blob: bf3a44ed14fc912cf3878551c6325f6b1db000dd [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <math.h>
#include "test/av1_txfm_test.h"
#include "test/util.h"
#include "av1/common/av1_inv_txfm1d.h"
#include "av1/encoder/av1_fwd_txfm1d.h"
using libaom_test::ACMRandom;
using libaom_test::input_base;
namespace {
const int txfm_type_num = 2;
const int txfm_size_ls[] = { 4, 8, 16, 32, 64 };
const TxfmFunc fwd_txfm_func_ls[][txfm_type_num] = {
{ av1_fdct4_new, av1_fadst4_new },
{ av1_fdct8_new, av1_fadst8_new },
{ av1_fdct16_new, av1_fadst16_new },
{ av1_fdct32_new, NULL },
{ av1_fdct64_new, NULL },
};
const TxfmFunc inv_txfm_func_ls[][txfm_type_num] = {
{ av1_idct4_new, av1_iadst4_new },
{ av1_idct8_new, av1_iadst8_new },
{ av1_idct16_new, av1_iadst16_new },
{ av1_idct32_new, NULL },
{ av1_idct64_new, NULL },
};
// the maximum stage number of fwd/inv 1d dct/adst txfm is 12
const int8_t cos_bit = 13;
const int8_t range_bit[12] = { 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20 };
void reference_idct_1d_int(const int32_t *in, int32_t *out, int size) {
double input[64];
for (int i = 0; i < size; ++i) input[i] = in[i];
double output[64];
libaom_test::reference_idct_1d(input, output, size);
for (int i = 0; i < size; ++i) {
ASSERT_GE(output[i], INT32_MIN);
ASSERT_LE(output[i], INT32_MAX);
out[i] = static_cast<int32_t>(round(output[i]));
}
}
void random_matrix(int32_t *dst, int len, ACMRandom *rnd) {
const int bits = 16;
const int maxVal = (1 << (bits - 1)) - 1;
const int minVal = -(1 << (bits - 1));
for (int i = 0; i < len; ++i) {
if (rnd->Rand8() % 10)
dst[i] = minVal + rnd->Rand16() % (1 << bits);
else
dst[i] = rnd->Rand8() % 2 ? minVal : maxVal;
}
}
TEST(av1_inv_txfm1d, InvAccuracyCheck) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 20000;
const int max_error[] = { 6, 10, 19, 31, 40 };
ASSERT_EQ(NELEMENTS(max_error), TX_SIZES);
ASSERT_EQ(NELEMENTS(inv_txfm_func_ls), TX_SIZES);
for (int k = 0; k < count_test_block; ++k) {
// choose a random transform to test
const TX_SIZE tx_size = static_cast<TX_SIZE>(rnd.Rand8() % TX_SIZES);
const int tx_size_pix = txfm_size_ls[tx_size];
const TxfmFunc inv_txfm_func = inv_txfm_func_ls[tx_size][0];
int32_t input[64];
random_matrix(input, tx_size_pix, &rnd);
// 64x64 transform assumes last 32 values are zero.
memset(input + 32, 0, 32 * sizeof(input[0]));
int32_t ref_output[64];
reference_idct_1d_int(input, ref_output, tx_size_pix);
int32_t output[64];
inv_txfm_func(input, output, cos_bit, range_bit);
for (int i = 0; i < tx_size_pix; ++i) {
EXPECT_LE(abs(output[i] - ref_output[i]), max_error[tx_size])
<< "tx_size = " << tx_size << ", i = " << i
<< ", output[i] = " << output[i]
<< ", ref_output[i] = " << ref_output[i];
}
}
}
static INLINE int get_max_bit(int x) {
int max_bit = -1;
while (x) {
x = x >> 1;
max_bit++;
}
return max_bit;
}
TEST(av1_inv_txfm1d, get_max_bit) {
int max_bit = get_max_bit(8);
EXPECT_EQ(max_bit, 3);
}
TEST(av1_inv_txfm1d, round_trip) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
for (int si = 0; si < NELEMENTS(fwd_txfm_func_ls); ++si) {
int txfm_size = txfm_size_ls[si];
for (int ti = 0; ti < txfm_type_num; ++ti) {
TxfmFunc fwd_txfm_func = fwd_txfm_func_ls[si][ti];
TxfmFunc inv_txfm_func = inv_txfm_func_ls[si][ti];
int max_error = 2;
if (!fwd_txfm_func) continue;
const int count_test_block = 5000;
for (int ci = 0; ci < count_test_block; ++ci) {
int32_t input[64];
int32_t output[64];
int32_t round_trip_output[64];
ASSERT_LE(txfm_size, NELEMENTS(input));
for (int ni = 0; ni < txfm_size; ++ni) {
input[ni] = rnd.Rand16() % input_base - rnd.Rand16() % input_base;
}
fwd_txfm_func(input, output, cos_bit, range_bit);
inv_txfm_func(output, round_trip_output, cos_bit, range_bit);
for (int ni = 0; ni < txfm_size; ++ni) {
int node_err =
abs(input[ni] - round_shift(round_trip_output[ni],
get_max_bit(txfm_size) - 1));
EXPECT_LE(node_err, max_error);
}
}
}
}
}
} // namespace