blob: 84683f5fd4f8d434d23f077ff9d7892ea17d7f14 [file] [log] [blame]
/*
* Copyright (c) 2019, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#ifndef AOM_AV1_ENCODER_PARTITION_STRATEGY_H_
#define AOM_AV1_ENCODER_PARTITION_STRATEGY_H_
#include "av1/encoder/encodeframe.h"
#include "av1/encoder/encodeframe_utils.h"
#include "av1/encoder/encodemb.h"
#include "av1/encoder/encoder.h"
void av1_intra_mode_cnn_partition(const AV1_COMMON *const cm, MACROBLOCK *x,
int label_idx,
int intra_cnn_based_part_prune_level,
PartitionSearchState *part_state);
// Performs a simple_motion_search with a single reference frame and extract
// the variance of residues. Then use the features to determine whether we want
// to go straight to splitting without trying PARTITION_NONE
void av1_simple_motion_search_based_split(AV1_COMP *const cpi, MACROBLOCK *x,
SIMPLE_MOTION_DATA_TREE *sms_tree,
PartitionSearchState *part_state);
// Performs a simple_motion_search with two reference frames and extract
// the variance of residues. Then use the features to determine whether we want
// to prune some partitions.
void av1_simple_motion_search_prune_rect(AV1_COMP *const cpi, MACROBLOCK *x,
SIMPLE_MOTION_DATA_TREE *sms_tree,
PartitionSearchState *part_state);
#if !CONFIG_REALTIME_ONLY
// Early terminates PARTITION_NONE using simple_motion_search features and the
// rate, distortion, and rdcost of PARTITION_NONE. This is only called when:
// - The frame is a show frame
// - The frame is not intra only
// - The current bsize is > BLOCK_8X8
// - blk_row + blk_height/2 < total_rows and blk_col + blk_width/2 < total_cols
void av1_simple_motion_search_early_term_none(AV1_COMP *const cpi,
MACROBLOCK *x,
SIMPLE_MOTION_DATA_TREE *sms_tree,
const RD_STATS *none_rdc,
PartitionSearchState *part_state);
// Get the features for selecting the max and min partition size. Currently this
// performs simple_motion_search on 16X16 subblocks of the current superblock,
// and then extract the statistics of sse and motion vectors as features.
void av1_get_max_min_partition_features(AV1_COMP *const cpi, MACROBLOCK *x,
int mi_row, int mi_col,
float *features);
// Predict the maximum BLOCK_SIZE to be used to encoder the current superblock.
BLOCK_SIZE av1_predict_max_partition(const AV1_COMP *const cpi,
const MACROBLOCK *const x,
const float *features);
// Attempts an early termination after PARTITION_SPLIT.
void av1_ml_early_term_after_split(AV1_COMP *const cpi, MACROBLOCK *const x,
SIMPLE_MOTION_DATA_TREE *const sms_tree,
int64_t best_rd, int64_t part_none_rd,
int64_t part_split_rd,
int64_t *split_block_rd,
PartitionSearchState *part_state);
// Use the rdcost ratio and source var ratio to prune PARTITION_HORZ and
// PARTITION_VERT.
// TODO(chiyotsai@google.com): Currently this model does not use q value and has
// no information about rectangular partitions. Preliminary experiments suggest
// that we can get better performance by adding in q_index and rectangular
// sse/var from SMS. We should retrain and tune this model later.
void av1_ml_prune_rect_partition(AV1_COMP *const cpi, const MACROBLOCK *const x,
int64_t best_rd, int64_t none_rd,
const int64_t *split_rd,
PartitionSearchState *part_state);
// Use a ML model to predict if horz_a, horz_b, vert_a, and vert_b should be
// considered.
void av1_ml_prune_ab_partition(AV1_COMP *const cpi, int part_ctx, int var_ctx,
int64_t best_rd,
PartitionSearchState *part_state,
int *ab_partitions_allowed);
// Use a ML model to predict if horz4 and vert4 should be considered.
void av1_ml_prune_4_partition(AV1_COMP *const cpi, MACROBLOCK *const x,
int part_ctx, int64_t best_rd,
PartitionSearchState *part_state,
int *part4_allowed,
unsigned int pb_source_variance);
// ML-based partition search breakout after PARTITION_NONE.
void av1_ml_predict_breakout(AV1_COMP *const cpi, const MACROBLOCK *const x,
const RD_STATS *const rd_stats,
unsigned int pb_source_variance, int bit_depth,
PartitionSearchState *part_state);
// The first round of partition pruning determined before any partition
// has been tested. The decisions will be updated and passed back
// to the partition search function.
void av1_prune_partitions_before_search(AV1_COMP *const cpi,
MACROBLOCK *const x,
SIMPLE_MOTION_DATA_TREE *const sms_tree,
PartitionSearchState *part_state);
// Prune out partitions that lead to coding block sizes outside the min and max
// bsizes set by the encoder. Max and min square partition levels are defined as
// the partition nodes that the recursive function rd_pick_partition() can
// reach. To implement this: only PARTITION_NONE is allowed if the current node
// equals max_partition_size, only PARTITION_SPLIT is allowed if the current
// node exceeds max_partition_size.
void av1_prune_partitions_by_max_min_bsize(SuperBlockEnc *sb_enc,
PartitionSearchState *part_state);
// Prune out AB partitions based on rd decisions made from testing the
// basic partitions.
void av1_prune_ab_partitions(AV1_COMP *cpi, const MACROBLOCK *x,
const PC_TREE *pc_tree, int pb_source_variance,
int64_t best_rdcost,
const RD_RECT_PART_WIN_INFO *rect_part_win_info,
bool ext_partition_allowed,
PartitionSearchState *part_state,
int *ab_partitions_allowed);
void av1_collect_motion_search_features_sb(AV1_COMP *const cpi, ThreadData *td,
TileDataEnc *tile_data,
const int mi_row, const int mi_col,
const BLOCK_SIZE bsize,
aom_partition_features_t *features);
void av1_prepare_motion_search_features_block(
AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data,
const int mi_row, const int mi_col, const BLOCK_SIZE bsize,
const int valid_partition_types, unsigned int *block_sse,
unsigned int *block_var, unsigned int sub_block_sse[4],
unsigned int sub_block_var[4], unsigned int horz_block_sse[2],
unsigned int horz_block_var[2], unsigned int vert_block_sse[2],
unsigned int vert_block_var[2]);
#endif // !CONFIG_REALTIME_ONLY
// A simplified version of set_offsets meant to be used for
// simple_motion_search.
static INLINE void set_offsets_for_motion_search(const AV1_COMP *const cpi,
MACROBLOCK *const x,
int mi_row, int mi_col,
BLOCK_SIZE bsize) {
const AV1_COMMON *const cm = &cpi->common;
const CommonModeInfoParams *const mi_params = &cm->mi_params;
const int num_planes = av1_num_planes(cm);
MACROBLOCKD *const xd = &x->e_mbd;
const int mi_width = mi_size_wide[bsize];
const int mi_height = mi_size_high[bsize];
set_mode_info_offsets(&cpi->common.mi_params, &cpi->mbmi_ext_info, x, xd,
mi_row, mi_col);
// Set up destination pointers.
av1_setup_dst_planes(xd->plane, bsize, &cm->cur_frame->buf, mi_row, mi_col, 0,
num_planes);
// Set up limit values for MV components.
// Mv beyond the range do not produce new/different prediction block.
av1_set_mv_limits(mi_params, &x->mv_limits, mi_row, mi_col, mi_height,
mi_width, cpi->oxcf.border_in_pixels);
set_plane_n4(xd, mi_width, mi_height, num_planes);
xd->mi_row = mi_row;
xd->mi_col = mi_col;
// Set up distance of MB to edge of frame in 1/8th pel units.
assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1)));
xd->mb_to_top_edge = -GET_MV_SUBPEL(mi_row * MI_SIZE);
xd->mb_to_bottom_edge =
GET_MV_SUBPEL((mi_params->mi_rows - mi_height - mi_row) * MI_SIZE);
xd->mb_to_left_edge = -GET_MV_SUBPEL(mi_col * MI_SIZE);
xd->mb_to_right_edge =
GET_MV_SUBPEL((mi_params->mi_cols - mi_width - mi_col) * MI_SIZE);
// Set up source buffers.
av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes, bsize);
}
void av1_init_simple_motion_search_mvs_for_sb(const AV1_COMP *cpi,
const TileInfo *tile_info,
MACROBLOCK *x,
SIMPLE_MOTION_DATA_TREE *sms_root,
int mi_row, int mi_col);
static INLINE int is_full_sb(const CommonModeInfoParams *const mi_params,
int mi_row, int mi_col, BLOCK_SIZE sb_size) {
const int sb_mi_wide = mi_size_wide[sb_size];
const int sb_mi_high = mi_size_high[sb_size];
return (mi_row + sb_mi_high) <= mi_params->mi_rows &&
(mi_col + sb_mi_wide) <= mi_params->mi_cols;
}
#if !CONFIG_REALTIME_ONLY
// Do not use this criteria for screen content videos.
// Since screen content videos could often find good predictors and the largest
// block size is likely to be used.
static INLINE int use_auto_max_partition(const AV1_COMP *const cpi,
BLOCK_SIZE sb_size, int mi_row,
int mi_col) {
assert(IMPLIES(cpi->ppi->gf_group.size > 0,
cpi->gf_frame_index < cpi->ppi->gf_group.size));
const AV1_COMMON *const cm = &cpi->common;
return !frame_is_intra_only(cm) && !cpi->use_screen_content_tools &&
cpi->sf.part_sf.auto_max_partition_based_on_simple_motion !=
NOT_IN_USE &&
sb_size == BLOCK_128X128 &&
is_full_sb(&cm->mi_params, mi_row, mi_col, sb_size) &&
cpi->ppi->gf_group.update_type[cpi->gf_frame_index] !=
OVERLAY_UPDATE &&
cpi->ppi->gf_group.update_type[cpi->gf_frame_index] !=
INTNL_OVERLAY_UPDATE;
}
static BLOCK_SIZE dim_to_size(int dim) {
switch (dim) {
case 4: return BLOCK_4X4;
case 8: return BLOCK_8X8;
case 16: return BLOCK_16X16;
case 32: return BLOCK_32X32;
case 64: return BLOCK_64X64;
case 128: return BLOCK_128X128;
default: assert(0); return 0;
}
}
static AOM_INLINE void set_max_min_partition_size(SuperBlockEnc *sb_enc,
AV1_COMP *cpi, MACROBLOCK *x,
const SPEED_FEATURES *sf,
BLOCK_SIZE sb_size,
int mi_row, int mi_col) {
const AV1_COMMON *cm = &cpi->common;
sb_enc->max_partition_size =
AOMMIN(sf->part_sf.default_max_partition_size,
dim_to_size(cpi->oxcf.part_cfg.max_partition_size));
sb_enc->min_partition_size =
AOMMAX(sf->part_sf.default_min_partition_size,
dim_to_size(cpi->oxcf.part_cfg.min_partition_size));
sb_enc->max_partition_size =
AOMMIN(sb_enc->max_partition_size, cm->seq_params->sb_size);
sb_enc->min_partition_size =
AOMMIN(sb_enc->min_partition_size, cm->seq_params->sb_size);
if (use_auto_max_partition(cpi, sb_size, mi_row, mi_col)) {
float features[FEATURE_SIZE_MAX_MIN_PART_PRED] = { 0.0f };
av1_get_max_min_partition_features(cpi, x, mi_row, mi_col, features);
sb_enc->max_partition_size =
AOMMAX(AOMMIN(av1_predict_max_partition(cpi, x, features),
sb_enc->max_partition_size),
sb_enc->min_partition_size);
}
}
#endif // !CONFIG_REALTIME_ONLY
#endif // AOM_AV1_ENCODER_PARTITION_STRATEGY_H_