blob: f71dc272864a51ea6aab0a9ab0edd4788f9c7e90 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <stdio.h>
#include <limits.h>
#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
#include "config/aom_scale_rtcd.h"
#include "aom/aom_integer.h"
#include "aom_dsp/blend.h"
#include "av1/common/av1_common_int.h"
#include "av1/common/blockd.h"
#include "av1/common/mvref_common.h"
#include "av1/common/obmc.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#include "av1/encoder/reconinter_enc.h"
static INLINE void build_inter_predictors(const AV1_COMMON *cm, MACROBLOCKD *xd,
int plane, const MB_MODE_INFO *mi,
int bw, int bh, int mi_x, int mi_y) {
struct macroblockd_plane *const pd = &xd->plane[plane];
int is_compound = has_second_ref(mi);
int ref;
const int is_intrabc = is_intrabc_block(mi);
assert(IMPLIES(is_intrabc, !is_compound));
int is_global[2] = { 0, 0 };
for (ref = 0; ref < 1 + is_compound; ++ref) {
const WarpedMotionParams *const wm = &xd->global_motion[mi->ref_frame[ref]];
is_global[ref] = is_global_mv_block(mi, wm->wmtype);
}
const BLOCK_SIZE bsize = mi->sb_type;
const int ss_x = pd->subsampling_x;
const int ss_y = pd->subsampling_y;
int sub8x8_inter = (block_size_wide[bsize] < 8 && ss_x) ||
(block_size_high[bsize] < 8 && ss_y);
if (is_intrabc) sub8x8_inter = 0;
// For sub8x8 chroma blocks, we may be covering more than one luma block's
// worth of pixels. Thus (mi_x, mi_y) may not be the correct coordinates for
// the top-left corner of the prediction source - the correct top-left corner
// is at (pre_x, pre_y).
const int row_start = (block_size_high[bsize] == 4) && ss_y ? -1 : 0;
const int col_start = (block_size_wide[bsize] == 4) && ss_x ? -1 : 0;
const int pre_x = (mi_x + MI_SIZE * col_start) >> ss_x;
const int pre_y = (mi_y + MI_SIZE * row_start) >> ss_y;
if (sub8x8_inter) {
for (int row = row_start; row <= 0 && sub8x8_inter; ++row) {
for (int col = col_start; col <= 0; ++col) {
const MB_MODE_INFO *this_mbmi = xd->mi[row * xd->mi_stride + col];
if (!is_inter_block(this_mbmi)) sub8x8_inter = 0;
if (is_intrabc_block(this_mbmi)) sub8x8_inter = 0;
}
}
}
if (sub8x8_inter) {
// block size
const int b4_w = block_size_wide[bsize] >> ss_x;
const int b4_h = block_size_high[bsize] >> ss_y;
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, ss_x, ss_y);
const int b8_w = block_size_wide[plane_bsize];
const int b8_h = block_size_high[plane_bsize];
assert(!is_compound);
int row = row_start;
for (int y = 0; y < b8_h; y += b4_h) {
int col = col_start;
for (int x = 0; x < b8_w; x += b4_w) {
MB_MODE_INFO *this_mbmi = xd->mi[row * xd->mi_stride + col];
int tmp_dst_stride = 8;
assert(bw < 8 || bh < 8);
struct buf_2d *const dst_buf = &pd->dst;
uint8_t *dst = dst_buf->buf + dst_buf->stride * y + x;
ref = 0;
const RefCntBuffer *ref_buf =
get_ref_frame_buf(cm, this_mbmi->ref_frame[ref]);
const struct scale_factors *ref_scale_factors =
get_ref_scale_factors_const(cm, this_mbmi->ref_frame[ref]);
const struct scale_factors *const sf =
is_intrabc ? &cm->sf_identity : ref_scale_factors;
struct buf_2d pre_buf = {
NULL,
(plane == 1) ? ref_buf->buf.u_buffer : ref_buf->buf.v_buffer,
ref_buf->buf.uv_crop_width,
ref_buf->buf.uv_crop_height,
ref_buf->buf.uv_stride,
};
if (is_intrabc) pre_buf = *dst_buf;
const MV mv = this_mbmi->mv[ref].as_mv;
InterPredParams inter_pred_params;
av1_init_inter_params(&inter_pred_params, b4_w, b4_h, pre_y + y,
pre_x + x, pd->subsampling_x, pd->subsampling_y,
xd->bd, is_cur_buf_hbd(xd), mi->use_intrabc, sf,
&pre_buf, this_mbmi->interp_filters);
inter_pred_params.conv_params = get_conv_params_no_round(
ref, plane, xd->tmp_conv_dst, tmp_dst_stride, 0, xd->bd);
inter_pred_params.conv_params.use_dist_wtd_comp_avg = 0;
av1_build_inter_predictor(dst, dst_buf->stride, &mv,
&inter_pred_params);
++col;
}
++row;
}
return;
}
{
InterPredParams inter_pred_params;
struct buf_2d *const dst_buf = &pd->dst;
uint8_t *const dst = dst_buf->buf;
for (ref = 0; ref < 1 + is_compound; ++ref) {
const struct scale_factors *const sf =
is_intrabc ? &cm->sf_identity : xd->block_ref_scale_factors[ref];
struct buf_2d pre_buf = is_intrabc ? *dst_buf : pd->pre[ref];
const MV mv = mi->mv[ref].as_mv;
WarpTypesAllowed warp_types;
warp_types.global_warp_allowed = is_global[ref];
warp_types.local_warp_allowed = mi->motion_mode == WARPED_CAUSAL;
av1_init_inter_params(&inter_pred_params, bw, bh, pre_y, pre_x,
pd->subsampling_x, pd->subsampling_y, xd->bd,
is_cur_buf_hbd(xd), mi->use_intrabc, sf, &pre_buf,
mi->interp_filters);
if (is_compound) av1_init_comp_mode(&inter_pred_params);
inter_pred_params.conv_params = get_conv_params_no_round(
ref, plane, xd->tmp_conv_dst, MAX_SB_SIZE, is_compound, xd->bd);
av1_dist_wtd_comp_weight_assign(
cm, mi, 0, &inter_pred_params.conv_params.fwd_offset,
&inter_pred_params.conv_params.bck_offset,
&inter_pred_params.conv_params.use_dist_wtd_comp_avg, is_compound);
av1_init_warp_params(&inter_pred_params, &warp_types, ref, xd, mi);
if (is_masked_compound_type(mi->interinter_comp.type)) {
av1_init_mask_comp(&inter_pred_params, mi->sb_type,
&mi->interinter_comp);
// Assigne physical buffer
inter_pred_params.mask_comp.seg_mask = xd->seg_mask;
}
av1_build_inter_predictor(dst, dst_buf->stride, &mv, &inter_pred_params);
}
}
}
void av1_enc_build_inter_predictor_y(MACROBLOCKD *xd, int mi_row, int mi_col) {
const int mi_x = mi_col * MI_SIZE;
const int mi_y = mi_row * MI_SIZE;
struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_Y];
InterPredParams inter_pred_params;
struct buf_2d *const dst_buf = &pd->dst;
uint8_t *const dst = dst_buf->buf;
const MV mv = xd->mi[0]->mv[0].as_mv;
const struct scale_factors *const sf = xd->block_ref_scale_factors[0];
av1_init_inter_params(&inter_pred_params, pd->width, pd->height, mi_y, mi_x,
pd->subsampling_x, pd->subsampling_y, xd->bd,
is_cur_buf_hbd(xd), false, sf, pd->pre,
xd->mi[0]->interp_filters);
inter_pred_params.conv_params = get_conv_params_no_round(
0, AOM_PLANE_Y, xd->tmp_conv_dst, MAX_SB_SIZE, false, xd->bd);
inter_pred_params.conv_params.use_dist_wtd_comp_avg = 0;
av1_build_inter_predictor(dst, dst_buf->stride, &mv, &inter_pred_params);
}
void av1_enc_build_inter_predictor(const AV1_COMMON *cm, MACROBLOCKD *xd,
int mi_row, int mi_col,
const BUFFER_SET *ctx, BLOCK_SIZE bsize,
int plane_from, int plane_to) {
for (int plane = plane_from; plane <= plane_to; ++plane) {
if (plane && !xd->is_chroma_ref) break;
const int mi_x = mi_col * MI_SIZE;
const int mi_y = mi_row * MI_SIZE;
build_inter_predictors(cm, xd, plane, xd->mi[0], xd->plane[plane].width,
xd->plane[plane].height, mi_x, mi_y);
if (is_interintra_pred(xd->mi[0])) {
BUFFER_SET default_ctx = {
{ xd->plane[0].dst.buf, xd->plane[1].dst.buf, xd->plane[2].dst.buf },
{ xd->plane[0].dst.stride, xd->plane[1].dst.stride,
xd->plane[2].dst.stride }
};
if (!ctx) {
ctx = &default_ctx;
}
av1_build_interintra_predictor(cm, xd, xd->plane[plane].dst.buf,
xd->plane[plane].dst.stride, ctx, plane,
bsize);
}
}
}
void av1_build_inter_predictor(uint8_t *dst, int dst_stride, const MV *src_mv,
InterPredParams *inter_pred_params) {
SubpelParams subpel_params;
const struct scale_factors *sf = inter_pred_params->scale_factors;
struct buf_2d *pre_buf = &inter_pred_params->ref_frame_buf;
int ssx = inter_pred_params->subsampling_x;
int ssy = inter_pred_params->subsampling_y;
int orig_pos_y = inter_pred_params->pix_row << SUBPEL_BITS;
orig_pos_y += src_mv->row * (1 << (1 - ssy));
int orig_pos_x = inter_pred_params->pix_col << SUBPEL_BITS;
orig_pos_x += src_mv->col * (1 << (1 - ssx));
int pos_y = sf->scale_value_y(orig_pos_y, sf);
int pos_x = sf->scale_value_x(orig_pos_x, sf);
pos_x += SCALE_EXTRA_OFF;
pos_y += SCALE_EXTRA_OFF;
const int top = -AOM_LEFT_TOP_MARGIN_SCALED(ssy);
const int left = -AOM_LEFT_TOP_MARGIN_SCALED(ssx);
const int bottom = (pre_buf->height + AOM_INTERP_EXTEND) << SCALE_SUBPEL_BITS;
const int right = (pre_buf->width + AOM_INTERP_EXTEND) << SCALE_SUBPEL_BITS;
pos_y = clamp(pos_y, top, bottom);
pos_x = clamp(pos_x, left, right);
uint8_t *src = pre_buf->buf0 +
(pos_y >> SCALE_SUBPEL_BITS) * pre_buf->stride +
(pos_x >> SCALE_SUBPEL_BITS);
subpel_params.subpel_x = pos_x & SCALE_SUBPEL_MASK;
subpel_params.subpel_y = pos_y & SCALE_SUBPEL_MASK;
subpel_params.xs = sf->x_step_q4;
subpel_params.ys = sf->y_step_q4;
if (inter_pred_params->comp_mode == UNIFORM_SINGLE ||
inter_pred_params->comp_mode == UNIFORM_COMP)
av1_make_inter_predictor(src, pre_buf->stride, dst, dst_stride,
inter_pred_params, &subpel_params);
else
av1_make_masked_inter_predictor(src, pre_buf->stride, dst, dst_stride,
inter_pred_params, &subpel_params);
}
static INLINE void build_obmc_prediction(MACROBLOCKD *xd, int rel_mi_row,
int rel_mi_col, uint8_t op_mi_size,
int dir, MB_MODE_INFO *above_mbmi,
void *fun_ctxt, const int num_planes) {
struct build_prediction_ctxt *ctxt = (struct build_prediction_ctxt *)fun_ctxt;
av1_setup_address_for_obmc(xd, rel_mi_row, rel_mi_col, above_mbmi, ctxt,
num_planes);
const int mi_x = (xd->mi_col + rel_mi_col) << MI_SIZE_LOG2;
const int mi_y = (xd->mi_row + rel_mi_row) << MI_SIZE_LOG2;
const BLOCK_SIZE bsize = xd->mi[0]->sb_type;
InterPredParams inter_pred_params;
for (int j = 0; j < num_planes; ++j) {
const struct macroblockd_plane *pd = &xd->plane[j];
int bw = 0, bh = 0;
if (dir) {
// prepare left reference block size
bw = clamp(block_size_wide[bsize] >> (pd->subsampling_x + 1), 4,
block_size_wide[BLOCK_64X64] >> (pd->subsampling_x + 1));
bh = (op_mi_size << MI_SIZE_LOG2) >> pd->subsampling_y;
} else {
// prepare above reference block size
bw = (op_mi_size * MI_SIZE) >> pd->subsampling_x;
bh = clamp(block_size_high[bsize] >> (pd->subsampling_y + 1), 4,
block_size_high[BLOCK_64X64] >> (pd->subsampling_y + 1));
}
if (av1_skip_u4x4_pred_in_obmc(bsize, pd, dir)) continue;
const struct buf_2d *const pre_buf = &pd->pre[0];
const MV mv = above_mbmi->mv[0].as_mv;
av1_init_inter_params(&inter_pred_params, bw, bh, mi_y >> pd->subsampling_y,
mi_x >> pd->subsampling_x, pd->subsampling_x,
pd->subsampling_y, xd->bd, is_cur_buf_hbd(xd), 0,
xd->block_ref_scale_factors[0], pre_buf,
above_mbmi->interp_filters);
inter_pred_params.conv_params = get_conv_params(0, j, xd->bd);
av1_build_inter_predictor(pd->dst.buf, pd->dst.stride, &mv,
&inter_pred_params);
}
}
void av1_build_prediction_by_above_preds(const AV1_COMMON *cm, MACROBLOCKD *xd,
uint8_t *tmp_buf[MAX_MB_PLANE],
int tmp_width[MAX_MB_PLANE],
int tmp_height[MAX_MB_PLANE],
int tmp_stride[MAX_MB_PLANE]) {
if (!xd->up_available) return;
struct build_prediction_ctxt ctxt = { cm, tmp_buf,
tmp_width, tmp_height,
tmp_stride, xd->mb_to_right_edge };
BLOCK_SIZE bsize = xd->mi[0]->sb_type;
foreach_overlappable_nb_above(cm, xd,
max_neighbor_obmc[mi_size_wide_log2[bsize]],
build_obmc_prediction, &ctxt);
}
void av1_build_prediction_by_left_preds(const AV1_COMMON *cm, MACROBLOCKD *xd,
uint8_t *tmp_buf[MAX_MB_PLANE],
int tmp_width[MAX_MB_PLANE],
int tmp_height[MAX_MB_PLANE],
int tmp_stride[MAX_MB_PLANE]) {
if (!xd->left_available) return;
struct build_prediction_ctxt ctxt = { cm, tmp_buf,
tmp_width, tmp_height,
tmp_stride, xd->mb_to_bottom_edge };
BLOCK_SIZE bsize = xd->mi[0]->sb_type;
foreach_overlappable_nb_left(cm, xd,
max_neighbor_obmc[mi_size_high_log2[bsize]],
build_obmc_prediction, &ctxt);
}
void av1_build_obmc_inter_predictors_sb(const AV1_COMMON *cm, MACROBLOCKD *xd) {
const int num_planes = av1_num_planes(cm);
uint8_t *dst_buf1[MAX_MB_PLANE], *dst_buf2[MAX_MB_PLANE];
int dst_stride1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
int dst_stride2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
int dst_width1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
int dst_width2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
int dst_height1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
int dst_height2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
if (is_cur_buf_hbd(xd)) {
int len = sizeof(uint16_t);
dst_buf1[0] = CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[0]);
dst_buf1[1] =
CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[0] + MAX_SB_SQUARE * len);
dst_buf1[2] =
CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[0] + MAX_SB_SQUARE * 2 * len);
dst_buf2[0] = CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[1]);
dst_buf2[1] =
CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[1] + MAX_SB_SQUARE * len);
dst_buf2[2] =
CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[1] + MAX_SB_SQUARE * 2 * len);
} else {
dst_buf1[0] = xd->tmp_obmc_bufs[0];
dst_buf1[1] = xd->tmp_obmc_bufs[0] + MAX_SB_SQUARE;
dst_buf1[2] = xd->tmp_obmc_bufs[0] + MAX_SB_SQUARE * 2;
dst_buf2[0] = xd->tmp_obmc_bufs[1];
dst_buf2[1] = xd->tmp_obmc_bufs[1] + MAX_SB_SQUARE;
dst_buf2[2] = xd->tmp_obmc_bufs[1] + MAX_SB_SQUARE * 2;
}
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
av1_build_prediction_by_above_preds(cm, xd, dst_buf1, dst_width1, dst_height1,
dst_stride1);
av1_build_prediction_by_left_preds(cm, xd, dst_buf2, dst_width2, dst_height2,
dst_stride2);
av1_setup_dst_planes(xd->plane, xd->mi[0]->sb_type, &cm->cur_frame->buf,
mi_row, mi_col, 0, num_planes);
av1_build_obmc_inter_prediction(cm, xd, dst_buf1, dst_stride1, dst_buf2,
dst_stride2);
}
void av1_build_inter_predictors_for_planes_single_buf(
MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane_from, int plane_to, int ref,
uint8_t *ext_dst[3], int ext_dst_stride[3]) {
assert(bsize < BLOCK_SIZES_ALL);
const MB_MODE_INFO *mi = xd->mi[0];
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
const int mi_x = mi_col * MI_SIZE;
const int mi_y = mi_row * MI_SIZE;
WarpTypesAllowed warp_types;
const WarpedMotionParams *const wm = &xd->global_motion[mi->ref_frame[ref]];
warp_types.global_warp_allowed = is_global_mv_block(mi, wm->wmtype);
warp_types.local_warp_allowed = mi->motion_mode == WARPED_CAUSAL;
for (int plane = plane_from; plane <= plane_to; ++plane) {
const struct macroblockd_plane *pd = &xd->plane[plane];
const BLOCK_SIZE plane_bsize =
get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y);
const int bw = block_size_wide[plane_bsize];
const int bh = block_size_high[plane_bsize];
InterPredParams inter_pred_params;
av1_init_inter_params(&inter_pred_params, bw, bh, mi_y >> pd->subsampling_y,
mi_x >> pd->subsampling_x, pd->subsampling_x,
pd->subsampling_y, xd->bd, is_cur_buf_hbd(xd), 0,
xd->block_ref_scale_factors[ref], &pd->pre[ref],
mi->interp_filters);
inter_pred_params.conv_params = get_conv_params(0, plane, xd->bd);
av1_init_warp_params(&inter_pred_params, &warp_types, ref, xd, mi);
uint8_t *const dst = get_buf_by_bd(xd, ext_dst[plane]);
const MV mv = mi->mv[ref].as_mv;
av1_build_inter_predictor(dst, ext_dst_stride[plane], &mv,
&inter_pred_params);
}
}
static void build_masked_compound(
uint8_t *dst, int dst_stride, const uint8_t *src0, int src0_stride,
const uint8_t *src1, int src1_stride,
const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type, int h,
int w) {
// Derive subsampling from h and w passed in. May be refactored to
// pass in subsampling factors directly.
const int subh = (2 << mi_size_high_log2[sb_type]) == h;
const int subw = (2 << mi_size_wide_log2[sb_type]) == w;
const uint8_t *mask = av1_get_compound_type_mask(comp_data, sb_type);
aom_blend_a64_mask(dst, dst_stride, src0, src0_stride, src1, src1_stride,
mask, block_size_wide[sb_type], w, h, subw, subh);
}
#if CONFIG_AV1_HIGHBITDEPTH
static void build_masked_compound_highbd(
uint8_t *dst_8, int dst_stride, const uint8_t *src0_8, int src0_stride,
const uint8_t *src1_8, int src1_stride,
const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type, int h,
int w, int bd) {
// Derive subsampling from h and w passed in. May be refactored to
// pass in subsampling factors directly.
const int subh = (2 << mi_size_high_log2[sb_type]) == h;
const int subw = (2 << mi_size_wide_log2[sb_type]) == w;
const uint8_t *mask = av1_get_compound_type_mask(comp_data, sb_type);
// const uint8_t *mask =
// av1_get_contiguous_soft_mask(wedge_index, wedge_sign, sb_type);
aom_highbd_blend_a64_mask(dst_8, dst_stride, src0_8, src0_stride, src1_8,
src1_stride, mask, block_size_wide[sb_type], w, h,
subw, subh, bd);
}
#endif
static void build_wedge_inter_predictor_from_buf(
MACROBLOCKD *xd, int plane, int x, int y, int w, int h, uint8_t *ext_dst0,
int ext_dst_stride0, uint8_t *ext_dst1, int ext_dst_stride1) {
MB_MODE_INFO *const mbmi = xd->mi[0];
const int is_compound = has_second_ref(mbmi);
MACROBLOCKD_PLANE *const pd = &xd->plane[plane];
struct buf_2d *const dst_buf = &pd->dst;
uint8_t *const dst = dst_buf->buf + dst_buf->stride * y + x;
mbmi->interinter_comp.seg_mask = xd->seg_mask;
const INTERINTER_COMPOUND_DATA *comp_data = &mbmi->interinter_comp;
const int is_hbd = is_cur_buf_hbd(xd);
if (is_compound && is_masked_compound_type(comp_data->type)) {
if (!plane && comp_data->type == COMPOUND_DIFFWTD) {
if (is_hbd) {
av1_build_compound_diffwtd_mask_highbd(
comp_data->seg_mask, comp_data->mask_type,
CONVERT_TO_BYTEPTR(ext_dst0), ext_dst_stride0,
CONVERT_TO_BYTEPTR(ext_dst1), ext_dst_stride1, h, w, xd->bd);
} else {
av1_build_compound_diffwtd_mask(
comp_data->seg_mask, comp_data->mask_type, ext_dst0,
ext_dst_stride0, ext_dst1, ext_dst_stride1, h, w);
}
}
#if CONFIG_AV1_HIGHBITDEPTH
if (is_hbd) {
build_masked_compound_highbd(
dst, dst_buf->stride, CONVERT_TO_BYTEPTR(ext_dst0), ext_dst_stride0,
CONVERT_TO_BYTEPTR(ext_dst1), ext_dst_stride1, comp_data,
mbmi->sb_type, h, w, xd->bd);
} else {
build_masked_compound(dst, dst_buf->stride, ext_dst0, ext_dst_stride0,
ext_dst1, ext_dst_stride1, comp_data, mbmi->sb_type,
h, w);
}
#else
build_masked_compound(dst, dst_buf->stride, ext_dst0, ext_dst_stride0,
ext_dst1, ext_dst_stride1, comp_data, mbmi->sb_type,
h, w);
#endif
} else {
#if CONFIG_AV1_HIGHBITDEPTH
if (is_hbd) {
aom_highbd_convolve_copy(CONVERT_TO_BYTEPTR(ext_dst0), ext_dst_stride0,
dst, dst_buf->stride, NULL, 0, NULL, 0, w, h,
xd->bd);
} else {
aom_convolve_copy(ext_dst0, ext_dst_stride0, dst, dst_buf->stride, NULL,
0, NULL, 0, w, h);
}
#else
aom_convolve_copy(ext_dst0, ext_dst_stride0, dst, dst_buf->stride, NULL, 0,
NULL, 0, w, h);
#endif
}
}
void av1_build_wedge_inter_predictor_from_buf(MACROBLOCKD *xd, BLOCK_SIZE bsize,
int plane_from, int plane_to,
uint8_t *ext_dst0[3],
int ext_dst_stride0[3],
uint8_t *ext_dst1[3],
int ext_dst_stride1[3]) {
int plane;
assert(bsize < BLOCK_SIZES_ALL);
for (plane = plane_from; plane <= plane_to; ++plane) {
const BLOCK_SIZE plane_bsize = get_plane_block_size(
bsize, xd->plane[plane].subsampling_x, xd->plane[plane].subsampling_y);
const int bw = block_size_wide[plane_bsize];
const int bh = block_size_high[plane_bsize];
build_wedge_inter_predictor_from_buf(
xd, plane, 0, 0, bw, bh, ext_dst0[plane], ext_dst_stride0[plane],
ext_dst1[plane], ext_dst_stride1[plane]);
}
}