| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved. |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <math.h> |
| #include <stdlib.h> |
| |
| #include "aom_ports/mem.h" |
| |
| #include "av1/encoder/aq_variance.h" |
| #include "av1/common/seg_common.h" |
| #include "av1/encoder/encodeframe.h" |
| #include "av1/encoder/ratectrl.h" |
| #include "av1/encoder/rd.h" |
| #include "av1/encoder/segmentation.h" |
| #include "av1/encoder/dwt.h" |
| #include "config/aom_config.h" |
| |
| #if !CONFIG_REALTIME_ONLY |
| static const double rate_ratio[MAX_SEGMENTS] = { 2.2, 1.7, 1.3, 1.0, |
| 0.9, .8, .7, .6 }; |
| |
| static const double deltaq_rate_ratio[MAX_SEGMENTS] = { 2.5, 2.0, 1.5, 1.0, |
| 0.75, 1.0, 1.0, 1.0 }; |
| #define ENERGY_MIN (-4) |
| #define ENERGY_MAX (1) |
| #define ENERGY_SPAN (ENERGY_MAX - ENERGY_MIN + 1) |
| #define ENERGY_IN_BOUNDS(energy) \ |
| assert((energy) >= ENERGY_MIN && (energy) <= ENERGY_MAX) |
| |
| static const int segment_id[ENERGY_SPAN] = { 0, 1, 1, 2, 3, 4 }; |
| |
| #define SEGMENT_ID(i) segment_id[(i)-ENERGY_MIN] |
| |
| void av1_vaq_frame_setup(AV1_COMP *cpi) { |
| AV1_COMMON *cm = &cpi->common; |
| const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame; |
| const int base_qindex = cm->quant_params.base_qindex; |
| struct segmentation *seg = &cm->seg; |
| int i; |
| |
| int resolution_change = |
| cm->prev_frame && (cm->width != cm->prev_frame->width || |
| cm->height != cm->prev_frame->height); |
| int avg_energy = (int)(cpi->twopass_frame.mb_av_energy - 2); |
| double avg_ratio; |
| if (avg_energy > 7) avg_energy = 7; |
| if (avg_energy < 0) avg_energy = 0; |
| avg_ratio = rate_ratio[avg_energy]; |
| |
| if (resolution_change) { |
| memset(cpi->enc_seg.map, 0, cm->mi_params.mi_rows * cm->mi_params.mi_cols); |
| av1_clearall_segfeatures(seg); |
| av1_disable_segmentation(seg); |
| return; |
| } |
| if (frame_is_intra_only(cm) || cm->features.error_resilient_mode || |
| refresh_frame->alt_ref_frame || |
| (refresh_frame->golden_frame && !cpi->rc.is_src_frame_alt_ref)) { |
| cpi->vaq_refresh = 1; |
| |
| av1_enable_segmentation(seg); |
| av1_clearall_segfeatures(seg); |
| |
| for (i = 0; i < MAX_SEGMENTS; ++i) { |
| // Set up avg segment id to be 1.0 and adjust the other segments around |
| // it. |
| int qindex_delta = |
| av1_compute_qdelta_by_rate(cpi, cm->current_frame.frame_type, |
| base_qindex, rate_ratio[i] / avg_ratio); |
| |
| // We don't allow qindex 0 in a segment if the base value is not 0. |
| // Q index 0 (lossless) implies 4x4 encoding only and in AQ mode a segment |
| // Q delta is sometimes applied without going back around the rd loop. |
| // This could lead to an illegal combination of partition size and q. |
| if ((base_qindex != 0) && ((base_qindex + qindex_delta) == 0)) { |
| qindex_delta = -base_qindex + 1; |
| } |
| |
| av1_set_segdata(seg, i, SEG_LVL_ALT_Q, qindex_delta); |
| av1_enable_segfeature(seg, i, SEG_LVL_ALT_Q); |
| } |
| } |
| } |
| |
| int av1_log_block_avg(const AV1_COMP *cpi, const MACROBLOCK *x, BLOCK_SIZE bs, |
| int mi_row, int mi_col) { |
| // This functions returns the block average of luma block |
| unsigned int sum, avg, num_pix; |
| int r, c; |
| const int pic_w = cpi->common.width; |
| const int pic_h = cpi->common.height; |
| const int bw = MI_SIZE * mi_size_wide[bs]; |
| const int bh = MI_SIZE * mi_size_high[bs]; |
| const uint16_t *x16 = CONVERT_TO_SHORTPTR(x->plane[0].src.buf); |
| |
| sum = 0; |
| num_pix = 0; |
| avg = 0; |
| int row = mi_row << MI_SIZE_LOG2; |
| int col = mi_col << MI_SIZE_LOG2; |
| for (r = row; (r < (row + bh)) && (r < pic_h); r++) { |
| for (c = col; (c < (col + bw)) && (c < pic_w); c++) { |
| sum += *(x16 + r * x->plane[0].src.stride + c); |
| num_pix++; |
| } |
| } |
| if (num_pix != 0) { |
| avg = sum / num_pix; |
| } |
| return avg; |
| } |
| |
| #define DEFAULT_E_MIDPOINT 10.0 |
| |
| static unsigned int haar_ac_energy(const MACROBLOCK *x, BLOCK_SIZE bs) { |
| const MACROBLOCKD *xd = &x->e_mbd; |
| int stride = x->plane[0].src.stride; |
| const uint8_t *buf = x->plane[0].src.buf; |
| const int num_8x8_cols = block_size_wide[bs] / 8; |
| const int num_8x8_rows = block_size_high[bs] / 8; |
| const int hbd = is_cur_buf_hbd(xd); |
| |
| int64_t var = av1_haar_ac_sad_mxn_uint8_input(buf, stride, hbd, num_8x8_rows, |
| num_8x8_cols); |
| |
| return (unsigned int)((uint64_t)var * 256) >> num_pels_log2_lookup[bs]; |
| } |
| |
| static double log_block_wavelet_energy(const MACROBLOCK *x, BLOCK_SIZE bs) { |
| unsigned int haar_sad = haar_ac_energy(x, bs); |
| return log1p(haar_sad); |
| } |
| |
| int av1_block_wavelet_energy_level(const AV1_COMP *cpi, const MACROBLOCK *x, |
| BLOCK_SIZE bs) { |
| double energy, energy_midpoint; |
| energy_midpoint = (is_stat_consumption_stage_twopass(cpi)) |
| ? cpi->twopass_frame.frame_avg_haar_energy |
| : DEFAULT_E_MIDPOINT; |
| energy = log_block_wavelet_energy(x, bs) - energy_midpoint; |
| return clamp((int)round(energy), ENERGY_MIN, ENERGY_MAX); |
| } |
| |
| int av1_compute_q_from_energy_level_deltaq_mode(const AV1_COMP *const cpi, |
| int block_var_level) { |
| int rate_level; |
| const AV1_COMMON *const cm = &cpi->common; |
| |
| if (DELTA_Q_PERCEPTUAL_MODULATION == 1) { |
| ENERGY_IN_BOUNDS(block_var_level); |
| rate_level = SEGMENT_ID(block_var_level); |
| } else { |
| rate_level = block_var_level; |
| } |
| const int base_qindex = cm->quant_params.base_qindex; |
| int qindex_delta = |
| av1_compute_qdelta_by_rate(cpi, cm->current_frame.frame_type, base_qindex, |
| deltaq_rate_ratio[rate_level]); |
| |
| if ((base_qindex != 0) && ((base_qindex + qindex_delta) == 0)) { |
| qindex_delta = -base_qindex + 1; |
| } |
| return base_qindex + qindex_delta; |
| } |
| |
| // Comparer used by qsort() to order an array of unsigned int from smallest to |
| // largest. |
| static int comp_unsigned_int(const void *a, const void *b) { |
| unsigned int arg1 = *(const unsigned int *)a; |
| unsigned int arg2 = *(const unsigned int *)b; |
| |
| return (arg1 > arg2) - (arg1 < arg2); |
| } |
| |
| unsigned int av1_get_variance_boost_block_variance(const AV1_COMP *cpi, |
| const MACROBLOCK *x) { |
| #define SUPERBLOCK_SIZE 64 |
| #define SUBBLOCK_SIZE 8 |
| #define SUBBLOCKS_IN_SB_DIM (SUPERBLOCK_SIZE / SUBBLOCK_SIZE) |
| #define SUBBLOCKS_IN_SB (SUBBLOCKS_IN_SB_DIM * SUBBLOCKS_IN_SB_DIM) |
| #define SUBBLOCKS_IN_OCTILE (SUBBLOCKS_IN_SB / 8) |
| DECLARE_ALIGNED(16, static const uint16_t, |
| av1_highbd_all_zeros[SUBBLOCK_SIZE]) = { 0 }; |
| DECLARE_ALIGNED(16, static const uint8_t, |
| av1_all_zeros[SUBBLOCK_SIZE]) = { 0 }; |
| |
| const MACROBLOCKD *xd = &x->e_mbd; |
| unsigned int sse; |
| // Octile is currently hard-coded and optimized for still pictures. In the |
| // future, we might want to expose this as a parameter that can be fine-tuned |
| // by the caller. |
| // An octile of 5 was chosen because it was found to strike the best balance |
| // between quality and consistency. Lower octiles tend to score lower in |
| // SSIMU2, while higher octiles tend to harm subjective quality consistency, |
| // especially in <1 MP images. |
| const int octile = 5; |
| const uint8_t *all_zeros = is_cur_buf_hbd(xd) |
| ? CONVERT_TO_BYTEPTR(av1_highbd_all_zeros) |
| : av1_all_zeros; |
| unsigned int variances[SUBBLOCKS_IN_SB]; |
| |
| // Calculate subblock variances. |
| aom_variance_fn_t vf = cpi->ppi->fn_ptr[BLOCK_8X8].vf; |
| for (int subb_i = 0; subb_i < SUBBLOCKS_IN_SB_DIM; subb_i++) { |
| int i = subb_i * SUBBLOCK_SIZE; |
| for (int subb_j = 0; subb_j < SUBBLOCKS_IN_SB_DIM; subb_j++) { |
| int j = subb_j * SUBBLOCK_SIZE; |
| // Truncating values to integers (i.e. the 64 term) was found to perform |
| // better than rounding, or returning them as doubles. |
| variances[subb_i * SUBBLOCKS_IN_SB_DIM + subb_j] = |
| vf(x->plane[0].src.buf + i * x->plane[0].src.stride + j, |
| x->plane[0].src.stride, all_zeros, 0, &sse) / |
| 64; |
| } |
| } |
| |
| // Order the 8x8 SB values from smallest to largest variance. |
| qsort(variances, SUBBLOCKS_IN_SB, sizeof(unsigned int), comp_unsigned_int); |
| |
| // Sample three 8x8 variance values: at the specified octile, previous octile, |
| // and next octile. Make sure we use the last subblock in each octile as the |
| // representative of the octile. |
| assert(octile >= 1 && octile <= 8); |
| const int middle_index = octile * SUBBLOCKS_IN_OCTILE - 1; |
| const int lower_index = |
| AOMMAX(SUBBLOCKS_IN_OCTILE - 1, middle_index - SUBBLOCKS_IN_OCTILE); |
| const int upper_index = |
| AOMMIN(SUBBLOCKS_IN_SB - 1, middle_index + SUBBLOCKS_IN_OCTILE); |
| |
| // Weigh the three variances in a 1:2:1 ratio, with rounding (the +2 term). |
| // This allows for smoother delta-q transitions among superblocks with |
| // mixed-variance features. |
| const unsigned int variance = |
| (variances[lower_index] + (variances[middle_index] * 2) + |
| variances[upper_index] + 2) / |
| 4; |
| |
| return variance; |
| } |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| int av1_log_block_var(const AV1_COMP *cpi, const MACROBLOCK *x, BLOCK_SIZE bs) { |
| DECLARE_ALIGNED(16, static const uint16_t, |
| av1_highbd_all_zeros[MAX_SB_SIZE]) = { 0 }; |
| DECLARE_ALIGNED(16, static const uint8_t, av1_all_zeros[MAX_SB_SIZE]) = { 0 }; |
| |
| // This function returns a score for the blocks local variance as calculated |
| // by: sum of the log of the (4x4 variances) of each subblock to the current |
| // block (x,bs) |
| // * 32 / number of pixels in the block_size. |
| // This is used for segmentation because to avoid situations in which a large |
| // block with a gentle gradient gets marked high variance even though each |
| // subblock has a low variance. This allows us to assign the same segment |
| // number for the same sorts of area regardless of how the partitioning goes. |
| |
| const MACROBLOCKD *xd = &x->e_mbd; |
| double var = 0; |
| unsigned int sse; |
| int i, j; |
| |
| int right_overflow = |
| (xd->mb_to_right_edge < 0) ? ((-xd->mb_to_right_edge) >> 3) : 0; |
| int bottom_overflow = |
| (xd->mb_to_bottom_edge < 0) ? ((-xd->mb_to_bottom_edge) >> 3) : 0; |
| |
| const int bw = MI_SIZE * mi_size_wide[bs] - right_overflow; |
| const int bh = MI_SIZE * mi_size_high[bs] - bottom_overflow; |
| |
| aom_variance_fn_t vf = cpi->ppi->fn_ptr[BLOCK_4X4].vf; |
| for (i = 0; i < bh; i += 4) { |
| for (j = 0; j < bw; j += 4) { |
| if (is_cur_buf_hbd(xd)) { |
| var += log1p(vf(x->plane[0].src.buf + i * x->plane[0].src.stride + j, |
| x->plane[0].src.stride, |
| CONVERT_TO_BYTEPTR(av1_highbd_all_zeros), 0, &sse) / |
| 16.0); |
| } else { |
| var += log1p(vf(x->plane[0].src.buf + i * x->plane[0].src.stride + j, |
| x->plane[0].src.stride, av1_all_zeros, 0, &sse) / |
| 16.0); |
| } |
| } |
| } |
| // Use average of 4x4 log variance. The range for 8 bit 0 - 9.704121561. |
| var /= (bw / 4 * bh / 4); |
| if (var > 7) var = 7; |
| |
| return (int)(var); |
| } |