCntBuffer *const golden_buf = get_ref_frame_buf(cm, GOLDEN_FRAME); |
| |
| if (golden_buf) { |
| const int golden_order_hint = golden_buf->order_hint; |
| |
| for (int ref = LAST_FRAME; ref < EXTREF_FRAME; ++ref) { |
| const RefCntBuffer *const buf = get_ref_frame_buf(cm, ref); |
| const int ref_disp_idx_precomputed = |
| gf_group->ref_frame_disp_idx[gf_group->index][ref - LAST_FRAME]; |
| |
| (void)ref_disp_idx_precomputed; |
| |
| if (buf != NULL) { |
| const int ref_disp_idx = |
| get_relative_dist(&cm->seq_params.order_hint_info, |
| buf->order_hint, golden_order_hint); |
| |
| if (ref_disp_idx >= 0) |
| assert(ref_disp_idx == ref_disp_idx_precomputed); |
| else |
| assert(ref_disp_idx_precomputed == -1); |
| } else { |
| assert(ref_disp_idx_precomputed == -1); |
| } |
| } |
| } |
| } |
| #endif |
| |
| #if CONFIG_MISMATCH_DEBUG |
| mismatch_reset_frame(num_planes); |
| #else |
| (void)num_planes; |
| #endif |
| |
| if (cpi->sf.hl_sf.frame_parameter_update) { |
| RD_COUNTS *const rdc = &cpi->td.rd_counts; |
| |
| if (frame_is_intra_only(cm)) |
| current_frame->reference_mode = SINGLE_REFERENCE; |
| else |
| current_frame->reference_mode = REFERENCE_MODE_SELECT; |
| |
| features->interp_filter = SWITCHABLE; |
| if (cm->tiles.large_scale) features->interp_filter = EIGHTTAP_REGULAR; |
| |
| features->switchable_motion_mode = 1; |
| |
| rdc->compound_ref_used_flag = 0; |
| rdc->skip_mode_used_flag = 0; |
| |
| encode_frame_internal(cpi); |
| |
| if (current_frame->reference_mode == REFERENCE_MODE_SELECT) { |
| // Use a flag that includes 4x4 blocks |
| if (rdc->compound_ref_used_flag == 0) { |
| current_frame->reference_mode = SINGLE_REFERENCE; |
| #if CONFIG_ENTROPY_STATS |
| av1_zero(cpi->td.counts->comp_inter); |
| #endif // CONFIG_ENTROPY_STATS |
| } |
| } |
| // Re-check on the skip mode status as reference mode may have been |
| // changed. |
| SkipModeInfo *const skip_mode_info = ¤t_frame->skip_mode_info; |
| if (frame_is_intra_only(cm) || |
| current_frame->reference_mode == SINGLE_REFERENCE) { |
| skip_mode_info->skip_mode_allowed = 0; |
| skip_mode_info->skip_mode_flag = 0; |
| } |
| if (skip_mode_info->skip_mode_flag && rdc->skip_mode_used_flag == 0) |
| skip_mode_info->skip_mode_flag = 0; |
| |
| if (!cm->tiles.large_scale) { |
| if (features->tx_mode == TX_MODE_SELECT && |
| cpi->td.mb.txfm_search_info.txb_split_count == 0) |
| features->tx_mode = TX_MODE_LARGEST; |
| } |
| } else { |
| encode_frame_internal(cpi); |
| } |
| } |
| |
| static AOM_INLINE void update_txfm_count(MACROBLOCK *x, MACROBLOCKD *xd, |
| FRAME_COUNTS *counts, TX_SIZE tx_size, |
| int depth, int blk_row, int blk_col, |
| uint8_t allow_update_cdf) { |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| const BLOCK_SIZE bsize = mbmi->sb_type; |
| const int max_blocks_high = max_block_high(xd, bsize, 0); |
| const int max_blocks_wide = max_block_wide(xd, bsize, 0); |
| int ctx = txfm_partition_context(xd->above_txfm_context + blk_col, |
| xd->left_txfm_context + blk_row, |
| mbmi->sb_type, tx_size); |
| const int txb_size_index = av1_get_txb_size_index(bsize, blk_row, blk_col); |
| const TX_SIZE plane_tx_size = mbmi->inter_tx_size[txb_size_index]; |
| |
| if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; |
| assert(tx_size > TX_4X4); |
| |
| if (depth == MAX_VARTX_DEPTH) { |
| // Don't add to counts in this case |
| mbmi->tx_size = tx_size; |
| txfm_partition_update(xd->above_txfm_context + blk_col, |
| xd->left_txfm_context + blk_row, tx_size, tx_size); |
| return; |
| } |
| |
| if (tx_size == plane_tx_size) { |
| #if CONFIG_ENTROPY_STATS |
| ++counts->txfm_partition[ctx][0]; |
| #endif |
| if (allow_update_cdf) |
| update_cdf(xd->tile_ctx->txfm_partition_cdf[ctx], 0, 2); |
| mbmi->tx_size = tx_size; |
| txfm_partition_update(xd->above_txfm_context + blk_col, |
| xd->left_txfm_context + blk_row, tx_size, tx_size); |
| } else { |
| const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; |
| const int bsw = tx_size_wide_unit[sub_txs]; |
| const int bsh = tx_size_high_unit[sub_txs]; |
| |
| #if CONFIG_ENTROPY_STATS |
| ++counts->txfm_partition[ctx][1]; |
| #endif |
| if (allow_update_cdf) |
| update_cdf(xd->tile_ctx->txfm_partition_cdf[ctx], 1, 2); |
| ++x->txfm_search_info.txb_split_count; |
| |
| if (sub_txs == TX_4X4) { |
| mbmi->inter_tx_size[txb_size_index] = TX_4X4; |
| mbmi->tx_size = TX_4X4; |
| txfm_partition_update(xd->above_txfm_context + blk_col, |
| xd->left_txfm_context + blk_row, TX_4X4, tx_size); |
| return; |
| } |
| |
| for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) { |
| for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) { |
| int offsetr = row; |
| int offsetc = col; |
| |
| update_txfm_count(x, xd, counts, sub_txs, depth + 1, blk_row + offsetr, |
| blk_col + offsetc, allow_update_cdf); |
| } |
| } |
| } |
| } |
| |
| static AOM_INLINE void tx_partition_count_update(const AV1_COMMON *const cm, |
| MACROBLOCK *x, |
| BLOCK_SIZE plane_bsize, |
| FRAME_COUNTS *td_counts, |
| uint8_t allow_update_cdf) { |
| MACROBLOCKD *xd = &x->e_mbd; |
| const int mi_width = mi_size_wide[plane_bsize]; |
| const int mi_height = mi_size_high[plane_bsize]; |
| const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, 0); |
| const int bh = tx_size_high_unit[max_tx_size]; |
| const int bw = tx_size_wide_unit[max_tx_size]; |
| |
| xd->above_txfm_context = |
| cm->above_contexts.txfm[xd->tile.tile_row] + xd->mi_col; |
| xd->left_txfm_context = |
| xd->left_txfm_context_buffer + (xd->mi_row & MAX_MIB_MASK); |
| |
| for (int idy = 0; idy < mi_height; idy += bh) { |
| for (int idx = 0; idx < mi_width; idx += bw) { |
| update_txfm_count(x, xd, td_counts, max_tx_size, 0, idy, idx, |
| allow_update_cdf); |
| } |
| } |
| } |
| |
| static AOM_INLINE void set_txfm_context(MACROBLOCKD *xd, TX_SIZE tx_size, |
| int blk_row, int blk_col) { |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| const BLOCK_SIZE bsize = mbmi->sb_type; |
| const int max_blocks_high = max_block_high(xd, bsize, 0); |
| const int max_blocks_wide = max_block_wide(xd, bsize, 0); |
| const int txb_size_index = av1_get_txb_size_index(bsize, blk_row, blk_col); |
| const TX_SIZE plane_tx_size = mbmi->inter_tx_size[txb_size_index]; |
| |
| if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; |
| |
| if (tx_size == plane_tx_size) { |
| mbmi->tx_size = tx_size; |
| txfm_partition_update(xd->above_txfm_context + blk_col, |
| xd->left_txfm_context + blk_row, tx_size, tx_size); |
| |
| } else { |
| if (tx_size == TX_8X8) { |
| mbmi->inter_tx_size[txb_size_index] = TX_4X4; |
| mbmi->tx_size = TX_4X4; |
| txfm_partition_update(xd->above_txfm_context + blk_col, |
| xd->left_txfm_context + blk_row, TX_4X4, tx_size); |
| return; |
| } |
| const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; |
| const int bsw = tx_size_wide_unit[sub_txs]; |
| const int bsh = tx_size_high_unit[sub_txs]; |
| for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) { |
| for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) { |
| const int offsetr = blk_row + row; |
| const int offsetc = blk_col + col; |
| if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue; |
| set_txfm_context(xd, sub_txs, offsetr, offsetc); |
| } |
| } |
| } |
| } |
| |
| static AOM_INLINE void tx_partition_set_contexts(const AV1_COMMON *const cm, |
| MACROBLOCKD *xd, |
| BLOCK_SIZE plane_bsize) { |
| const int mi_width = mi_size_wide[plane_bsize]; |
| const int mi_height = mi_size_high[plane_bsize]; |
| const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, 0); |
| const int bh = tx_size_high_unit[max_tx_size]; |
| const int bw = tx_size_wide_unit[max_tx_size]; |
| |
| xd->above_txfm_context = |
| cm->above_contexts.txfm[xd->tile.tile_row] + xd->mi_col; |
| xd->left_txfm_context = |
| xd->left_txfm_context_buffer + (xd->mi_row & MAX_MIB_MASK); |
| |
| for (int idy = 0; idy < mi_height; idy += bh) { |
| for (int idx = 0; idx < mi_width; idx += bw) { |
| set_txfm_context(xd, max_tx_size, idy, idx); |
| } |
| } |
| } |
| |
| static AOM_INLINE void encode_superblock(const AV1_COMP *const cpi, |
| TileDataEnc *tile_data, ThreadData *td, |
| TokenExtra **t, RUN_TYPE dry_run, |
| BLOCK_SIZE bsize, int *rate) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO **mi_4x4 = xd->mi; |
| MB_MODE_INFO *mbmi = mi_4x4[0]; |
| const int seg_skip = |
| segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP); |
| const int mis = cm->mi_params.mi_stride; |
| const int mi_width = mi_size_wide[bsize]; |
| const int mi_height = mi_size_high[bsize]; |
| const int is_inter = is_inter_block(mbmi); |
| |
| // Initialize tx_mode and tx_size_search_method |
| TxfmSearchParams *txfm_params = &x->txfm_search_params; |
| set_tx_size_search_method( |
| cm, &cpi->winner_mode_params, txfm_params, |
| cpi->sf.winner_mode_sf.enable_winner_mode_for_tx_size_srch, 1); |
| |
| const int mi_row = xd->mi_row; |
| const int mi_col = xd->mi_col; |
| if (!is_inter) { |
| xd->cfl.store_y = store_cfl_required(cm, xd); |
| mbmi->skip_txfm = 1; |
| for (int plane = 0; plane < num_planes; ++plane) { |
| av1_encode_intra_block_plane(cpi, x, bsize, plane, dry_run, |
| cpi->optimize_seg_arr[mbmi->segment_id]); |
| } |
| |
| // If there is at least one lossless segment, force the skip for intra |
| // block to be 0, in order to avoid the segment_id to be changed by in |
| // write_segment_id(). |
| if (!cpi->common.seg.segid_preskip && cpi->common.seg.update_map && |
| cpi->enc_seg.has_lossless_segment) |
| mbmi->skip_txfm = 0; |
| |
| xd->cfl.store_y = 0; |
| if (av1_allow_palette(cm->features.allow_screen_content_tools, bsize)) { |
| for (int plane = 0; plane < AOMMIN(2, num_planes); ++plane) { |
| if (mbmi->palette_mode_info.palette_size[plane] > 0) { |
| if (!dry_run) { |
| av1_tokenize_color_map(x, plane, t, bsize, mbmi->tx_size, |
| PALETTE_MAP, tile_data->allow_update_cdf, |
| td->counts); |
| } else if (dry_run == DRY_RUN_COSTCOEFFS) { |
| rate += |
| av1_cost_color_map(x, plane, bsize, mbmi->tx_size, PALETTE_MAP); |
| } |
| } |
| } |
| } |
| |
| av1_update_txb_context(cpi, td, dry_run, bsize, |
| tile_data->allow_update_cdf); |
| } else { |
| int ref; |
| const int is_compound = has_second_ref(mbmi); |
| |
| set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); |
| for (ref = 0; ref < 1 + is_compound; ++ref) { |
| const YV12_BUFFER_CONFIG *cfg = |
| get_ref_frame_yv12_buf(cm, mbmi->ref_frame[ref]); |
| assert(IMPLIES(!is_intrabc_block(mbmi), cfg)); |
| av1_setup_pre_planes(xd, ref, cfg, mi_row, mi_col, |
| xd->block_ref_scale_factors[ref], num_planes); |
| } |
| int start_plane = (cpi->sf.rt_sf.reuse_inter_pred_nonrd) ? 1 : 0; |
| av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, |
| start_plane, av1_num_planes(cm) - 1); |
| if (mbmi->motion_mode == OBMC_CAUSAL) { |
| assert(cpi->oxcf.enable_obmc == 1); |
| av1_build_obmc_inter_predictors_sb(cm, xd); |
| } |
| |
| #if CONFIG_MISMATCH_DEBUG |
| if (dry_run == OUTPUT_ENABLED) { |
| for (int plane = 0; plane < num_planes; ++plane) { |
| const struct macroblockd_plane *pd = &xd->plane[plane]; |
| int pixel_c, pixel_r; |
| mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, 0, 0, |
| pd->subsampling_x, pd->subsampling_y); |
| if (!is_chroma_reference(mi_row, mi_col, bsize, pd->subsampling_x, |
| pd->subsampling_y)) |
| continue; |
| mismatch_record_block_pre(pd->dst.buf, pd->dst.stride, |
| cm->current_frame.order_hint, plane, pixel_c, |
| pixel_r, pd->width, pd->height, |
| xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH); |
| } |
| } |
| #else |
| (void)num_planes; |
| #endif |
| |
| av1_encode_sb(cpi, x, bsize, dry_run); |
| av1_tokenize_sb_vartx(cpi, td, dry_run, bsize, rate, |
| tile_data->allow_update_cdf); |
| } |
| |
| if (!dry_run) { |
| if (av1_allow_intrabc(cm) && is_intrabc_block(mbmi)) td->intrabc_used = 1; |
| if (txfm_params->tx_mode_search_type == TX_MODE_SELECT && |
| !xd->lossless[mbmi->segment_id] && mbmi->sb_type > BLOCK_4X4 && |
| !(is_inter && (mbmi->skip_txfm || seg_skip))) { |
| if (is_inter) { |
| tx_partition_count_update(cm, x, bsize, td->counts, |
| tile_data->allow_update_cdf); |
| } else { |
| if (mbmi->tx_size != max_txsize_rect_lookup[bsize]) |
| ++x->txfm_search_info.txb_split_count; |
| if (block_signals_txsize(bsize)) { |
| const int tx_size_ctx = get_tx_size_context(xd); |
| const int32_t tx_size_cat = bsize_to_tx_size_cat(bsize); |
| const int depth = tx_size_to_depth(mbmi->tx_size, bsize); |
| const int max_depths = bsize_to_max_depth(bsize); |
| |
| if (tile_data->allow_update_cdf) |
| update_cdf(xd->tile_ctx->tx_size_cdf[tx_size_cat][tx_size_ctx], |
| depth, max_depths + 1); |
| #if CONFIG_ENTROPY_STATS |
| ++td->counts->intra_tx_size[tx_size_cat][tx_size_ctx][depth]; |
| #endif |
| } |
| } |
| assert(IMPLIES(is_rect_tx(mbmi->tx_size), is_rect_tx_allowed(xd, mbmi))); |
| } else { |
| int i, j; |
| TX_SIZE intra_tx_size; |
| // The new intra coding scheme requires no change of transform size |
| if (is_inter) { |
| if (xd->lossless[mbmi->segment_id]) { |
| intra_tx_size = TX_4X4; |
| } else { |
| intra_tx_size = |
| tx_size_from_tx_mode(bsize, txfm_params->tx_mode_search_type); |
| } |
| } else { |
| intra_tx_size = mbmi->tx_size; |
| } |
| |
| for (j = 0; j < mi_height; j++) |
| for (i = 0; i < mi_width; i++) |
| if (mi_col + i < cm->mi_params.mi_cols && |
| mi_row + j < cm->mi_params.mi_rows) |
| mi_4x4[mis * j + i]->tx_size = intra_tx_size; |
| |
| if (intra_tx_size != max_txsize_rect_lookup[bsize]) |
| ++x->txfm_search_info.txb_split_count; |
| } |
| } |
| |
| if (txfm_params->tx_mode_search_type == TX_MODE_SELECT && |
| block_signals_txsize(mbmi->sb_type) && is_inter && |
| !(mbmi->skip_txfm || seg_skip) && !xd->lossless[mbmi->segment_id]) { |
| if (dry_run) tx_partition_set_contexts(cm, xd, bsize); |
| } else { |
| TX_SIZE tx_size = mbmi->tx_size; |
| // The new intra coding scheme requires no change of transform size |
| if (is_inter) { |
| if (xd->lossless[mbmi->segment_id]) { |
| tx_size = TX_4X4; |
| } else { |
| tx_size = tx_size_from_tx_mode(bsize, txfm_params->tx_mode_search_type); |
| } |
| } else { |
| tx_size = (bsize > BLOCK_4X4) ? tx_size : TX_4X4; |
| } |
| mbmi->tx_size = tx_size; |
| set_txfm_ctxs(tx_size, xd->width, xd->height, |
| (mbmi->skip_txfm || seg_skip) && is_inter_block(mbmi), xd); |
| } |
| |
| if (is_inter_block(mbmi) && !xd->is_chroma_ref && is_cfl_allowed(xd)) { |
| cfl_store_block(xd, mbmi->sb_type, mbmi->tx_size); |
| } |
| } |