blob: efd8a39bfc9cc98681e05bf9b9ff6bfaf1e10f89 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include "config/aom_config.h"
#include "config/av1_rtcd.h"
#include "config/aom_dsp_rtcd.h"
#include "config/aom_scale_rtcd.h"
#include "av1/common/alloccommon.h"
#include "av1/common/cdef.h"
#include "av1/common/filter.h"
#include "av1/common/idct.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#include "av1/common/resize.h"
#include "av1/common/tile_common.h"
#include "av1/encoder/aq_complexity.h"
#include "av1/encoder/aq_cyclicrefresh.h"
#include "av1/encoder/aq_variance.h"
#include "av1/encoder/bitstream.h"
#include "av1/encoder/context_tree.h"
#include "av1/encoder/encodeframe.h"
#include "av1/encoder/encodemv.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/encodetxb.h"
#include "av1/encoder/ethread.h"
#include "av1/encoder/firstpass.h"
#include "av1/encoder/hash_motion.h"
#include "av1/encoder/mbgraph.h"
#include "av1/encoder/picklpf.h"
#include "av1/encoder/pickrst.h"
#include "av1/encoder/random.h"
#include "av1/encoder/ratectrl.h"
#include "av1/encoder/rd.h"
#include "av1/encoder/segmentation.h"
#include "av1/encoder/speed_features.h"
#include "av1/encoder/temporal_filter.h"
#include "aom_dsp/psnr.h"
#if CONFIG_INTERNAL_STATS
#include "aom_dsp/ssim.h"
#endif
#include "av1/encoder/grain_test_vectors.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/aom_filter.h"
#include "aom_ports/aom_timer.h"
#include "aom_ports/mem.h"
#include "aom_ports/system_state.h"
#include "aom_scale/aom_scale.h"
#if CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG
#include "aom_util/debug_util.h"
#endif // CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG
#define DEFAULT_EXPLICIT_ORDER_HINT_BITS 7
// av1 uses 10,000,000 ticks/second as time stamp
#define TICKS_PER_SEC 10000000LL
#if CONFIG_ENTROPY_STATS
FRAME_COUNTS aggregate_fc;
#endif // CONFIG_ENTROPY_STATS
#define AM_SEGMENT_ID_INACTIVE 7
#define AM_SEGMENT_ID_ACTIVE 0
// Whether to use high precision mv for altref computation.
#define ALTREF_HIGH_PRECISION_MV 1
// Q threshold for high precision mv. Choose a very high value for now so that
// HIGH_PRECISION is always chosen.
#define HIGH_PRECISION_MV_QTHRESH 200
// #define OUTPUT_YUV_REC
#ifdef OUTPUT_YUV_SKINMAP
FILE *yuv_skinmap_file = NULL;
#endif
#ifdef OUTPUT_YUV_REC
FILE *yuv_rec_file;
#define FILE_NAME_LEN 100
#endif
static INLINE void Scale2Ratio(AOM_SCALING mode, int *hr, int *hs) {
switch (mode) {
case NORMAL:
*hr = 1;
*hs = 1;
break;
case FOURFIVE:
*hr = 4;
*hs = 5;
break;
case THREEFIVE:
*hr = 3;
*hs = 5;
break;
case ONETWO:
*hr = 1;
*hs = 2;
break;
default:
*hr = 1;
*hs = 1;
assert(0);
break;
}
}
// Mark all inactive blocks as active. Other segmentation features may be set
// so memset cannot be used, instead only inactive blocks should be reset.
static void suppress_active_map(AV1_COMP *cpi) {
unsigned char *const seg_map = cpi->segmentation_map;
int i;
if (cpi->active_map.enabled || cpi->active_map.update)
for (i = 0; i < cpi->common.mi_rows * cpi->common.mi_cols; ++i)
if (seg_map[i] == AM_SEGMENT_ID_INACTIVE)
seg_map[i] = AM_SEGMENT_ID_ACTIVE;
}
static void apply_active_map(AV1_COMP *cpi) {
struct segmentation *const seg = &cpi->common.seg;
unsigned char *const seg_map = cpi->segmentation_map;
const unsigned char *const active_map = cpi->active_map.map;
int i;
assert(AM_SEGMENT_ID_ACTIVE == CR_SEGMENT_ID_BASE);
if (frame_is_intra_only(&cpi->common)) {
cpi->active_map.enabled = 0;
cpi->active_map.update = 1;
}
if (cpi->active_map.update) {
if (cpi->active_map.enabled) {
for (i = 0; i < cpi->common.mi_rows * cpi->common.mi_cols; ++i)
if (seg_map[i] == AM_SEGMENT_ID_ACTIVE) seg_map[i] = active_map[i];
av1_enable_segmentation(seg);
av1_enable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_SKIP);
av1_enable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_Y_H);
av1_enable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_Y_V);
av1_enable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_U);
av1_enable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_V);
av1_set_segdata(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_Y_H,
-MAX_LOOP_FILTER);
av1_set_segdata(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_Y_V,
-MAX_LOOP_FILTER);
av1_set_segdata(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_U,
-MAX_LOOP_FILTER);
av1_set_segdata(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_V,
-MAX_LOOP_FILTER);
} else {
av1_disable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_SKIP);
av1_disable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_Y_H);
av1_disable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_Y_V);
av1_disable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_U);
av1_disable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_V);
if (seg->enabled) {
seg->update_data = 1;
seg->update_map = 1;
}
}
cpi->active_map.update = 0;
}
}
int av1_set_active_map(AV1_COMP *cpi, unsigned char *new_map_16x16, int rows,
int cols) {
if (rows == cpi->common.mb_rows && cols == cpi->common.mb_cols) {
unsigned char *const active_map_8x8 = cpi->active_map.map;
const int mi_rows = cpi->common.mi_rows;
const int mi_cols = cpi->common.mi_cols;
const int row_scale = mi_size_high[BLOCK_16X16] == 2 ? 1 : 2;
const int col_scale = mi_size_wide[BLOCK_16X16] == 2 ? 1 : 2;
cpi->active_map.update = 1;
if (new_map_16x16) {
int r, c;
for (r = 0; r < mi_rows; ++r) {
for (c = 0; c < mi_cols; ++c) {
active_map_8x8[r * mi_cols + c] =
new_map_16x16[(r >> row_scale) * cols + (c >> col_scale)]
? AM_SEGMENT_ID_ACTIVE
: AM_SEGMENT_ID_INACTIVE;
}
}
cpi->active_map.enabled = 1;
} else {
cpi->active_map.enabled = 0;
}
return 0;
} else {
return -1;
}
}
int av1_get_active_map(AV1_COMP *cpi, unsigned char *new_map_16x16, int rows,
int cols) {
if (rows == cpi->common.mb_rows && cols == cpi->common.mb_cols &&
new_map_16x16) {
unsigned char *const seg_map_8x8 = cpi->segmentation_map;
const int mi_rows = cpi->common.mi_rows;
const int mi_cols = cpi->common.mi_cols;
const int row_scale = mi_size_high[BLOCK_16X16] == 2 ? 1 : 2;
const int col_scale = mi_size_wide[BLOCK_16X16] == 2 ? 1 : 2;
memset(new_map_16x16, !cpi->active_map.enabled, rows * cols);
if (cpi->active_map.enabled) {
int r, c;
for (r = 0; r < mi_rows; ++r) {
for (c = 0; c < mi_cols; ++c) {
// Cyclic refresh segments are considered active despite not having
// AM_SEGMENT_ID_ACTIVE
new_map_16x16[(r >> row_scale) * cols + (c >> col_scale)] |=
seg_map_8x8[r * mi_cols + c] != AM_SEGMENT_ID_INACTIVE;
}
}
}
return 0;
} else {
return -1;
}
}
static void set_high_precision_mv(AV1_COMP *cpi, int allow_high_precision_mv,
int cur_frame_force_integer_mv) {
MACROBLOCK *const mb = &cpi->td.mb;
cpi->common.allow_high_precision_mv =
allow_high_precision_mv && cur_frame_force_integer_mv == 0;
const int copy_hp =
cpi->common.allow_high_precision_mv && cur_frame_force_integer_mv == 0;
int *(*src)[2] = copy_hp ? &mb->nmvcost_hp : &mb->nmvcost;
mb->mv_cost_stack = *src;
}
static BLOCK_SIZE select_sb_size(const AV1_COMP *const cpi) {
const AV1_COMMON *const cm = &cpi->common;
if (cpi->oxcf.superblock_size == AOM_SUPERBLOCK_SIZE_64X64)
return BLOCK_64X64;
#if CONFIG_FILEOPTIONS
if (cm->options && cm->options->ext_partition)
#endif
if (cpi->oxcf.superblock_size == AOM_SUPERBLOCK_SIZE_128X128)
return BLOCK_128X128;
assert(cpi->oxcf.superblock_size == AOM_SUPERBLOCK_SIZE_DYNAMIC);
// TODO(any): Possibly could improve this with a heuristic.
#if CONFIG_FILEOPTIONS
if (cm->options && !cm->options->ext_partition) return BLOCK_64X64;
#endif
// When superres / resize is on, 'cm->width / height' can change between
// calls, so we don't apply this heuristic there. Also, this heuristic gives
// compression gain for speed >= 2 only.
if (cpi->oxcf.superres_mode == SUPERRES_NONE &&
cpi->oxcf.resize_mode == RESIZE_NONE && cpi->oxcf.speed >= 2) {
return (cm->width >= 480 && cm->height >= 360) ? BLOCK_128X128
: BLOCK_64X64;
}
return BLOCK_128X128;
}
static void setup_frame(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
// Set up entropy context depending on frame type. The decoder mandates
// the use of the default context, index 0, for keyframes and inter
// frames where the error_resilient_mode or intra_only flag is set. For
// other inter-frames the encoder currently uses only two contexts;
// context 1 for ALTREF frames and context 0 for the others.
cm->primary_ref_frame = PRIMARY_REF_NONE;
if (frame_is_intra_only(cm) || cm->error_resilient_mode ||
cm->force_primary_ref_none) {
av1_setup_past_independence(cm);
for (int i = 0; i < REF_FRAMES; i++) {
cm->fb_of_context_type[i] = -1;
}
cm->fb_of_context_type[REGULAR_FRAME] =
get_ref_frame_map_idx(cpi, GOLDEN_FRAME);
cm->frame_context_idx = REGULAR_FRAME;
} else {
const GF_GROUP *gf_group = &cpi->twopass.gf_group;
if (gf_group->update_type[gf_group->index] == INTNL_ARF_UPDATE)
cm->frame_context_idx = EXT_ARF_FRAME;
else if (cpi->refresh_alt_ref_frame)
cm->frame_context_idx = ARF_FRAME;
else if (cpi->rc.is_src_frame_alt_ref)
cm->frame_context_idx = OVERLAY_FRAME;
else if (cpi->refresh_golden_frame)
cm->frame_context_idx = GLD_FRAME;
else if (cpi->refresh_bwd_ref_frame)
cm->frame_context_idx = BRF_FRAME;
else
cm->frame_context_idx = REGULAR_FRAME;
int wanted_fb = cm->fb_of_context_type[cm->frame_context_idx];
for (int ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ref_frame++) {
int fb = get_ref_frame_map_idx(cpi, ref_frame);
if (fb == wanted_fb) {
cm->primary_ref_frame = ref_frame - LAST_FRAME;
}
}
}
if (cm->frame_type == KEY_FRAME) {
cpi->refresh_golden_frame = 1;
cpi->refresh_alt_ref_frame = 1;
av1_zero(cpi->interp_filter_selected);
set_sb_size(&cm->seq_params, select_sb_size(cpi));
set_use_reference_buffer(cm, 0);
} else if (frame_is_sframe(cm)) {
cpi->refresh_golden_frame = 1;
cpi->refresh_alt_ref_frame = 1;
av1_zero(cpi->interp_filter_selected);
set_sb_size(&cm->seq_params, select_sb_size(cpi));
} else {
if (cm->primary_ref_frame == PRIMARY_REF_NONE ||
cm->frame_refs[cm->primary_ref_frame].idx < 0) {
av1_setup_past_independence(cm);
cm->seg.update_map = 1;
cm->seg.update_data = 1;
} else {
*cm->fc = cm->frame_contexts[cm->frame_refs[cm->primary_ref_frame].idx];
}
av1_zero(cpi->interp_filter_selected[0]);
}
cm->prev_frame = get_prev_frame(cm);
cpi->vaq_refresh = 0;
}
static void enc_setup_mi(AV1_COMMON *cm) {
int i;
cm->mi = cm->mip;
memset(cm->mip, 0, cm->mi_stride * cm->mi_rows * sizeof(*cm->mip));
cm->prev_mi = cm->prev_mip;
// Clear top border row
memset(cm->prev_mip, 0, sizeof(*cm->prev_mip) * cm->mi_stride);
// Clear left border column
for (i = 0; i < cm->mi_rows; ++i)
memset(&cm->prev_mip[i * cm->mi_stride], 0, sizeof(*cm->prev_mip));
cm->mi_grid_visible = cm->mi_grid_base;
cm->prev_mi_grid_visible = cm->prev_mi_grid_base;
memset(cm->mi_grid_base, 0,
cm->mi_stride * cm->mi_rows * sizeof(*cm->mi_grid_base));
}
static int enc_alloc_mi(AV1_COMMON *cm, int mi_size) {
cm->mip = aom_calloc(mi_size, sizeof(*cm->mip));
if (!cm->mip) return 1;
cm->prev_mip = aom_calloc(mi_size, sizeof(*cm->prev_mip));
if (!cm->prev_mip) return 1;
cm->mi_alloc_size = mi_size;
cm->mi_grid_base =
(MB_MODE_INFO **)aom_calloc(mi_size, sizeof(MB_MODE_INFO *));
if (!cm->mi_grid_base) return 1;
cm->prev_mi_grid_base =
(MB_MODE_INFO **)aom_calloc(mi_size, sizeof(MB_MODE_INFO *));
if (!cm->prev_mi_grid_base) return 1;
return 0;
}
static void enc_free_mi(AV1_COMMON *cm) {
aom_free(cm->mip);
cm->mip = NULL;
aom_free(cm->prev_mip);
cm->prev_mip = NULL;
aom_free(cm->mi_grid_base);
cm->mi_grid_base = NULL;
aom_free(cm->prev_mi_grid_base);
cm->prev_mi_grid_base = NULL;
cm->mi_alloc_size = 0;
}
static void swap_mi_and_prev_mi(AV1_COMMON *cm) {
// Current mip will be the prev_mip for the next frame.
MB_MODE_INFO **temp_base = cm->prev_mi_grid_base;
MB_MODE_INFO *temp = cm->prev_mip;
cm->prev_mip = cm->mip;
cm->mip = temp;
// Update the upper left visible macroblock ptrs.
cm->mi = cm->mip;
cm->prev_mi = cm->prev_mip;
cm->prev_mi_grid_base = cm->mi_grid_base;
cm->mi_grid_base = temp_base;
cm->mi_grid_visible = cm->mi_grid_base;
cm->prev_mi_grid_visible = cm->prev_mi_grid_base;
}
void av1_initialize_enc(void) {
static volatile int init_done = 0;
if (!init_done) {
av1_rtcd();
aom_dsp_rtcd();
aom_scale_rtcd();
av1_init_intra_predictors();
av1_init_me_luts();
av1_rc_init_minq_luts();
av1_init_wedge_masks();
init_done = 1;
}
}
static void dealloc_context_buffers_ext(AV1_COMP *cpi) {
if (cpi->mbmi_ext_base) {
aom_free(cpi->mbmi_ext_base);
cpi->mbmi_ext_base = NULL;
}
}
static void alloc_context_buffers_ext(AV1_COMP *cpi) {
AV1_COMMON *cm = &cpi->common;
int mi_size = cm->mi_cols * cm->mi_rows;
dealloc_context_buffers_ext(cpi);
CHECK_MEM_ERROR(cm, cpi->mbmi_ext_base,
aom_calloc(mi_size, sizeof(*cpi->mbmi_ext_base)));
}
static void update_film_grain_parameters(struct AV1_COMP *cpi,
const AV1EncoderConfig *oxcf) {
AV1_COMMON *const cm = &cpi->common;
cpi->oxcf = *oxcf;
if (cm->film_grain_table) {
aom_film_grain_table_free(cm->film_grain_table);
aom_free(cm->film_grain_table);
}
cm->film_grain_table = 0;
if (oxcf->film_grain_test_vector) {
cm->film_grain_params_present = 1;
if (cm->frame_type == KEY_FRAME) {
memcpy(&cm->film_grain_params,
film_grain_test_vectors + oxcf->film_grain_test_vector - 1,
sizeof(cm->film_grain_params));
cm->film_grain_params.bit_depth = cm->bit_depth;
if (cm->color_range == AOM_CR_FULL_RANGE) {
cm->film_grain_params.clip_to_restricted_range = 0;
}
}
} else if (oxcf->film_grain_table_filename) {
cm->film_grain_table = aom_malloc(sizeof(*cm->film_grain_table));
memset(cm->film_grain_table, 0, sizeof(aom_film_grain_table_t));
aom_film_grain_table_read(cm->film_grain_table,
oxcf->film_grain_table_filename, &cm->error);
} else {
cm->film_grain_params_present = 0;
memset(&cm->film_grain_params, 0, sizeof(cm->film_grain_params));
}
}
static void dealloc_compressor_data(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
dealloc_context_buffers_ext(cpi);
aom_free(cpi->tile_data);
cpi->tile_data = NULL;
// Delete sementation map
aom_free(cpi->segmentation_map);
cpi->segmentation_map = NULL;
av1_cyclic_refresh_free(cpi->cyclic_refresh);
cpi->cyclic_refresh = NULL;
aom_free(cpi->active_map.map);
cpi->active_map.map = NULL;
aom_free(cpi->td.mb.above_pred_buf);
cpi->td.mb.above_pred_buf = NULL;
aom_free(cpi->td.mb.left_pred_buf);
cpi->td.mb.left_pred_buf = NULL;
aom_free(cpi->td.mb.wsrc_buf);
cpi->td.mb.wsrc_buf = NULL;
aom_free(cpi->td.mb.mask_buf);
cpi->td.mb.mask_buf = NULL;
aom_free(cm->tpl_mvs);
cm->tpl_mvs = NULL;
av1_free_ref_frame_buffers(cm->buffer_pool);
av1_free_txb_buf(cpi);
av1_free_context_buffers(cm);
aom_free_frame_buffer(&cpi->last_frame_uf);
av1_free_restoration_buffers(cm);
aom_free_frame_buffer(&cpi->trial_frame_rst);
aom_free_frame_buffer(&cpi->scaled_source);
aom_free_frame_buffer(&cpi->scaled_last_source);
aom_free_frame_buffer(&cpi->alt_ref_buffer);
av1_lookahead_destroy(cpi->lookahead);
aom_free(cpi->tile_tok[0][0]);
cpi->tile_tok[0][0] = 0;
av1_free_pc_tree(&cpi->td, num_planes);
aom_free(cpi->td.mb.palette_buffer);
}
static void save_coding_context(AV1_COMP *cpi) {
CODING_CONTEXT *const cc = &cpi->coding_context;
AV1_COMMON *cm = &cpi->common;
// Stores a snapshot of key state variables which can subsequently be
// restored with a call to av1_restore_coding_context. These functions are
// intended for use in a re-code loop in av1_compress_frame where the
// quantizer value is adjusted between loop iterations.
av1_copy(cc->nmv_vec_cost, cpi->td.mb.nmv_vec_cost);
av1_copy(cc->nmv_costs, cpi->nmv_costs);
av1_copy(cc->nmv_costs_hp, cpi->nmv_costs_hp);
cc->fc = *cm->fc;
}
static void restore_coding_context(AV1_COMP *cpi) {
CODING_CONTEXT *const cc = &cpi->coding_context;
AV1_COMMON *cm = &cpi->common;
// Restore key state variables to the snapshot state stored in the
// previous call to av1_save_coding_context.
av1_copy(cpi->td.mb.nmv_vec_cost, cc->nmv_vec_cost);
av1_copy(cpi->nmv_costs, cc->nmv_costs);
av1_copy(cpi->nmv_costs_hp, cc->nmv_costs_hp);
*cm->fc = cc->fc;
}
static void configure_static_seg_features(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
const RATE_CONTROL *const rc = &cpi->rc;
struct segmentation *const seg = &cm->seg;
int high_q = (int)(rc->avg_q > 48.0);
int qi_delta;
// Disable and clear down for KF
if (cm->frame_type == KEY_FRAME) {
// Clear down the global segmentation map
memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols);
seg->update_map = 0;
seg->update_data = 0;
cpi->static_mb_pct = 0;
// Disable segmentation
av1_disable_segmentation(seg);
// Clear down the segment features.
av1_clearall_segfeatures(seg);
} else if (cpi->refresh_alt_ref_frame) {
// If this is an alt ref frame
// Clear down the global segmentation map
memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols);
seg->update_map = 0;
seg->update_data = 0;
cpi->static_mb_pct = 0;
// Disable segmentation and individual segment features by default
av1_disable_segmentation(seg);
av1_clearall_segfeatures(seg);
// Scan frames from current to arf frame.
// This function re-enables segmentation if appropriate.
av1_update_mbgraph_stats(cpi);
// If segmentation was enabled set those features needed for the
// arf itself.
if (seg->enabled) {
seg->update_map = 1;
seg->update_data = 1;
qi_delta =
av1_compute_qdelta(rc, rc->avg_q, rc->avg_q * 0.875, cm->bit_depth);
av1_set_segdata(seg, 1, SEG_LVL_ALT_Q, qi_delta - 2);
av1_set_segdata(seg, 1, SEG_LVL_ALT_LF_Y_H, -2);
av1_set_segdata(seg, 1, SEG_LVL_ALT_LF_Y_V, -2);
av1_set_segdata(seg, 1, SEG_LVL_ALT_LF_U, -2);
av1_set_segdata(seg, 1, SEG_LVL_ALT_LF_V, -2);
av1_enable_segfeature(seg, 1, SEG_LVL_ALT_LF_Y_H);
av1_enable_segfeature(seg, 1, SEG_LVL_ALT_LF_Y_V);
av1_enable_segfeature(seg, 1, SEG_LVL_ALT_LF_U);
av1_enable_segfeature(seg, 1, SEG_LVL_ALT_LF_V);
av1_enable_segfeature(seg, 1, SEG_LVL_ALT_Q);
}
} else if (seg->enabled) {
// All other frames if segmentation has been enabled
// First normal frame in a valid gf or alt ref group
if (rc->frames_since_golden == 0) {
// Set up segment features for normal frames in an arf group
if (rc->source_alt_ref_active) {
seg->update_map = 0;
seg->update_data = 1;
qi_delta =
av1_compute_qdelta(rc, rc->avg_q, rc->avg_q * 1.125, cm->bit_depth);
av1_set_segdata(seg, 1, SEG_LVL_ALT_Q, qi_delta + 2);
av1_enable_segfeature(seg, 1, SEG_LVL_ALT_Q);
av1_set_segdata(seg, 1, SEG_LVL_ALT_LF_Y_H, -2);
av1_set_segdata(seg, 1, SEG_LVL_ALT_LF_Y_V, -2);
av1_set_segdata(seg, 1, SEG_LVL_ALT_LF_U, -2);
av1_set_segdata(seg, 1, SEG_LVL_ALT_LF_V, -2);
av1_enable_segfeature(seg, 1, SEG_LVL_ALT_LF_Y_H);
av1_enable_segfeature(seg, 1, SEG_LVL_ALT_LF_Y_V);
av1_enable_segfeature(seg, 1, SEG_LVL_ALT_LF_U);
av1_enable_segfeature(seg, 1, SEG_LVL_ALT_LF_V);
// Segment coding disabled for compred testing
if (high_q || (cpi->static_mb_pct == 100)) {
av1_set_segdata(seg, 1, SEG_LVL_REF_FRAME, ALTREF_FRAME);
av1_enable_segfeature(seg, 1, SEG_LVL_REF_FRAME);
av1_enable_segfeature(seg, 1, SEG_LVL_SKIP);
}
} else {
// Disable segmentation and clear down features if alt ref
// is not active for this group
av1_disable_segmentation(seg);
memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols);
seg->update_map = 0;
seg->update_data = 0;
av1_clearall_segfeatures(seg);
}
} else if (rc->is_src_frame_alt_ref) {
// Special case where we are coding over the top of a previous
// alt ref frame.
// Segment coding disabled for compred testing
// Enable ref frame features for segment 0 as well
av1_enable_segfeature(seg, 0, SEG_LVL_REF_FRAME);
av1_enable_segfeature(seg, 1, SEG_LVL_REF_FRAME);
// All mbs should use ALTREF_FRAME
av1_clear_segdata(seg, 0, SEG_LVL_REF_FRAME);
av1_set_segdata(seg, 0, SEG_LVL_REF_FRAME, ALTREF_FRAME);
av1_clear_segdata(seg, 1, SEG_LVL_REF_FRAME);
av1_set_segdata(seg, 1, SEG_LVL_REF_FRAME, ALTREF_FRAME);
// Skip all MBs if high Q (0,0 mv and skip coeffs)
if (high_q) {
av1_enable_segfeature(seg, 0, SEG_LVL_SKIP);
av1_enable_segfeature(seg, 1, SEG_LVL_SKIP);
}
// Enable data update
seg->update_data = 1;
} else {
// All other frames.
// No updates.. leave things as they are.
seg->update_map = 0;
seg->update_data = 0;
}
}
}
static void update_reference_segmentation_map(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
MB_MODE_INFO **mi_4x4_ptr = cm->mi_grid_visible;
uint8_t *cache_ptr = cm->current_frame_seg_map;
int row, col;
for (row = 0; row < cm->mi_rows; row++) {
MB_MODE_INFO **mi_4x4 = mi_4x4_ptr;
uint8_t *cache = cache_ptr;
for (col = 0; col < cm->mi_cols; col++, mi_4x4++, cache++)
cache[0] = mi_4x4[0]->segment_id;
mi_4x4_ptr += cm->mi_stride;
cache_ptr += cm->mi_cols;
}
}
static void alloc_raw_frame_buffers(AV1_COMP *cpi) {
AV1_COMMON *cm = &cpi->common;
const AV1EncoderConfig *oxcf = &cpi->oxcf;
if (!cpi->lookahead)
cpi->lookahead = av1_lookahead_init(
oxcf->width, oxcf->height, cm->subsampling_x, cm->subsampling_y,
cm->use_highbitdepth, oxcf->lag_in_frames);
if (!cpi->lookahead)
aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate lag buffers");
// TODO(agrange) Check if ARF is enabled and skip allocation if not.
if (aom_realloc_frame_buffer(&cpi->alt_ref_buffer, oxcf->width, oxcf->height,
cm->subsampling_x, cm->subsampling_y,
cm->use_highbitdepth, AOM_BORDER_IN_PIXELS,
cm->byte_alignment, NULL, NULL, NULL))
aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate altref buffer");
}
static void alloc_util_frame_buffers(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
if (aom_realloc_frame_buffer(&cpi->last_frame_uf, cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
cm->use_highbitdepth, AOM_BORDER_IN_PIXELS,
cm->byte_alignment, NULL, NULL, NULL))
aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate last frame buffer");
if (aom_realloc_frame_buffer(
&cpi->trial_frame_rst, cm->superres_upscaled_width,
cm->superres_upscaled_height, cm->subsampling_x, cm->subsampling_y,
cm->use_highbitdepth, AOM_BORDER_IN_PIXELS, cm->byte_alignment, NULL,
NULL, NULL))
aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate trial restored frame buffer");
if (aom_realloc_frame_buffer(&cpi->scaled_source, cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
cm->use_highbitdepth, AOM_BORDER_IN_PIXELS,
cm->byte_alignment, NULL, NULL, NULL))
aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate scaled source buffer");
if (aom_realloc_frame_buffer(&cpi->scaled_last_source, cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
cm->use_highbitdepth, AOM_BORDER_IN_PIXELS,
cm->byte_alignment, NULL, NULL, NULL))
aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate scaled last source buffer");
}
static void alloc_compressor_data(AV1_COMP *cpi) {
AV1_COMMON *cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
av1_alloc_context_buffers(cm, cm->width, cm->height);
av1_alloc_txb_buf(cpi);
alloc_context_buffers_ext(cpi);
aom_free(cpi->tile_tok[0][0]);
{
unsigned int tokens =
get_token_alloc(cm->mb_rows, cm->mb_cols, MAX_SB_SIZE_LOG2, num_planes);
CHECK_MEM_ERROR(cm, cpi->tile_tok[0][0],
aom_calloc(tokens, sizeof(*cpi->tile_tok[0][0])));
}
av1_setup_pc_tree(&cpi->common, &cpi->td);
}
void av1_new_framerate(AV1_COMP *cpi, double framerate) {
cpi->framerate = framerate < 0.1 ? 30 : framerate;
av1_rc_update_framerate(cpi, cpi->common.width, cpi->common.height);
}
static void set_tile_info_max_tile(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
int i, start_sb;
av1_get_tile_limits(cm);
// configure tile columns
if (cpi->oxcf.tile_width_count == 0 || cpi->oxcf.tile_height_count == 0) {
cm->uniform_tile_spacing_flag = 1;
cm->log2_tile_cols = AOMMAX(cpi->oxcf.tile_columns, cm->min_log2_tile_cols);
cm->log2_tile_cols = AOMMIN(cm->log2_tile_cols, cm->max_log2_tile_cols);
} else {
int mi_cols = ALIGN_POWER_OF_TWO(cm->mi_cols, cm->seq_params.mib_size_log2);
int sb_cols = mi_cols >> cm->seq_params.mib_size_log2;
int size_sb, j = 0;
cm->uniform_tile_spacing_flag = 0;
for (i = 0, start_sb = 0; start_sb < sb_cols && i < MAX_TILE_COLS; i++) {
cm->tile_col_start_sb[i] = start_sb;
size_sb = cpi->oxcf.tile_widths[j++];
if (j >= cpi->oxcf.tile_width_count) j = 0;
start_sb += AOMMIN(size_sb, cm->max_tile_width_sb);
}
cm->tile_cols = i;
cm->tile_col_start_sb[i] = sb_cols;
}
av1_calculate_tile_cols(cm);
// configure tile rows
if (cm->uniform_tile_spacing_flag) {
cm->log2_tile_rows = AOMMAX(cpi->oxcf.tile_rows, cm->min_log2_tile_rows);
cm->log2_tile_rows = AOMMIN(cm->log2_tile_rows, cm->max_log2_tile_rows);
} else {
int mi_rows = ALIGN_POWER_OF_TWO(cm->mi_rows, cm->seq_params.mib_size_log2);
int sb_rows = mi_rows >> cm->seq_params.mib_size_log2;
int size_sb, j = 0;
for (i = 0, start_sb = 0; start_sb < sb_rows && i < MAX_TILE_ROWS; i++) {
cm->tile_row_start_sb[i] = start_sb;
size_sb = cpi->oxcf.tile_heights[j++];
if (j >= cpi->oxcf.tile_height_count) j = 0;
start_sb += AOMMIN(size_sb, cm->max_tile_height_sb);
}
cm->tile_rows = i;
cm->tile_row_start_sb[i] = sb_rows;
}
av1_calculate_tile_rows(cm);
}
static void set_tile_info(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
if (cpi->oxcf.large_scale_tile) {
if (cpi->oxcf.superblock_size != AOM_SUPERBLOCK_SIZE_64X64) {
cm->tile_width = clamp(cpi->oxcf.tile_columns, 1, 32);
cm->tile_height = clamp(cpi->oxcf.tile_rows, 1, 32);
cm->tile_width <<= MAX_MIB_SIZE_LOG2;
cm->tile_height <<= MAX_MIB_SIZE_LOG2;
} else {
cm->tile_width = clamp(cpi->oxcf.tile_columns, 1, 64);
cm->tile_height = clamp(cpi->oxcf.tile_rows, 1, 64);
cm->tile_width <<= MAX_MIB_SIZE_LOG2 - 1;
cm->tile_height <<= MAX_MIB_SIZE_LOG2 - 1;
}
cm->tile_width = AOMMIN(cm->tile_width, cm->mi_cols);
cm->tile_height = AOMMIN(cm->tile_height, cm->mi_rows);
assert(cm->tile_width >> MAX_MIB_SIZE_LOG2 <= 32);
assert(cm->tile_height >> MAX_MIB_SIZE_LOG2 <= 32);
// Get the number of tiles
cm->tile_cols = 1;
while (cm->tile_cols * cm->tile_width < cm->mi_cols) ++cm->tile_cols;
cm->tile_rows = 1;
while (cm->tile_rows * cm->tile_height < cm->mi_rows) ++cm->tile_rows;
int i;
for (i = 0; i <= cm->tile_cols; i++) {
cm->tile_col_start_sb[i] =
((i * cm->tile_width - 1) >> cm->seq_params.mib_size_log2) + 1;
}
for (i = 0; i <= cm->tile_rows; i++) {
cm->tile_row_start_sb[i] =
((i * cm->tile_height - 1) >> cm->seq_params.mib_size_log2) + 1;
}
} else {
set_tile_info_max_tile(cpi);
}
}
static void update_frame_size(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
av1_set_mb_mi(cm, cm->width, cm->height);
av1_init_context_buffers(cm);
av1_init_macroblockd(cm, xd, NULL);
memset(cpi->mbmi_ext_base, 0,
cm->mi_rows * cm->mi_cols * sizeof(*cpi->mbmi_ext_base));
set_tile_info(cpi);
}
static void init_buffer_indices(AV1_COMP *cpi) {
int fb_idx;
for (fb_idx = 0; fb_idx < REF_FRAMES; ++fb_idx)
cpi->ref_fb_idx[fb_idx] = fb_idx;
for (fb_idx = 0; fb_idx < MAX_EXT_ARFS + 1; ++fb_idx)
cpi->arf_map[fb_idx] = LAST_REF_FRAMES + 2 + fb_idx;
cpi->rate_index = 0;
cpi->rate_size = 0;
cpi->cur_poc = -1;
}
static INLINE int does_level_match(int width, int height, double fps,
int lvl_width, int lvl_height,
double lvl_fps, int lvl_dim_mult) {
const int64_t lvl_luma_pels = lvl_width * lvl_height;
const double lvl_display_sample_rate = lvl_luma_pels * lvl_fps;
const int64_t luma_pels = width * height;
const double display_sample_rate = luma_pels * fps;
return luma_pels <= lvl_luma_pels &&
display_sample_rate <= lvl_display_sample_rate &&
width <= lvl_width * lvl_dim_mult &&
height <= lvl_height * lvl_dim_mult;
}
static void set_bitstream_level_tier(SequenceHeader *seq,
const AV1EncoderConfig *oxcf) {
// TODO(any): This is a placeholder function that only addresses dimensions
// and max display sample rates.
// Need to add checks for max bit rate, max decoded luma sample rate, header
// rate, etc. that are not covered by this function.
(void)oxcf;
BitstreamLevel bl = { 9, 3 };
if (does_level_match(oxcf->width, oxcf->height, oxcf->init_framerate, 512,
288, 30.0, 4)) {
bl.major = 2;
bl.minor = 0;
} else if (does_level_match(oxcf->width, oxcf->height, oxcf->init_framerate,
704, 396, 30.0, 4)) {
bl.major = 2;
bl.minor = 1;
} else if (does_level_match(oxcf->width, oxcf->height, oxcf->init_framerate,
1088, 612, 30.0, 4)) {
bl.major = 3;
bl.minor = 0;
} else if (does_level_match(oxcf->width, oxcf->height, oxcf->init_framerate,
1376, 774, 30.0, 4)) {
bl.major = 3;
bl.minor = 1;
} else if (does_level_match(oxcf->width, oxcf->height, oxcf->init_framerate,
2048, 1152, 30.0, 3)) {
bl.major = 4;
bl.minor = 0;
} else if (does_level_match(oxcf->width, oxcf->height, oxcf->init_framerate,
2048, 1152, 60.0, 3)) {
bl.major = 4;
bl.minor = 1;
} else if (does_level_match(oxcf->width, oxcf->height, oxcf->init_framerate,
4096, 2176, 30.0, 2)) {
bl.major = 5;
bl.minor = 0;
} else if (does_level_match(oxcf->width, oxcf->height, oxcf->init_framerate,
4096, 2176, 60.0, 2)) {
bl.major = 5;
bl.minor = 1;
} else if (does_level_match(oxcf->width, oxcf->height, oxcf->init_framerate,
4096, 2176, 120.0, 2)) {
bl.major = 5;
bl.minor = 2;
} else if (does_level_match(oxcf->width, oxcf->height, oxcf->init_framerate,
8192, 4352, 30.0, 2)) {
bl.major = 6;
bl.minor = 0;
} else if (does_level_match(oxcf->width, oxcf->height, oxcf->init_framerate,
8192, 4352, 60.0, 2)) {
bl.major = 6;
bl.minor = 1;
} else if (does_level_match(oxcf->width, oxcf->height, oxcf->init_framerate,
8192, 4352, 120.0, 2)) {
bl.major = 6;
bl.minor = 2;
} else if (does_level_match(oxcf->width, oxcf->height, oxcf->init_framerate,
16384, 8704, 30.0, 2)) {
bl.major = 7;
bl.minor = 0;
} else if (does_level_match(oxcf->width, oxcf->height, oxcf->init_framerate,
16384, 8704, 60.0, 2)) {
bl.major = 7;
bl.minor = 1;
} else if (does_level_match(oxcf->width, oxcf->height, oxcf->init_framerate,
16384, 8704, 120.0, 2)) {
bl.major = 7;
bl.minor = 2;
}
for (int i = 0; i < MAX_NUM_OPERATING_POINTS; ++i) {
seq->level[i] = bl;
seq->tier[i] = 0; // setting main tier by default
}
}
void init_seq_coding_tools(SequenceHeader *seq, const AV1EncoderConfig *oxcf) {
seq->still_picture = (oxcf->limit == 1);
seq->reduced_still_picture_hdr = seq->still_picture;
seq->reduced_still_picture_hdr &= !oxcf->full_still_picture_hdr;
seq->force_screen_content_tools = 2;
seq->force_integer_mv = 2;
seq->enable_order_hint = oxcf->enable_order_hint;
seq->frame_id_numbers_present_flag = oxcf->large_scale_tile;
if (seq->still_picture && seq->reduced_still_picture_hdr) {
seq->enable_order_hint = 0;
seq->frame_id_numbers_present_flag = 0;
seq->force_screen_content_tools = 2;
seq->force_integer_mv = 2;
}
seq->order_hint_bits_minus_1 =
seq->enable_order_hint ? DEFAULT_EXPLICIT_ORDER_HINT_BITS - 1 : -1;
seq->enable_dual_filter = oxcf->enable_dual_filter;
seq->enable_jnt_comp = oxcf->enable_jnt_comp;
seq->enable_jnt_comp &= seq->enable_order_hint;
seq->enable_ref_frame_mvs = oxcf->enable_ref_frame_mvs;
seq->enable_ref_frame_mvs &= seq->enable_order_hint;
seq->enable_superres = oxcf->enable_superres;
seq->enable_cdef = oxcf->enable_cdef;
seq->enable_restoration = oxcf->enable_restoration;
seq->enable_warped_motion = oxcf->enable_warped_motion;
seq->enable_interintra_compound = 1;
seq->enable_masked_compound = 1;
seq->enable_intra_edge_filter = 1;
seq->enable_filter_intra = 1;
set_bitstream_level_tier(seq, oxcf);
}
static void init_config(struct AV1_COMP *cpi, AV1EncoderConfig *oxcf) {
AV1_COMMON *const cm = &cpi->common;
cpi->oxcf = *oxcf;
cpi->framerate = oxcf->init_framerate;
cm->profile = oxcf->profile;
cm->bit_depth = oxcf->bit_depth;
cm->use_highbitdepth = oxcf->use_highbitdepth;
cm->color_primaries = oxcf->color_primaries;
cm->transfer_characteristics = oxcf->transfer_characteristics;
cm->matrix_coefficients = oxcf->matrix_coefficients;
cm->seq_params.monochrome = oxcf->monochrome;
cm->chroma_sample_position = oxcf->chroma_sample_position;
cm->color_range = oxcf->color_range;
cm->timing_info_present = oxcf->timing_info_present;
cm->timing_info.num_units_in_display_tick =
oxcf->timing_info.num_units_in_display_tick;
cm->timing_info.time_scale = oxcf->timing_info.time_scale;
cm->timing_info.equal_picture_interval =
oxcf->timing_info.equal_picture_interval;
cm->timing_info.num_ticks_per_picture =
oxcf->timing_info.num_ticks_per_picture;
cm->decoder_model_info_present_flag = oxcf->decoder_model_info_present_flag;
cm->operating_points_decoder_model_cnt =
oxcf->operating_points_decoder_model_cnt;
if (oxcf->decoder_model_info_present_flag) {
cm->buffer_model.num_units_in_decoding_tick =
oxcf->buffer_model.num_units_in_decoding_tick;
cm->buffer_removal_delay_present = 1;
set_aom_dec_model_info(&cm->buffer_model);
set_dec_model_op_parameters(&cm->op_params[0], &cm->buffer_model,
oxcf->target_bandwidth, 0);
}
cm->width = oxcf->width;
cm->height = oxcf->height;
set_sb_size(&cm->seq_params,
select_sb_size(cpi)); // set sb size before allocations
alloc_compressor_data(cpi);
update_film_grain_parameters(cpi, oxcf);
// Single thread case: use counts in common.
cpi->td.counts = &cpi->counts;
// change includes all joint functionality
av1_change_config(cpi, oxcf);
cpi->static_mb_pct = 0;
cpi->ref_frame_flags = 0;
// Reset resize pending flags
cpi->resize_pending_width = 0;
cpi->resize_pending_height = 0;
init_buffer_indices(cpi);
}
static void set_rc_buffer_sizes(RATE_CONTROL *rc,
const AV1EncoderConfig *oxcf) {
const int64_t bandwidth = oxcf->target_bandwidth;
const int64_t starting = oxcf->starting_buffer_level_ms;
const int64_t optimal = oxcf->optimal_buffer_level_ms;
const int64_t maximum = oxcf->maximum_buffer_size_ms;
rc->starting_buffer_level = starting * bandwidth / 1000;
rc->optimal_buffer_level =
(optimal == 0) ? bandwidth / 8 : optimal * bandwidth / 1000;
rc->maximum_buffer_size =
(maximum == 0) ? bandwidth / 8 : maximum * bandwidth / 1000;
}
#define HIGHBD_BFP(BT, SDF, SDAF, VF, SVF, SVAF, SDX4DF, JSDAF, JSVAF) \
cpi->fn_ptr[BT].sdf = SDF; \
cpi->fn_ptr[BT].sdaf = SDAF; \
cpi->fn_ptr[BT].vf = VF; \
cpi->fn_ptr[BT].svf = SVF; \
cpi->fn_ptr[BT].svaf = SVAF; \
cpi->fn_ptr[BT].sdx4df = SDX4DF; \
cpi->fn_ptr[BT].jsdaf = JSDAF; \
cpi->fn_ptr[BT].jsvaf = JSVAF;
#define MAKE_BFP_SAD_WRAPPER(fnname) \
static unsigned int fnname##_bits8(const uint8_t *src_ptr, \
int source_stride, \
const uint8_t *ref_ptr, int ref_stride) { \
return fnname(src_ptr, source_stride, ref_ptr, ref_stride); \
} \
static unsigned int fnname##_bits10( \
const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \
int ref_stride) { \
return fnname(src_ptr, source_stride, ref_ptr, ref_stride) >> 2; \
} \
static unsigned int fnname##_bits12( \
const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \
int ref_stride) { \
return fnname(src_ptr, source_stride, ref_ptr, ref_stride) >> 4; \
}
#define MAKE_BFP_SADAVG_WRAPPER(fnname) \
static unsigned int fnname##_bits8( \
const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \
int ref_stride, const uint8_t *second_pred) { \
return fnname(src_ptr, source_stride, ref_ptr, ref_stride, second_pred); \
} \
static unsigned int fnname##_bits10( \
const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \
int ref_stride, const uint8_t *second_pred) { \
return fnname(src_ptr, source_stride, ref_ptr, ref_stride, second_pred) >> \
2; \
} \
static unsigned int fnname##_bits12( \
const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \
int ref_stride, const uint8_t *second_pred) { \
return fnname(src_ptr, source_stride, ref_ptr, ref_stride, second_pred) >> \
4; \
}
#define MAKE_BFP_SAD4D_WRAPPER(fnname) \
static void fnname##_bits8(const uint8_t *src_ptr, int source_stride, \
const uint8_t *const ref_ptr[], int ref_stride, \
unsigned int *sad_array) { \
fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \
} \
static void fnname##_bits10(const uint8_t *src_ptr, int source_stride, \
const uint8_t *const ref_ptr[], int ref_stride, \
unsigned int *sad_array) { \
int i; \
fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \
for (i = 0; i < 4; i++) sad_array[i] >>= 2; \
} \
static void fnname##_bits12(const uint8_t *src_ptr, int source_stride, \
const uint8_t *const ref_ptr[], int ref_stride, \
unsigned int *sad_array) { \
int i; \
fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \
for (i = 0; i < 4; i++) sad_array[i] >>= 4; \
}
#define MAKE_BFP_JSADAVG_WRAPPER(fnname) \
static unsigned int fnname##_bits8( \
const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \
int ref_stride, const uint8_t *second_pred, \
const JNT_COMP_PARAMS *jcp_param) { \
return fnname(src_ptr, source_stride, ref_ptr, ref_stride, second_pred, \
jcp_param); \
} \
static unsigned int fnname##_bits10( \
const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \
int ref_stride, const uint8_t *second_pred, \
const JNT_COMP_PARAMS *jcp_param) { \
return fnname(src_ptr, source_stride, ref_ptr, ref_stride, second_pred, \
jcp_param) >> \
2; \
} \
static unsigned int fnname##_bits12( \
const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \
int ref_stride, const uint8_t *second_pred, \
const JNT_COMP_PARAMS *jcp_param) { \
return fnname(src_ptr, source_stride, ref_ptr, ref_stride, second_pred, \
jcp_param) >> \
4; \
}
MAKE_BFP_SAD_WRAPPER(aom_highbd_sad128x128)
MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad128x128_avg)
MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad128x128x4d)
MAKE_BFP_SAD_WRAPPER(aom_highbd_sad128x64)
MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad128x64_avg)
MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad128x64x4d)
MAKE_BFP_SAD_WRAPPER(aom_highbd_sad64x128)
MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad64x128_avg)
MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad64x128x4d)
MAKE_BFP_SAD_WRAPPER(aom_highbd_sad32x16)
MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad32x16_avg)
MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad32x16x4d)
MAKE_BFP_SAD_WRAPPER(aom_highbd_sad16x32)
MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad16x32_avg)
MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad16x32x4d)
MAKE_BFP_SAD_WRAPPER(aom_highbd_sad64x32)
MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad64x32_avg)
MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad64x32x4d)
MAKE_BFP_SAD_WRAPPER(aom_highbd_sad32x64)
MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad32x64_avg)
MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad32x64x4d)
MAKE_BFP_SAD_WRAPPER(aom_highbd_sad32x32)
MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad32x32_avg)
MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad32x32x4d)
MAKE_BFP_SAD_WRAPPER(aom_highbd_sad64x64)
MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad64x64_avg)
MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad64x64x4d)
MAKE_BFP_SAD_WRAPPER(aom_highbd_sad16x16)
MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad16x16_avg)
MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad16x16x4d)
MAKE_BFP_SAD_WRAPPER(aom_highbd_sad16x8)
MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad16x8_avg)
MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad16x8x4d)
MAKE_BFP_SAD_WRAPPER(aom_highbd_sad8x16)
MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad8x16_avg)
MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad8x16x4d)
MAKE_BFP_SAD_WRAPPER(aom_highbd_sad8x8)
MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad8x8_avg)
MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad8x8x4d)
MAKE_BFP_SAD_WRAPPER(aom_highbd_sad8x4)
MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad8x4_avg)
MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad8x4x4d)
MAKE_BFP_SAD_WRAPPER(aom_highbd_sad4x8)
MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad4x8_avg)
MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad4x8x4d)
MAKE_BFP_SAD_WRAPPER(aom_highbd_sad4x4)
MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad4x4_avg)
MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad4x4x4d)
MAKE_BFP_SAD_WRAPPER(aom_highbd_sad4x16)
MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad4x16_avg)
MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad4x16x4d)
MAKE_BFP_SAD_WRAPPER(aom_highbd_sad16x4)
MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad16x4_avg)
MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad16x4x4d)
MAKE_BFP_SAD_WRAPPER(aom_highbd_sad8x32)
MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad8x32_avg)
MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad8x32x4d)
MAKE_BFP_SAD_WRAPPER(aom_highbd_sad32x8)
MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad32x8_avg)
MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad32x8x4d)
MAKE_BFP_SAD_WRAPPER(aom_highbd_sad16x64)
MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad16x64_avg)
MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad16x64x4d)
MAKE_BFP_SAD_WRAPPER(aom_highbd_sad64x16)
MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad64x16_avg)
MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad64x16x4d)
MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad128x128_avg)
MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad128x64_avg)
MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad64x128_avg)
MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad32x16_avg)
MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad16x32_avg)
MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad64x32_avg)
MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad32x64_avg)
MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad32x32_avg)
MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad64x64_avg)
MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad16x16_avg)
MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad16x8_avg)
MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad8x16_avg)
MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad8x8_avg)
MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad8x4_avg)
MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad4x8_avg)
MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad4x4_avg)
MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad4x16_avg)
MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad16x4_avg)
MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad8x32_avg)
MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad32x8_avg)
MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad16x64_avg)
MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad64x16_avg)
#define HIGHBD_MBFP(BT, MCSDF, MCSVF) \
cpi->fn_ptr[BT].msdf = MCSDF; \
cpi->fn_ptr[BT].msvf = MCSVF;
#define MAKE_MBFP_COMPOUND_SAD_WRAPPER(fnname) \
static unsigned int fnname##_bits8( \
const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \
int ref_stride, const uint8_t *second_pred_ptr, const uint8_t *m, \
int m_stride, int invert_mask) { \
return fnname(src_ptr, source_stride, ref_ptr, ref_stride, \
second_pred_ptr, m, m_stride, invert_mask); \
} \
static unsigned int fnname##_bits10( \
const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \
int ref_stride, const uint8_t *second_pred_ptr, const uint8_t *m, \
int m_stride, int invert_mask) { \
return fnname(src_ptr, source_stride, ref_ptr, ref_stride, \
second_pred_ptr, m, m_stride, invert_mask) >> \
2; \
} \
static unsigned int fnname##_bits12( \
const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \
int ref_stride, const uint8_t *second_pred_ptr, const uint8_t *m, \
int m_stride, int invert_mask) { \
return fnname(src_ptr, source_stride, ref_ptr, ref_stride, \
second_pred_ptr, m, m_stride, invert_mask) >> \
4; \
}
MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad128x128)
MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad128x64)
MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad64x128)
MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad64x64)
MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad64x32)
MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad32x64)
MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad32x32)
MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad32x16)
MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad16x32)
MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad16x16)
MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad16x8)
MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad8x16)
MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad8x8)
MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad8x4)
MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad4x8)
MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad4x4)
MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad4x16)
MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad16x4)
MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad8x32)
MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad32x8)
MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad16x64)
MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad64x16)
#define HIGHBD_OBFP(BT, OSDF, OVF, OSVF) \
cpi->fn_ptr[BT].osdf = OSDF; \
cpi->fn_ptr[BT].ovf = OVF; \
cpi->fn_ptr[BT].osvf = OSVF;
#define MAKE_OBFP_SAD_WRAPPER(fnname) \
static unsigned int fnname##_bits8(const uint8_t *ref, int ref_stride, \
const int32_t *wsrc, \
const int32_t *msk) { \
return fnname(ref, ref_stride, wsrc, msk); \
} \
static unsigned int fnname##_bits10(const uint8_t *ref, int ref_stride, \
const int32_t *wsrc, \
const int32_t *msk) { \
return fnname(ref, ref_stride, wsrc, msk) >> 2; \
} \
static unsigned int fnname##_bits12(const uint8_t *ref, int ref_stride, \
const int32_t *wsrc, \
const int32_t *msk) { \
return fnname(ref, ref_stride, wsrc, msk) >> 4; \
}
MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad128x128)
MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad128x64)
MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad64x128)
MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad64x64)
MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad64x32)
MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad32x64)
MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad32x32)
MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad32x16)
MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad16x32)
MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad16x16)
MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad16x8)
MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad8x16)
MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad8x8)
MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad8x4)
MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad4x8)
MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad4x4)
MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad4x16)
MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad16x4)
MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad8x32)
MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad32x8)
MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad16x64)
MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad64x16)
static void highbd_set_var_fns(AV1_COMP *const cpi) {
AV1_COMMON *const cm = &cpi->common;
if (cm->use_highbitdepth) {
switch (cm->bit_depth) {
case AOM_BITS_8:
HIGHBD_BFP(BLOCK_64X16, aom_highbd_sad64x16_bits8,
aom_highbd_sad64x16_avg_bits8, aom_highbd_8_variance64x16,
aom_highbd_8_sub_pixel_variance64x16,
aom_highbd_8_sub_pixel_avg_variance64x16,
aom_highbd_sad64x16x4d_bits8,
aom_highbd_jnt_sad64x16_avg_bits8,
aom_highbd_8_jnt_sub_pixel_avg_variance64x16)
HIGHBD_BFP(BLOCK_16X64, aom_highbd_sad16x64_bits8,
aom_highbd_sad16x64_avg_bits8, aom_highbd_8_variance16x64,
aom_highbd_8_sub_pixel_variance16x64,
aom_highbd_8_sub_pixel_avg_variance16x64,
aom_highbd_sad16x64x4d_bits8,
aom_highbd_jnt_sad16x64_avg_bits8,
aom_highbd_8_jnt_sub_pixel_avg_variance16x64)
HIGHBD_BFP(
BLOCK_32X8, aom_highbd_sad32x8_bits8, aom_highbd_sad32x8_avg_bits8,
aom_highbd_8_variance32x8, aom_highbd_8_sub_pixel_variance32x8,
aom_highbd_8_sub_pixel_avg_variance32x8,
aom_highbd_sad32x8x4d_bits8, aom_highbd_jnt_sad32x8_avg_bits8,
aom_highbd_8_jnt_sub_pixel_avg_variance32x8)
HIGHBD_BFP(
BLOCK_8X32, aom_highbd_sad8x32_bits8, aom_highbd_sad8x32_avg_bits8,
aom_highbd_8_variance8x32, aom_highbd_8_sub_pixel_variance8x32,
aom_highbd_8_sub_pixel_avg_variance8x32,
aom_highbd_sad8x32x4d_bits8, aom_highbd_jnt_sad8x32_avg_bits8,
aom_highbd_8_jnt_sub_pixel_avg_variance8x32)
HIGHBD_BFP(
BLOCK_16X4, aom_highbd_sad16x4_bits8, aom_highbd_sad16x4_avg_bits8,
aom_highbd_8_variance16x4, aom_highbd_8_sub_pixel_variance16x4,
aom_highbd_8_sub_pixel_avg_variance16x4,
aom_highbd_sad16x4x4d_bits8, aom_highbd_jnt_sad16x4_avg_bits8,
aom_highbd_8_jnt_sub_pixel_avg_variance16x4)
HIGHBD_BFP(
BLOCK_4X16, aom_highbd_sad4x16_bits8, aom_highbd_sad4x16_avg_bits8,
aom_highbd_8_variance4x16, aom_highbd_8_sub_pixel_variance4x16,
aom_highbd_8_sub_pixel_avg_variance4x16,
aom_highbd_sad4x16x4d_bits8, aom_highbd_jnt_sad4x16_avg_bits8,
aom_highbd_8_jnt_sub_pixel_avg_variance4x16)
HIGHBD_BFP(BLOCK_32X16, aom_highbd_sad32x16_bits8,
aom_highbd_sad32x16_avg_bits8, aom_highbd_8_variance32x16,
aom_highbd_8_sub_pixel_variance32x16,
aom_highbd_8_sub_pixel_avg_variance32x16,
aom_highbd_sad32x16x4d_bits8,
aom_highbd_jnt_sad32x16_avg_bits8,
aom_highbd_8_jnt_sub_pixel_avg_variance32x16)
HIGHBD_BFP(BLOCK_16X32, aom_highbd_sad16x32_bits8,
aom_highbd_sad16x32_avg_bits8, aom_highbd_8_variance16x32,
aom_highbd_8_sub_pixel_variance16x32,
aom_highbd_8_sub_pixel_avg_variance16x32,
aom_highbd_sad16x32x4d_bits8,
aom_highbd_jnt_sad16x32_avg_bits8,
aom_highbd_8_jnt_sub_pixel_avg_variance16x32)
HIGHBD_BFP(BLOCK_64X32, aom_highbd_sad64x32_bits8,
aom_highbd_sad64x32_avg_bits8, aom_highbd_8_variance64x32,
aom_highbd_8_sub_pixel_variance64x32,
aom_highbd_8_sub_pixel_avg_variance64x32,
aom_highbd_sad64x32x4d_bits8,
aom_highbd_jnt_sad64x32_avg_bits8,
aom_highbd_8_jnt_sub_pixel_avg_variance64x32)
HIGHBD_BFP(BLOCK_32X64, aom_highbd_sad32x64_bits8,
aom_highbd_sad32x64_avg_bits8, aom_highbd_8_variance32x64,
aom_highbd_8_sub_pixel_variance32x64,
aom_highbd_8_sub_pixel_avg_variance32x64,
aom_highbd_sad32x64x4d_bits8,
aom_highbd_jnt_sad32x64_avg_bits8,
aom_highbd_8_jnt_sub_pixel_avg_variance32x64)
HIGHBD_BFP(BLOCK_32X32, aom_highbd_sad32x32_bits8,
aom_highbd_sad32x32_avg_bits8, aom_highbd_8_variance32x32,
aom_highbd_8_sub_pixel_variance32x32,
aom_highbd_8_sub_pixel_avg_variance32x32,
aom_highbd_sad32x32x4d_bits8,
aom_highbd_jnt_sad32x32_avg_bits8,
aom_highbd_8_jnt_sub_pixel_avg_variance32x32)
HIGHBD_BFP(BLOCK_64X64, aom_highbd_sad64x64_bits8,
aom_highbd_sad64x64_avg_bits8, aom_highbd_8_variance64x64,
aom_highbd_8_sub_pixel_variance64x64,
aom_highbd_8_sub_pixel_avg_variance64x64,
aom_highbd_sad64x64x4d_bits8,
aom_highbd_jnt_sad64x64_avg_bits8,
aom_highbd_8_jnt_sub_pixel_avg_variance64x64)
HIGHBD_BFP(BLOCK_16X16, aom_highbd_sad16x16_bits8,
aom_highbd_sad16x16_avg_bits8, aom_highbd_8_variance16x16,
aom_highbd_8_sub_pixel_variance16x16,
aom_highbd_8_sub_pixel_avg_variance16x16,
aom_highbd_sad16x16x4d_bits8,
aom_highbd_jnt_sad16x16_avg_bits8,
aom_highbd_8_jnt_sub_pixel_avg_variance16x16)
HIGHBD_BFP(
BLOCK_16X8, aom_highbd_sad16x8_bits8, aom_highbd_sad16x8_avg_bits8,
aom_highbd_8_variance16x8, aom_highbd_8_sub_pixel_variance16x8,
aom_highbd_8_sub_pixel_avg_variance16x8,
aom_highbd_sad16x8x4d_bits8, aom_highbd_jnt_sad16x8_avg_bits8,
aom_highbd_8_jnt_sub_pixel_avg_variance16x8)
HIGHBD_BFP(
BLOCK_8X16, aom_highbd_sad8x16_bits8, aom_highbd_sad8x16_avg_bits8,
aom_highbd_8_variance8x16, aom_highbd_8_sub_pixel_variance8x16,
aom_highbd_8_sub_pixel_avg_variance8x16,
aom_highbd_sad8x16x4d_bits8, aom_highbd_jnt_sad8x16_avg_bits8,
aom_highbd_8_jnt_sub_pixel_avg_variance8x16)
HIGHBD_BFP(BLOCK_8X8, aom_highbd_sad8x8_bits8,
aom_highbd_sad8x8_avg_bits8, aom_highbd_8_variance8x8,
aom_highbd_8_sub_pixel_variance8x8,
aom_highbd_8_sub_pixel_avg_variance8x8,
aom_highbd_sad8x8x4d_bits8, aom_highbd_jnt_sad8x8_avg_bits8,
aom_highbd_8_jnt_sub_pixel_avg_variance8x8)
HIGHBD_BFP(BLOCK_8X4, aom_highbd_sad8x4_bits8,
aom_highbd_sad8x4_avg_bits8, aom_highbd_8_variance8x4,
aom_highbd_8_sub_pixel_variance8x4,
aom_highbd_8_sub_pixel_avg_variance8x4,
aom_highbd_sad8x4x4d_bits8, aom_highbd_jnt_sad8x4_avg_bits8,
aom_highbd_8_jnt_sub_pixel_avg_variance8x4)
HIGHBD_BFP(BLOCK_4X8, aom_highbd_sad4x8_bits8,
aom_highbd_sad4x8_avg_bits8, aom_highbd_8_variance4x8,
aom_highbd_8_sub_pixel_variance4x8,
aom_highbd_8_sub_pixel_avg_variance4x8,
aom_highbd_sad4x8x4d_bits8, aom_highbd_jnt_sad4x8_avg_bits8,
aom_highbd_8_jnt_sub_pixel_avg_variance4x8)
HIGHBD_BFP(BLOCK_4X4, aom_highbd_sad4x4_bits8,
aom_highbd_sad4x4_avg_bits8, aom_highbd_8_variance4x4,
aom_highbd_8_sub_pixel_variance4x4,
aom_highbd_8_sub_pixel_avg_variance4x4,
aom_highbd_sad4x4x4d_bits8, aom_highbd_jnt_sad4x4_avg_bits8,
aom_highbd_8_jnt_sub_pixel_avg_variance4x4)
HIGHBD_BFP(
BLOCK_128X128, aom_highbd_sad128x128_bits8,
aom_highbd_sad128x128_avg_bits8, aom_highbd_8_variance128x128,
aom_highbd_8_sub_pixel_variance128x128,
aom_highbd_8_sub_pixel_avg_variance128x128,
aom_highbd_sad128x128x4d_bits8, aom_highbd_jnt_sad128x128_avg_bits8,
aom_highbd_8_jnt_sub_pixel_avg_variance128x128)
HIGHBD_BFP(BLOCK_128X64, aom_highbd_sad128x64_bits8,
aom_highbd_sad128x64_avg_bits8, aom_highbd_8_variance128x64,
aom_highbd_8_sub_pixel_variance128x64,
aom_highbd_8_sub_pixel_avg_variance128x64,
aom_highbd_sad128x64x4d_bits8,
aom_highbd_jnt_sad128x64_avg_bits8,
aom_highbd_8_jnt_sub_pixel_avg_variance128x64)
HIGHBD_BFP(BLOCK_64X128, aom_highbd_sad64x128_bits8,
aom_highbd_sad64x128_avg_bits8, aom_highbd_8_variance64x128,
aom_highbd_8_sub_pixel_variance64x128,
aom_highbd_8_sub_pixel_avg_variance64x128,
aom_highbd_sad64x128x4d_bits8,
aom_highbd_jnt_sad64x128_avg_bits8,
aom_highbd_8_jnt_sub_pixel_avg_variance64x128)
HIGHBD_MBFP(BLOCK_128X128, aom_highbd_masked_sad128x128_bits8,
aom_highbd_8_masked_sub_pixel_variance128x128)
HIGHBD_MBFP(BLOCK_128X64, aom_highbd_masked_sad128x64_bits8,
aom_highbd_8_masked_sub_pixel_variance128x64)
HIGHBD_MBFP(BLOCK_64X128, aom_highbd_masked_sad64x128_bits8,
aom_highbd_8_masked_sub_pixel_variance64x128)
HIGHBD_MBFP(BLOCK_64X64, aom_highbd_masked_sad64x64_bits8,
aom_highbd_8_masked_sub_pixel_variance64x64)
HIGHBD_MBFP(BLOCK_64X32, aom_highbd_masked_sad64x32_bits8,
aom_highbd_8_masked_sub_pixel_variance64x32)
HIGHBD_MBFP(BLOCK_32X64, aom_highbd_masked_sad32x64_bits8,
aom_highbd_8_masked_sub_pixel_variance32x64)
HIGHBD_MBFP(BLOCK_32X32, aom_highbd_masked_sad32x32_bits8,
aom_highbd_8_masked_sub_pixel_variance32x32)
HIGHBD_MBFP(BLOCK_32X16, aom_highbd_masked_sad32x16_bits8,
aom_highbd_8_masked_sub_pixel_variance32x16)
HIGHBD_MBFP(BLOCK_16X32, aom_highbd_masked_sad16x32_bits8,
aom_highbd_8_masked_sub_pixel_variance16x32)
HIGHBD_MBFP(BLOCK_16X16, aom_highbd_masked_sad16x16_bits8,
aom_highbd_8_masked_sub_pixel_variance16x16)
HIGHBD_MBFP(BLOCK_8X16, aom_highbd_masked_sad8x16_bits8,
aom_highbd_8_masked_sub_pixel_variance8x16)
HIGHBD_MBFP(BLOCK_16X8, aom_highbd_masked_sad16x8_bits8,
aom_highbd_8_masked_sub_pixel_variance16x8)
HIGHBD_MBFP(BLOCK_8X8, aom_highbd_masked_sad8x8_bits8,
aom_highbd_8_masked_sub_pixel_variance8x8)
HIGHBD_MBFP(BLOCK_4X8, aom_highbd_masked_sad4x8_bits8,
aom_highbd_8_masked_sub_pixel_variance4x8)
HIGHBD_MBFP(BLOCK_8X4, aom_highbd_masked_sad8x4_bits8,
aom_highbd_8_masked_sub_pixel_variance8x4)
HIGHBD_MBFP(BLOCK_4X4, aom_highbd_masked_sad4x4_bits8,
aom_highbd_8_masked_sub_pixel_variance4x4)
HIGHBD_MBFP(BLOCK_64X16, aom_highbd_masked_sad64x16_bits8,
aom_highbd_8_masked_sub_pixel_variance64x16)
HIGHBD_MBFP(BLOCK_16X64, aom_highbd_masked_sad16x64_bits8,
aom_highbd_8_masked_sub_pixel_variance16x64)
HIGHBD_MBFP(BLOCK_32X8, aom_highbd_masked_sad32x8_bits8,
aom_highbd_8_masked_sub_pixel_variance32x8)
HIGHBD_MBFP(BLOCK_8X32, aom_highbd_masked_sad8x32_bits8,
aom_highbd_8_masked_sub_pixel_variance8x32)
HIGHBD_MBFP(BLOCK_16X4, aom_highbd_masked_sad16x4_bits8,
aom_highbd_8_masked_sub_pixel_variance16x4)
HIGHBD_MBFP(BLOCK_4X16, aom_highbd_masked_sad4x16_bits8,
aom_highbd_8_masked_sub_pixel_variance4x16)
HIGHBD_OBFP(BLOCK_128X128, aom_highbd_obmc_sad128x128_bits8,
aom_highbd_obmc_variance128x128,
aom_highbd_obmc_sub_pixel_variance128x128)
HIGHBD_OBFP(BLOCK_128X64, aom_highbd_obmc_sad128x64_bits8,
aom_highbd_obmc_variance128x64,
aom_highbd_obmc_sub_pixel_variance128x64)
HIGHBD_OBFP(BLOCK_64X128, aom_highbd_obmc_sad64x128_bits8,
aom_highbd_obmc_variance64x128,
aom_highbd_obmc_sub_pixel_variance64x128)
HIGHBD_OBFP(BLOCK_64X64, aom_highbd_obmc_sad64x64_bits8,
aom_highbd_obmc_variance64x64,
aom_highbd_obmc_sub_pixel_variance64x64)
HIGHBD_OBFP(BLOCK_64X32, aom_highbd_obmc_sad64x32_bits8,
aom_highbd_obmc_variance64x32,
aom_highbd_obmc_sub_pixel_variance64x32)
HIGHBD_OBFP(BLOCK_32X64, aom_highbd_obmc_sad32x64_bits8,
aom_highbd_obmc_variance32x64,
aom_highbd_obmc_sub_pixel_variance32x64)
HIGHBD_OBFP(BLOCK_32X32, aom_highbd_obmc_sad32x32_bits8,
aom_highbd_obmc_variance32x32,
aom_highbd_obmc_sub_pixel_variance32x32)
HIGHBD_OBFP(BLOCK_32X16, aom_highbd_obmc_sad32x16_bits8,
aom_highbd_obmc_variance32x16,
aom_highbd_obmc_sub_pixel_variance32x16)
HIGHBD_OBFP(BLOCK_16X32, aom_highbd_obmc_sad16x32_bits8,
aom_highbd_obmc_variance16x32,
aom_highbd_obmc_sub_pixel_variance16x32)
HIGHBD_OBFP(BLOCK_16X16, aom_highbd_obmc_sad16x16_bits8,
aom_highbd_obmc_variance16x16,
aom_highbd_obmc_sub_pixel_variance16x16)
HIGHBD_OBFP(BLOCK_8X16, aom_highbd_obmc_sad8x16_bits8,
aom_highbd_obmc_variance8x16,
aom_highbd_obmc_sub_pixel_variance8x16)
HIGHBD_OBFP(BLOCK_16X8, aom_highbd_obmc_sad16x8_bits8,
aom_highbd_obmc_variance16x8,
aom_highbd_obmc_sub_pixel_variance16x8)
HIGHBD_OBFP(BLOCK_8X8, aom_highbd_obmc_sad8x8_bits8,
aom_highbd_obmc_variance8x8,
aom_highbd_obmc_sub_pixel_variance8x8)
HIGHBD_OBFP(BLOCK_4X8, aom_highbd_obmc_sad4x8_bits8,
aom_highbd_obmc_variance4x8,
aom_highbd_obmc_sub_pixel_variance4x8)
HIGHBD_OBFP(BLOCK_8X4, aom_highbd_obmc_sad8x4_bits8,
aom_highbd_obmc_variance8x4,
aom_highbd_obmc_sub_pixel_variance8x4)
HIGHBD_OBFP(BLOCK_4X4, aom_highbd_obmc_sad4x4_bits8,
aom_highbd_obmc_variance4x4,
aom_highbd_obmc_sub_pixel_variance4x4)
HIGHBD_OBFP(BLOCK_64X16, aom_highbd_obmc_sad64x16_bits8,
aom_highbd_obmc_variance64x16,
aom_highbd_obmc_sub_pixel_variance64x16)
HIGHBD_OBFP(BLOCK_16X64, aom_highbd_obmc_sad16x64_bits8,
aom_highbd_obmc_variance16x64,
aom_highbd_obmc_sub_pixel_variance16x64)
HIGHBD_OBFP(BLOCK_32X8, aom_highbd_obmc_sad32x8_bits8,
aom_highbd_obmc_variance32x8,
aom_highbd_obmc_sub_pixel_variance32x8)
HIGHBD_OBFP(BLOCK_8X32, aom_highbd_obmc_sad8x32_bits8,
aom_highbd_obmc_variance8x32,
aom_highbd_obmc_sub_pixel_variance8x32)
HIGHBD_OBFP(BLOCK_16X4, aom_highbd_obmc_sad16x4_bits8,
aom_highbd_obmc_variance16x4,
aom_highbd_obmc_sub_pixel_variance16x4)
HIGHBD_OBFP(BLOCK_4X16, aom_highbd_obmc_sad4x16_bits8,
aom_highbd_obmc_variance4x16,
aom_highbd_obmc_sub_pixel_variance4x16)
break;
case AOM_BITS_10:
HIGHBD_BFP(BLOCK_64X16, aom_highbd_sad64x16_bits10,
aom_highbd_sad64x16_avg_bits10, aom_highbd_10_variance64x16,
aom_highbd_10_sub_pixel_variance64x16,
aom_highbd_10_sub_pixel_avg_variance64x16,
aom_highbd_sad64x16x4d_bits10,
aom_highbd_jnt_sad64x16_avg_bits10,
aom_highbd_10_jnt_sub_pixel_avg_variance64x16);
HIGHBD_BFP(BLOCK_16X64, aom_highbd_sad16x64_bits10,
aom_highbd_sad16x64_avg_bits10, aom_highbd_10_variance16x64,
aom_highbd_10_sub_pixel_variance16x64,
aom_highbd_10_sub_pixel_avg_variance16x64,
aom_highbd_sad16x64x4d_bits10,
aom_highbd_jnt_sad16x64_avg_bits10,
aom_highbd_10_jnt_sub_pixel_avg_variance16x64);
HIGHBD_BFP(BLOCK_32X8, aom_highbd_sad32x8_bits10,
aom_highbd_sad32x8_avg_bits10, aom_highbd_10_variance32x8,
aom_highbd_10_sub_pixel_variance32x8,
aom_highbd_10_sub_pixel_avg_variance32x8,
aom_highbd_sad32x8x4d_bits10,
aom_highbd_jnt_sad32x8_avg_bits10,
aom_highbd_10_jnt_sub_pixel_avg_variance32x8);
HIGHBD_BFP(BLOCK_8X32, aom_highbd_sad8x32_bits10,
aom_highbd_sad8x32_avg_bits10, aom_highbd_10_variance8x32,
aom_highbd_10_sub_pixel_variance8x32,
aom_highbd_10_sub_pixel_avg_variance8x32,
aom_highbd_sad8x32x4d_bits10,
aom_highbd_jnt_sad8x32_avg_bits10,
aom_highbd_10_jnt_sub_pixel_avg_variance8x32);
HIGHBD_BFP(BLOCK_16X4, aom_highbd_sad16x4_bits10,
aom_highbd_sad16x4_avg_bits10, aom_highbd_10_variance16x4,
aom_highbd_10_sub_pixel_variance16x4,
aom_highbd_10_sub_pixel_avg_variance16x4,
aom_highbd_sad16x4x4d_bits10,
aom_highbd_jnt_sad16x4_avg_bits10,
aom_highbd_10_jnt_sub_pixel_avg_variance16x4);
HIGHBD_BFP(BLOCK_4X16, aom_highbd_sad4x16_bits10,
aom_highbd_sad4x16_avg_bits10, aom_highbd_10_variance4x16,
aom_highbd_10_sub_pixel_variance4x16,
aom_highbd_10_sub_pixel_avg_variance4x16,
aom_highbd_sad4x16x4d_bits10,
aom_highbd_jnt_sad4x16_avg_bits10,
aom_highbd_10_jnt_sub_pixel_avg_variance4x16);
HIGHBD_BFP(BLOCK_32X16, aom_highbd_sad32x16_bits10,
aom_highbd_sad32x16_avg_bits10, aom_highbd_10_variance32x16,
aom_highbd_10_sub_pixel_variance32x16,
aom_highbd_10_sub_pixel_avg_variance32x16,
aom_highbd_sad32x16x4d_bits10,
aom_highbd_jnt_sad32x16_avg_bits10,
aom_highbd_10_jnt_sub_pixel_avg_variance32x16);
HIGHBD_BFP(BLOCK_16X32, aom_highbd_sad16x32_bits10,
aom_highbd_sad16x32_avg_bits10, aom_highbd_10_variance16x32,
aom_highbd_10_sub_pixel_variance16x32,
aom_highbd_10_sub_pixel_avg_variance16x32,
aom_highbd_sad16x32x4d_bits10,
aom_highbd_jnt_sad16x32_avg_bits10,
aom_highbd_10_jnt_sub_pixel_avg_variance16x32);
HIGHBD_BFP(BLOCK_64X32, aom_highbd_sad64x32_bits10,
aom_highbd_sad64x32_avg_bits10, aom_highbd_10_variance64x32,
aom_highbd_10_sub_pixel_variance64x32,
aom_highbd_10_sub_pixel_avg_variance64x32,
aom_highbd_sad64x32x4d_bits10,
aom_highbd_jnt_sad64x32_avg_bits10,
aom_highbd_10_jnt_sub_pixel_avg_variance64x32);
HIGHBD_BFP(BLOCK_32X64, aom_highbd_sad32x64_bits10,
aom_highbd_sad32x64_avg_bits10, aom_highbd_10_variance32x64,
aom_highbd_10_sub_pixel_variance32x64,
aom_highbd_10_sub_pixel_avg_variance32x64,
aom_highbd_sad32x64x4d_bits10,
aom_highbd_jnt_sad32x64_avg_bits10,
aom_highbd_10_jnt_sub_pixel_avg_variance32x64);
HIGHBD_BFP(BLOCK_32X32, aom_highbd_sad32x32_bits10,
aom_highbd_sad32x32_avg_bits10, aom_highbd_10_variance32x32,
aom_highbd_10_sub_pixel_variance32x32,
aom_highbd_10_sub_pixel_avg_variance32x32,
aom_highbd_sad32x32x4d_bits10,
aom_highbd_jnt_sad32x32_avg_bits10,
aom_highbd_10_jnt_sub_pixel_avg_variance32x32);
HIGHBD_BFP(BLOCK_64X64, aom_highbd_sad64x64_bits10,
aom_highbd_sad64x64_avg_bits10, aom_highbd_10_variance64x64,
aom_highbd_10_sub_pixel_variance64x64,
aom_highbd_10_sub_pixel_avg_variance64x64,
aom_highbd_sad64x64x4d_bits10,
aom_highbd_jnt_sad64x64_avg_bits10,
aom_highbd_10_jnt_sub_pixel_avg_variance64x64);
HIGHBD_BFP(BLOCK_16X16, aom_highbd_sad16x16_bits10,
aom_highbd_sad16x16_avg_bits10, aom_highbd_10_variance16x16,
aom_highbd_10_sub_pixel_variance16x16,
aom_highbd_10_sub_pixel_avg_variance16x16,
aom_highbd_sad16x16x4d_bits10,
aom_highbd_jnt_sad16x16_avg_bits10,
aom_highbd_10_jnt_sub_pixel_avg_variance16x16);
HIGHBD_BFP(BLOCK_16X8, aom_highbd_sad16x8_bits10,
aom_highbd_sad16x8_avg_bits10, aom_highbd_10_variance16x8,
aom_highbd_10_sub_pixel_variance16x8,
aom_highbd_10_sub_pixel_avg_variance16x8,
aom_highbd_sad16x8x4d_bits10,
aom_highbd_jnt_sad16x8_avg_bits10,
aom_highbd_10_jnt_sub_pixel_avg_variance16x8);
HIGHBD_BFP(BLOCK_8X16, aom_highbd_sad8x16_bits10,
aom_highbd_sad8x16_avg_bits10, aom_highbd_10_variance8x16,
aom_highbd_10_sub_pixel_variance8x16,
aom_highbd_10_sub_pixel_avg_variance8x16,
aom_highbd_sad8x16x4d_bits10,
aom_highbd_jnt_sad8x16_avg_bits10,
aom_highbd_10_jnt_sub_pixel_avg_variance8x16);
HIGHBD_BFP(
BLOCK_8X8, aom_highbd_sad8x8_bits10, aom_highbd_sad8x8_avg_bits10,
aom_highbd_10_variance8x8, aom_highbd_10_sub_pixel_variance8x8,
aom_highbd_10_sub_pixel_avg_variance8x8,
aom_highbd_sad8x8x4d_bits10, aom_highbd_jnt_sad8x8_avg_bits10,
aom_highbd_10_jnt_sub_pixel_avg_variance8x8);
HIGHBD_BFP(
BLOCK_8X4, aom_highbd_sad8x4_bits10, aom_highbd_sad8x4_avg_bits10,
aom_highbd_10_variance8x4, aom_highbd_10_sub_pixel_variance8x4,
aom_highbd_10_sub_pixel_avg_variance8x4,
aom_highbd_sad8x4x4d_bits10, aom_highbd_jnt_sad8x4_avg_bits10,
aom_highbd_10_jnt_sub_pixel_avg_variance8x4);
HIGHBD_BFP(
BLOCK_4X8, aom_highbd_sad4x8_bits10, aom_highbd_sad4x8_avg_bits10,
aom_highbd_10_variance4x8, aom_highbd_10_sub_pixel_variance4x8,
aom_highbd_10_sub_pixel_avg_variance4x8,
aom_highbd_sad4x8x4d_bits10, aom_highbd_jnt_sad4x8_avg_bits10,
aom_highbd_10_jnt_sub_pixel_avg_variance4x8);
HIGHBD_BFP(
BLOCK_4X4, aom_highbd_sad4x4_bits10, aom_highbd_sad4x4_avg_bits10,
aom_highbd_10_variance4x4, aom_highbd_10_sub_pixel_variance4x4,
aom_highbd_10_sub_pixel_avg_variance4x4,
aom_highbd_sad4x4x4d_bits10, aom_highbd_jnt_sad4x4_avg_bits10,
aom_highbd_10_jnt_sub_pixel_avg_variance4x4);
HIGHBD_BFP(BLOCK_128X128, aom_highbd_sad128x128_bits10,
aom_highbd_sad128x128_avg_bits10,
aom_highbd_10_variance128x128,
aom_highbd_10_sub_pixel_variance128x128,
aom_highbd_10_sub_pixel_avg_variance128x128,
aom_highbd_sad128x128x4d_bits10,
aom_highbd_jnt_sad128x128_avg_bits10,
aom_highbd_10_jnt_sub_pixel_avg_variance128x128);
HIGHBD_BFP(
BLOCK_128X64, aom_highbd_sad128x64_bits10,
aom_highbd_sad128x64_avg_bits10, aom_highbd_10_variance128x64,
aom_highbd_10_sub_pixel_variance128x64,
aom_highbd_10_sub_pixel_avg_variance128x64,
aom_highbd_sad128x64x4d_bits10, aom_highbd_jnt_sad128x64_avg_bits10,
aom_highbd_10_jnt_sub_pixel_avg_variance128x64);
HIGHBD_BFP(
BLOCK_64X128, aom_highbd_sad64x128_bits10,
aom_highbd_sad64x128_avg_bits10, aom_highbd_10_variance64x128,
aom_highbd_10_sub_pixel_variance64x128,
aom_highbd_10_sub_pixel_avg_variance64x128,
aom_highbd_sad64x128x4d_bits10, aom_highbd_jnt_sad64x128_avg_bits10,
aom_highbd_10_jnt_sub_pixel_avg_variance64x128);
HIGHBD_MBFP(BLOCK_128X128, aom_highbd_masked_sad128x128_bits10,
aom_highbd_10_masked_sub_pixel_variance128x128)
HIGHBD_MBFP(BLOCK_128X64, aom_highbd_masked_sad128x64_bits10,
aom_highbd_10_masked_sub_pixel_variance128x64)
HIGHBD_MBFP(BLOCK_64X128, aom_highbd_masked_sad64x128_bits10,
aom_highbd_10_masked_sub_pixel_variance64x128)
HIGHBD_MBFP(BLOCK_64X64, aom_highbd_masked_sad64x64_bits10,
aom_highbd_10_masked_sub_pixel_variance64x64)
HIGHBD_MBFP(BLOCK_64X32, aom_highbd_masked_sad64x32_bits10,
aom_highbd_10_masked_sub_pixel_variance64x32)
HIGHBD_MBFP(BLOCK_32X64, aom_highbd_masked_sad32x64_bits10,
aom_highbd_10_masked_sub_pixel_variance32x64)
HIGHBD_MBFP(BLOCK_32X32, aom_highbd_masked_sad32x32_bits10,
aom_highbd_10_masked_sub_pixel_variance32x32)
HIGHBD_MBFP(BLOCK_32X16, aom_highbd_masked_sad32x16_bits10,
aom_highbd_10_masked_sub_pixel_variance32x16)
HIGHBD_MBFP(BLOCK_16X32, aom_highbd_masked_sad16x32_bits10,
aom_highbd_10_masked_sub_pixel_variance16x32)
HIGHBD_MBFP(BLOCK_16X16, aom_highbd_masked_sad16x16_bits10,
aom_highbd_10_masked_sub_pixel_variance16x16)
HIGHBD_MBFP(BLOCK_8X16, aom_highbd_masked_sad8x16_bits10,
aom_highbd_10_masked_sub_pixel_variance8x16)
HIGHBD_MBFP(BLOCK_16X8, aom_highbd_masked_sad16x8_bits10,
aom_highbd_10_masked_sub_pixel_variance16x8)
HIGHBD_MBFP(BLOCK_8X8, aom_highbd_masked_sad8x8_bits10,
aom_highbd_10_masked_sub_pixel_variance8x8)
HIGHBD_MBFP(BLOCK_4X8, aom_highbd_masked_sad4x8_bits10,
aom_highbd_10_masked_sub_pixel_variance4x8)
HIGHBD_MBFP(BLOCK_8X4, aom_highbd_masked_sad8x4_bits10,
aom_highbd_10_masked_sub_pixel_variance8x4)
HIGHBD_MBFP(BLOCK_4X4, aom_highbd_masked_sad4x4_bits10,
aom_highbd_10_masked_sub_pixel_variance4x4)
HIGHBD_MBFP(BLOCK_64X16, aom_highbd_masked_sad64x16_bits10,
aom_highbd_10_masked_sub_pixel_variance64x16)
HIGHBD_MBFP(BLOCK_16X64, aom_highbd_masked_sad16x64_bits10,
aom_highbd_10_masked_sub_pixel_variance16x64)
HIGHBD_MBFP(BLOCK_32X8, aom_highbd_masked_sad32x8_bits10,
aom_highbd_10_masked_sub_pixel_variance32x8)
HIGHBD_MBFP(BLOCK_8X32, aom_highbd_masked_sad8x32_bits10,
aom_highbd_10_masked_sub_pixel_variance8x32)
HIGHBD_MBFP(BLOCK_16X4, aom_highbd_masked_sad16x4_bits10,
aom_highbd_10_masked_sub_pixel_variance16x4)
HIGHBD_MBFP(BLOCK_4X16, aom_highbd_masked_sad4x16_bits10,
aom_highbd_10_masked_sub_pixel_variance4x16)
HIGHBD_OBFP(BLOCK_128X128, aom_highbd_obmc_sad128x128_bits10,
aom_highbd_10_obmc_variance128x128,
aom_highbd_10_obmc_sub_pixel_variance128x128)
HIGHBD_OBFP(BLOCK_128X64, aom_highbd_obmc_sad128x64_bits10,
aom_highbd_10_obmc_variance128x64,
aom_highbd_10_obmc_sub_pixel_variance128x64)
HIGHBD_OBFP(BLOCK_64X128, aom_highbd_obmc_sad64x128_bits10,
aom_highbd_10_obmc_variance64x128,
aom_highbd_10_obmc_sub_pixel_variance64x128)
HIGHBD_OBFP(BLOCK_64X64, aom_highbd_obmc_sad64x64_bits10,
aom_highbd_10_obmc_variance64x64,
aom_highbd_10_obmc_sub_pixel_variance64x64)
HIGHBD_OBFP(BLOCK_64X32, aom_highbd_obmc_sad64x32_bits10,
aom_highbd_10_obmc_variance64x32,
aom_highbd_10_obmc_sub_pixel_variance64x32)
HIGHBD_OBFP(BLOCK_32X64, aom_highbd_obmc_sad32x64_bits10,
aom_highbd_10_obmc_variance32x64,
aom_highbd_10_obmc_sub_pixel_variance32x64)
HIGHBD_OBFP(BLOCK_32X32, aom_highbd_obmc_sad32x32_bits10,
aom_highbd_10_obmc_variance32x32,
aom_highbd_10_obmc_sub_pixel_variance32x32)
HIGHBD_OBFP(BLOCK_32X16, aom_highbd_obmc_sad32x16_bits10,
aom_highbd_10_obmc_variance32x16,
aom_highbd_10_obmc_sub_pixel_variance32x16)
HIGHBD_OBFP(BLOCK_16X32, aom_highbd_obmc_sad16x32_bits10,
aom_highbd_10_obmc_variance16x32,
aom_highbd_10_obmc_sub_pixel_variance16x32)
HIGHBD_OBFP(BLOCK_16X16, aom_highbd_obmc_sad16x16_bits10,
aom_highbd_10_obmc_variance16x16,
aom_highbd_10_obmc_sub_pixel_variance16x16)
HIGHBD_OBFP(BLOCK_8X16, aom_highbd_obmc_sad8x16_bits10,
aom_highbd_10_obmc_variance8x16,
aom_highbd_10_obmc_sub_pixel_variance8x16)
HIGHBD_OBFP(BLOCK_16X8, aom_highbd_obmc_sad16x8_bits10,
aom_highbd_10_obmc_variance16x8,
aom_highbd_10_obmc_sub_pixel_variance16x8)
HIGHBD_OBFP(BLOCK_8X8, aom_highbd_obmc_sad8x8_bits10,
aom_highbd_10_obmc_variance8x8,
aom_highbd_10_obmc_sub_pixel_variance8x8)
HIGHBD_OBFP(BLOCK_4X8, aom_highbd_obmc_sad4x8_bits10,
aom_highbd_10_obmc_variance4x8,
aom_highbd_10_obmc_sub_pixel_variance4x8)
HIGHBD_OBFP(BLOCK_8X4, aom_highbd_obmc_sad8x4_bits10,
aom_highbd_10_obmc_variance8x4,
aom_highbd_10_obmc_sub_pixel_variance8x4)
HIGHBD_OBFP(BLOCK_4X4, aom_highbd_obmc_sad4x4_bits10,
aom_highbd_10_obmc_variance4x4,
aom_highbd_10_obmc_sub_pixel_variance4x4)
HIGHBD_OBFP(BLOCK_64X16, aom_highbd_obmc_sad64x16_bits10,
aom_highbd_10_obmc_variance64x16,
aom_highbd_10_obmc_sub_pixel_variance64x16)
HIGHBD_OBFP(BLOCK_16X64, aom_highbd_obmc_sad16x64_bits10,
aom_highbd_10_obmc_variance16x64,
aom_highbd_10_obmc_sub_pixel_variance16x64)
HIGHBD_OBFP(BLOCK_32X8, aom_highbd_obmc_sad32x8_bits10,
aom_highbd_10_obmc_variance32x8,
aom_highbd_10_obmc_sub_pixel_variance32x8)
HIGHBD_OBFP(BLOCK_8X32, aom_highbd_obmc_sad8x32_bits10,
aom_highbd_10_obmc_variance8x32,
aom_highbd_10_obmc_sub_pixel_variance8x32)
HIGHBD_OBFP(BLOCK_16X4, aom_highbd_obmc_sad16x4_bits10,
aom_highbd_10_obmc_variance16x4,
aom_highbd_10_obmc_sub_pixel_variance16x4)
HIGHBD_OBFP(BLOCK_4X16, aom_highbd_obmc_sad4x16_bits10,
aom_highbd_10_obmc_variance4x16,
aom_highbd_10_obmc_sub_pixel_variance4x16)
break;
case AOM_BITS_12:
HIGHBD_BFP(BLOCK_64X16, aom_highbd_sad64x16_bits12,
aom_highbd_sad64x16_avg_bits12, aom_highbd_12_variance64x16,
aom_highbd_12_sub_pixel_variance64x16,
aom_highbd_12_sub_pixel_avg_variance64x16,
aom_highbd_sad64x16x4d_bits12,
aom_highbd_jnt_sad64x16_avg_bits12,
aom_highbd_12_jnt_sub_pixel_avg_variance64x16);
HIGHBD_BFP(BLOCK_16X64, aom_highbd_sad16x64_bits12,
aom_highbd_sad16x64_avg_bits12, aom_highbd_12_variance16x64,
aom_highbd_12_sub_pixel_variance16x64,
aom_highbd_12_sub_pixel_avg_variance16x64,
aom_highbd_sad16x64x4d_bits12,
aom_highbd_jnt_sad16x64_avg_bits12,
aom_highbd_12_jnt_sub_pixel_avg_variance16x64);
HIGHBD_BFP(BLOCK_32X8, aom_highbd_sad32x8_bits12,
aom_highbd_sad32x8_avg_bits12, aom_highbd_12_variance32x8,
aom_highbd_12_sub_pixel_variance32x8,
aom_highbd_12_sub_pixel_avg_variance32x8,
aom_highbd_sad32x8x4d_bits12,
aom_highbd_jnt_sad32x8_avg_bits12,
aom_highbd_12_jnt_sub_pixel_avg_variance32x8);
HIGHBD_BFP(BLOCK_8X32, aom_highbd_sad8x32_bits12,
aom_highbd_sad8x32_avg_bits12, aom_highbd_12_variance8x32,
aom_highbd_12_sub_pixel_variance8x32,
aom_highbd_12_sub_pixel_avg_variance8x32,
aom_highbd_sad8x32x4d_bits12,
aom_highbd_jnt_sad8x32_avg_bits12,
aom_highbd_12_jnt_sub_pixel_avg_variance8x32);
HIGHBD_BFP(BLOCK_16X4, aom_highbd_sad16x4_bits12,
aom_highbd_sad16x4_avg_bits12, aom_highbd_12_variance16x4,
aom_highbd_12_sub_pixel_variance16x4,
aom_highbd_12_sub_pixel_avg_variance16x4,
aom_highbd_sad16x4x4d_bits12,
aom_highbd_jnt_sad16x4_avg_bits12,
aom_highbd_12_jnt_sub_pixel_avg_variance16x4);
HIGHBD_BFP(BLOCK_4X16, aom_highbd_sad4x16_bits12,
aom_highbd_sad4x16_avg_bits12, aom_highbd_12_variance4x16,
aom_highbd_12_sub_pixel_variance4x16,
aom_highbd_12_sub_pixel_avg_variance4x16,
aom_highbd_sad4x16x4d_bits12,
aom_highbd_jnt_sad4x16_avg_bits12,
aom_highbd_12_jnt_sub_pixel_avg_variance4x16);
HIGHBD_BFP(BLOCK_32X16, aom_highbd_sad32x16_bits12,
aom_highbd_sad32x16_avg_bits12, aom_highbd_12_variance32x16,
aom_highbd_12_sub_pixel_variance32x16,
aom_highbd_12_sub_pixel_avg_variance32x16,
aom_highbd_sad32x16x4d_bits12,
aom_highbd_jnt_sad32x16_avg_bits12,
aom_highbd_12_jnt_sub_pixel_avg_variance32x16);
HIGHBD_BFP(BLOCK_16X32, aom_highbd_sad16x32_bits12,
aom_highbd_sad16x32_avg_bits12, aom_highbd_12_variance16x32,
aom_highbd_12_sub_pixel_variance16x32,
aom_highbd_12_sub_pixel_avg_variance16x32,
aom_highbd_sad16x32x4d_bits12,
aom_highbd_jnt_sad16x32_avg_bits12,
aom_highbd_12_jnt_sub_pixel_avg_variance16x32);
HIGHBD_BFP(BLOCK_64X32, aom_highbd_sad64x32_bits12,
aom_highbd_sad64x32_avg_bits12, aom_highbd_12_variance64x32,
aom_highbd_12_sub_pixel_variance64x32,
aom_highbd_12_sub_pixel_avg_variance64x32,
aom_highbd_sad64x32x4d_bits12,
aom_highbd_jnt_sad64x32_avg_bits12,
aom_highbd_12_jnt_sub_pixel_avg_variance64x32);
HIGHBD_BFP(BLOCK_32X64, aom_highbd_sad32x64_bits12,
aom_highbd_sad32x64_avg_bits12, aom_highbd_12_variance32x64,
aom_highbd_12_sub_pixel_variance32x64,
aom_highbd_12_sub_pixel_avg_variance32x64,
aom_highbd_sad32x64x4d_bits12,
aom_highbd_jnt_sad32x64_avg_bits12,
aom_highbd_12_jnt_sub_pixel_avg_variance32x64);
HIGHBD_BFP(BLOCK_32X32, aom_highbd_sad32x32_bits12,
aom_highbd_sad32x32_avg_bits12, aom_highbd_12_variance32x32,
aom_highbd_12_sub_pixel_variance32x32,
aom_highbd_12_sub_pixel_avg_variance32x32,
aom_highbd_sad32x32x4d_bits12,
aom_highbd_jnt_sad32x32_avg_bits12,
aom_highbd_12_jnt_sub_pixel_avg_variance32x32);
HIGHBD_BFP(BLOCK_64X64, aom_highbd_sad64x64_bits12,
aom_highbd_sad64x64_avg_bits12, aom_highbd_12_variance64x64,
aom_highbd_12_sub_pixel_variance64x64,
aom_highbd_12_sub_pixel_avg_variance64x64,
aom_highbd_sad64x64x4d_bits12,
aom_highbd_jnt_sad64x64_avg_bits12,
aom_highbd_12_jnt_sub_pixel_avg_variance64x64);
HIGHBD_BFP(BLOCK_16X16, aom_highbd_sad16x16_bits12,
aom_highbd_sad16x16_avg_bits12, aom_highbd_12_variance16x16,
aom_highbd_12_sub_pixel_variance16x16,
aom_highbd_12_sub_pixel_avg_variance16x16,
aom_highbd_sad16x16x4d_bits12,
aom_highbd_jnt_sad16x16_avg_bits12,
aom_highbd_12_jnt_sub_pixel_avg_variance16x16);
HIGHBD_BFP(BLOCK_16X8, aom_highbd_sad16x8_bits12,
aom_highbd_sad16x8_avg_bits12, aom_highbd_12_variance16x8,
aom_highbd_12_sub_pixel_variance16x8,
aom_highbd_12_sub_pixel_avg_variance16x8,
aom_highbd_sad16x8x4d_bits12,
aom_highbd_jnt_sad16x8_avg_bits12,
aom_highbd_12_jnt_sub_pixel_avg_variance16x8);
HIGHBD_BFP(BLOCK_8X16, aom_highbd_sad8x16_bits12,
aom_highbd_sad8x16_avg_bits12, aom_highbd_12_variance8x16,
aom_highbd_12_sub_pixel_variance8x16,
aom_highbd_12_sub_pixel_avg_variance8x16,
aom_highbd_sad8x16x4d_bits12,
aom_highbd_jnt_sad8x16_avg_bits12,
aom_highbd_12_jnt_sub_pixel_avg_variance8x16);
HIGHBD_BFP(
BLOCK_8X8, aom_highbd_sad8x8_bits12, aom_highbd_sad8x8_avg_bits12,
aom_highbd_12_variance8x8, aom_highbd_12_sub_pixel_variance8x8,
aom_highbd_12_sub_pixel_avg_variance8x8,
aom_highbd_sad8x8x4d_bits12, aom_highbd_jnt_sad8x8_avg_bits12,
aom_highbd_12_jnt_sub_pixel_avg_variance8x8);
HIGHBD_BFP(
BLOCK_8X4, aom_highbd_sad8x4_bits12, aom_highbd_sad8x4_avg_bits12,
aom_highbd_12_variance8x4, aom_highbd_12_sub_pixel_variance8x4,
aom_highbd_12_sub_pixel_avg_variance8x4,
aom_highbd_sad8x4x4d_bits12, aom_highbd_jnt_sad8x4_avg_bits12,
aom_highbd_12_jnt_sub_pixel_avg_variance8x4);
HIGHBD_BFP(
BLOCK_4X8, aom_highbd_sad4x8_bits12, aom_highbd_sad4x8_avg_bits12,
aom_highbd_12_variance4x8, aom_highbd_12_sub_pixel_variance4x8,
aom_highbd_12_sub_pixel_avg_variance4x8,
aom_highbd_sad4x8x4d_bits12, aom_highbd_jnt_sad4x8_avg_bits12,
aom_highbd_12_jnt_sub_pixel_avg_variance4x8);
HIGHBD_BFP(
BLOCK_4X4, aom_highbd_sad4x4_bits12, aom_highbd_sad4x4_avg_bits12,
aom_highbd_12_variance4x4, aom_highbd_12_sub_pixel_variance4x4,
aom_highbd_12_sub_pixel_avg_variance4x4,
aom_highbd_sad4x4x4d_bits12, aom_highbd_jnt_sad4x4_avg_bits12,
aom_highbd_12_jnt_sub_pixel_avg_variance4x4);
HIGHBD_BFP(BLOCK_128X128, aom_highbd_sad128x128_bits12,
aom_highbd_sad128x128_avg_bits12,
aom_highbd_12_variance128x128,
aom_highbd_12_sub_pixel_variance128x128,
aom_highbd_12_sub_pixel_avg_variance128x128,
aom_highbd_sad128x128x4d_bits12,
aom_highbd_jnt_sad128x128_avg_bits12,
aom_highbd_12_jnt_sub_pixel_avg_variance128x128);
HIGHBD_BFP(
BLOCK_128X64, aom_highbd_sad128x64_bits12,
aom_highbd_sad128x64_avg_bits12, aom_highbd_12_variance128x64,
aom_highbd_12_sub_pixel_variance128x64,
aom_highbd_12_sub_pixel_avg_variance128x64,
aom_highbd_sad128x64x4d_bits12, aom_highbd_jnt_sad128x64_avg_bits12,
aom_highbd_12_jnt_sub_pixel_avg_variance128x64);
HIGHBD_BFP(
BLOCK_64X128, aom_highbd_sad64x128_bits12,
aom_highbd_sad64x128_avg_bits12, aom_highbd_12_variance64x128,
aom_highbd_12_sub_pixel_variance64x128,
aom_highbd_12_sub_pixel_avg_variance64x128,
aom_highbd_sad64x128x4d_bits12, aom_highbd_jnt_sad64x128_avg_bits12,
aom_highbd_12_jnt_sub_pixel_avg_variance64x128);
HIGHBD_MBFP(BLOCK_128X128, aom_highbd_masked_sad128x128_bits12,
aom_highbd_12_masked_sub_pixel_variance128x128)
HIGHBD_MBFP(BLOCK_128X64, aom_highbd_masked_sad128x64_bits12,
aom_highbd_12_masked_sub_pixel_variance128x64)
HIGHBD_MBFP(BLOCK_64X128, aom_highbd_masked_sad64x128_bits12,
aom_highbd_12_masked_sub_pixel_variance64x128)
HIGHBD_MBFP(BLOCK_64X64, aom_highbd_masked_sad64x64_bits12,
aom_highbd_12_masked_sub_pixel_variance64x64)
HIGHBD_MBFP(BLOCK_64X32, aom_highbd_masked_sad64x32_bits12,
aom_highbd_12_masked_sub_pixel_variance64x32)
HIGHBD_MBFP(BLOCK_32X64, aom_highbd_masked_sad32x64_bits12,
aom_highbd_12_masked_sub_pixel_variance32x64)
HIGHBD_MBFP(BLOCK_32X32, aom_highbd_masked_sad32x32_bits12,
aom_highbd_12_masked_sub_pixel_variance32x32)
HIGHBD_MBFP(BLOCK_32X16, aom_highbd_masked_sad32x16_bits12,
aom_highbd_12_masked_sub_pixel_variance32x16)
HIGHBD_MBFP(BLOCK_16X32, aom_highbd_masked_sad16x32_bits12,
aom_highbd_12_masked_sub_pixel_variance16x32)
HIGHBD_MBFP(BLOCK_16X16, aom_highbd_masked_sad16x16_bits12,
aom_highbd_12_masked_sub_pixel_variance16x16)
HIGHBD_MBFP(BLOCK_8X16, aom_highbd_masked_sad8x16_bits12,
aom_highbd_12_masked_sub_pixel_variance8x16)
HIGHBD_MBFP(BLOCK_16X8, aom_highbd_masked_sad16x8_bits12,
aom_highbd_12_masked_sub_pixel_variance16x8)
HIGHBD_MBFP(BLOCK_8X8, aom_highbd_masked_sad8x8_bits12,
aom_highbd_12_masked_sub_pixel_variance8x8)
HIGHBD_MBFP(BLOCK_4X8, aom_highbd_masked_sad4x8_bits12,
aom_highbd_12_masked_sub_pixel_variance4x8)
HIGHBD_MBFP(BLOCK_8X4, aom_highbd_masked_sad8x4_bits12,
aom_highbd_12_masked_sub_pixel_variance8x4)
HIGHBD_MBFP(BLOCK_4X4, aom_highbd_masked_sad4x4_bits12,
aom_highbd_12_masked_sub_pixel_variance4x4)
HIGHBD_MBFP(BLOCK_64X16, aom_highbd_masked_sad64x16_bits12,
aom_highbd_12_masked_sub_pixel_variance64x16)
HIGHBD_MBFP(BLOCK_16X64, aom_highbd_masked_sad16x64_bits12,
aom_highbd_12_masked_sub_pixel_variance16x64)
HIGHBD_MBFP(BLOCK_32X8, aom_highbd_masked_sad32x8_bits12,
aom_highbd_12_masked_sub_pixel_variance32x8)
HIGHBD_MBFP(BLOCK_8X32, aom_highbd_masked_sad8x32_bits12,
aom_highbd_12_masked_sub_pixel_variance8x32)
HIGHBD_MBFP(BLOCK_16X4, aom_highbd_masked_sad16x4_bits12,
aom_highbd_12_masked_sub_pixel_variance16x4)
HIGHBD_MBFP(BLOCK_4X16, aom_highbd_masked_sad4x16_bits12,
aom_highbd_12_masked_sub_pixel_variance4x16)
HIGHBD_OBFP(BLOCK_128X128, aom_highbd_obmc_sad128x128_bits12,
aom_highbd_12_obmc_variance128x128,
aom_highbd_12_obmc_sub_pixel_variance128x128)
HIGHBD_OBFP(BLOCK_128X64, aom_highbd_obmc_sad128x64_bits12,
aom_highbd_12_obmc_variance128x64,
aom_highbd_12_obmc_sub_pixel_variance128x64)
HIGHBD_OBFP(BLOCK_64X128, aom_highbd_obmc_sad64x128_bits12,
aom_highbd_12_obmc_variance64x128,
aom_highbd_12_obmc_sub_pixel_variance64x128)
HIGHBD_OBFP(BLOCK_64X64, aom_highbd_obmc_sad64x64_bits12,
aom_highbd_12_obmc_variance64x64,
aom_highbd_12_obmc_sub_pixel_variance64x64)
HIGHBD_OBFP(BLOCK_64X32, aom_highbd_obmc_sad64x32_bits12,
aom_highbd_12_obmc_variance64x32,
aom_highbd_12_obmc_sub_pixel_variance64x32)
HIGHBD_OBFP(BLOCK_32X64, aom_highbd_obmc_sad32x64_bits12,
aom_highbd_12_obmc_variance32x64,
aom_highbd_12_obmc_sub_pixel_variance32x64)
HIGHBD_OBFP(BLOCK_32X32, aom_highbd_obmc_sad32x32_bits12,
aom_highbd_12_obmc_variance32x32,
aom_highbd_12_obmc_sub_pixel_variance32x32)
HIGHBD_OBFP(BLOCK_32X16, aom_highbd_obmc_sad32x16_bits12,
aom_highbd_12_obmc_variance32x16,
aom_highbd_12_obmc_sub_pixel_variance32x16)
HIGHBD_OBFP(BLOCK_16X32, aom_highbd_obmc_sad16x32_bits12,
aom_highbd_12_obmc_variance16x32,
aom_highbd_12_obmc_sub_pixel_variance16x32)
HIGHBD_OBFP(BLOCK_16X16, aom_highbd_obmc_sad16x16_bits12,
aom_highbd_12_obmc_variance16x16,
aom_highbd_12_obmc_sub_pixel_variance16x16)
HIGHBD_OBFP(BLOCK_8X16, aom_highbd_obmc_sad8x16_bits12,
aom_highbd_12_obmc_variance8x16,
aom_highbd_12_obmc_sub_pixel_variance8x16)
HIGHBD_OBFP(BLOCK_16X8, aom_highbd_obmc_sad16x8_bits12,
aom_highbd_12_obmc_variance16x8,
aom_highbd_12_obmc_sub_pixel_variance16x8)
HIGHBD_OBFP(BLOCK_8X8, aom_highbd_obmc_sad8x8_bits12,
aom_highbd_12_obmc_variance8x8,
aom_highbd_12_obmc_sub_pixel_variance8x8)
HIGHBD_OBFP(BLOCK_4X8, aom_highbd_obmc_sad4x8_bits12,
aom_highbd_12_obmc_variance4x8,
aom_highbd_12_obmc_sub_pixel_variance4x8)
HIGHBD_OBFP(BLOCK_8X4, aom_highbd_obmc_sad8x4_bits12,
aom_highbd_12_obmc_variance8x4,
aom_highbd_12_obmc_sub_pixel_variance8x4)
HIGHBD_OBFP(BLOCK_4X4, aom_highbd_obmc_sad4x4_bits12,
aom_highbd_12_obmc_variance4x4,
aom_highbd_12_obmc_sub_pixel_variance4x4)
HIGHBD_OBFP(BLOCK_64X16, aom_highbd_obmc_sad64x16_bits12,
aom_highbd_12_obmc_variance64x16,
aom_highbd_12_obmc_sub_pixel_variance64x16)
HIGHBD_OBFP(BLOCK_16X64, aom_highbd_obmc_sad16x64_bits12,
aom_highbd_12_obmc_variance16x64,
aom_highbd_12_obmc_sub_pixel_variance16x64)
HIGHBD_OBFP(BLOCK_32X8, aom_highbd_obmc_sad32x8_bits12,
aom_highbd_12_obmc_variance32x8,
aom_highbd_12_obmc_sub_pixel_variance32x8)
HIGHBD_OBFP(BLOCK_8X32, aom_highbd_obmc_sad8x32_bits12,
aom_highbd_12_obmc_variance8x32,
aom_highbd_12_obmc_sub_pixel_variance8x32)
HIGHBD_OBFP(BLOCK_16X4, aom_highbd_obmc_sad16x4_bits12,
aom_highbd_12_obmc_variance16x4,
aom_highbd_12_obmc_sub_pixel_variance16x4)
HIGHBD_OBFP(BLOCK_4X16, aom_highbd_obmc_sad4x16_bits12,
aom_highbd_12_obmc_variance4x16,
aom_highbd_12_obmc_sub_pixel_variance4x16)
break;
default:
assert(0 &&
"cm->bit_depth should be AOM_BITS_8, "
"AOM_BITS_10 or AOM_BITS_12");
}
}
}
static void realloc_segmentation_maps(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
// Create the encoder segmentation map and set all entries to 0
aom_free(cpi->segmentation_map);
CHECK_MEM_ERROR(cm, cpi->segmentation_map,
aom_calloc(cm->mi_rows * cm->mi_cols, 1));
// Create a map used for cyclic background refresh.
if (cpi->cyclic_refresh) av1_cyclic_refresh_free(cpi->cyclic_refresh);
CHECK_MEM_ERROR(cm, cpi->cyclic_refresh,
av1_cyclic_refresh_alloc(cm->mi_rows, cm->mi_cols));
// Create a map used to mark inactive areas.
aom_free(cpi->active_map.map);
CHECK_MEM_ERROR(cm, cpi->active_map.map,
aom_calloc(cm->mi_rows * cm->mi_cols, 1));
}
void av1_change_config(struct AV1_COMP *cpi, const AV1EncoderConfig *oxcf) {
AV1_COMMON *const cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
RATE_CONTROL *const rc = &cpi->rc;
MACROBLOCK *const x = &cpi->td.mb;
if (cm->profile != oxcf->profile) cm->profile = oxcf->profile;
cm->bit_depth = oxcf->bit_depth;
cm->color_primaries = oxcf->color_primaries;
cm->transfer_characteristics = oxcf->transfer_characteristics;
cm->matrix_coefficients = oxcf->matrix_coefficients;
cm->seq_params.monochrome = oxcf->monochrome;
cm->chroma_sample_position = oxcf->chroma_sample_position;
cm->color_range = oxcf->color_range;
assert(IMPLIES(cm->profile <= PROFILE_1, cm->bit_depth <= AOM_BITS_10));
cm->timing_info_present = oxcf->timing_info_present;
cm->timing_info.num_units_in_display_tick =
oxcf->timing_info.num_units_in_display_tick;
cm->timing_info.time_scale = oxcf->timing_info.time_scale;
cm->timing_info.equal_picture_interval =
oxcf->timing_info.equal_picture_interval;
cm->timing_info.num_ticks_per_picture =
oxcf->timing_info.num_ticks_per_picture;
cm->decoder_model_info_present_flag = oxcf->decoder_model_info_present_flag;
cm->operating_points_decoder_model_cnt =
oxcf->operating_points_decoder_model_cnt;
if (oxcf->decoder_model_info_present_flag) {
cm->buffer_model.num_units_in_decoding_tick =
oxcf->buffer_model.num_units_in_decoding_tick;
cm->buffer_removal_delay_present = 1;
set_aom_dec_model_info(&cm->buffer_model);
set_dec_model_op_parameters(&cm->op_params[0], &cm->buffer_model,
oxcf->target_bandwidth, 0);
}
update_film_grain_parameters(cpi, oxcf);
cpi->oxcf = *oxcf;
cpi->common.options = oxcf->cfg;
x->e_mbd.bd = (int)cm->bit_depth;
x->e_mbd.global_motion = cm->global_motion;
if ((oxcf->pass == 0) && (oxcf->rc_mode == AOM_Q)) {
rc->baseline_gf_interval = FIXED_GF_INTERVAL;
} else {
rc->baseline_gf_interval = (MIN_GF_INTERVAL + MAX_GF_INTERVAL) / 2;
}
cpi->refresh_last_frame = 1;
cpi->refresh_golden_frame = 0;
cpi->refresh_bwd_ref_frame = 0;
cpi->refresh_alt2_ref_frame = 0;
cm->refresh_frame_context = (oxcf->frame_parallel_decoding_mode)
? REFRESH_FRAME_CONTEXT_DISABLED
: REFRESH_FRAME_CONTEXT_BACKWARD;
if (oxcf->large_scale_tile)
cm->refresh_frame_context = REFRESH_FRAME_CONTEXT_DISABLED;
if (x->palette_buffer == NULL) {
CHECK_MEM_ERROR(cm, x->palette_buffer,
aom_memalign(16, sizeof(*x->palette_buffer)));
}
av1_reset_segment_features(cm);
set_high_precision_mv(cpi, 1, 0);
set_rc_buffer_sizes(rc, &cpi->oxcf);
// Under a configuration change, where maximum_buffer_size may change,
// keep buffer level clipped to the maximum allowed buffer size.
rc->bits_off_target = AOMMIN(rc->bits_off_target, rc->maximum_buffer_size);
rc->buffer_level = AOMMIN(rc->buffer_level, rc->maximum_buffer_size);
// Set up frame rate and related parameters rate control values.
av1_new_framerate(cpi, cpi->framerate);
// Set absolute upper and lower quality limits
rc->worst_quality = cpi->oxcf.worst_allowed_q;
rc->best_quality = cpi->oxcf.best_allowed_q;
if (!oxcf->large_scale_tile)
cm->interp_filter = cpi->sf.default_interp_filter;
else
cm->interp_filter = EIGHTTAP_REGULAR;
cm->switchable_motion_mode = 1;
if (cpi->oxcf.render_width > 0 && cpi->oxcf.render_height > 0) {
cm->render_width = cpi->oxcf.render_width;
cm->render_height = cpi->oxcf.render_height;
} else {
cm->render_width = cpi->oxcf.width;
cm->render_height = cpi->oxcf.height;
}
cm->width = cpi->oxcf.width;
cm->height = cpi->oxcf.height;
int sb_size = cm->seq_params.sb_size;
// Superblock size should not be updated after the first key frame.
if (!cpi->seq_params_locked) {
set_sb_size(&cm->seq_params, select_sb_size(cpi));
}
if (cpi->initial_width || sb_size != cm->seq_params.sb_size) {
if (cm->width > cpi->initial_width || cm->height > cpi->initial_height ||
cm->seq_params.sb_size != sb_size) {
av1_free_context_buffers(cm);
av1_free_pc_tree(&cpi->td, num_planes);
alloc_compressor_data(cpi);
realloc_segmentation_maps(cpi);
cpi->initial_width = cpi->initial_height = 0;
}
}
update_frame_size(cpi);
cpi->alt_ref_source = NULL;
rc->is_src_frame_alt_ref = 0;
rc->is_bwd_ref_frame = 0;
rc->is_last_bipred_frame = 0;
rc->is_bipred_frame = 0;
set_tile_info(cpi);
cpi->ext_refresh_frame_flags_pending = 0;
cpi->ext_refresh_frame_context_pending = 0;
highbd_set_var_fns(cpi);
// Init sequence level coding tools
// This should not be called after the first key frame.
if (!cpi->seq_params_locked) {
init_seq_coding_tools(&cm->seq_params, oxcf);
}
}
AV1_COMP *av1_create_compressor(AV1EncoderConfig *oxcf,
BufferPool *const pool) {
unsigned int i;
AV1_COMP *volatile const cpi = aom_memalign(32, sizeof(AV1_COMP));
AV1_COMMON *volatile const cm = cpi != NULL ? &cpi->common : NULL;
if (!cm) return NULL;
av1_zero(*cpi);
if (setjmp(cm->error.jmp)) {
cm->error.setjmp = 0;
av1_remove_compressor(cpi);
return 0;
}
cm->error.setjmp = 1;
cm->alloc_mi = enc_alloc_mi;
cm->free_mi = enc_free_mi;
cm->setup_mi = enc_setup_mi;
CHECK_MEM_ERROR(cm, cm->fc,
(FRAME_CONTEXT *)aom_memalign(32, sizeof(*cm->fc)));
CHECK_MEM_ERROR(cm, cm->frame_contexts,
(FRAME_CONTEXT *)aom_memalign(
32, FRAME_CONTEXTS * sizeof(*cm->frame_contexts)));
memset(cm->fc, 0, sizeof(*cm->fc));
memset(cm->frame_contexts, 0, FRAME_CONTEXTS * sizeof(*cm->frame_contexts));
cpi->resize_state = 0;
cpi->resize_avg_qp = 0;
cpi->resize_buffer_underflow = 0;
cpi->common.buffer_pool = pool;
init_config(cpi, oxcf);
av1_rc_init(&cpi->oxcf, oxcf->pass, &cpi->rc);
cm->current_video_frame = 0;
cpi->seq_params_locked = 0;
cpi->partition_search_skippable_frame = 0;
cpi->tile_data = NULL;
cpi->last_show_frame_buf_idx = INVALID_IDX;
realloc_segmentation_maps(cpi);
memset(cpi->nmv_costs, 0, sizeof(cpi->nmv_costs));
memset(cpi->nmv_costs_hp, 0, sizeof(cpi->nmv_costs_hp));
for (i = 0; i < (sizeof(cpi->mbgraph_stats) / sizeof(cpi->mbgraph_stats[0]));
i++) {
CHECK_MEM_ERROR(
cm, cpi->mbgraph_stats[i].mb_stats,
aom_calloc(cm->MBs * sizeof(*cpi->mbgraph_stats[i].mb_stats), 1));
}
#if CONFIG_FP_MB_STATS
cpi->use_fp_mb_stats = 0;
if (cpi->use_fp_mb_stats) {
// a place holder used to store the first pass mb stats in the first pass
CHECK_MEM_ERROR(cm, cpi->twopass.frame_mb_stats_buf,
aom_calloc(cm->MBs * sizeof(uint8_t), 1));
} else {
cpi->twopass.frame_mb_stats_buf = NULL;
}
#endif
cpi->refresh_alt_ref_frame = 0;
cpi->b_calculate_psnr = CONFIG_INTERNAL_STATS;
#if CONFIG_INTERNAL_STATS
cpi->b_calculate_blockiness = 1;
cpi->b_calculate_consistency = 1;
cpi->total_inconsistency = 0;
cpi->psnr.worst = 100.0;
cpi->worst_ssim = 100.0;
cpi->count = 0;
cpi->bytes = 0;
if (cpi->b_calculate_psnr) {
cpi->total_sq_error = 0;
cpi->total_samples = 0;
cpi->tot_recode_hits = 0;
cpi->summed_quality = 0;
cpi->summed_weights = 0;
}
cpi->fastssim.worst = 100.0;
cpi->psnrhvs.worst = 100.0;
if (cpi->b_calculate_blockiness) {
cpi->total_blockiness = 0;
cpi->worst_blockiness = 0.0;
}
if (cpi->b_calculate_consistency) {
CHECK_MEM_ERROR(cm, cpi->ssim_vars,
aom_malloc(sizeof(*cpi->ssim_vars) * 4 *
cpi->common.mi_rows * cpi->common.mi_cols));
cpi->worst_consistency = 100.0;
}
#endif
#if CONFIG_ENTROPY_STATS
av1_zero(aggregate_fc);
#endif // CONFIG_ENTROPY_STATS
cpi->first_time_stamp_ever = INT64_MAX;
cpi->td.mb.nmvcost[0] = &cpi->nmv_costs[0][MV_MAX];
cpi->td.mb.nmvcost[1] = &cpi->nmv_costs[1][MV_MAX];
cpi->td.mb.nmvcost_hp[0] = &cpi->nmv_costs_hp[0][MV_MAX];
cpi->td.mb.nmvcost_hp[1] = &cpi->nmv_costs_hp[1][MV_MAX];
#ifdef OUTPUT_YUV_SKINMAP
yuv_skinmap_file = fopen("skinmap.yuv", "ab");
#endif
#ifdef OUTPUT_YUV_REC
yuv_rec_file = fopen("rec.yuv", "wb");
#endif
if (oxcf->pass == 1) {
av1_init_first_pass(cpi);
} else if (oxcf->pass == 2) {
const size_t packet_sz = sizeof(FIRSTPASS_STATS);
const int packets = (int)(oxcf->two_pass_stats_in.sz / packet_sz);
#if CONFIG_FP_MB_STATS
if (cpi->use_fp_mb_stats) {
const size_t psz = cpi->common.MBs * sizeof(uint8_t);
const int ps = (int)(oxcf->firstpass_mb_stats_in.sz / psz);
cpi->twopass.firstpass_mb_stats.mb_stats_start =
oxcf->firstpass_mb_stats_in.buf;
cpi->twopass.firstpass_mb_stats.mb_stats_end =
cpi->twopass.firstpass_mb_stats.mb_stats_start +
(ps - 1) * cpi->common.MBs * sizeof(uint8_t);
}
#endif
cpi->twopass.stats_in_start = oxcf->two_pass_stats_in.buf;
cpi->twopass.stats_in = cpi->twopass.stats_in_start;
cpi->twopass.stats_in_end = &cpi->twopass.stats_in[packets - 1];
av1_init_second_pass(cpi);
}
CHECK_MEM_ERROR(
cm, cpi->td.mb.above_pred_buf,
(uint8_t *)aom_memalign(16, MAX_MB_PLANE * MAX_SB_SQUARE *
sizeof(*cpi->td.mb.above_pred_buf)));
CHECK_MEM_ERROR(
cm, cpi->td.mb.left_pred_buf,
(uint8_t *)aom_memalign(16, MAX_MB_PLANE * MAX_SB_SQUARE *
sizeof(*cpi->td.mb.left_pred_buf)));
CHECK_MEM_ERROR(cm, cpi->td.mb.wsrc_buf,
(int32_t *)aom_memalign(
16, MAX_SB_SQUARE * sizeof(*cpi->td.mb.wsrc_buf)));
CHECK_MEM_ERROR(cm, cpi->td.mb.mask_buf,
(int32_t *)aom_memalign(
16, MAX_SB_SQUARE * sizeof(*cpi->td.mb.mask_buf)));
av1_set_speed_features_framesize_independent(cpi);
av1_set_speed_features_framesize_dependent(cpi);
#define BFP(BT, SDF, SDAF, VF, SVF, SVAF, SDX4DF, JSDAF, JSVAF) \
cpi->fn_ptr[BT].sdf = SDF; \
cpi->fn_ptr[BT].sdaf = SDAF; \
cpi->fn_ptr[BT].vf = VF; \
cpi->fn_ptr[BT].svf = SVF; \
cpi->fn_ptr[BT].svaf = SVAF; \
cpi->fn_ptr[BT].sdx4df = SDX4DF; \
cpi->fn_ptr[BT].jsdaf = JSDAF; \
cpi->fn_ptr[BT].jsvaf = JSVAF;
BFP(BLOCK_4X16, aom_sad4x16, aom_sad4x16_avg, aom_variance4x16,
aom_sub_pixel_variance4x16, aom_sub_pixel_avg_variance4x16,
aom_sad4x16x4d, aom_jnt_sad4x16_avg, aom_jnt_sub_pixel_avg_variance4x16)
BFP(BLOCK_16X4, aom_sad16x4, aom_sad16x4_avg, aom_variance16x4,
aom_sub_pixel_variance16x4, aom_sub_pixel_avg_variance16x4,
aom_sad16x4x4d, aom_jnt_sad16x4_avg, aom_jnt_sub_pixel_avg_variance16x4)
BFP(BLOCK_8X32, aom_sad8x32, aom_sad8x32_avg, aom_variance8x32,
aom_sub_pixel_variance8x32, aom_sub_pixel_avg_variance8x32,
aom_sad8x32x4d, aom_jnt_sad8x32_avg, aom_jnt_sub_pixel_avg_variance8x32)
BFP(BLOCK_32X8, aom_sad32x8, aom_sad32x8_avg, aom_variance32x8,
aom_sub_pixel_variance32x8, aom_sub_pixel_avg_variance32x8,
aom_sad32x8x4d, aom_jnt_sad32x8_avg, aom_jnt_sub_pixel_avg_variance32x8)
BFP(BLOCK_16X64, aom_sad16x64, aom_sad16x64_avg, aom_variance16x64,
aom_sub_pixel_variance16x64, aom_sub_pixel_avg_variance16x64,
aom_sad16x64x4d, aom_jnt_sad16x64_avg,
aom_jnt_sub_pixel_avg_variance16x64)
BFP(BLOCK_64X16, aom_sad64x16, aom_sad64x16_avg, aom_variance64x16,
aom_sub_pixel_variance64x16, aom_sub_pixel_avg_variance64x16,
aom_sad64x16x4d, aom_jnt_sad64x16_avg,
aom_jnt_sub_pixel_avg_variance64x16)
BFP(BLOCK_128X128, aom_sad128x128, aom_sad128x128_avg, aom_variance128x128,
aom_sub_pixel_variance128x128, aom_sub_pixel_avg_variance128x128,
aom_sad128x128x4d, aom_jnt_sad128x128_avg,
aom_jnt_sub_pixel_avg_variance128x128)
BFP(BLOCK_128X64, aom_sad128x64, aom_sad128x64_avg, aom_variance128x64,
aom_sub_pixel_variance128x64, aom_sub_pixel_avg_variance128x64,
aom_sad128x64x4d, aom_jnt_sad128x64_avg,
aom_jnt_sub_pixel_avg_variance128x64)
BFP(BLOCK_64X128, aom_sad64x128, aom_sad64x128_avg, aom_variance64x128,
aom_sub_pixel_variance64x128, aom_sub_pixel_avg_variance64x128,
aom_sad64x128x4d, aom_jnt_sad64x128_avg,
aom_jnt_sub_pixel_avg_variance64x128)
BFP(BLOCK_32X16, aom_sad32x16, aom_sad32x16_avg, aom_variance32x16,
aom_sub_pixel_variance32x16, aom_sub_pixel_avg_variance32x16,
aom_sad32x16x4d, aom_jnt_sad32x16_avg,
aom_jnt_sub_pixel_avg_variance32x16)
BFP(BLOCK_16X32, aom_sad16x32, aom_sad16x32_avg, aom_variance16x32,
aom_sub_pixel_variance16x32, aom_sub_pixel_avg_variance16x32,
aom_sad16x32x4d, aom_jnt_sad16x32_avg,
aom_jnt_sub_pixel_avg_variance16x32)
BFP(BLOCK_64X32, aom_sad64x32, aom_sad64x32_avg, aom_variance64x32,
aom_sub_pixel_variance64x32, aom_sub_pixel_avg_variance64x32,
aom_sad64x32x4d, aom_jnt_sad64x32_avg,
aom_jnt_sub_pixel_avg_variance64x32)
BFP(BLOCK_32X64, aom_sad32x64, aom_sad32x64_avg, aom_variance32x64,
aom_sub_pixel_variance32x64, aom_sub_pixel_avg_variance32x64,
aom_sad32x64x4d, aom_jnt_sad32x64_avg,
aom_jnt_sub_pixel_avg_variance32x64)
BFP(BLOCK_32X32, aom_sad32x32, aom_sad32x32_avg, aom_variance32x32,
aom_sub_pixel_variance32x32, aom_sub_pixel_avg_variance32x32,
aom_sad32x32x4d, aom_jnt_sad32x32_avg,
aom_jnt_sub_pixel_avg_variance32x32)
BFP(BLOCK_64X64, aom_sad64x64, aom_sad64x64_avg, aom_variance64x64,
aom_sub_pixel_variance64x64, aom_sub_pixel_avg_variance64x64,
aom_sad64x64x4d, aom_jnt_sad64x64_avg,
aom_jnt_sub_pixel_avg_variance64x64)
BFP(BLOCK_16X16, aom_sad16x16, aom_sad16x16_avg, aom_variance16x16,
aom_sub_pixel_variance16x16, aom_sub_pixel_avg_variance16x16,
aom_sad16x16x4d, aom_jnt_sad16x16_avg,
aom_jnt_sub_pixel_avg_variance16x16)
BFP(BLOCK_16X8, aom_sad16x8, aom_sad16x8_avg, aom_variance16x8,
aom_sub_pixel_variance16x8, aom_sub_pixel_avg_variance16x8,
aom_sad16x8x4d, aom_jnt_sad16x8_avg, aom_jnt_sub_pixel_avg_variance16x8)
BFP(BLOCK_8X16, aom_sad8x16, aom_sad8x16_avg, aom_variance8x16,
aom_sub_pixel_variance8x16, aom_sub_pixel_avg_variance8x16,
aom_sad8x16x4d, aom_jnt_sad8x16_avg, aom_jnt_sub_pixel_avg_variance8x16)
BFP(BLOCK_8X8, aom_sad8x8, aom_sad8x8_avg, aom_variance8x8,
aom_sub_pixel_variance8x8, aom_sub_pixel_avg_variance8x8, aom_sad8x8x4d,
aom_jnt_sad8x8_avg, aom_jnt_sub_pixel_avg_variance8x8)
BFP(BLOCK_8X4, aom_sad8x4, aom_sad8x4_avg, aom_variance8x4,
aom_sub_pixel_variance8x4, aom_sub_pixel_avg_variance8x4, aom_sad8x4x4d,
aom_jnt_sad8x4_avg, aom_jnt_sub_pixel_avg_variance8x4)
BFP(BLOCK_4X8, aom_sad4x8, aom_sad4x8_avg, aom_variance4x8,
aom_sub_pixel_variance4x8, aom_sub_pixel_avg_variance4x8, aom_sad4x8x4d,
aom_jnt_sad4x8_avg, aom_jnt_sub_pixel_avg_variance4x8)
BFP(BLOCK_4X4, aom_sad4x4, aom_sad4x4_avg, aom_variance4x4,
aom_sub_pixel_variance4x4, aom_sub_pixel_avg_variance4x4, aom_sad4x4x4d,
aom_jnt_sad4x4_avg, aom_jnt_sub_pixel_avg_variance4x4)
#define OBFP(BT, OSDF, OVF, OSVF) \
cpi->fn_ptr[BT].osdf = OSDF; \
cpi->fn_ptr[BT].ovf = OVF; \
cpi->fn_ptr[BT].osvf = OSVF;
OBFP(BLOCK_128X128, aom_obmc_sad128x128, aom_obmc_variance128x128,
aom_obmc_sub_pixel_variance128x128)
OBFP(BLOCK_128X64, aom_obmc_sad128x64, aom_obmc_variance128x64,
aom_obmc_sub_pixel_variance128x64)
OBFP(BLOCK_64X128, aom_obmc_sad64x128, aom_obmc_variance64x128,
aom_obmc_sub_pixel_variance64x128)
OBFP(BLOCK_64X64, aom_obmc_sad64x64, aom_obmc_variance64x64,
aom_obmc_sub_pixel_variance64x64)
OBFP(BLOCK_64X32, aom_obmc_sad64x32, aom_obmc_variance64x32,
aom_obmc_sub_pixel_variance64x32)
OBFP(BLOCK_32X64, aom_obmc_sad32x64, aom_obmc_variance32x64,
aom_obmc_sub_pixel_variance32x64)
OBFP(BLOCK_32X32, aom_obmc_sad32x32, aom_obmc_variance32x32,
aom_obmc_sub_pixel_variance32x32)
OBFP(BLOCK_32X16, aom_obmc_sad32x16, aom_obmc_variance32x16,
aom_obmc_sub_pixel_variance32x16)
OBFP(BLOCK_16X32, aom_obmc_sad16x32, aom_obmc_variance16x32,
aom_obmc_sub_pixel_variance16x32)
OBFP(BLOCK_16X16, aom_obmc_sad16x16, aom_obmc_variance16x16,
aom_obmc_sub_pixel_variance16x16)
OBFP(BLOCK_16X8, aom_obmc_sad16x8, aom_obmc_variance16x8,
aom_obmc_sub_pixel_variance16x8)
OBFP(BLOCK_8X16, aom_obmc_sad8x16, aom_obmc_variance8x16,
aom_obmc_sub_pixel_variance8x16)
OBFP(BLOCK_8X8, aom_obmc_sad8x8, aom_obmc_variance8x8,
aom_obmc_sub_pixel_variance8x8)
OBFP(BLOCK_4X8, aom_obmc_sad4x8, aom_obmc_variance4x8,
aom_obmc_sub_pixel_variance4x8)
OBFP(BLOCK_8X4, aom_obmc_sad8x4, aom_obmc_variance8x4,
aom_obmc_sub_pixel_variance8x4)
OBFP(BLOCK_4X4, aom_obmc_sad4x4, aom_obmc_variance4x4,
aom_obmc_sub_pixel_variance4x4)
OBFP(BLOCK_4X16, aom_obmc_sad4x16, aom_obmc_variance4x16,
aom_obmc_sub_pixel_variance4x16)
OBFP(BLOCK_16X4, aom_obmc_sad16x4, aom_obmc_variance16x4,
aom_obmc_sub_pixel_variance16x4)
OBFP(BLOCK_8X32, aom_obmc_sad8x32, aom_obmc_variance8x32,
aom_obmc_sub_pixel_variance8x32)
OBFP(BLOCK_32X8, aom_obmc_sad32x8, aom_obmc_variance32x8,
aom_obmc_sub_pixel_variance32x8)
OBFP(BLOCK_16X64, aom_obmc_sad16x64, aom_obmc_variance16x64,
aom_obmc_sub_pixel_variance16x64)
OBFP(BLOCK_64X16, aom_obmc_sad64x16, aom_obmc_variance64x16,
aom_obmc_sub_pixel_variance64x16)
#define MBFP(BT, MCSDF, MCSVF) \
cpi->fn_ptr[BT].msdf = MCSDF; \
cpi->fn_ptr[BT].msvf = MCSVF;
MBFP(BLOCK_128X128, aom_masked_sad128x128,
aom_masked_sub_pixel_variance128x128)
MBFP(BLOCK_128X64, aom_masked_sad128x64, aom_masked_sub_pixel_variance128x64)
MBFP(BLOCK_64X128, aom_masked_sad64x128, aom_masked_sub_pixel_variance64x128)
MBFP(BLOCK_64X64, aom_masked_sad64x64, aom_masked_sub_pixel_variance64x64)
MBFP(BLOCK_64X32, aom_masked_sad64x32, aom_masked_sub_pixel_variance64x32)
MBFP(BLOCK_32X64, aom_masked_sad32x64, aom_masked_sub_pixel_variance32x64)
MBFP(BLOCK_32X32, aom_masked_sad32x32, aom_masked_sub_pixel_variance32x32)
MBFP(BLOCK_32X16, aom_masked_sad32x16, aom_masked_sub_pixel_variance32x16)
MBFP(BLOCK_16X32, aom_masked_sad16x32, aom_masked_sub_pixel_variance16x32)
MBFP(BLOCK_16X16, aom_masked_sad16x16, aom_masked_sub_pixel_variance16x16)
MBFP(BLOCK_16X8, aom_masked_sad16x8, aom_masked_sub_pixel_variance16x8)
MBFP(BLOCK_8X16, aom_masked_sad8x16, aom_masked_sub_pixel_variance8x16)
MBFP(BLOCK_8X8, aom_masked_sad8x8, aom_masked_sub_pixel_variance8x8)
MBFP(BLOCK_4X8, aom_masked_sad4x8, aom_masked_sub_pixel_variance4x8)
MBFP(BLOCK_8X4, aom_masked_sad8x4, aom_masked_sub_pixel_variance8x4)
MBFP(BLOCK_4X4, aom_masked_sad4x4, aom_masked_sub_pixel_variance4x4)
MBFP(BLOCK_4X16, aom_masked_sad4x16, aom_masked_sub_pixel_variance4x16)
MBFP(BLOCK_16X4, aom_masked_sad16x4, aom_masked_sub_pixel_variance16x4)
MBFP(BLOCK_8X32, aom_masked_sad8x32, aom_masked_sub_pixel_variance8x32)
MBFP(BLOCK_32X8, aom_masked_sad32x8, aom_masked_sub_pixel_variance32x8)
MBFP(BLOCK_16X64, aom_masked_sad16x64, aom_masked_sub_pixel_variance16x64)
MBFP(BLOCK_64X16, aom_masked_sad64x16, aom_masked_sub_pixel_variance64x16)
highbd_set_var_fns(cpi);
/* av1_init_quantizer() is first called here. Add check in
* av1_frame_init_quantizer() so that av1_init_quantizer is only
* called later when needed. This will avoid unnecessary calls of
* av1_init_quantizer() for every frame.
*/
av1_init_quantizer(cpi);
av1_qm_init(cm);
av1_loop_filter_init(cm);
cm->superres_scale_denominator = SCALE_NUMERATOR;
cm->superres_upscaled_width = oxcf->width;
cm->superres_upscaled_height = oxcf->height;
av1_loop_restoration_precal();
cm->error.setjmp = 0;
return cpi;
}
#if CONFIG_INTERNAL_STATS
#define SNPRINT(H, T) snprintf((H) + strlen(H), sizeof(H) - strlen(H), (T))
#define SNPRINT2(H, T, V) \
snprintf((H) + strlen(H), sizeof(H) - strlen(H), (T), (V))
#endif // CONFIG_INTERNAL_STATS
void av1_remove_compressor(AV1_COMP *cpi) {
AV1_COMMON *cm;
unsigned int i;
int t;
if (!cpi) return;
cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
if (cm->current_video_frame > 0) {
#if CONFIG_ENTROPY_STATS
if (cpi->oxcf.pass != 1) {
fprintf(stderr, "Writing counts.stt\n");
FILE *f = fopen("counts.stt", "wb");
fwrite(&aggregate_fc, sizeof(aggregate_fc), 1, f);
fclose(f);
}
#endif // CONFIG_ENTROPY_STATS
#if CONFIG_INTERNAL_STATS
aom_clear_system_state();
if (cpi->oxcf.pass != 1) {
char headings[512] = { 0 };
char results[512] = { 0 };
FILE *f = fopen("opsnr.stt", "a");
double time_encoded =
(cpi->last_end_time_stamp_seen - cpi->first_time_stamp_ever) /
10000000.000;
double total_encode_time =
(cpi->time_receive_data + cpi->time_compress_data) / 1000.000;
const double dr =
(double)cpi->bytes * (double)8 / (double)1000 / time_encoded;
const double peak = (double)((1 << cpi->oxcf.input_bit_depth) - 1);
const double target_rate = (double)cpi->oxcf.target_bandwidth / 1000;
const double rate_err = ((100.0 * (dr - target_rate)) / target_rate);
if (cpi->b_calculate_psnr) {
const double total_psnr = aom_sse_to_psnr(
(double)cpi->total_samples, peak, (double)cpi->total_sq_error);
const double total_ssim =
100 * pow(cpi->summed_quality / cpi->summed_weights, 8.0);
snprintf(headings, sizeof(headings),
"Bitrate\tAVGPsnr\tGLBPsnr\tAVPsnrP\tGLPsnrP\t"
"AOMSSIM\tVPSSIMP\tFASTSIM\tPSNRHVS\t"
"WstPsnr\tWstSsim\tWstFast\tWstHVS\t"
"AVPsrnY\tAPsnrCb\tAPsnrCr");
snprintf(results, sizeof(results),
"%7.2f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t"
"%7.3f\t%7.3f\t%7.3f\t%7.3f\t"
"%7.3f\t%7.3f\t%7.3f\t%7.3f\t"
"%7.3f\t%7.3f\t%7.3f",
dr, cpi->psnr.stat[STAT_ALL] / cpi->count, total_psnr,
cpi->psnr.stat[STAT_ALL] / cpi->count, total_psnr, total_ssim,
total_ssim, cpi->fastssim.stat[STAT_ALL] / cpi->count,
cpi->psnrhvs.stat[STAT_ALL] / cpi->count, cpi->psnr.worst,
cpi->worst_ssim, cpi->fastssim.worst, cpi->psnrhvs.worst,
cpi->psnr.stat[STAT_Y] / cpi->count,
cpi->psnr.stat[STAT_U] / cpi->count,
cpi->psnr.stat[STAT_V] / cpi->count);
if (cpi->b_calculate_blockiness) {
SNPRINT(headings, "\t Block\tWstBlck");
SNPRINT2(results, "\t%7.3f", cpi->total_blockiness / cpi->count);
SNPRINT2(results, "\t%7.3f", cpi->worst_blockiness);
}
if (cpi->b_calculate_consistency) {
double consistency =
aom_sse_to_psnr((double)cpi->total_samples, peak,
(double)cpi->total_inconsistency);
SNPRINT(headings, "\tConsist\tWstCons");
SNPRINT2(results, "\t%7.3f", consistency);
SNPRINT2(results, "\t%7.3f", cpi->worst_consistency);
}
fprintf(f, "%s\t Time\tRcErr\tAbsErr\n", headings);
fprintf(f, "%s\t%8.0f\t%7.2f\t%7.2f\n", results, total_encode_time,
rate_err, fabs(rate_err));
}
fclose(f);
}
#endif // CONFIG_INTERNAL_STATS
}
for (t = 0; t < cpi->num_workers; ++t) {
AVxWorker *const worker = &cpi->workers[t];
EncWorkerData *const thread_data = &cpi->tile_thr_data[t];
// Deallocate allocated threads.
aom_get_worker_interface()->end(worker);
// Deallocate allocated thread data.
if (t < cpi->num_workers - 1) {
aom_free(thread_data->td->palette_buffer);
aom_free(thread_data->td->above_pred_buf);
aom_free(thread_data->td->left_pred_buf);
aom_free(thread_data->td->wsrc_buf);
aom_free(thread_data->td->mask_buf);
aom_free(thread_data->td->counts);
av1_free_pc_tree(thread_data->td, num_planes);
aom_free(thread_data->td);
}
}
aom_free(cpi->tile_thr_data);
aom_free(cpi->workers);
if (cpi->num_workers > 1) {
av1_loop_filter_dealloc(&cpi->lf_row_sync);
}
dealloc_compressor_data(cpi);
for (i = 0; i < sizeof(cpi->mbgraph_stats) / sizeof(cpi->mbgraph_stats[0]);
++i) {
aom_free(cpi->mbgraph_stats[i].mb_stats);
}
#if CONFIG_FP_MB_STATS
if (cpi->use_fp_mb_stats) {
aom_free(cpi->twopass.frame_mb_stats_buf);
cpi->twopass.frame_mb_stats_buf = NULL;
}
#endif
#if CONFIG_INTERNAL_STATS
aom_free(cpi->ssim_vars);
cpi->ssim_vars = NULL;
#endif // CONFIG_INTERNAL_STATS
av1_remove_common(cm);
for (i = 0; i < FRAME_BUFFERS; ++i) {
av1_hash_table_destroy(&cm->buffer_pool->frame_bufs[i].hash_table);
}
if (cpi->sf.use_hash_based_trellis) hbt_destroy();
av1_free_ref_frame_buffers(cm->buffer_pool);
aom_free(cpi);
#ifdef OUTPUT_YUV_SKINMAP
fclose(yuv_skinmap_file);
#endif
#ifdef OUTPUT_YUV_REC
fclose(yuv_rec_file);
#endif
}
static void generate_psnr_packet(AV1_COMP *cpi) {
struct aom_codec_cx_pkt pkt;
int i;
PSNR_STATS psnr;
aom_calc_highbd_psnr(cpi->source, cpi->common.frame_to_show, &psnr,
cpi->td.mb.e_mbd.bd, cpi->oxcf.input_bit_depth);
for (i = 0; i < 4; ++i) {
pkt.data.psnr.samples[i] = psnr.samples[i];
pkt.data.psnr.sse[i] = psnr.sse[i];
pkt.data.psnr.psnr[i] = psnr.psnr[i];
}
pkt.kind = AOM_CODEC_PSNR_PKT;
aom_codec_pkt_list_add(cpi->output_pkt_list, &pkt);
}
int av1_use_as_reference(AV1_COMP *cpi, int ref_frame_flags) {
if (ref_frame_flags > ((1 << INTER_REFS_PER_FRAME) - 1)) return -1;
cpi->ext_ref_frame_flags = ref_frame_flags;
return 0;
}
void av1_update_reference(AV1_COMP *cpi, int ref_frame_upd_flags) {
cpi->ext_refresh_last_frame = (ref_frame_upd_flags & AOM_LAST_FLAG) != 0;
cpi->ext_refresh_golden_frame = (ref_frame_upd_flags & AOM_GOLD_FLAG) != 0;
cpi->ext_refresh_alt_ref_frame = (ref_frame_upd_flags & AOM_ALT_FLAG) != 0;
cpi->ext_refresh_bwd_ref_frame = (ref_frame_upd_flags & AOM_BWD_FLAG) != 0;
cpi->ext_refresh_alt2_ref_frame = (ref_frame_upd_flags & AOM_ALT2_FLAG) != 0;
cpi->ext_refresh_frame_flags_pending = 1;
}
int av1_copy_reference_enc(AV1_COMP *cpi, int idx, YV12_BUFFER_CONFIG *sd) {
AV1_COMMON *const cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
YV12_BUFFER_CONFIG *cfg = get_ref_frame(cm, idx);
if (cfg) {
aom_yv12_copy_frame(cfg, sd, num_planes);
return 0;
} else {
return -1;
}
}
int av1_set_reference_enc(AV1_COMP *cpi, int idx, YV12_BUFFER_CONFIG *sd) {
AV1_COMMON *const cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
YV12_BUFFER_CONFIG *cfg = get_ref_frame(cm, idx);
if (cfg) {
aom_yv12_copy_frame(sd, cfg, num_planes);
return 0;
} else {
return -1;
}
}
int av1_update_entropy(AV1_COMP *cpi, int update) {
cpi->ext_refresh_frame_context = update;
cpi->ext_refresh_frame_context_pending = 1;
return 0;
}
#if defined(OUTPUT_YUV_DENOISED) || defined(OUTPUT_YUV_SKINMAP)
// The denoiser buffer is allocated as a YUV 440 buffer. This function writes it
// as YUV 420. We simply use the top-left pixels of the UV buffers, since we do
// not denoise the UV channels at this time. If ever we implement UV channel
// denoising we will have to modify this.
void aom_write_yuv_frame_420(YV12_BUFFER_CONFIG *s, FILE *f) {
uint8_t *src = s->y_buffer;
int h = s->y_height;
do {
fwrite(src, s->y_width, 1, f);
src += s->y_stride;
} while (--h);
src = s->u_buffer;
h = s->uv_height;
do {
fwrite(src, s->uv_width, 1, f);
src += s->uv_stride;
} while (--h);
src = s->v_buffer;
h = s->uv_height;
do {
fwrite(src, s->uv_width, 1, f);
src += s->uv_stride;
} while (--h);
}
#endif
#if USE_GF16_MULTI_LAYER
static void check_show_existing_frame_gf16(AV1_COMP *cpi) {
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
AV1_COMMON *const cm = &cpi->common;
const FRAME_UPDATE_TYPE next_frame_update_type =
gf_group->update_type[gf_group->index];
if (cm->show_existing_frame == 1) {
cm->show_existing_frame = 0;
} else if (cpi->rc.is_last_bipred_frame) {
cpi->rc.is_last_bipred_frame = 0;
cm->show_existing_frame = 1;
cpi->existing_fb_idx_to_show = cpi->ref_fb_idx[BWDREF_FRAME - 1];
} else if (next_frame_update_type == OVERLAY_UPDATE ||
next_frame_update_type == INTNL_OVERLAY_UPDATE) {
// Check the temporal filtering status for the next OVERLAY frame
const int num_arfs_in_gf = cpi->num_extra_arfs + 1;
int which_arf = 0, arf_idx;
// Identify the index to the next overlay frame.
for (arf_idx = 0; arf_idx < num_arfs_in_gf; arf_idx++) {
if (gf_group->index == cpi->arf_pos_for_ovrly[arf_idx]) {
which_arf = arf_idx;
break;
}
}
assert(arf_idx < num_arfs_in_gf);
if (cpi->is_arf_filter_off[which_arf]) {
cm->show_existing_frame = 1;
cpi->rc.is_src_frame_alt_ref = 1;
cpi->existing_fb_idx_to_show = (next_frame_update_type == OVERLAY_UPDATE)
? cpi->ref_fb_idx[ALTREF_FRAME - 1]
: cpi->ref_fb_idx[BWDREF_FRAME - 1];
cpi->is_arf_filter_off[which_arf] = 0;
}
}
cpi->rc.is_src_frame_ext_arf = 0;
}
#endif // USE_GF16_MULTI_LAYER
static void check_show_existing_frame(AV1_COMP *cpi) {
#if USE_GF16_MULTI_LAYER
if (cpi->rc.baseline_gf_interval == 16) {
check_show_existing_frame_gf16(cpi);
return;
}
#endif // USE_GF16_MULTI_LAYER
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
AV1_COMMON *const cm = &cpi->common;
const FRAME_UPDATE_TYPE next_frame_update_type =
gf_group->update_type[gf_group->index];
const int which_arf = gf_group->arf_update_idx[gf_group->index];
if (cm->show_existing_frame == 1) {
cm->show_existing_frame = 0;
} else if (cpi->rc.is_last_bipred_frame) {
// NOTE: If the current frame is a last bi-predictive frame, it is
// needed next to show the BWDREF_FRAME, which is pointed by
// the last_fb_idxes[0] after reference frame buffer update
cpi->rc.is_last_bipred_frame = 0;
cm->show_existing_frame = 1;
cpi->existing_fb_idx_to_show = cpi->ref_fb_idx[0];
} else if (cpi->is_arf_filter_off[which_arf] &&
(next_frame_update_type == OVERLAY_UPDATE ||
next_frame_update_type == INTNL_OVERLAY_UPDATE)) {
// Other parameters related to OVERLAY_UPDATE will be taken care of
// in av1_rc_get_second_pass_params(cpi)
cm->show_existing_frame = 1;
cpi->rc.is_src_frame_alt_ref = 1;
cpi->existing_fb_idx_to_show = (next_frame_update_type == OVERLAY_UPDATE)
? cpi->ref_fb_idx[ALTREF_FRAME - 1]
: cpi->ref_fb_idx[ALTREF2_FRAME - 1];
cpi->is_arf_filter_off[which_arf] = 0;
}
cpi->rc.is_src_frame_ext_arf = 0;
}
#ifdef OUTPUT_YUV_REC
void aom_write_one_yuv_frame(AV1_COMMON *cm, YV12_BUFFER_CONFIG *s) {
uint8_t *src = s->y_buffer;
int h = cm->height;
if (yuv_rec_file == NULL) return;
if (s->flags & YV12_FLAG_HIGHBITDEPTH) {
uint16_t *src16 = CONVERT_TO_SHORTPTR(s->y_buffer);
do {
fwrite(src16, s->y_width, 2, yuv_rec_file);
src16 += s->y_stride;
} while (--h);
src16 = CONVERT_TO_SHORTPTR(s->u_buffer);
h = s->uv_height;
do {
fwrite(src16, s->uv_width, 2, yuv_rec_file);
src16 += s->uv_stride;
} while (--h);
src16 = CONVERT_TO_SHORTPTR(s->v_buffer);
h = s->uv_height;
do {
fwrite(src16, s->uv_width, 2, yuv_rec_file);
src16 += s->uv_stride;
} while (--h);
fflush(yuv_rec_file);
return;
}
do {
fwrite(src, s->y_width, 1, yuv_rec_file);
src += s->y_stride;
} while (--h);
src = s->u_buffer;
h = s->uv_height;
do {
fwrite(src, s->uv_width, 1, yuv_rec_file);
src += s->uv_stride;
} while (--h);
src = s->v_buffer;
h = s->uv_height;
do {
fwrite(src, s->uv_width, 1, yuv_rec_file);
src += s->uv_stride;
} while (--h);
fflush(yuv_rec_file);
}
#endif // OUTPUT_YUV_REC
#define GM_RECODE_LOOP_NUM4X4_FACTOR 192
static int recode_loop_test_global_motion(AV1_COMP *cpi) {
int i;
int recode = 0;
RD_COUNTS *const rdc = &cpi->td.rd_counts;
AV1_COMMON *const cm = &cpi->common;
for (i = LAST_FRAME; i <= ALTREF_FRAME; ++i) {
if (cm->global_motion[i].wmtype != IDENTITY &&
rdc->global_motion_used[i] * GM_RECODE_LOOP_NUM4X4_FACTOR <
cpi->gmparams_cost[i]) {
cm->global_motion[i] = default_warp_params;
assert(cm->global_motion[i].wmtype == IDENTITY);
cpi->gmparams_cost[i] = 0;
recode = 1;
// TODO(sarahparker): The earlier condition for recoding here was:
// "recode |= (rdc->global_motion_used[i] > 0);". Can we bring something
// similar to that back to speed up global motion?
}
}
return recode;
}
// Function to test for conditions that indicate we should loop
// back and recode a frame.
static int recode_loop_test(AV1_COMP *cpi, int high_limit, int low_limit, int q,
int maxq, int minq) {
const RATE_CONTROL *const rc = &cpi->rc;
const AV1EncoderConfig *const oxcf = &cpi->oxcf;
const int frame_is_kfgfarf = frame_is_kf_gf_arf(cpi);
int force_recode = 0;
if ((rc->projected_frame_size >= rc->max_frame_bandwidth) ||
(cpi->sf.recode_loop == ALLOW_RECODE) ||
(frame_is_kfgfarf && (cpi->sf.recode_loop == ALLOW_RECODE_KFARFGF))) {
// TODO(agrange) high_limit could be greater than the scale-down threshold.
if ((rc->projected_frame_size > high_limit && q < maxq) ||
(rc->projected_frame_size < low_limit && q > minq)) {
force_recode = 1;
} else if (cpi->oxcf.rc_mode == AOM_CQ) {
// Deal with frame undershoot and whether or not we are
// below the automatically set cq level.
if (q > oxcf->cq_level &&
rc->projected_frame_size < ((rc->this_frame_target * 7) >> 3)) {
force_recode = 1;
}
}
}
return force_recode;
}
#define DUMP_REF_FRAME_IMAGES 0
#if DUMP_REF_FRAME_IMAGES == 1
static int dump_one_image(AV1_COMMON *cm,
const YV12_BUFFER_CONFIG *const ref_buf,
char *file_name) {
int h;
FILE *f_ref = NULL;
if (ref_buf == NULL) {
printf("Frame data buffer is NULL.\n");
return AOM_CODEC_MEM_ERROR;
}
if ((f_ref = fopen(file_name, "wb")) == NULL) {
printf("Unable to open file %s to write.\n", file_name);
return AOM_CODEC_MEM_ERROR;
}
// --- Y ---
for (h = 0; h < cm->height; ++h) {
fwrite(&ref_buf->y_buffer[h * ref_buf->y_stride], 1, cm->width, f_ref);
}
// --- U ---
for (h = 0; h < (cm->height >> 1); ++h) {
fwrite(&ref_buf->u_buffer[h * ref_buf->uv_stride], 1, (cm->width >> 1),
f_ref);
}
// --- V ---
for (h = 0; h < (cm->height >> 1); ++h) {
fwrite(&ref_buf->v_buffer[h * ref_buf->uv_stride], 1, (cm->width >> 1),
f_ref);
}
fclose(f_ref);
return AOM_CODEC_OK;
}
static void dump_ref_frame_images(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
MV_REFERENCE_FRAME ref_frame;
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
char file_name[256] = "";
snprintf(file_name, sizeof(file_name), "/tmp/enc_F%d_ref_%d.yuv",
cm->current_video_frame, ref_frame);
dump_one_image(cm, get_ref_frame_buffer(cpi, ref_frame), file_name);
}
}
#endif // DUMP_REF_FRAME_IMAGES == 1
// This function is used to shift the virtual indices of last reference frames
// as follows:
// LAST_FRAME -> LAST2_FRAME -> LAST3_FRAME
// when the LAST_FRAME is updated.
static INLINE void shift_last_ref_frames(AV1_COMP *cpi) {
// TODO(isbs): shift the scaled indices as well
int ref_frame;
for (ref_frame = LAST_REF_FRAMES - 1; ref_frame > 0; --ref_frame) {
cpi->ref_fb_idx[ref_frame] = cpi->ref_fb_idx[ref_frame - 1];
// [0] is allocated to the current coded frame. The statistics for the
// reference frames start at [LAST_FRAME], i.e. [1].
if (!cpi->rc.is_src_frame_alt_ref) {
memcpy(cpi->interp_filter_selected[ref_frame + LAST_FRAME],
cpi->interp_filter_selected[ref_frame - 1 + LAST_FRAME],
sizeof(cpi->interp_filter_selected[ref_frame - 1 + LAST_FRAME]));
}
}
}
#if USE_GF16_MULTI_LAYER
static void update_reference_frames_gf16(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
BufferPool *const pool = cm->buffer_pool;
if (cm->frame_type == KEY_FRAME) {
for (int ref_frame = 0; ref_frame < REF_FRAMES; ++ref_frame) {
ref_cnt_fb(pool->frame_bufs,
&cm->ref_frame_map[cpi->ref_fb_idx[ref_frame]],
cm->new_fb_idx);
}
} else {
if (cpi->refresh_last_frame || cpi->refresh_golden_frame ||
cpi->refresh_bwd_ref_frame || cpi->refresh_alt2_ref_frame ||
cpi->refresh_alt_ref_frame) {
assert(cpi->refresh_fb_idx >= 0 && cpi->refresh_fb_idx < REF_FRAMES);
ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->refresh_fb_idx],
cm->new_fb_idx);
}
// TODO(zoeliu): To handle cpi->interp_filter_selected[].
// For GF of 16, an additional ref frame index mapping needs to be handled
// if this is the last frame to encode in the current GF group.
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
if (gf_group->update_type[gf_group->index + 1] == OVERLAY_UPDATE)
av1_ref_frame_map_idx_updates(cpi, gf_group->index + 1);
}
#if DUMP_REF_FRAME_IMAGES == 1
// Dump out all reference frame images.
dump_ref_frame_images(cpi);
#endif // DUMP_REF_FRAME_IMAGES
}
#endif // USE_GF16_MULTI_LAYER
static void update_reference_frames(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
// NOTE: Save the new show frame buffer index for --test-code=warn, i.e.,
// for the purpose to verify no mismatch between encoder and decoder.
if (cm->show_frame) cpi->last_show_frame_buf_idx = cm->new_fb_idx;
#if USE_GF16_MULTI_LAYER
if (cpi->rc.baseline_gf_interval == 16) {
update_reference_frames_gf16(cpi);
return;
}
#endif // USE_GF16_MULTI_LAYER
BufferPool *const pool = cm->buffer_pool;
// At this point the new frame has been encoded.
// If any buffer copy / swapping is signaled it should be done here.
if (cm->frame_type == KEY_FRAME || frame_is_sframe(cm)) {
for (int ref_frame = 0; ref_frame < REF_FRAMES; ++ref_frame) {
ref_cnt_fb(pool->frame_bufs,
&cm->ref_frame_map[cpi->ref_fb_idx[ref_frame]],
cm->new_fb_idx);
}
return;
}
if (av1_preserve_existing_gf(cpi)) {
// We have decided to preserve the previously existing golden frame as our
// new ARF frame. However, in the short term in function
// av1_bitstream.c::get_refresh_mask() we left it in the GF slot and, if
// we're updating the GF with the current decoded frame, we save it to the
// ARF slot instead.
// We now have to update the ARF with the current frame and swap gld_fb_idx
// and alt_fb_idx so that, overall, we've stored the old GF in the new ARF
// slot and, if we're updating the GF, the current frame becomes the new GF.
int tmp;
ref_cnt_fb(pool->frame_bufs,
&cm->ref_frame_map[cpi->ref_fb_idx[ALTREF_FRAME - 1]],
cm->new_fb_idx);
tmp = cpi->ref_fb_idx[ALTREF_FRAME - 1];
cpi->ref_fb_idx[ALTREF_FRAME - 1] = cpi->ref_fb_idx[GOLDEN_FRAME - 1];
cpi->ref_fb_idx[GOLDEN_FRAME - 1] = tmp;
// We need to modify the mapping accordingly
cpi->arf_map[0] = cpi->ref_fb_idx[ALTREF_FRAME - 1];
// TODO(zoeliu): Do we need to copy cpi->interp_filter_selected[0] over to
// cpi->interp_filter_selected[GOLDEN_FRAME]?
} else if (cpi->rc.is_src_frame_ext_arf && cm->show_existing_frame) {
// Deal with the special case for showing existing internal ALTREF_FRAME
// Refresh the LAST_FRAME with the ALTREF_FRAME and retire the LAST3_FRAME
// by updating the virtual indices.
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
const int which_arf = gf_group->arf_ref_idx[gf_group->index];
assert(gf_group->update_type[gf_group->index] == INTNL_OVERLAY_UPDATE);
const int tmp = cpi->ref_fb_idx[LAST_REF_FRAMES - 1];
shift_last_ref_frames(cpi);
cpi->ref_fb_idx[LAST_FRAME - 1] = cpi->ref_fb_idx[ALTREF2_FRAME - 1];
cpi->ref_fb_idx[ALTREF2_FRAME - 1] = tmp;
// We need to modify the mapping accordingly
cpi->arf_map[which_arf] = cpi->ref_fb_idx[ALTREF2_FRAME - 1];
memcpy(cpi->interp_filter_selected[LAST_FRAME],
cpi->interp_filter_selected[ALTREF2_FRAME],
sizeof(cpi->interp_filter_selected[ALTREF2_FRAME]));
} else { /* For non key/golden frames */
// === ALTREF_FRAME ===
if (cpi->refresh_alt_ref_frame) {
int arf_idx = cpi->ref_fb_idx[ALTREF_FRAME - 1];
int which_arf = 0;
ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[arf_idx], cm->new_fb_idx);
memcpy(cpi->interp_filter_selected[ALTREF_FRAME + which_arf],
cpi->interp_filter_selected[0],
sizeof(cpi->interp_filter_selected[0]));
}
// === GOLDEN_FRAME ===
if (cpi->refresh_golden_frame) {
ref_cnt_fb(pool->frame_bufs,
&cm->ref_frame_map[cpi->ref_fb_idx[GOLDEN_FRAME - 1]],
cm->new_fb_idx);
memcpy(cpi->interp_filter_selected[GOLDEN_FRAME],
cpi->interp_filter_selected[0],
sizeof(cpi->interp_filter_selected[0]));
}
// === BWDREF_FRAME ===
if (cpi->refresh_bwd_ref_frame) {
ref_cnt_fb(pool->frame_bufs,
&cm->ref_frame_map[cpi->ref_fb_idx[BWDREF_FRAME - 1]],
cm->new_fb_idx);
memcpy(cpi->interp_filter_selected[BWDREF_FRAME],
cpi->interp_filter_selected[0],
sizeof(cpi->interp_filter_selected[0]));
}
// === ALTREF2_FRAME ===
if (cpi->refresh_alt2_ref_frame) {
ref_cnt_fb(pool->frame_bufs,
&cm->ref_frame_map[cpi->ref_fb_idx[ALTREF2_FRAME - 1]],
cm->new_fb_idx);
memcpy(cpi->interp_filter_selected[ALTREF2_FRAME],
cpi->interp_filter_selected[0],
sizeof(cpi->interp_filter_selected[0]));
}
}
if (cpi->refresh_last_frame) {
// NOTE(zoeliu): We have two layers of mapping (1) from the per-frame
// reference to the reference frame buffer virtual index; and then (2) from
// the virtual index to the reference frame buffer physical index:
//
// LAST_FRAME, ..., LAST3_FRAME, ..., ALTREF_FRAME
// | | |
// v v v
// ref_fb_idx[0], ..., ref_fb_idx[2], ..., ref_fb_idx[ALTREF_FRAME-1]
// | | |
// v v v
// ref_frame_map[], ..., ref_frame_map[], ..., ref_frame_map[]
//
// When refresh_last_frame is set, it is intended to retire LAST3_FRAME,
// have the other 2 LAST reference frames shifted as follows:
// LAST_FRAME -> LAST2_FRAME -> LAST3_FRAME
// , and then have LAST_FRAME refreshed by the newly coded frame.
//
// To fulfill it, the decoder will be notified to execute following 2 steps:
//
// (a) To change ref_frame_map[] and have the virtual index of LAST3_FRAME
// to point to the newly coded frame, i.e.
// ref_frame_map[lst_fb_idexes[2]] => new_fb_idx;
//
// (b) To change the 1st layer mapping to have LAST_FRAME mapped to the
// original virtual index of LAST3_FRAME and have the other mappings
// shifted as follows:
// LAST_FRAME, LAST2_FRAME, LAST3_FRAME
// | | |
// v v v
// ref_fb_idx[2], ref_fb_idx[0], ref_fb_idx[1]
int tmp;
ref_cnt_fb(pool->frame_bufs,
&cm->ref_frame_map[cpi->ref_fb_idx[LAST_REF_FRAMES - 1]],
cm->new_fb_idx);
tmp = cpi->ref_fb_idx[LAST_REF_FRAMES - 1];
shift_last_ref_frames(cpi);
cpi->ref_fb_idx[0] = tmp;
assert(cm->show_existing_frame == 0);
memcpy(cpi->interp_filter_selected[LAST_FRAME],
cpi->interp_filter_selected[0],
sizeof(cpi->interp_filter_selected[0]));
if (cpi->rc.is_last_bipred_frame) {
// Refresh the LAST_FRAME with the BWDREF_FRAME and retire the
// LAST3_FRAME by updating the virtual indices.
//
// NOTE: The source frame for BWDREF does not have a holding position as
// the OVERLAY frame for ALTREF's. Hence, to resolve the reference
// virtual index reshuffling for BWDREF, the encoder always
// specifies a LAST_BIPRED right before BWDREF and completes the
// reshuffling job accordingly.
tmp = cpi->ref_fb_idx[LAST_REF_FRAMES - 1];
shift_last_ref_frames(cpi);
cpi->ref_fb_idx[0] = cpi->ref_fb_idx[BWDREF_FRAME - 1];
cpi->ref_fb_idx[BWDREF_FRAME - 1] = tmp;
memcpy(cpi->interp_filter_selected[LAST_FRAME],
cpi->interp_filter_selected[BWDREF_FRAME],
sizeof(cpi->interp_filter_selected[BWDREF_FRAME]));
}
}
#if DUMP_REF_FRAME_IMAGES == 1
// Dump out all reference frame images.
dump_ref_frame_images(cpi);
#endif // DUMP_REF_FRAME_IMAGES
}
static INLINE void alloc_frame_mvs(AV1_COMMON *const cm, int buffer_idx) {
assert(buffer_idx != INVALID_IDX);
RefCntBuffer *const new_fb_ptr = &cm->buffer_pool->frame_bufs[buffer_idx];
ensure_mv_buffer(new_fb_ptr, cm);
new_fb_ptr->width = cm->width;
new_fb_ptr->height = cm->height;
}
static void scale_references(AV1_COMP *cpi) {
AV1_COMMON *cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
MV_REFERENCE_FRAME ref_frame;
const AOM_REFFRAME ref_mask[INTER_REFS_PER_FRAME] = {
AOM_LAST_FLAG, AOM_LAST2_FLAG, AOM_LAST3_FLAG, AOM_GOLD_FLAG,
AOM_BWD_FLAG, AOM_ALT2_FLAG, AOM_ALT_FLAG
};
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
// Need to convert from AOM_REFFRAME to index into ref_mask (subtract 1).
if (cpi->ref_frame_flags & ref_mask[ref_frame - 1]) {
BufferPool *const pool = cm->buffer_pool;
const YV12_BUFFER_CONFIG *const ref =
get_ref_frame_buffer(cpi, ref_frame);
if (ref == NULL) {
cpi->scaled_ref_idx[ref_frame - 1] = INVALID_IDX;
continue;
}
if (ref->y_crop_width != cm->width || ref->y_crop_height != cm->height) {
RefCntBuffer *new_fb_ptr = NULL;
int force_scaling = 0;
int new_fb = cpi->scaled_ref_idx[ref_frame - 1];
if (new_fb == INVALID_IDX) {
new_fb = get_free_fb(cm);
force_scaling = 1;
}
if (new_fb == INVALID_IDX) return;
new_fb_ptr = &pool->frame_bufs[new_fb];
if (force_scaling || new_fb_ptr->buf.y_crop_width != cm->width ||
new_fb_ptr->buf.y_crop_height != cm->height) {
if (aom_realloc_frame_buffer(
&new_fb_ptr->buf, cm->width, cm->height, cm->subsampling_x,
cm->subsampling_y, cm->use_highbitdepth, AOM_BORDER_IN_PIXELS,
cm->byte_alignment, NULL, NULL, NULL))
aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate frame buffer");
av1_resize_and_extend_frame(ref, &new_fb_ptr->buf, (int)cm->bit_depth,
num_planes);
cpi->scaled_ref_idx[ref_frame - 1] = new_fb;
alloc_frame_mvs(cm, new_fb);
}
} else {
const int buf_idx = get_ref_frame_buf_idx(cpi, ref_frame);
RefCntBuffer *const buf = &pool->frame_bufs[buf_idx];
buf->buf.y_crop_width = ref->y_crop_width;
buf->buf.y_crop_height = ref->y_crop_height;
cpi->scaled_ref_idx[ref_frame - 1] = buf_idx;
++buf->ref_count;
}
} else {
if (cpi->oxcf.pass != 0) cpi->scaled_ref_idx[ref_frame - 1] = INVALID_IDX;
}
}
}
static void release_scaled_references(AV1_COMP *cpi) {
AV1_COMMON *cm = &cpi->common;
int i;
// TODO(isbs): only refresh the necessary frames, rather than all of them
for (i = 0; i < REF_FRAMES; ++i) {
const int idx = cpi->scaled_ref_idx[i];
RefCntBuffer *const buf =
idx != INVALID_IDX ? &cm->buffer_pool->frame_bufs[idx] : NULL;
if (buf != NULL) {
--buf->ref_count;
cpi->scaled_ref_idx[i] = INVALID_IDX;
}
}
}
static void set_mv_search_params(AV1_COMP *cpi) {
const AV1_COMMON *const cm = &cpi->common;
const unsigned int max_mv_def = AOMMIN(cm->width, cm->height);
// Default based on max resolution.
cpi->mv_step_param = av1_init_search_range(max_mv_def);
if (cpi->sf.mv.auto_mv_step_size) {
if (frame_is_intra_only(cm)) {
// Initialize max_mv_magnitude for use in the first INTER frame
// after a key/intra-only frame.
cpi->max_mv_magnitude = max_mv_def;
} else {
if (cm->show_frame) {
// Allow mv_steps to correspond to twice the max mv magnitude found
// in the previous frame, capped by the default max_mv_magnitude based
// on resolution.
cpi->mv_step_param = av1_init_search_range(
AOMMIN(max_mv_def, 2 * cpi->max_mv_magnitude));
}
cpi->max_mv_magnitude = 0;
}
}
}
static void set_size_independent_vars(AV1_COMP *cpi) {
int i;
for (i = LAST_FRAME; i <= ALTREF_FRAME; ++i) {
cpi->common.global_motion[i] = default_warp_params;
}
cpi->global_motion_search_done = 0;
av1_set_speed_features_framesize_independent(cpi);
av1_set_rd_speed_thresholds(cpi);
av1_set_rd_speed_thresholds_sub8x8(cpi);
cpi->common.interp_filter = cpi->sf.default_interp_filter;
cpi->common.switchable_motion_mode = 1;
}
static void set_size_dependent_vars(AV1_COMP *cpi, int *q, int *bottom_index,
int *top_index) {
AV1_COMMON *const cm = &cpi->common;
const AV1EncoderConfig *const oxcf = &cpi->oxcf;
// Setup variables that depend on the dimensions of the frame.
av1_set_speed_features_framesize_dependent(cpi);
// Decide q and q bounds.
*q = av1_rc_pick_q_and_bounds(cpi, cm->width, cm->height, bottom_index,
top_index);
if (!frame_is_intra_only(cm)) {
set_high_precision_mv(cpi, (*q) < HIGH_PRECISION_MV_QTHRESH,
cpi->common.cur_frame_force_integer_mv);
}
// Configure experimental use of segmentation for enhanced coding of
// static regions if indicated.
// Only allowed in the second pass of a two pass encode, as it requires
// lagged coding, and if the relevant speed feature flag is set.
if (oxcf->pass == 2 && cpi->sf.static_segmentation)
configure_static_seg_features(cpi);
}
static void init_motion_estimation(AV1_COMP *cpi) {
int y_stride = cpi->scaled_source.y_stride;
if (cpi->sf.mv.search_method == NSTEP) {
av1_init3smotion_compensation(&cpi->ss_cfg, y_stride);
} else if (cpi->sf.mv.search_method == DIAMOND) {
av1_init_dsmotion_compensation(&cpi->ss_cfg, y_stride);
}
}
#define COUPLED_CHROMA_FROM_LUMA_RESTORATION 0
static void set_restoration_unit_size(int width, int height, int sx, int sy,
RestorationInfo *rst) {
(void)width;
(void)height;
(void)sx;
(void)sy;
#if COUPLED_CHROMA_FROM_LUMA_RESTORATION
int s = AOMMIN(sx, sy);
#else
int s = 0;
#endif // !COUPLED_CHROMA_FROM_LUMA_RESTORATION
if (width * height > 352 * 288)
rst[0].restoration_unit_size = RESTORATION_UNITSIZE_MAX;
else
rst[0].restoration_unit_size = (RESTORATION_UNITSIZE_MAX >> 1);
rst[1].restoration_unit_size = rst[0].restoration_unit_size >> s;
rst[2].restoration_unit_size = rst[1].restoration_unit_size;
}
static void init_ref_frame_bufs(AV1_COMMON *cm) {
int i;
BufferPool *const pool = cm->buffer_pool;
cm->new_fb_idx = INVALID_IDX;
for (i = 0; i < REF_FRAMES; ++i) {
cm->ref_frame_map[i] = INVALID_IDX;
pool->frame_bufs[i].ref_count = 0;
}
if (cm->seq_params.force_screen_content_tools) {
for (i = 0; i < FRAME_BUFFERS; ++i) {
av1_hash_table_init(&pool->frame_bufs[i].hash_table);
}
}
}
static void check_initial_width(AV1_COMP *cpi, int use_highbitdepth,
int subsampling_x, int subsampling_y) {
AV1_COMMON *const cm = &cpi->common;
if (!cpi->initial_width || cm->use_highbitdepth != use_highbitdepth ||
cm->subsampling_x != subsampling_x ||
cm->subsampling_y != subsampling_y) {
cm->subsampling_x = subsampling_x;
cm->subsampling_y = subsampling_y;
cm->use_highbitdepth = use_highbitdepth;
alloc_raw_frame_buffers(cpi);
init_ref_frame_bufs(cm);
alloc_util_frame_buffers(cpi);
init_motion_estimation(cpi); // TODO(agrange) This can be removed.
cpi->initial_width = cm->width;
cpi->initial_height = cm->height;
cpi->initial_mbs = cm->MBs;
}
}
// Returns 1 if the assigned width or height was <= 0.
static int set_size_literal(AV1_COMP *cpi, int width, int height) {
AV1_COMMON *cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
check_initial_width(cpi, cm->use_highbitdepth, cm->subsampling_x,
cm->subsampling_y);
if (width <= 0 || height <= 0) return 1;
cm->width = width;
cm->height = height;
if (cpi->initial_width && cpi->initial_height &&
(cm->width > cpi->initial_width || cm->height > cpi->initial_height)) {
av1_free_context_buffers(cm);
av1_free_pc_tree(&cpi->td, num_planes);
alloc_compressor_data(cpi);
realloc_segmentation_maps(cpi);
cpi->initial_width = cpi->initial_height = 0;
}
update_frame_size(cpi);
return 0;
}
static void set_frame_size(AV1_COMP *cpi, int width, int height) {
AV1_COMMON *const cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
int ref_frame;
if (width != cm->width || height != cm->height) {
// There has been a change in the encoded frame size
set_size_literal(cpi, width, height);
set_mv_search_params(cpi);
// Recalculate 'all_lossless' in case super-resolution was (un)selected.
cm->all_lossless = cm->coded_lossless && av1_superres_unscaled(cm);
}
if (cpi->oxcf.pass == 2) {
av1_set_target_rate(cpi, cm->width, cm->height);
}
alloc_frame_mvs(cm, cm->new_fb_idx);
// Allocate above context buffers
if (cm->num_allocated_above_context_planes < av1_num_planes(cm) ||
cm->num_allocated_above_context_mi_col < cm->mi_cols ||
cm->num_allocated_above_contexts < cm->tile_rows) {
av1_free_above_context_buffers(cm, cm->num_allocated_above_contexts);
if (av1_alloc_above_context_buffers(cm, cm->tile_rows))
aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate context buffers");
}
// Reset the frame pointers to the current frame size.
if (aom_realloc_frame_buffer(get_frame_new_buffer(cm), cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
cm->use_highbitdepth, AOM_BORDER_IN_PIXELS,
cm->byte_alignment, NULL, NULL, NULL))
aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate frame buffer");
const int frame_width = cm->superres_upscaled_width;
const int frame_height = cm->superres_upscaled_height;
set_restoration_unit_size(frame_width, frame_height, cm->subsampling_x,
cm->subsampling_y, cm->rst_info);
for (int i = 0; i < num_planes; ++i)
cm->rst_info[i].frame_restoration_type = RESTORE_NONE;
av1_alloc_restoration_buffers(cm);
alloc_util_frame_buffers(cpi); // TODO(afergs): Remove? Gets called anyways.
init_motion_estimation(cpi);
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
RefBuffer *const ref_buf = &cm->frame_refs[ref_frame - LAST_FRAME];
const int buf_idx = get_ref_frame_buf_idx(cpi, ref_frame);
ref_buf->idx = buf_idx;
if (buf_idx != INVALID_IDX) {
YV12_BUFFER_CONFIG *const buf = &cm->buffer_pool->frame_bufs[buf_idx].buf;
ref_buf->buf = buf;
av1_setup_scale_factors_for_frame(&ref_buf->sf, buf->y_crop_width,
buf->y_crop_height, cm->width,
cm->height);
if (av1_is_scaled(&ref_buf->sf))
aom_extend_frame_borders(buf, num_planes);
} else {
ref_buf->buf = NULL;
}
}
av1_setup_scale_factors_for_frame(&cm->sf_identity, cm->width, cm->height,
cm->width, cm->height);
set_ref_ptrs(cm, xd, LAST_FRAME, LAST_FRAME);
}
static uint8_t calculate_next_resize_scale(const AV1_COMP *cpi) {
// Choose an arbitrary random number
static unsigned int seed = 56789;
const AV1EncoderConfig *oxcf = &cpi->oxcf;
if (oxcf->pass == 1) return SCALE_NUMERATOR;
uint8_t new_denom = SCALE_NUMERATOR;
if (cpi->common.seq_params.reduced_still_picture_hdr) return SCALE_NUMERATOR;
switch (oxcf->resize_mode) {
case RESIZE_NONE: new_denom = SCALE_NUMERATOR; break;
case RESIZE_FIXED:
if (cpi->common.frame_type == KEY_FRAME)
new_denom = oxcf->resize_kf_scale_denominator;
else
new_denom = oxcf->resize_scale_denominator;
break;
case RESIZE_RANDOM: new_denom = lcg_rand16(&seed) % 9 + 8; break;
default: assert(0);
}
return new_denom;
}
static uint8_t calculate_next_superres_scale(AV1_COMP *cpi) {
// Choose an arbitrary random number
static unsigned int seed = 34567;
const AV1EncoderConfig *oxcf = &cpi->oxcf;
if (oxcf->pass == 1) return SCALE_NUMERATOR;
uint8_t new_denom = SCALE_NUMERATOR;
// Make sure that superres mode of the frame is consistent with the
// sequence-level flag.
assert(IMPLIES(oxcf->superres_mode != SUPERRES_NONE,
cpi->common.seq_params.enable_superres));
assert(IMPLIES(!cpi->common.seq_params.enable_superres,
oxcf->superres_mode == SUPERRES_NONE));
switch (oxcf->superres_mode) {
case SUPERRES_NONE: new_denom = SCALE_NUMERATOR; break;
case SUPERRES_FIXED:
if (cpi->common.frame_type == KEY_FRAME)
new_denom = oxcf->superres_kf_scale_denominator;
else
new_denom = oxcf->superres_scale_denominator;
break;
case SUPERRES_RANDOM: new_denom = lcg_rand16(&seed) % 9 + 8; break;
case SUPERRES_QTHRESH: {
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
const RATE_FACTOR_LEVEL rf_level = gf_group->rf_level[gf_group->index];
const double rate_factor_delta = rate_factor_deltas[rf_level];
const int qthresh = (rate_factor_delta <= 1.0)
? oxcf->superres_qthresh
: oxcf->superres_kf_qthresh;
av1_set_target_rate(cpi, cpi->oxcf.width, cpi->oxcf.height);
int bottom_index, top_index;
const int q = av1_rc_pick_q_and_bounds(
cpi, cpi->oxcf.width, cpi->oxcf.height, &bottom_index, &top_index);
if (q < qthresh) {
new_denom = SCALE_NUMERATOR;
} else {
const uint8_t min_denom = SCALE_NUMERATOR + 1;
const uint8_t denom_step = (MAXQ - qthresh + 1) >> 3;
if (q == qthresh) {
new_denom = min_denom;
} else if (denom_step == 0) {
new_denom = SCALE_NUMERATOR << 1;
} else {
const uint8_t additional_denom = (q - qthresh) / denom_step;
new_denom =
AOMMIN(min_denom + additional_denom, SCALE_NUMERATOR << 1);
}
}
break;
}
default: assert(0);
}
return new_denom;
}
static int dimension_is_ok(int orig_dim, int resized_dim, int denom) {
return (resized_dim * SCALE_NUMERATOR >= orig_dim * denom / 2);
}
static int dimensions_are_ok(int owidth, int oheight, size_params_type *rsz) {
// Only need to check the width, as scaling is horizontal only.
(void)oheight;
return dimension_is_ok(owidth, rsz->resize_width, rsz->superres_denom);
}
static int validate_size_scales(RESIZE_MODE resize_mode,
SUPERRES_MODE superres_mode, int owidth,
int oheight, size_params_type *rsz) {
if (dimensions_are_ok(owidth, oheight, rsz)) { // Nothing to do.
return 1;
}
// Calculate current resize scale.
int resize_denom =
AOMMAX(DIVIDE_AND_ROUND(owidth * SCALE_NUMERATOR, rsz->resize_width),
DIVIDE_AND_ROUND(oheight * SCALE_NUMERATOR, rsz->resize_height));
if (resize_mode != RESIZE_RANDOM && superres_mode == SUPERRES_RANDOM) {
// Alter superres scale as needed to enforce conformity.
rsz->superres_denom =
(2 * SCALE_NUMERATOR * SCALE_NUMERATOR) / resize_denom;
if (!dimensions_are_ok(owidth, oheight, rsz)) {
if (rsz->superres_denom > SCALE_NUMERATOR) --rsz->superres_denom;
}
} else if (resize_mode == RESIZE_RANDOM && superres_mode != SUPERRES_RANDOM) {
// Alter resize scale as needed to enforce conformity.
resize_denom =
(2 * SCALE_NUMERATOR * SCALE_NUMERATOR) / rsz->superres_denom;
rsz->resize_width = owidth;
rsz->resize_height = oheight;
av1_calculate_scaled_size(&rsz->resize_width, &rsz->resize_height,
resize_denom);
if (!dimensions_are_ok(owidth, oheight, rsz)) {
if (resize_denom > SCALE_NUMERATOR) {
--resize_denom;
rsz->resize_width = owidth;
rsz->resize_height = oheight;
av1_calculate_scaled_size(&rsz->resize_width, &rsz->resize_height,
resize_denom);
}
}
} else if (resize_mode == RESIZE_RANDOM && superres_mode == SUPERRES_RANDOM) {
// Alter both resize and superres scales as needed to enforce conformity.
do {
if (resize_denom > rsz->superres_denom)
--resize_denom;
else
--rsz->superres_denom;
rsz->resize_width = owidth;
rsz->resize_height = oheight;
av1_calculate_scaled_size(&rsz->resize_width, &rsz->resize_height,
resize_denom);
} while (!dimensions_are_ok(owidth, oheight, rsz) &&
(resize_denom > SCALE_NUMERATOR ||
rsz->superres_denom > SCALE_NUMERATOR));
} else { // We are allowed to alter neither resize scale nor superres
// scale.
return 0;
}
return dimensions_are_ok(owidth, oheight, rsz);
}
// Calculates resize and superres params for next frame
size_params_type av1_calculate_next_size_params(AV1_COMP *cpi) {
const AV1EncoderConfig *oxcf = &cpi->oxcf;
size_params_type rsz = { oxcf->width, oxcf->height, SCALE_NUMERATOR };
int resize_denom;
if (oxcf->pass == 1) return rsz;
if (cpi->resize_pending_width && cpi->resize_pending_height) {
rsz.resize_width = cpi->resize_pending_width;
rsz.resize_height = cpi->resize_pending_height;
cpi->resize_pending_width = cpi->resize_pending_height = 0;
} else {
resize_denom = calculate_next_resize_scale(cpi);
rsz.resize_width = cpi->oxcf.width;
rsz.resize_height = cpi->oxcf.height;
av1_calculate_scaled_size(&rsz.resize_width, &rsz.resize_height,
resize_denom);
}
rsz.superres_denom = calculate_next_superres_scale(cpi);
if (!validate_size_scales(oxcf->resize_mode, oxcf->superres_mode, oxcf->width,
oxcf->height, &rsz))
assert(0 && "Invalid scale parameters");
return rsz;
}
static void setup_frame_size_from_params(AV1_COMP *cpi, size_params_type *rsz) {
int encode_width = rsz->resize_width;
int encode_height = rsz->resize_height;
AV1_COMMON *cm = &cpi->common;
cm->superres_upscaled_width = encode_width;
cm->superres_upscaled_height = encode_height;
cm->superres_scale_denominator = rsz->superres_denom;
av1_calculate_scaled_superres_size(&encode_width, &encode_height,
rsz->superres_denom);
set_frame_size(cpi, encode_width, encode_height);
}
static void setup_frame_size(AV1_COMP *cpi) {
size_params_type rsz = av1_calculate_next_size_params(cpi);
setup_frame_size_from_params(cpi, &rsz);
}
static void superres_post_encode(AV1_COMP *cpi) {
AV1_COMMON *cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
if (av1_superres_unscaled(cm)) return;
assert(cpi->oxcf.enable_superres);
assert(!is_lossless_requested(&cpi->oxcf));
assert(!cm->all_lossless);
av1_superres_upscale(cm, NULL);
// If regular resizing is occurring the source will need to be downscaled to
// match the upscaled superres resolution. Otherwise the original source is
// used.
if (av1_resize_unscaled(cm)) {
cpi->source = cpi->unscaled_source;
if (cpi->last_source != NULL) cpi->last_source = cpi->unscaled_last_source;
} else {
assert(cpi->unscaled_source->y_crop_width != cm->superres_upscaled_width);
assert(cpi->unscaled_source->y_crop_height != cm->superres_upscaled_height);
// Do downscale. cm->(width|height) has been updated by
// av1_superres_upscale
if (aom_realloc_frame_buffer(
&cpi->scaled_source, cm->superres_upscaled_width,
cm->superres_upscaled_height, cm->subsampling_x, cm->subsampling_y,
cm->use_highbitdepth, AOM_BORDER_IN_PIXELS, cm->byte_alignment,
NULL, NULL, NULL))
aom_internal_error(
&cm->error, AOM_CODEC_MEM_ERROR,
"Failed to reallocate scaled source buffer for superres");
assert(cpi->scaled_source.y_crop_width == cm->superres_upscaled_width);
assert(cpi->scaled_source.y_crop_height == cm->superres_upscaled_height);
av1_resize_and_extend_frame(cpi->unscaled_source, &cpi->scaled_source,
(int)cm->bit_depth, num_planes);
cpi->source = &cpi->scaled_source;
}
}
static void loopfilter_frame(AV1_COMP *cpi, AV1_COMMON *cm) {
const int num_planes = av1_num_planes(cm);
MACROBLOCKD *xd = &cpi->td.mb.e_mbd;
assert(IMPLIES(is_lossless_requested(&cpi->oxcf),
cm->coded_lossless && cm->all_lossless));
const int no_loopfilter = cm->coded_lossless || cm->large_scale_tile;
const int no_cdef =
!cm->seq_params.enable_cdef || cm->coded_lossless || cm->large_scale_tile;
const int no_restoration = !cm->seq_params.enable_restoration ||
cm->all_lossless || cm->large_scale_tile;
struct loopfilter *lf = &cm->lf;
if (no_loopfilter) {
lf->filter_level[0] = 0;
lf->filter_level[1] = 0;
} else {
struct aom_usec_timer timer;
aom_clear_system_state();
aom_usec_timer_start(&timer);
av1_pick_filter_level(cpi->source, cpi, cpi->sf.lpf_pick);
aom_usec_timer_mark(&timer);
cpi->time_pick_lpf += aom_usec_timer_elapsed(&timer);
}
if (lf->filter_level[0] || lf->filter_level[1]) {
#if LOOP_FILTER_BITMASK
av1_loop_filter_frame(cm->frame_to_show, cm, xd, 0, num_planes, 0);
#else
if (cpi->num_workers > 1)
av1_loop_filter_frame_mt(cm->frame_to_show, cm, xd, 0, num_planes, 0,
cpi->workers, cpi->num_workers,
&cpi->lf_row_sync);
else
av1_loop_filter_frame(cm->frame_to_show, cm, xd, 0, num_planes, 0);
#endif
}
if (!no_restoration)
av1_loop_restoration_save_boundary_lines(cm->frame_to_show, cm, 0);
if (no_cdef) {
cm->cdef_bits = 0;
cm->cdef_strengths[0] = 0;
cm->nb_cdef_strengths = 1;
cm->cdef_uv_strengths[0] = 0;
} else {
// Find CDEF parameters
av1_cdef_search(cm->frame_to_show, cpi->source, cm, xd,
cpi->sf.fast_cdef_search);
// Apply the filter
av1_cdef_frame(cm->frame_to_show, cm, xd);
}
superres_post_encode(cpi);
if (no_restoration) {
cm->rst_info[0].frame_restoration_type = RESTORE_NONE;
cm->rst_info[1].frame_restoration_type = RESTORE_NONE;
cm->rst_info[2].frame_restoration_type = RESTORE_NONE;
} else {
av1_loop_restoration_save_boundary_lines(cm->frame_to_show, cm, 1);
av1_pick_filter_restoration(cpi->source, cpi);
if (cm->rst_info[0].frame_restoration_type != RESTORE_NONE ||
cm->rst_info[1].frame_restoration_type != RESTORE_NONE ||
cm->rst_info[2].frame_restoration_type != RESTORE_NONE) {
av1_loop_restoration_filter_frame(cm->frame_to_show, cm, 0,
&cpi->lr_ctxt);
}
}
}
static int encode_without_recode_loop(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
int q = 0, bottom_index = 0, top_index = 0; // Dummy variables.
aom_clear_system_state();
set_size_independent_vars(cpi);
setup_frame_size(cpi);
assert(cm->width == cpi->scaled_source.y_crop_width);
assert(cm->height == cpi->scaled_source.y_crop_height);
set_size_dependent_vars(cpi, &q, &bottom_index, &top_index);
cpi->source =
av1_scale_if_required(cm, cpi->unscaled_source, &cpi->scaled_source);
if (cpi->unscaled_last_source != NULL)
cpi->last_source = av1_scale_if_required(cm, cpi->unscaled_last_source,
&cpi->scaled_last_source);
cpi->source->buf_8bit_valid = 0;
if (frame_is_intra_only(cm) == 0) {
scale_references(cpi);
}
av1_set_quantizer(cm, q);
setup_frame(cpi);
suppress_active_map(cpi);
// Variance adaptive and in frame q adjustment experiments are mutually
// exclusive.
if (cpi->oxcf.aq_mode == VARIANCE_AQ) {
av1_vaq_frame_setup(cpi);
} else if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) {
av1_setup_in_frame_q_adj(cpi);
} else if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) {
av1_cyclic_refresh_setup(cpi);
}
apply_active_map(cpi);
if (cm->seg.enabled) {
if (!cm->seg.update_data && cm->prev_frame) {
segfeatures_copy(&cm->seg, &cm->prev_frame->seg);
}
} else {
memset(&cm->seg, 0, sizeof(cm->seg));
}
segfeatures_copy(&cm->cur_frame->seg, &cm->seg);
// transform / motion compensation build reconstruction frame
av1_encode_frame(cpi);
// Update some stats from cyclic refresh, and check if we should not update
// golden reference, for 1 pass CBR.
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->frame_type != KEY_FRAME &&
(cpi->oxcf.pass == 0 && cpi->oxcf.rc_mode == AOM_CBR))
av1_cyclic_refresh_check_golden_update(cpi);
// Update the skip mb flag probabilities based on the distribution
// seen in the last encoder iteration.
// update_base_skip_probs(cpi);
aom_clear_system_state();
return AOM_CODEC_OK;
}
static int encode_with_recode_loop(AV1_COMP *cpi, size_t *size, uint8_t *dest) {
AV1_COMMON *const cm = &cpi->common;
RATE_CONTROL *const rc = &cpi->rc;
int bottom_index, top_index;
int loop_count = 0;
int loop_at_this_size = 0;
int loop = 0;
int overshoot_seen = 0;
int undershoot_seen = 0;
int frame_over_shoot_limit;
int frame_under_shoot_limit;
int q = 0, q_low = 0, q_high = 0;
set_size_independent_vars(cpi);
cpi->source->buf_8bit_valid = 0;
aom_clear_system_state();
setup_frame_size(cpi);
set_size_dependent_vars(cpi, &q, &bottom_index, &top_index);
do {
aom_clear_system_state();
if (loop_count == 0) {
// TODO(agrange) Scale cpi->max_mv_magnitude if frame-size has changed.
set_mv_search_params(cpi);
// Reset the loop state for new frame size.
overshoot_seen = 0;
undershoot_seen = 0;
q_low = bottom_index;
q_high = top_index;
loop_at_this_size = 0;
// Decide frame size bounds first time through.
av1_rc_compute_frame_size_bounds(cpi, rc->this_frame_target,
&frame_under_shoot_limit,
&frame_over_shoot_limit);
}
// if frame was scaled calculate global_motion_search again if already
// done
if (loop_count > 0 && cpi->source && cpi->global_motion_search_done)
if (cpi->source->y_crop_width != cm->width ||
cpi->source->y_crop_height != cm->height)
cpi->global_motion_search_done = 0;
cpi->source =
av1_scale_if_required(cm, cpi->unscaled_source, &cpi->scaled_source);
if (cpi->unscaled_last_source != NULL)
cpi->last_source = av1_scale_if_required(cm, cpi->unscaled_last_source,
&cpi->scaled_last_source);
if (frame_is_intra_only(cm) == 0) {
if (loop_count > 0) {
release_scaled_references(cpi);
}
scale_references(cpi);
}
av1_set_quantizer(cm, q);
// printf("Frame %d/%d: q = %d, frame_type = %d\n", cm->current_video_frame,
// cm->show_frame, q, cm->frame_type);
if (loop_count == 0) setup_frame(cpi);
// Base q-index may have changed, so we need to assign proper default coef
// probs before every iteration.
if (cm->primary_ref_frame == PRIMARY_REF_NONE ||
cm->frame_refs[cm->primary_ref_frame].idx < 0) {
av1_default_coef_probs(cm);
av1_setup_frame_contexts(cm);
}
// Variance adaptive and in frame q adjustment experiments are mutually
// exclusive.
if (cpi->oxcf.aq_mode == VARIANCE_AQ) {
av1_vaq_frame_setup(cpi);
} else if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) {
av1_setup_in_frame_q_adj(cpi);
}
if (cm->seg.enabled) {
if (!cm->seg.update_data && cm->prev_frame) {
segfeatures_copy(&cm->seg, &cm->prev_frame->seg);
}
} else {
memset(&cm->seg, 0, sizeof(cm->seg));
}
segfeatures_copy(&cm->cur_frame->seg, &cm->seg);
// transform / motion compensation build reconstruction frame
save_coding_context(cpi);
av1_encode_frame(cpi);
// Update the skip mb flag probabilities based on the distribution
// seen in the last encoder iteration.
// update_base_skip_probs(cpi);
aom_clear_system_state();
// Dummy pack of the bitstream using up to date stats to get an
// accurate estimate of output frame size to determine if we need
// to recode.
if (cpi->sf.recode_loop >= ALLOW_RECODE_KFARFGF) {
restore_coding_context(cpi);
if (av1_pack_bitstream(cpi, dest, size) != AOM_CODEC_OK)
return AOM_CODEC_ERROR;
rc->projected_frame_size = (int)(*size) << 3;
restore_coding_context(cpi);
if (frame_over_shoot_limit == 0) frame_over_shoot_limit = 1;
}
if (cpi->oxcf.rc_mode == AOM_Q) {
loop = 0;
} else {
if ((cm->frame_type == KEY_FRAME) && rc->this_key_frame_forced &&
(rc->projected_frame_size < rc->max_frame_bandwidth)) {
int last_q = q;
int64_t kf_err;
int64_t high_err_target = cpi->ambient_err;
int64_t low_err_target = cpi->ambient_err >> 1;
if (cm->use_highbitdepth) {
kf_err = aom_highbd_get_y_sse(cpi->source, get_frame_new_buffer(cm));
} else {
kf_err = aom_get_y_sse(cpi->source, get_frame_new_buffer(cm));
}
// Prevent possible divide by zero error below for perfect KF
kf_err += !kf_err;
// The key frame is not good enough or we can afford
// to make it better without undue risk of popping.
if ((kf_err > high_err_target &&
rc->projected_frame_size <= frame_over_shoot_limit) ||
(kf_err > low_err_target &&
rc->projected_frame_size <= frame_under_shoot_limit)) {
// Lower q_high
q_high = q > q_low ? q - 1 : q_low;
// Adjust Q
q = (int)((q * high_err_target) / kf_err);
q = AOMMIN(q, (q_high + q_low) >> 1);
} else if (kf_err < low_err_target &&
rc->projected_frame_size >= frame_under_shoot_limit) {
// The key frame is much better than the previous frame
// Raise q_low
q_low = q < q_high ? q + 1 : q_high;
// Adjust Q
q = (int)((q * low_err_target) / kf_err);
q = AOMMIN(q, (q_high + q_low + 1) >> 1);
}
// Clamp Q to upper and lower limits:
q = clamp(q, q_low, q_high);
loop = q != last_q;
} else if (recode_loop_test(cpi, frame_over_shoot_limit,
frame_under_shoot_limit, q,
AOMMAX(q_high, top_index), bottom_index)) {
// Is the projected frame size out of range and are we allowed
// to attempt to recode.
int last_q = q;
int retries = 0;
// Frame size out of permitted range:
// Update correction factor & compute new Q to try...
// Frame is too large
if (rc->projected_frame_size > rc->this_frame_target) {
// Special case if the projected size is > the max allowed.
if (rc->projected_frame_size >= rc->max_frame_bandwidth)
q_high = rc->worst_quality;
// Raise Qlow as to at least the current value
q_low = q < q_high ? q + 1 : q_high;
if (undershoot_seen || loop_at_this_size > 1) {
// Update rate_correction_factor unless
av1_rc_update_rate_correction_factors(cpi, cm->width, cm->height);
q = (q_high + q_low + 1) / 2;
} else {
// Update rate_correction_factor unless
av1_rc_update_rate_correction_factors(cpi, cm->width, cm->height);
q = av1_rc_regulate_q(cpi, rc->this_frame_target, bottom_index,
AOMMAX(q_high, top_index), cm->width,
cm->height);
while (q < q_low && retries < 10) {
av1_rc_update_rate_correction_factors(cpi, cm->width, cm->height);
q = av1_rc_regulate_q(cpi, rc->this_frame_target, bottom_index,
AOMMAX(q_high, top_index), cm->width,
cm->height);
retries++;
}
}
overshoot_seen = 1;
} else {
// Frame is too small
q_high = q > q_low ? q - 1 : q_low;
if (overshoot_seen || loop_at_this_size > 1) {
av1_rc_update_rate_correction_factors(cpi, cm->width, cm->height);
q = (q_high + q_low) / 2;
} else {
av1_rc_update_rate_correction_factors(cpi, cm->width, cm->height);
q = av1_rc_regulate_q(cpi, rc->this_frame_target, bottom_index,
top_index, cm->width, cm->height);
// Special case reset for qlow for constrained quality.
// This should only trigger where there is very substantial
// undershoot on a frame and the auto cq level is above
// the user passsed in value.
if (cpi->oxcf.rc_mode == AOM_CQ && q < q_low) {
q_low = q;
}
while (q > q_high && retries < 10) {
av1_rc_update_rate_correction_factors(cpi, cm->width, cm->height);
q = av1_rc_regulate_q(cpi, rc->this_frame_target, bottom_index,
top_index, cm->width, cm->height);
retries++;
}
}
undershoot_seen = 1;
}
// Clamp Q to upper and lower limits:
q = clamp(q, q_low, q_high);
loop = (q != last_q);
} else {
loop = 0;
}
}
// Special case for overlay frame.
if (rc->is_src_frame_alt_ref &&
rc->projected_frame_size < rc->max_frame_bandwidth)
loop = 0;
if (recode_loop_test_global_motion(cpi)) {
loop = 1;
}
if (loop) {
++loop_count;
++loop_at_this_size;
#if CONFIG_INTERNAL_STATS
++cpi->tot_recode_hits;
#endif
}
} while (loop);
return AOM_CODEC_OK;
}
static int get_ref_frame_flags(const AV1_COMP *cpi) {
const int *const map = cpi->common.ref_frame_map;
// No.1 Priority: LAST_FRAME
const int last2_is_last = map[cpi->ref_fb_idx[1]] == map[cpi->ref_fb_idx[0]];
const int last3_is_last = map[cpi->ref_fb_idx[2]] == map[cpi->ref_fb_idx[0]];
const int gld_is_last =
map[cpi->ref_fb_idx[GOLDEN_FRAME - 1]] == map[cpi->ref_fb_idx[0]];
const int bwd_is_last =
map[cpi->ref_fb_idx[BWDREF_FRAME - 1]] == map[cpi->ref_fb_idx[0]];
const int alt2_is_last =
map[cpi->ref_fb_idx[ALTREF2_FRAME - 1]] == map[cpi->ref_fb_idx[0]];
const int alt_is_last =
map[cpi->ref_fb_idx[ALTREF_FRAME - 1]] == map[cpi->ref_fb_idx[0]];
// No.2 Priority: ALTREF_FRAME
const int last2_is_alt =
map[cpi->ref_fb_idx[1]] == map[cpi->ref_fb_idx[ALTREF_FRAME - 1]];
const int last3_is_alt =
map[cpi->ref_fb_idx[2]] == map[cpi->ref_fb_idx[ALTREF_FRAME - 1]];
const int gld_is_alt = map[cpi->ref_fb_idx[GOLDEN_FRAME - 1]] ==
map[cpi->ref_fb_idx[ALTREF_FRAME - 1]];
const int bwd_is_alt = map[cpi->ref_fb_idx[BWDREF_FRAME - 1]] ==
map[cpi->ref_fb_idx[ALTREF_FRAME - 1]];
const int alt2_is_alt = map[cpi->ref_fb_idx[ALTREF2_FRAME - 1]] ==
map[cpi->ref_fb_idx[ALTREF_FRAME - 1]];
// No.3 Priority: LAST2_FRAME
const int last3_is_last2 = map[cpi->ref_fb_idx[2]] == map[cpi->ref_fb_idx[1]];
const int gld_is_last2 =
map[cpi->ref_fb_idx[GOLDEN_FRAME - 1]] == map[cpi->ref_fb_idx[1]];
const int bwd_is_last2 =
map[cpi->ref_fb_idx[BWDREF_FRAME - 1]] == map[cpi->ref_fb_idx[1]];
const int alt2_is_last2 =
map[cpi->ref_fb_idx[ALTREF2_FRAME - 1]] == map[cpi->ref_fb_idx[1]];
// No.4 Priority: LAST3_FRAME
const int gld_is_last3 =
map[cpi->ref_fb_idx[GOLDEN_FRAME - 1]] == map[cpi->ref_fb_idx[2]];
const int bwd_is_last3 =
map[cpi->ref_fb_idx[BWDREF_FRAME - 1]] == map[cpi->ref_fb_idx[2]];
const int alt2_is_last3 =
map[cpi->ref_fb_idx[ALTREF2_FRAME - 1]] == map[cpi->ref_fb_idx[2]];
// No.5 Priority: GOLDEN_FRAME
const int bwd_is_gld = map[cpi->ref_fb_idx[BWDREF_FRAME - 1]] ==
map[cpi->ref_fb_idx[GOLDEN_FRAME - 1]];
const int alt2_is_gld = map[cpi->ref_fb_idx[ALTREF2_FRAME - 1]] ==
map[cpi->ref_fb_idx[GOLDEN_FRAME - 1]];
// No.6 Priority: BWDREF_FRAME
const int alt2_is_bwd = map[cpi->ref_fb_idx[ALTREF2_FRAME - 1]] ==
map[cpi->ref_fb_idx[BWDREF_FRAME - 1]];
// No.7 Priority: ALTREF2_FRAME
// After av1_apply_encoding_flags() is called, cpi->ref_frame_flags might be
// adjusted according to external encoder flags.
int flags = cpi->ext_ref_frame_flags;
if (cpi->rc.frames_till_gf_update_due == INT_MAX) flags &= ~AOM_GOLD_FLAG;
if (alt_is_last) flags &= ~AOM_ALT_FLAG;
if (last2_is_last || last2_is_alt) flags &= ~AOM_LAST2_FLAG;
if (last3_is_last || last3_is_alt || last3_is_last2) flags &= ~AOM_LAST3_FLAG;
if (gld_is_last || gld_is_alt || gld_is_last2 || gld_is_last3)
flags &= ~AOM_GOLD_FLAG;
if ((bwd_is_last || bwd_is_alt || bwd_is_last2 || bwd_is_last3 ||
bwd_is_gld) &&
(flags & AOM_BWD_FLAG))
flags &= ~AOM_BWD_FLAG;
if ((alt2_is_last || alt2_is_alt || alt2_is_last2 || alt2_is_last3 ||
alt2_is_gld || alt2_is_bwd) &&
(flags & AOM_ALT2_FLAG))
flags &= ~AOM_ALT2_FLAG;
return flags;
}
static void set_ext_overrides(AV1_COMP *cpi) {
// Overrides the defaults with the externally supplied values with
// av1_update_reference() and av1_update_entropy() calls
// Note: The overrides are valid only for the next frame passed
// to encode_frame_to_data_rate() function
if (cpi->ext_use_s_frame) cpi->common.frame_type = S_FRAME;
cpi->common.force_primary_ref_none = cpi->ext_use_primary_ref_none;
if (cpi->ext_refresh_frame_context_pending) {
cpi->common.refresh_frame_context = cpi->ext_refresh_frame_context;
cpi->ext_refresh_frame_context_pending = 0;
}
if (cpi->ext_refresh_frame_flags_pending) {
cpi->refresh_last_frame = cpi->ext_refresh_last_frame;
cpi->refresh_golden_frame = cpi->ext_refresh_golden_frame;
cpi->refresh_alt_ref_frame = cpi->ext_refresh_alt_ref_frame;
cpi->refresh_bwd_ref_frame = cpi->ext_refresh_bwd_ref_frame;
cpi->refresh_alt2_ref_frame = cpi->ext_refresh_alt2_ref_frame;
cpi->ext_refresh_frame_flags_pending = 0;
}
cpi->common.allow_ref_frame_mvs = cpi->ext_use_ref_frame_mvs;
cpi->common.error_resilient_mode = cpi->ext_use_error_resilient;
}
static int setup_interp_filter_search_mask(AV1_COMP *cpi) {
InterpFilter ifilter;
int ref_total[REF_FRAMES] = { 0 };
MV_REFERENCE_FRAME ref;
int mask = 0;
int arf_idx = ALTREF_FRAME;
if (cpi->common.last_frame_type == KEY_FRAME || cpi->refresh_alt_ref_frame ||
cpi->refresh_alt2_ref_frame)
return mask;
for (ref = LAST_FRAME; ref <= ALTREF_FRAME; ++ref)
for (ifilter = EIGHTTAP_REGULAR; ifilter < SWITCHABLE_FILTERS; ++ifilter)
ref_total[ref] += cpi->interp_filter_selected[ref][ifilter];
for (ifilter = EIGHTTAP_REGULAR; ifilter < SWITCHABLE_FILTERS; ++ifilter) {
if ((ref_total[LAST_FRAME] &&
cpi->interp_filter_selected[LAST_FRAME][ifilter] == 0) &&
(ref_total[LAST2_FRAME] == 0 ||
cpi->interp_filter_selected[LAST2_FRAME][ifilter] * 50 <
ref_total[LAST2_FRAME]) &&
(ref_total[LAST3_FRAME] == 0 ||
cpi->interp_filter_selected[LAST3_FRAME][ifilter] * 50 <
ref_total[LAST3_FRAME]) &&
(ref_total[GOLDEN_FRAME] == 0 ||
cpi->interp_filter_selected[GOLDEN_FRAME][ifilter] * 50 <
ref_total[GOLDEN_FRAME]) &&
(ref_total[BWDREF_FRAME] == 0 ||
cpi->interp_filter_selected[BWDREF_FRAME][ifilter] * 50 <
ref_total[BWDREF_FRAME]) &&
(ref_total[ALTREF2_FRAME] == 0 ||
cpi->interp_filter_selected[ALTREF2_FRAME][ifilter] * 50 <
ref_total[ALTREF2_FRAME]) &&
(ref_total[ALTREF_FRAME] == 0 ||
cpi->interp_filter_selected[arf_idx][ifilter] * 50 <
ref_total[ALTREF_FRAME]))
mask |= 1 << ifilter;
}
return mask;
}
#define DUMP_RECON_FRAMES 0
#if DUMP_RECON_FRAMES == 1
// NOTE(zoeliu): For debug - Output the filtered reconstructed video.
static void dump_filtered_recon_frames(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
const YV12_BUFFER_CONFIG *recon_buf = cm->frame_to_show;
if (recon_buf == NULL) {
printf("Frame %d is not ready.\n", cm->current_video_frame);
return;
}
static const int flag_list[REF_FRAMES] = { 0,
AOM_LAST_FLAG,
AOM_LAST2_FLAG,
AOM_LAST3_FLAG,
AOM_GOLD_FLAG,
AOM_BWD_FLAG,
AOM_ALT2_FLAG,
AOM_ALT_FLAG };
printf(
"\n***Frame=%d (frame_offset=%d, show_frame=%d, "
"show_existing_frame=%d) "
"[LAST LAST2 LAST3 GOLDEN BWD ALT2 ALT]=[",
cm->current_video_frame, cm->frame_offset, cm->show_frame,
cm->show_existing_frame);
for (int ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
const int buf_idx = cm->frame_refs[ref_frame - LAST_FRAME].idx;
const int ref_offset =
(buf_idx >= 0)
? (int)cm->buffer_pool->frame_bufs[buf_idx].cur_frame_offset
: -1;
printf(
" %d(%c-%d-%4.2f)", ref_offset,
(cpi->ref_frame_flags & flag_list[ref_frame]) ? 'Y' : 'N',
(buf_idx >= 0) ? (int)cpi->frame_rf_level[buf_idx] : -1,
(buf_idx >= 0) ? rate_factor_deltas[cpi->frame_rf_level[buf_idx]] : -1);
}
printf(" ]\n");
if (!cm->show_frame) {
printf("Frame %d is a no show frame, so no image dump.\n",
cm->current_video_frame);
return;
}
int h;
char file_name[256] = "/tmp/enc_filtered_recon.yuv";
FILE *f_recon = NULL;
if (cm->current_video_frame == 0) {
if ((f_recon = fopen(file_name, "wb")) == NULL) {
printf("Unable to open file %s to write.\n", file_name);
return;
}
} else {
if ((f_recon = fopen(file_name, "ab")) == NULL) {
printf("Unable to open file %s to append.\n", file_name);
return;
}
}
printf(
"\nFrame=%5d, encode_update_type[%5d]=%1d, frame_offset=%d, "
"show_frame=%d, show_existing_frame=%d, source_alt_ref_active=%d, "
"refresh_alt_ref_frame=%d, rf_level=%d, "
"y_stride=%4d, uv_stride=%4d, cm->width=%4d, cm->height=%4d\n\n",
cm->current_video_frame, cpi->twopass.gf_group.index,
cpi->twopass.gf_group.update_type[cpi->twopass.gf_group.index],
cm->frame_offset, cm->show_frame, cm->show_existing_frame,
cpi->rc.source_alt_ref_active, cpi->refresh_alt_ref_frame,
cpi->twopass.gf_group.rf_level[cpi->twopass.gf_group.index],
recon_buf->y_stride, recon_buf->uv_stride, cm->width, cm->height);
#if 0
int ref_frame;
printf("get_ref_frame_map_idx: [");
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame)
printf(" %d", get_ref_frame_map_idx(cpi, ref_frame));
printf(" ]\n");
printf("cm->new_fb_idx = %d\n", cm->new_fb_idx);
printf("cm->ref_frame_map = [");
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
printf(" %d", cm->ref_frame_map[ref_frame - LAST_FRAME]);
}
printf(" ]\n");
#endif // 0
// --- Y ---
for (h = 0; h < cm->height; ++h) {
fwrite(&recon_buf->y_buffer[h * recon_buf->y_stride], 1, cm->width,
f_recon);
}
// --- U ---
for (h = 0; h < (cm->height >> 1); ++h) {
fwrite(&recon_buf->u_buffer[h * recon_buf->uv_stride], 1, (cm->width >> 1),
f_recon);
}
// --- V ---
for (h = 0; h < (cm->height >> 1); ++h) {
fwrite(&recon_buf->v_buffer[h * recon_buf->uv_stride], 1, (cm->width >> 1),
f_recon);
}
fclose(f_recon);
}
#endif // DUMP_RECON_FRAMES
static int encode_frame_to_data_rate(AV1_COMP *cpi, size_t *size, uint8_t *dest,
int skip_adapt,
unsigned int *frame_flags) {
AV1_COMMON *const cm = &cpi->common;
const AV1EncoderConfig *const oxcf = &cpi->oxcf;
struct segmentation *const seg = &cm->seg;
set_ext_overrides(cpi);
aom_clear_system_state();
// frame type has been decided outside of this function call
cm->cur_frame->intra_only = frame_is_intra_only(cm);
cm->cur_frame->frame_type = cm->frame_type;
// S_FRAMEs are always error resilient
cm->error_resilient_mode |= frame_is_sframe(cm);
cm->large_scale_tile = cpi->oxcf.large_scale_tile;
cm->single_tile_decoding = cpi->oxcf.single_tile_decoding;
if (cm->large_scale_tile) cm->seq_params.frame_id_numbers_present_flag = 0;
cm->allow_ref_frame_mvs &= frame_might_allow_ref_frame_mvs(cm);
cm->allow_warped_motion =
cpi->oxcf.allow_warped_motion && frame_might_allow_warped_motion(cm);
// Reset the frame packet stamp index.
if (cm->frame_type == KEY_FRAME) cm->current_video_frame = 0;
// NOTE:
// (1) Move the setup of the ref_frame_flags upfront as it would be
// determined by the current frame properties;
// (2) The setup of the ref_frame_flags applies to both
// show_existing_frame's
// and the other cases.
if (cm->current_video_frame > 0)
cpi->ref_frame_flags = get_ref_frame_flags(cpi);
if (cm->show_existing_frame) {
// NOTE(zoeliu): In BIDIR_PRED, the existing frame to show is the current
// BWDREF_FRAME in the reference frame buffer.
cm->frame_type = INTER_FRAME;
cm->show_frame = 1;
cpi->frame_flags = *frame_flags;
// In the case of show_existing frame, we will not send fresh flag
// to decoder. Any change in the reference frame buffer can be done by
// switching the virtual indices.
cpi->refresh_last_frame = 0;
cpi->refresh_golden_frame = 0;
cpi->refresh_bwd_ref_frame = 0;
cpi->refresh_alt2_ref_frame = 0;
cpi->refresh_alt_ref_frame = 0;
cpi->rc.is_bwd_ref_frame = 0;
cpi->rc.is_last_bipred_frame = 0;
cpi->rc.is_bipred_frame = 0;
restore_coding_context(cpi);
// Build the bitstream
if (av1_pack_bitstream(cpi, dest, size) != AOM_CODEC_OK)
return AOM_CODEC_ERROR;
cpi->seq_params_locked = 1;
// Set up frame to show to get ready for stats collection.
cm->frame_to_show = get_frame_new_buffer(cm);
// Update current frame offset.
cm->frame_offset =
cm->buffer_pool->frame_bufs[cm->new_fb_idx].cur_frame_offset;
#if DUMP_RECON_FRAMES == 1
// NOTE(zoeliu): For debug - Output the filtered reconstructed video.
dump_filtered_recon_frames(cpi);
#endif // DUMP_RECON_FRAMES
// Update the LAST_FRAME in the reference frame buffer.
// NOTE:
// (1) For BWDREF_FRAME as the show_existing_frame, the reference frame
// update has been done previously when handling the LAST_BIPRED_FRAME
// right before BWDREF_FRAME (in the display order);
// (2) For INTNL_OVERLAY as the show_existing_frame, the reference frame
// update will be done when the following is called, which will
// exchange
// the virtual indexes between LAST_FRAME and ALTREF2_FRAME, so that
// LAST3 will get retired, LAST2 becomes LAST3, LAST becomes LAST2,
// and
// ALTREF2_FRAME will serve as the new LAST_FRAME.
update_reference_frames(cpi);
// Update frame flags
cpi->frame_flags &= ~FRAMEFLAGS_GOLDEN;
cpi->frame_flags &= ~FRAMEFLAGS_BWDREF;
cpi->frame_flags &= ~FRAMEFLAGS_ALTREF;
*frame_flags = cpi->frame_flags & ~FRAMEFLAGS_KEY;
// Update the frame type
cm->last_frame_type = cm->frame_type;
// Since we allocate a spot for the OVERLAY frame in the gf group, we need
// to do post-encoding update accordingly.
if (cpi->rc.is_src_frame_alt_ref) {
av1_set_target_rate(cpi, cm->width, cm->height);
av1_rc_postencode_update(cpi, *size);
}
++cm->current_video_frame;
return AOM_CODEC_OK;
}
// Set default state for segment based loop filter update flags.
cm->lf.mode_ref_delta_update = 0;
if (cpi->oxcf.pass == 2 && cpi->sf.adaptive_interp_filter_search)
cpi->sf.interp_filter_search_mask = setup_interp_filter_search_mask(cpi);
// Set various flags etc to special state if it is a key frame.
if (frame_is_intra_only(cm) || frame_is_sframe(cm)) {
// Reset the loop filter deltas and segmentation map.
av1_reset_segment_features(cm);
// If segmentation is enabled force a map update for key frames.
if (seg->enabled) {
seg->update_map = 1;
seg->update_data = 1;
}
// The alternate reference frame cannot be active for a key frame.
cpi->rc.source_alt_ref_active = 0;
}
if (cpi->oxcf.mtu == 0) {
cm->num_tg = cpi->oxcf.num_tile_groups;
} else {
// Use a default value for the purposes of weighting costs in probability
// updates
cm->num_tg = DEFAULT_MAX_NUM_TG;
}
// For 1 pass CBR, check if we are dropping this frame.
// Never drop on key frame.
if (oxcf->pass == 0 && oxcf->rc_mode == AOM_CBR &&
cm->frame_type != KEY_FRAME) {
if (av1_rc_drop_frame(cpi)) {
av1_rc_postencode_update_drop_frame(cpi);
return AOM_CODEC_OK;
}
}
aom_clear_system_state();
#if CONFIG_INTERNAL_STATS
memset(cpi->mode_chosen_counts, 0,
MAX_MODES * sizeof(*cpi->mode_chosen_counts));
#endif
if (cm->seq_params.frame_id_numbers_present_flag) {
/* Non-normative definition of current_frame_id ("frame counter" with
* wraparound) */
const int frame_id_length = FRAME_ID_LENGTH;
if (cm->current_frame_id == -1) {
int lsb, msb;
/* quasi-random initialization of current_frame_id for a key frame */
if (cpi->source->flags & YV12_FLAG_HIGHBITDEPTH) {
lsb = CONVERT_TO_SHORTPTR(cpi->source->y_buffer)[0] & 0xff;
msb = CONVERT_TO_SHORTPTR(cpi->source->y_buffer)[1] & 0xff;
} else {
lsb = cpi->source->y_buffer[0] & 0xff;
msb = cpi->source->y_buffer[1] & 0xff;
}
cm->current_frame_id = ((msb << 8) + lsb) % (1 << frame_id_length);
// S_frame is meant for stitching different streams of different
// resolutions together, so current_frame_id must be the
// same across different streams of the same content current_frame_id
// should be the same and not random. 0x37 is a chosen number as start
// point
if (cpi->oxcf.sframe_enabled) cm->current_frame_id = 0x37;
} else {
cm->current_frame_id =
(cm->current_frame_id + 1 + (1 << frame_id_length)) %
(1 << frame_id_length);
}
}
switch (cpi->oxcf.cdf_update_mode) {
case 0: // No CDF update for any frames(4~6% compression loss).
cm->disable_cdf_update = 1;
break;
case 1: // Enable CDF update for all frames.
cm->disable_cdf_update = 0;
break;
case 2:
// Strategically determine at which frames to do CDF update.
// Currently only enable CDF update for all-intra and no-show frames(1.5%
// compression loss).
// TODO(huisu@google.com): design schemes for various trade-offs between
// compression quality and decoding speed.
cm->disable_cdf_update =
(frame_is_intra_only(cm) || !cm->show_frame) ? 0 : 1;
break;
}
cm->timing_info_present &= !cm->seq_params.reduced_still_picture_hdr;
if (cpi->sf.recode_loop == DISALLOW_RECODE) {
if (encode_without_recode_loop(cpi) != AOM_CODEC_OK) return AOM_CODEC_ERROR;
} else {
if (encode_with_recode_loop(cpi, size, dest) != AOM_CODEC_OK)
return AOM_CODEC_ERROR;
}
cm->last_tile_cols = cm->tile_cols;
cm->last_tile_rows = cm->tile_rows;
#ifdef OUTPUT_YUV_SKINMAP
if (cpi->common.current_video_frame > 1) {
av1_compute_skin_map(cpi, yuv_skinmap_file);
}
#endif // OUTPUT_YUV_SKINMAP
// Special case code to reduce pulsing when key frames are forced at a
// fixed interval. Note the reconstruction error if it is the frame before
// the force key frame
if (cpi->rc.next_key_frame_forced && cpi->rc.frames_to_key == 1) {
if (cm->use_highbitdepth) {
cpi->ambient_err =
aom_highbd_get_y_sse(cpi->source, get_frame_new_buffer(cm));
} else {
cpi->ambient_err = aom_get_y_sse(cpi->source, get_frame_new_buffer(cm));
}
}
// If the encoder forced a KEY_FRAME decision or if frame is an S_FRAME
if (cm->frame_type == KEY_FRAME || frame_is_sframe(cm)) {
cpi->refresh_last_frame = 1;
}
cm->frame_to_show = get_frame_new_buffer(cm);
cm->frame_to_show->color_primaries = cm->color_primaries;
cm->frame_to_show->transfer_characteristics = cm->transfer_characteristics;
cm->frame_to_show->matrix_coefficients = cm->matrix_coefficients;
cm->frame_to_show->monochrome = cm->seq_params.monochrome;
cm->frame_to_show->chroma_sample_position = cm->chroma_sample_position;
cm->frame_to_show->color_range = cm->color_range;
cm->frame_to_show->render_width = cm->render_width;
cm->frame_to_show->render_height = cm->render_height;
// TODO(zoeliu): For non-ref frames, loop filtering may need to be turned
// off.
// Pick the loop filter level for the frame.
if (!cm->allow_intrabc) {
loopfilter_frame(cpi, cm);
} else {
cm->lf.filter_level[0] = 0;
cm->lf.filter_level[1] = 0;
cm->cdef_bits = 0;
cm->cdef_strengths[0] = 0;
cm->nb_cdef_strengths = 1;
cm->cdef_uv_strengths[0] = 0;
cm->rst_info[0].frame_restoration_type = RESTORE_NONE;
cm->rst_info[1].frame_restoration_type = RESTORE_NONE;
cm->rst_info[2].frame_restoration_type = RESTORE_NONE;
}
// TODO(debargha): Fix mv search range on encoder side
// aom_extend_frame_inner_borders(cm->frame_to_show, av1_num_planes(cm));
aom_extend_frame_borders(cm->frame_to_show, av1_num_planes(cm));
#ifdef OUTPUT_YUV_REC
aom_write_one_yuv_frame(cm, cm->frame_to_show);
#endif
// Build the bitstream
if (av1_pack_bitstream(cpi, dest, size) != AOM_CODEC_OK)
return AOM_CODEC_ERROR;
cpi->seq_params_locked = 1;
if (skip_adapt) return AOM_CODEC_OK;
if (cm->seq_params.frame_id_numbers_present_flag) {
int i;
// Update reference frame id values based on the value of refresh_frame_mask
for (i = 0; i < REF_FRAMES; i++) {
if ((cpi->refresh_frame_mask >> i) & 1) {
cm->ref_frame_id[i] = cm->current_frame_id;
}
}
}
#if DUMP_RECON_FRAMES == 1
// NOTE(zoeliu): For debug - Output the filtered reconstructed video.
dump_filtered_recon_frames(cpi);
#endif // DUMP_RECON_FRAMES
if (cm->seg.enabled) {
if (cm->seg.update_map) {
update_reference_segmentation_map(cpi);
} else if (cm->last_frame_seg_map) {
memcpy(cm->current_frame_seg_map, cm->last_frame_seg_map,
cm->mi_cols * cm->mi_rows * sizeof(uint8_t));
}
}
if (frame_is_intra_only(cm) == 0) {
release_scaled_references(cpi);
}
update_reference_frames(cpi);
#if CONFIG_ENTROPY_STATS
av1_accumulate_frame_counts(&aggregate_fc, &cpi->counts);
#endif // CONFIG_ENTROPY_STATS
if (cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) {
*cm->fc = cpi->tile_data[cm->largest_tile_id].tctx;
av1_reset_cdf_symbol_counters(cm->fc);
}
if (cpi->refresh_golden_frame == 1)
cpi->frame_flags |= FRAMEFLAGS_GOLDEN;
else
cpi->frame_flags &= ~FRAMEFLAGS_GOLDEN;
if (cpi->refresh_alt_ref_frame == 1)
cpi->frame_flags |= FRAMEFLAGS_ALTREF;
else
cpi->frame_flags &= ~FRAMEFLAGS_ALTREF;
if (cpi->refresh_bwd_ref_frame == 1)
cpi->frame_flags |= FRAMEFLAGS_BWDREF;
else
cpi->frame_flags &= ~FRAMEFLAGS_BWDREF;
cm->last_frame_type = cm->frame_type;
av1_rc_postencode_update(cpi, *size);
if (cm->frame_type == KEY_FRAME) {
// Tell the caller that the frame was coded as a key frame
*frame_flags = cpi->frame_flags | FRAMEFLAGS_KEY;
} else {
*frame_flags = cpi->frame_flags & ~FRAMEFLAGS_KEY;
}
// Clear the one shot update flags for segmentation map and mode/ref loop
// filter deltas.
cm->seg.update_map = 0;
cm->seg.update_data = 0;
cm->lf.mode_ref_delta_update = 0;
if (cm->show_frame) {
// TODO(zoeliu): We may only swamp mi and prev_mi for those frames that
// are
// being used as reference.
swap_mi_and_prev_mi(cm);
// Don't increment frame counters if this was an altref buffer
// update not a real frame
++cm->current_video_frame;
}
// NOTE: Shall not refer to any frame not used as reference.
if (cm->is_reference_frame) {
// keep track of the last coded dimensions
cm->last_width = cm->width;
cm->last_height = cm->height;
// reset to normal state now that we are done.
cm->last_show_frame = cm->show_frame;
}
return AOM_CODEC_OK;
}
static int Pass0Encode(AV1_COMP *cpi, size_t *size, uint8_t *dest,
int skip_adapt, unsigned int *frame_flags) {
if (cpi->oxcf.rc_mode == AOM_CBR) {
av1_rc_get_one_pass_cbr_params(cpi);
} else {
av1_rc_get_one_pass_vbr_params(cpi);
}
if (encode_frame_to_data_rate(cpi, size, dest, skip_adapt, frame_flags) !=
AOM_CODEC_OK) {
return AOM_CODEC_ERROR;
}
check_show_existing_frame(cpi);
return AOM_CODEC_OK;
}
static int Pass2Encode(AV1_COMP *cpi, size_t *size, uint8_t *dest,
unsigned int *frame_flags) {
#if CONFIG_MISMATCH_DEBUG
mismatch_move_frame_idx_w();
#endif
#if TXCOEFF_COST_TIMER
AV1_COMMON *cm = &cpi->common;
cm->txcoeff_cost_timer = 0;
cm->txcoeff_cost_count = 0;
#endif
if (encode_frame_to_data_rate(cpi, size, dest, 0, frame_flags) !=
AOM_CODEC_OK) {
return AOM_CODEC_ERROR;
}
#if TXCOEFF_COST_TIMER
cm->cum_txcoeff_cost_timer += cm->txcoeff_cost_timer;
fprintf(stderr,
"\ntxb coeff cost block number: %ld, frame time: %ld, cum time %ld "
"in us\n",
cm->txcoeff_cost_count, cm->txcoeff_cost_timer,
cm->cum_txcoeff_cost_timer);
#endif
// Do not do post-encoding update for those frames that do not have a spot
// in
// a gf group, but note that an OVERLAY frame always has a spot in a gf
// group,
// even when show_existing_frame is used.
if (!cpi->common.show_existing_frame || cpi->rc.is_src_frame_alt_ref) {
av1_twopass_postencode_update(cpi);
}
check_show_existing_frame(cpi);
return AOM_CODEC_OK;
}
int av1_receive_raw_frame(AV1_COMP *cpi, aom_enc_frame_flags_t frame_flags,
YV12_BUFFER_CONFIG *sd, int64_t time_stamp,
int64_t end_time) {
AV1_COMMON *const cm = &cpi->common;
struct aom_usec_timer timer;
int res = 0;
const int subsampling_x = sd->subsampling_x;
const int subsampling_y = sd->subsampling_y;
const int use_highbitdepth = (sd->flags & YV12_FLAG_HIGHBITDEPTH) != 0;
check_initial_width(cpi, use_highbitdepth, subsampling_x, subsampling_y);
aom_usec_timer_start(&timer);
if (av1_lookahead_push(cpi->lookahead, sd, time_stamp, end_time,
use_highbitdepth, frame_flags))
res = -1;
aom_usec_timer_mark(&timer);
cpi->time_receive_data += aom_usec_timer_elapsed(&timer);
if ((cm->profile == PROFILE_0) && !cm->seq_params.monochrome &&
(subsampling_x != 1 || subsampling_y != 1)) {
aom_internal_error(&cm->error, AOM_CODEC_INVALID_PARAM,
"Non-4:2:0 color format requires profile 1 or 2");
res = -1;
}
if ((cm->profile == PROFILE_1) &&
!(subsampling_x == 0 && subsampling_y == 0)) {
aom_internal_error(&cm->error, AOM_CODEC_INVALID_PARAM,
"Profile 1 requires 4:4:4 color format");
res = -1;
}
if ((cm->profile == PROFILE_2) && (cm->bit_depth <= AOM_BITS_10) &&
!(subsampling_x == 1 && subsampling_y == 0)) {
aom_internal_error(&cm->error, AOM_CODEC_INVALID_PARAM,
"Profile 2 bit-depth < 10 requires 4:2:2 color format");
res = -1;
}
return res;
}
static int frame_is_reference(const AV1_COMP *cpi) {
const AV1_COMMON *cm = &cpi->common;
return cm->frame_type == KEY_FRAME || cpi->refresh_last_frame ||
cpi->refresh_golden_frame || cpi->refresh_bwd_ref_frame ||
cpi->refresh_alt2_ref_frame || cpi->refresh_alt_ref_frame ||
!cm->error_resilient_mode || cm->lf.mode_ref_delta_update ||
cm->seg.update_map || cm->seg.update_data;
}
static void adjust_frame_rate(AV1_COMP *cpi,
const struct lookahead_entry *source) {
int64_t this_duration;
int step = 0;
if (source->ts_start == cpi->first_time_stamp_ever) {
this_duration = source->ts_end - source->ts_start;
step = 1;
} else {
int64_t last_duration =
cpi->last_end_time_stamp_seen - cpi->last_time_stamp_seen;
this_duration = source->ts_end - cpi->last_end_time_stamp_seen;
// do a step update if the duration changes by 10%
if (last_duration)
step = (int)((this_duration - last_duration) * 10 / last_duration);
}
if (this_duration) {
if (step) {
av1_new_framerate(cpi, 10000000.0 / this_duration);
} else {
// Average this frame's rate into the last second's average
// frame rate. If we haven't seen 1 second yet, then average
// over the whole interval seen.
const double interval = AOMMIN(
(double)(source->ts_end - cpi->first_time_stamp_ever), 10000000.0);
double avg_duration = 10000000.0 / cpi->framerate;
avg_duration *= (interval - avg_duration + this_duration);
avg_duration /= interval;
av1_new_framerate(cpi, 10000000.0 / avg_duration);
}
}
cpi->last_time_stamp_seen = source->ts_start;
cpi->last_end_time_stamp_seen = source->ts_end;
}
// Returns 0 if this is not an alt ref else the offset of the source frame
// used as the arf midpoint.
static int get_arf_src_index(AV1_COMP *cpi) {
RATE_CONTROL *const rc = &cpi->rc;
int arf_src_index = 0;
if (is_altref_enabled(cpi)) {
if (cpi->oxcf.pass == 2) {
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
if (gf_group->update_type[gf_group->index] == ARF_UPDATE) {
arf_src_index = gf_group->arf_src_offset[gf_group->index];
}
} else if (rc->source_alt_ref_pending) {
arf_src_index = rc->frames_till_gf_update_due;
}
}
return arf_src_index;
}
static int get_brf_src_index(AV1_COMP *cpi) {
int brf_src_index = 0;
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
// TODO(zoeliu): We need to add the check on the -bwd_ref command line setup
// flag.
if (gf_group->bidir_pred_enabled[gf_group->index]) {
if (cpi->oxcf.pass == 2) {
if (gf_group->update_type[gf_group->index] == BRF_UPDATE)
brf_src_index = gf_group->brf_src_offset[gf_group->index];
} else {
// TODO(zoeliu): To re-visit the setup for this scenario
brf_src_index = cpi->rc.bipred_group_interval - 1;
}
}
return brf_src_index;
}
// Returns 0 if this is not an alt ref else the offset of the source frame
// used as the arf midpoint.
static int get_arf2_src_index(AV1_COMP *cpi) {
int arf2_src_index = 0;
if (is_altref_enabled(cpi) && cpi->num_extra_arfs) {
if (cpi->oxcf.pass == 2) {
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
if (gf_group->update_type[gf_group->index] == INTNL_ARF_UPDATE) {
arf2_src_index = gf_group->arf_src_offset[gf_group->index];
}
}
}
return arf2_src_index;
}
static void check_src_altref(AV1_COMP *cpi,
const struct lookahead_entry *source) {
RATE_CONTROL *const rc = &cpi->rc;
// If pass == 2, the parameters set here will be reset in
// av1_rc_get_second_pass_params()
if (cpi->oxcf.pass == 2) {
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
rc->is_src_frame_alt_ref =
(gf_group->update_type[gf_group->index] == INTNL_OVERLAY_UPDATE) ||
(gf_group->update_type[gf_group->index] == OVERLAY_UPDATE);
rc->is_src_frame_ext_arf =
gf_group->update_type[gf_group->index] == INTNL_OVERLAY_UPDATE;
} else {
rc->is_src_frame_alt_ref =
cpi->alt_ref_source && (source == cpi->alt_ref_source);
}
if (rc->is_src_frame_alt_ref) {
// Current frame is an ARF overlay frame.
cpi->alt_ref_source = NULL;
if (rc->is_src_frame_ext_arf && !cpi->common.show_existing_frame) {
// For INTNL_OVERLAY, when show_existing_frame == 0, they do need to
// refresh the LAST_FRAME, i.e. LAST3 gets retired, LAST2 becomes LAST3,
// LAST becomes LAST2, and INTNL_OVERLAY becomes LAST.
cpi->refresh_last_frame = 1;
} else {
// Don't refresh the last buffer for an ARF overlay frame. It will
// become the GF so preserve last as an alternative prediction option.
cpi->refresh_last_frame = 0;
}
}
}
#if CONFIG_INTERNAL_STATS
extern double av1_get_blockiness(const unsigned char *img1, int img1_pitch,
const unsigned char *img2, int img2_pitch,
int width, int height);
static void adjust_image_stat(double y, double u, double v, double all,
ImageStat *s) {
s->stat[STAT_Y] += y;
s->stat[STAT_U] += u;
s->stat[STAT_V] += v;
s->stat[STAT_ALL] += all;
s->worst = AOMMIN(s->worst, all);
}
static void compute_internal_stats(AV1_COMP *cpi, int frame_bytes) {
AV1_COMMON *const cm = &cpi->common;
double samples = 0.0;
uint32_t in_bit_depth = 8;
uint32_t bit_depth = 8;
#if CONFIG_INTER_STATS_ONLY
if (cm->frame_type == KEY_FRAME) return; // skip key frame
#endif
cpi->bytes += frame_bytes;
if (cm->use_highbitdepth) {
in_bit_depth = cpi->oxcf.input_bit_depth;
bit_depth = cm->bit_depth;
}
if (cm->show_frame) {
const YV12_BUFFER_CONFIG *orig = cpi->source;
const YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show;
double y, u, v, frame_all;
cpi->count++;
if (cpi->b_calculate_psnr) {
PSNR_STATS psnr;
double frame_ssim2 = 0.0, weight = 0.0;
aom_clear_system_state();
// TODO(yaowu): unify these two versions into one.
aom_calc_highbd_psnr(orig, recon, &psnr, bit_depth, in_bit_depth);
adjust_image_stat(psnr.psnr[1], psnr.psnr[2], psnr.psnr[3], psnr.psnr[0],
&cpi->psnr);
cpi->total_sq_error += psnr.sse[0];
cpi->total_samples += psnr.samples[0];
samples = psnr.samples[0];
// TODO(yaowu): unify these two versions into one.
if (cm->use_highbitdepth)
frame_ssim2 =
aom_highbd_calc_ssim(orig, recon, &weight, bit_depth, in_bit_depth);
else
frame_ssim2 = aom_calc_ssim(orig, recon, &weight);
cpi->worst_ssim = AOMMIN(cpi->worst_ssim, frame_ssim2);
cpi->summed_quality += frame_ssim2 * weight;
cpi->summed_weights += weight;
#if 0
{
FILE *f = fopen("q_used.stt", "a");
double y2 = psnr.psnr[1];
double u2 = psnr.psnr[2];
double v2 = psnr.psnr[3];
double frame_psnr2 = psnr.psnr[0];
fprintf(f, "%5d : Y%f7.3:U%f7.3:V%f7.3:F%f7.3:S%7.3f\n",
cm->current_video_frame, y2, u2, v2,
frame_psnr2, frame_ssim2);
fclose(f);
}
#endif
}
if (cpi->b_calculate_blockiness) {
if (!cm->use_highbitdepth) {
const double frame_blockiness =
av1_get_blockiness(orig->y_buffer, orig->y_stride, recon->y_buffer,
recon->y_stride, orig->y_width, orig->y_height);
cpi->worst_blockiness = AOMMAX(cpi->worst_blockiness, frame_blockiness);
cpi->total_blockiness += frame_blockiness;
}
if (cpi->b_calculate_consistency) {
if (!cm->use_highbitdepth) {
const double this_inconsistency = aom_get_ssim_metrics(
orig->y_buffer, orig->y_stride, recon->y_buffer, recon->y_stride,
orig->y_width, orig->y_height, cpi->ssim_vars, &cpi->metrics, 1);
const double peak = (double)((1 << in_bit_depth) - 1);
const double consistency =
aom_sse_to_psnr(samples, peak, cpi->total_inconsistency);
if (consistency > 0.0)
cpi->worst_consistency =
AOMMIN(cpi->worst_consistency, consistency);
cpi->total_inconsistency += this_inconsistency;
}
}
}
frame_all =
aom_calc_fastssim(orig, recon, &y, &u, &v, bit_depth, in_bit_depth);
adjust_image_stat(y, u, v, frame_all, &cpi->fastssim);
frame_all = aom_psnrhvs(orig, recon, &y, &u, &v, bit_depth, in_bit_depth);
adjust_image_stat(y, u, v, frame_all, &cpi->psnrhvs);
}
}
#endif // CONFIG_INTERNAL_STATS
static int is_integer_mv(AV1_COMP *cpi, const YV12_BUFFER_CONFIG *cur_picture,
const YV12_BUFFER_CONFIG *last_picture,
hash_table *last_hash_table) {
aom_clear_system_state();
// check use hash ME
int k;
uint32_t hash_value_1;
uint32_t hash_value_2;
const int block_size = 8;
const double threshold_current = 0.8;
const double threshold_average = 0.95;
const int max_history_size = 32;
int T = 0; // total block
int C = 0; // match with collocated block
int S = 0; // smooth region but not match with collocated block
int M = 0; // match with other block
const int pic_width = cur_picture->y_width;
const int pic_height = cur_picture->y_height;
for (int i = 0; i + block_size <= pic_height; i += block_size) {
for (int j = 0; j + block_size <= pic_width; j += block_size) {
const int x_pos = j;
const int y_pos = i;
int match = 1;
T++;
// check whether collocated block match with current
uint8_t *p_cur = cur_picture->y_buffer;
uint8_t *p_ref = last_picture->y_buffer;
int stride_cur = cur_picture->y_stride;
int stride_ref = last_picture->y_stride;
p_cur += (y_pos * stride_cur + x_pos);
p_ref += (y_pos * stride_ref + x_pos);
if (cur_picture->flags & YV12_FLAG_HIGHBITDEPTH) {
uint16_t *p16_cur = CONVERT_TO_SHORTPTR(p_cur);
uint16_t *p16_ref = CONVERT_TO_SHORTPTR(p_ref);
for (int tmpY = 0; tmpY < block_size && match; tmpY++) {
for (int tmpX = 0; tmpX < block_size && match; tmpX++) {
if (p16_cur[tmpX] != p16_ref[tmpX]) {
match = 0;
}
}
p16_cur += stride_cur;
p16_ref += stride_ref;
}
} else {
for (int tmpY = 0; tmpY < block_size && match; tmpY++) {
for (int tmpX = 0; tmpX < block_size && match; tmpX++) {
if (p_cur[tmpX] != p_ref[tmpX]) {
match = 0;
}
}
p_cur += stride_cur;
p_ref += stride_ref;
}
}
if (match) {
C++;
continue;
}
if (av1_hash_is_horizontal_perfect(cur_picture, block_size, x_pos,
y_pos) ||
av1_hash_is_vertical_perfect(cur_picture, block_size, x_pos, y_pos)) {
S++;
continue;
}
av1_get_block_hash_value(
cur_picture->y_buffer + y_pos * stride_cur + x_pos, stride_cur,
block_size, &hash_value_1, &hash_value_2,
(cur_picture->flags & YV12_FLAG_HIGHBITDEPTH));
// Hashing does not work for highbitdepth currently.
// TODO(Roger): Make it work for highbitdepth.
if (av1_use_hash_me(&cpi->common)) {
if (av1_has_exact_match(last_hash_table, hash_value_1, hash_value_2)) {
M++;
}
}
}
}
assert(T > 0);
double csm_rate = ((double)(C + S + M)) / ((double)(T));
double m_rate = ((double)(M)) / ((double)(T));
cpi->csm_rate_array[cpi->rate_index] = csm_rate;
cpi->m_rate_array[cpi->rate_index] = m_rate;
cpi->rate_index = (cpi->rate_index + 1) % max_history_size;
cpi->rate_size++;
cpi->rate_size = AOMMIN(cpi->rate_size, max_history_size);
if (csm_rate < threshold_current) {
return 0;
}
if (C == T) {
return 1;
}
double csm_average = 0.0;
double m_average = 0.0;
for (k = 0; k < cpi->rate_size; k++) {
csm_average += cpi->csm_rate_array[k];
m_average += cpi->m_rate_array[k];
}
csm_average /= cpi->rate_size;
m_average /= cpi->rate_size;
if (csm_average < threshold_average) {
return 0;
}
if (M > (T - C - S) / 3) {
return 1;
}
if (csm_rate > 0.99 && m_rate > 0.01) {
return 1;
}
if (csm_average + m_average > 1.01) {
return 1;
}
return 0;
}
int av1_get_compressed_data(AV1_COMP *cpi, unsigned int *frame_flags,
size_t *size, uint8_t *dest, int64_t *time_stamp,
int64_t *time_end, int flush,
const aom_rational_t *timebase) {
const AV1EncoderConfig *const oxcf = &cpi->oxcf;
AV1_COMMON *const cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
BufferPool *const pool = cm->buffer_pool;
RATE_CONTROL *const rc = &cpi->rc;
struct aom_usec_timer cmptimer;
YV12_BUFFER_CONFIG *force_src_buffer = NULL;
struct lookahead_entry *last_source = NULL;
struct lookahead_entry *source = NULL;
int arf_src_index;
int brf_src_index;
int i;
#if CONFIG_BITSTREAM_DEBUG
assert(cpi->oxcf.max_threads == 0 &&
"bitstream debug tool does not support multithreading");
bitstream_queue_record_write();
bitstream_queue_set_frame_write(cm->current_video_frame * 2 + cm->show_frame);
#endif
cm->showable_frame = 0;
aom_usec_timer_start(&cmptimer);
set_high_precision_mv(cpi, ALTREF_HIGH_PRECISION_MV, 0);
// Is multi-arf enabled.
// Note that at the moment multi_arf is only configured for 2 pass VBR
if ((oxcf->pass == 2) && (cpi->oxcf.enable_auto_arf > 1))
cpi->multi_arf_allowed = 1;
else
cpi->multi_arf_allowed = 0;
// Normal defaults
cm->refresh_frame_context = oxcf->frame_parallel_decoding_mode
? REFRESH_FRAME_CONTEXT_DISABLED
: REFRESH_FRAME_CONTEXT_BACKWARD;
if (oxcf->large_scale_tile)
cm->refresh_frame_context = REFRESH_FRAME_CONTEXT_DISABLED;
cpi->refresh_last_frame = 1;
cpi->refresh_golden_frame = 0;
cpi->refresh_bwd_ref_frame = 0;
cpi->refresh_alt2_ref_frame = 0;
cpi->refresh_alt_ref_frame = 0;
// TODO(zoeliu@gmail.com): To support forward-KEY_FRAME and set up the
// following flag accordingly.
cm->reset_decoder_state = 0;
// Don't allow a show_existing_frame to coincide with an error resilient or
// S-Frame
struct lookahead_entry *lookahead_src = NULL;
if (cm->current_video_frame > 0)
lookahead_src = av1_lookahead_peek(cpi->lookahead, 0);
if (lookahead_src != NULL &&
((cpi->oxcf.error_resilient_mode |
((lookahead_src->flags & AOM_EFLAG_ERROR_RESILIENT) != 0)) ||
(cpi->oxcf.s_frame_mode |
((lookahead_src->flags & AOM_EFLAG_SET_S_FRAME) != 0)))) {
cm->show_existing_frame = 0;
}
if (oxcf->pass == 2 && cm->show_existing_frame) {
// Manage the source buffer and flush out the source frame that has been
// coded already; Also get prepared for PSNR calculation if needed.
if ((source = av1_lookahead_pop(cpi->lookahead, flush)) == NULL) {
*size = 0;
return -1;
}
av1_apply_encoding_flags(cpi, source->flags);
cpi->source = &source->img;
// TODO(zoeliu): To track down to determine whether it's needed to adjust
// the frame rate.
*time_stamp = source->ts_start;
*time_end = source->ts_end;
// We need to adjust frame rate for an overlay frame
if (cpi->rc.is_src_frame_alt_ref) adjust_frame_rate(cpi, source);
// Find a free buffer for the new frame, releasing the reference
// previously
// held.
if (cm->new_fb_idx != INVALID_IDX) {
--pool->frame_bufs[cm->new_fb_idx].ref_count;
}
cm->new_fb_idx = get_free_fb(cm);
if (cm->new_fb_idx == INVALID_IDX) return -1;
// Clear down mmx registers
aom_clear_system_state();
// Start with a 0 size frame.
*size = 0;
// We need to update the gf_group for show_existing overlay frame
if (cpi->rc.is_src_frame_alt_ref) av1_rc_get_second_pass_params(cpi);
if (Pass2Encode(cpi, size, dest, frame_flags) != AOM_CODEC_OK)
return AOM_CODEC_ERROR;
if (cpi->b_calculate_psnr) generate_psnr_packet(cpi);
#if CONFIG_INTERNAL_STATS
compute_internal_stats(cpi, (int)(*size));
#endif // CONFIG_INTERNAL_STATS
// Clear down mmx registers
aom_clear_system_state();
cm->show_existing_frame = 0;
return 0;
}
// Should we encode an arf frame.
arf_src_index = get_arf_src_index(cpi);
if (arf_src_index) {
for (i = 0; i <= arf_src_index; ++i) {
struct lookahead_entry *e = av1_lookahead_peek(cpi->lookahead, i);
// Avoid creating an alt-ref if there's a forced keyframe pending.
if (e == NULL) {
break;
} else if (e->flags == AOM_EFLAG_FORCE_KF) {
arf_src_index = 0;
flush = 1;
break;
}
}
}
if (arf_src_index) {
assert(arf_src_index <= rc->frames_to_key);
if ((source = av1_lookahead_peek(cpi->lookahead, arf_src_index)) != NULL) {
cm->showable_frame = 1;
cpi->alt_ref_source = source;
if (oxcf->arnr_max_frames > 0) {
// Produce the filtered ARF frame.
av1_temporal_filter(cpi, arf_src_index);
aom_extend_frame_borders(&cpi->alt_ref_buffer, num_planes);
force_src_buffer = &cpi->alt_ref_buffer;
}
cm->show_frame = 0;
cm->intra_only = 0;
cpi->refresh_alt_ref_frame = 1;
cpi->refresh_last_frame = 0;
cpi->refresh_golden_frame = 0;
cpi->refresh_bwd_ref_frame = 0;
cpi->refresh_alt2_ref_frame = 0;
rc->is_src_frame_alt_ref = 0;
}
rc->source_alt_ref_pending = 0;
}
// Should we encode an arf2 frame.
arf_src_index = get_arf2_src_index(cpi);
if (arf_src_index) {
for (i = 0; i <= arf_src_index; ++i) {
struct lookahead_entry *e = av1_lookahead_peek(cpi->lookahead, i);
// Avoid creating an alt-ref if there's a forced keyframe pending.
if (e == NULL) {
break;
} else if (e->flags == AOM_EFLAG_FORCE_KF) {
arf_src_index = 0;
flush = 1;
break;
}
}
}
if (arf_src_index) {
assert(arf_src_index <= rc->frames_to_key);
if ((source = av1_lookahead_peek(cpi->lookahead, arf_src_index)) != NULL) {
cm->showable_frame = 1;
cpi->alt_ref_source = source;
if (oxcf->arnr_max_frames > 0) {
// Produce the filtered ARF frame.
av1_temporal_filter(cpi, arf_src_index);
aom_extend_frame_borders(&cpi->alt_ref_buffer, num_planes);
force_src_buffer = &cpi->alt_ref_buffer;
}
cm->show_frame = 0;
cm->intra_only = 0;
cpi->refresh_alt2_ref_frame = 1;
cpi->refresh_last_frame = 0;
cpi->refresh_golden_frame = 0;
cpi->refresh_bwd_ref_frame = 0;
cpi->refresh_alt_ref_frame = 0;
rc->is_src_frame_alt_ref = 0;
rc->is_src_frame_ext_arf = 0;
}
rc->source_alt_ref_pending = 0;
}
rc->is_bwd_ref_frame = 0;
brf_src_index = get_brf_src_index(cpi);
if (brf_src_index) {
assert(brf_src_index <= rc->frames_to_key);
if ((source = av1_lookahead_peek(cpi->lookahead, brf_src_index)) != NULL) {
cm->showable_frame = 1;
cm->show_frame = 0;
cm->intra_only = 0;
cpi->refresh_bwd_ref_frame = 1;
cpi->refresh_last_frame = 0;
cpi->refresh_golden_frame = 0;
cpi->refresh_alt2_ref_frame = 0;
cpi->refresh_alt_ref_frame = 0;
rc->is_bwd_ref_frame = 1;
}
}
if (!source) {
// Get last frame source.
if (cm->current_video_frame > 0) {
if ((last_source = av1_lookahead_peek(cpi->lookahead, -1)) == NULL)
return -1;
}
if (cm->current_video_frame > 0) assert(last_source != NULL);
// Read in the source frame.
source = av1_lookahead_pop(cpi->lookahead, flush);
if (source != NULL) {
cm->show_frame = 1;
cm->intra_only = 0;
// Check to see if the frame should be encoded as an arf overlay.
check_src_altref(cpi, source);
}
}
if (source) {
cpi->unscaled_source = cpi->source =
force_src_buffer ? force_src_buffer : &source->img;
cpi->unscaled_last_source = last_source != NULL ? &last_source->img : NULL;
*time_stamp = source->ts_start;
*time_end = source->ts_end;
av1_apply_encoding_flags(cpi, source->flags);
*frame_flags = (source->flags & AOM_EFLAG_FORCE_KF) ? FRAMEFLAGS_KEY : 0;
} else {
*size = 0;
if (flush && oxcf->pass == 1 && !cpi->twopass.first_pass_done) {
av1_end_first_pass(cpi); /* get last stats packet */
cpi->twopass.first_pass_done = 1;
}
return -1;
}
if (source->ts_start < cpi->first_time_stamp_ever) {
cpi->first_time_stamp_ever = source->ts_start;
cpi->last_end_time_stamp_seen = source->ts_start;
}
// Clear down mmx registers
aom_clear_system_state();
// adjust frame rates based on timestamps given
if (cm->show_frame) adjust_frame_rate(cpi, source);
// Find a free buffer for the new frame, releasing the reference previously
// held.
if (cm->new_fb_idx != INVALID_IDX) {
--pool->frame_bufs[cm->new_fb_idx].ref_count;
}
cm->new_fb_idx = get_free_fb(cm);
if (cm->new_fb_idx == INVALID_IDX) return -1;
// Retain the RF_LEVEL for the current newly coded frame.
cpi->frame_rf_level[cm->new_fb_idx] =
cpi->twopass.gf_group.rf_level[cpi->twopass.gf_group.index];
cm->cur_frame = &pool->frame_bufs[cm->new_fb_idx];
cm->cur_frame->buf.buf_8bit_valid = 0;
if (cm->film_grain_table) {
cm->film_grain_params_present = aom_film_grain_table_lookup(
cm->film_grain_table, *time_stamp, *time_end, 0 /* erase */,
&cm->film_grain_params);
}
cm->cur_frame->film_grain_params_present = cm->film_grain_params_present;
// only one operating point supported now
cpi->common.tu_presentation_delay =
ticks_to_timebase_units(timebase, *time_stamp);
// Start with a 0 size frame.
*size = 0;
cpi->frame_flags = *frame_flags;
if (oxcf->pass == 2) {
av1_rc_get_second_pass_params(cpi);
} else if (oxcf->pass == 1) {
setup_frame_size(cpi);
}
if (cpi->oxcf.pass != 0 || frame_is_intra_only(cm) == 1) {
for (i = 0; i < REF_FRAMES; ++i) cpi->scaled_ref_idx[i] = INVALID_IDX;
}
cm->using_qmatrix = cpi->oxcf.using_qm;
cm->min_qmlevel = cpi->oxcf.qm_minlevel;
cm->max_qmlevel = cpi->oxcf.qm_maxlevel;
if (cm->seq_params.frame_id_numbers_present_flag) {
if (*time_stamp == 0) {
cpi->common.current_frame_id = -1;
}
}
cpi->cur_poc++;
if (oxcf->pass != 1 && cpi->common.allow_screen_content_tools &&
!frame_is_intra_only(cm)) {
if (cpi->common.seq_params.force_integer_mv == 2) {
struct lookahead_entry *previous_entry =
av1_lookahead_peek(cpi->lookahead, cpi->previous_index);
if (!previous_entry)
cpi->common.cur_frame_force_integer_mv = 0;
else
cpi->common.cur_frame_force_integer_mv = is_integer_mv(
cpi, cpi->source, &previous_entry->img, cpi->previous_hash_table);
} else {
cpi->common.cur_frame_force_integer_mv =
cpi->common.seq_params.force_integer_mv;
}
} else {
cpi->common.cur_frame_force_integer_mv = 0;
}
if (oxcf->pass == 1) {
cpi->td.mb.e_mbd.lossless[0] = is_lossless_requested(oxcf);
av1_first_pass(cpi, source);
} else if (oxcf->pass == 2) {
if (Pass2Encode(cpi, size, dest, frame_flags) != AOM_CODEC_OK)
return AOM_CODEC_ERROR;
} else {
// One pass encode
if (Pass0Encode(cpi, size, dest, 0, frame_flags) != AOM_CODEC_OK)
return AOM_CODEC_ERROR;
}
if (oxcf->pass != 1 && cpi->common.allow_screen_content_tools) {
cpi->previous_hash_table = &cm->cur_frame->hash_table;
{
int l;
for (l = -MAX_PRE_FRAMES; l < cpi->lookahead->max_sz; l++) {
if ((cpi->lookahead->buf + l) == source) {
cpi->previous_index = l;
break;
}
}
if (l == cpi->lookahead->max_sz) {
aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
"Failed to find last frame original buffer");
}
}
}
if (!cm->large_scale_tile) {
cm->frame_contexts[cm->new_fb_idx] = *cm->fc;
}
#define EXT_TILE_DEBUG 0
#if EXT_TILE_DEBUG
if (cm->large_scale_tile && oxcf->pass == 2) {
char fn[20] = "./fc";
fn[4] = cm->current_video_frame / 100 + '0';
fn[5] = (cm->current_video_frame % 100) / 10 + '0';
fn[6] = (cm->current_video_frame % 10) + '0';
fn[7] = '\0';
av1_print_frame_contexts(cm->fc, fn);
}
#endif // EXT_TILE_DEBUG
#undef EXT_TILE_DEBUG
cm->showable_frame = !cm->show_frame && cm->showable_frame;
// No frame encoded, or frame was dropped, release scaled references.
if ((*size == 0) && (frame_is_intra_only(cm) == 0)) {
release_scaled_references(cpi);
}
if (*size > 0) {
cpi->droppable = !frame_is_reference(cpi);
}
aom_usec_timer_mark(&cmptimer);
cpi->time_compress_data += aom_usec_timer_elapsed(&cmptimer);
if (cpi->b_calculate_psnr && oxcf->pass != 1 && cm->show_frame)
generate_psnr_packet(cpi);
#if CONFIG_INTERNAL_STATS
if (oxcf->pass != 1) {
compute_internal_stats(cpi, (int)(*size));
}
#endif // CONFIG_INTERNAL_STATS
aom_clear_system_state();
return 0;
}
int av1_get_preview_raw_frame(AV1_COMP *cpi, YV12_BUFFER_CONFIG *dest) {
AV1_COMMON *cm = &cpi->common;
if (!cm->show_frame) {
return -1;
} else {
int ret;
if (cm->frame_to_show) {
*dest = *cm->frame_to_show;
dest->y_width = cm->width;
dest->y_height = cm->height;
dest->uv_width = cm->width >> cm->subsampling_x;
dest->uv_height = cm->height >> cm->subsampling_y;
ret = 0;
} else {
ret = -1;
}
aom_clear_system_state();
return ret;
}
}
int av1_get_last_show_frame(AV1_COMP *cpi, YV12_BUFFER_CONFIG *frame) {
if (cpi->last_show_frame_buf_idx == INVALID_IDX) return -1;
*frame =
cpi->common.buffer_pool->frame_bufs[cpi->last_show_frame_buf_idx].buf;
return 0;
}
int av1_set_internal_size(AV1_COMP *cpi, AOM_SCALING horiz_mode,
AOM_SCALING vert_mode) {
int hr = 0, hs = 0, vr = 0, vs = 0;
if (horiz_mode > ONETWO || vert_mode > ONETWO) return -1;
Scale2Ratio(horiz_mode, &hr, &hs);
Scale2Ratio(vert_mode, &vr, &vs);
// always go to the next whole number
cpi->resize_pending_width = (hs - 1 + cpi->oxcf.width * hr) / hs;
cpi->resize_pending_height = (vs - 1 + cpi->oxcf.height * vr) / vs;
return 0;
}
int av1_get_quantizer(AV1_COMP *cpi) { return cpi->common.base_qindex; }
int av1_convert_sect5obus_to_annexb(uint8_t *buffer, size_t *frame_size) {
size_t output_size = 0;
size_t total_bytes_read = 0;
size_t remaining_size = *frame_size;
uint8_t *buff_ptr = buffer;
// go through each OBUs
while (total_bytes_read < *frame_size) {
uint8_t saved_obu_header[2];
uint64_t obu_payload_size;
size_t length_of_payload_size;
size_t length_of_obu_size;
uint32_t obu_header_size = (buff_ptr[0] >> 2) & 0x1 ? 2 : 1;
size_t obu_bytes_read = obu_header_size; // bytes read for current obu
// save the obu header (1 or 2 bytes)
memmove(saved_obu_header, buff_ptr, obu_header_size);
// clear the obu_has_size_field
saved_obu_header[0] = saved_obu_header[0] & (~0x2);
// get the payload_size and length of payload_size
if (aom_uleb_decode(buff_ptr + obu_header_size, remaining_size,
&obu_payload_size, &length_of_payload_size) != 0) {
return AOM_CODEC_ERROR;
}
obu_bytes_read += length_of_payload_size;
// calculate the length of size of the obu header plus payload
length_of_obu_size =
aom_uleb_size_in_bytes((uint64_t)(obu_header_size + obu_payload_size));
// move the rest of data to new location
memmove(buff_ptr + length_of_obu_size + obu_header_size,
buff_ptr + obu_bytes_read, remaining_size - obu_bytes_read);
obu_bytes_read += (size_t)obu_payload_size;
// write the new obu size
const uint64_t obu_size = obu_header_size + obu_payload_size;
size_t coded_obu_size;
if (aom_uleb_encode(obu_size, sizeof(obu_size), buff_ptr,
&coded_obu_size) != 0) {
return AOM_CODEC_ERROR;
}
// write the saved (modified) obu_header following obu size
memmove(buff_ptr + length_of_obu_size, saved_obu_header, obu_header_size);
total_bytes_read += obu_bytes_read;
remaining_size -= obu_bytes_read;
buff_ptr += length_of_obu_size + obu_size;
output_size += length_of_obu_size + (size_t)obu_size;
}
*frame_size = output_size;
return AOM_CODEC_OK;
}
void av1_apply_encoding_flags(AV1_COMP *cpi, aom_enc_frame_flags_t flags) {
// TODO(yunqingwang): For what references to use, external encoding flags
// should be consistent with internal reference frame selection. Need to
// ensure that there is not conflict between the two. In AV1 encoder, the
// priority rank for 7 reference frames are: LAST, ALTREF, LAST2, LAST3,
// GOLDEN, BWDREF, ALTREF2. If only one reference frame is used, it must be
// LAST.
cpi->ext_ref_frame_flags = AOM_REFFRAME_ALL;
if (flags &
(AOM_EFLAG_NO_REF_LAST | AOM_EFLAG_NO_REF_LAST2 | AOM_EFLAG_NO_REF_LAST3 |
AOM_EFLAG_NO_REF_GF | AOM_EFLAG_NO_REF_ARF | AOM_EFLAG_NO_REF_BWD |
AOM_EFLAG_NO_REF_ARF2)) {
if (flags & AOM_EFLAG_NO_REF_LAST) {
cpi->ext_ref_frame_flags = 0;
} else {
int ref = AOM_REFFRAME_ALL;
if (flags & AOM_EFLAG_NO_REF_LAST2) ref ^= AOM_LAST2_FLAG;
if (flags & AOM_EFLAG_NO_REF_LAST3) ref ^= AOM_LAST3_FLAG;
if (flags & AOM_EFLAG_NO_REF_GF) ref ^= AOM_GOLD_FLAG;
if (flags & AOM_EFLAG_NO_REF_ARF) {
ref ^= AOM_ALT_FLAG;
ref ^= AOM_BWD_FLAG;
ref ^= AOM_ALT2_FLAG;
} else {
if (flags & AOM_EFLAG_NO_REF_BWD) ref ^= AOM_BWD_FLAG;
if (flags & AOM_EFLAG_NO_REF_ARF2) ref ^= AOM_ALT2_FLAG;
}
av1_use_as_reference(cpi, ref);
}
}
if (flags &
(AOM_EFLAG_NO_UPD_LAST | AOM_EFLAG_NO_UPD_GF | AOM_EFLAG_NO_UPD_ARF)) {
int upd = AOM_REFFRAME_ALL;
// Refreshing LAST/LAST2/LAST3 is handled by 1 common flag.
if (flags & AOM_EFLAG_NO_UPD_LAST) upd ^= AOM_LAST_FLAG;
if (flags & AOM_EFLAG_NO_UPD_GF) upd ^= AOM_GOLD_FLAG;
if (flags & AOM_EFLAG_NO_UPD_ARF) {
upd ^= AOM_ALT_FLAG;
upd ^= AOM_BWD_FLAG;
upd ^= AOM_ALT2_FLAG;
}
av1_update_reference(cpi, upd);
}
cpi->ext_use_ref_frame_mvs = cpi->oxcf.allow_ref_frame_mvs &
((flags & AOM_EFLAG_NO_REF_FRAME_MVS) == 0);
cpi->ext_use_error_resilient = cpi->oxcf.error_resilient_mode |
((flags & AOM_EFLAG_ERROR_RESILIENT) != 0);
cpi->ext_use_s_frame =
cpi->oxcf.s_frame_mode | ((flags & AOM_EFLAG_SET_S_FRAME) != 0);
cpi->ext_use_primary_ref_none = (flags & AOM_EFLAG_SET_PRIMARY_REF_NONE) != 0;
if (flags & AOM_EFLAG_NO_UPD_ENTROPY) {
av1_update_entropy(cpi, 0);
}
}
int64_t timebase_units_to_ticks(const aom_rational_t *timebase, int64_t n) {
return n * TICKS_PER_SEC * timebase->num / timebase->den;
}
int64_t ticks_to_timebase_units(const aom_rational_t *timebase, int64_t n) {
const int64_t round = TICKS_PER_SEC * timebase->num / 2 - 1;
return (n * timebase->den + round) / timebase->num / TICKS_PER_SEC;
}