| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <assert.h> |
| #include <float.h> |
| #include <limits.h> |
| #include <math.h> |
| |
| #include "config/aom_scale_rtcd.h" |
| #include "config/av1_rtcd.h" |
| |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "aom_dsp/binary_codes_writer.h" |
| #include "aom_dsp/psnr.h" |
| #include "aom_mem/aom_mem.h" |
| #include "aom_ports/mem.h" |
| #include "aom_ports/system_state.h" |
| #include "av1/common/av1_common_int.h" |
| #include "av1/common/quant_common.h" |
| #include "av1/common/restoration.h" |
| |
| #include "av1/encoder/av1_quantize.h" |
| #include "av1/encoder/encoder.h" |
| #include "av1/encoder/mathutils.h" |
| #include "av1/encoder/picklpf.h" |
| #include "av1/encoder/pickrst.h" |
| |
| // When set to RESTORE_WIENER or RESTORE_SGRPROJ only those are allowed. |
| // When set to RESTORE_TYPES we allow switchable. |
| static const RestorationType force_restore_type = RESTORE_TYPES; |
| |
| // Number of Wiener iterations |
| #define NUM_WIENER_ITERS 5 |
| |
| // Penalty factor for use of dual sgr |
| #define DUAL_SGR_PENALTY_MULT 0.01 |
| |
| // Working precision for Wiener filter coefficients |
| #define WIENER_TAP_SCALE_FACTOR ((int64_t)1 << 16) |
| |
| #define SGRPROJ_EP_GRP1_START_IDX 0 |
| #define SGRPROJ_EP_GRP1_END_IDX 9 |
| #define SGRPROJ_EP_GRP1_SEARCH_COUNT 4 |
| #define SGRPROJ_EP_GRP2_3_SEARCH_COUNT 2 |
| static const int sgproj_ep_grp1_seed[SGRPROJ_EP_GRP1_SEARCH_COUNT] = { 0, 3, 6, |
| 9 }; |
| static const int sgproj_ep_grp2_3[SGRPROJ_EP_GRP2_3_SEARCH_COUNT][14] = { |
| { 10, 10, 11, 11, 12, 12, 13, 13, 13, 13, -1, -1, -1, -1 }, |
| { 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15 } |
| }; |
| |
| typedef int64_t (*sse_extractor_type)(const YV12_BUFFER_CONFIG *a, |
| const YV12_BUFFER_CONFIG *b); |
| typedef int64_t (*sse_part_extractor_type)(const YV12_BUFFER_CONFIG *a, |
| const YV12_BUFFER_CONFIG *b, |
| int hstart, int width, int vstart, |
| int height); |
| typedef uint64_t (*var_part_extractor_type)(const YV12_BUFFER_CONFIG *a, |
| int hstart, int width, int vstart, |
| int height); |
| |
| #if CONFIG_AV1_HIGHBITDEPTH |
| #define NUM_EXTRACTORS (3 * (1 + 1)) |
| #else |
| #define NUM_EXTRACTORS 3 |
| #endif |
| static const sse_part_extractor_type sse_part_extractors[NUM_EXTRACTORS] = { |
| aom_get_y_sse_part, aom_get_u_sse_part, |
| aom_get_v_sse_part, |
| #if CONFIG_AV1_HIGHBITDEPTH |
| aom_highbd_get_y_sse_part, aom_highbd_get_u_sse_part, |
| aom_highbd_get_v_sse_part, |
| #endif |
| }; |
| static const var_part_extractor_type var_part_extractors[NUM_EXTRACTORS] = { |
| aom_get_y_var, aom_get_u_var, aom_get_v_var, |
| #if CONFIG_AV1_HIGHBITDEPTH |
| aom_highbd_get_y_var, aom_highbd_get_u_var, aom_highbd_get_v_var, |
| #endif |
| }; |
| |
| static int64_t sse_restoration_unit(const RestorationTileLimits *limits, |
| const YV12_BUFFER_CONFIG *src, |
| const YV12_BUFFER_CONFIG *dst, int plane, |
| int highbd) { |
| return sse_part_extractors[3 * highbd + plane]( |
| src, dst, limits->h_start, limits->h_end - limits->h_start, |
| limits->v_start, limits->v_end - limits->v_start); |
| } |
| |
| static uint64_t var_restoration_unit(const RestorationTileLimits *limits, |
| const YV12_BUFFER_CONFIG *src, int plane, |
| int highbd) { |
| return var_part_extractors[3 * highbd + plane]( |
| src, limits->h_start, limits->h_end - limits->h_start, limits->v_start, |
| limits->v_end - limits->v_start); |
| } |
| |
| typedef struct { |
| // The best coefficients for Wiener or Sgrproj restoration |
| WienerInfo wiener; |
| SgrprojInfo sgrproj; |
| |
| // The sum of squared errors for this rtype. |
| int64_t sse[RESTORE_SWITCHABLE_TYPES]; |
| |
| // The rtype to use for this unit given a frame rtype as |
| // index. Indices: WIENER, SGRPROJ, SWITCHABLE. |
| RestorationType best_rtype[RESTORE_TYPES - 1]; |
| |
| // This flag will be set based on the speed feature |
| // 'prune_sgr_based_on_wiener'. 0 implies no pruning and 1 implies pruning. |
| uint8_t skip_sgr_eval; |
| } RestUnitSearchInfo; |
| |
| typedef struct { |
| const YV12_BUFFER_CONFIG *src; |
| YV12_BUFFER_CONFIG *dst; |
| |
| const AV1_COMMON *cm; |
| const MACROBLOCK *x; |
| int plane; |
| int plane_width; |
| int plane_height; |
| RestUnitSearchInfo *rusi; |
| |
| // Speed features |
| const SPEED_FEATURES *sf; |
| |
| uint8_t *dgd_buffer; |
| int dgd_stride; |
| const uint8_t *src_buffer; |
| int src_stride; |
| |
| // sse and bits are initialised by reset_rsc in search_rest_type |
| int64_t sse; |
| int64_t bits; |
| int tile_y0, tile_stripe0; |
| |
| // sgrproj and wiener are initialised by rsc_on_tile when starting the first |
| // tile in the frame. |
| SgrprojInfo sgrproj; |
| WienerInfo wiener; |
| AV1PixelRect tile_rect; |
| } RestSearchCtxt; |
| |
| static AOM_INLINE void rsc_on_tile(void *priv) { |
| RestSearchCtxt *rsc = (RestSearchCtxt *)priv; |
| set_default_sgrproj(&rsc->sgrproj); |
| set_default_wiener(&rsc->wiener); |
| rsc->tile_stripe0 = 0; |
| } |
| |
| static AOM_INLINE void reset_rsc(RestSearchCtxt *rsc) { |
| rsc->sse = 0; |
| rsc->bits = 0; |
| } |
| |
| static AOM_INLINE void init_rsc(const YV12_BUFFER_CONFIG *src, |
| const AV1_COMMON *cm, const MACROBLOCK *x, |
| const SPEED_FEATURES *sf, int plane, |
| RestUnitSearchInfo *rusi, |
| YV12_BUFFER_CONFIG *dst, RestSearchCtxt *rsc) { |
| rsc->src = src; |
| rsc->dst = dst; |
| rsc->cm = cm; |
| rsc->x = x; |
| rsc->plane = plane; |
| rsc->rusi = rusi; |
| rsc->sf = sf; |
| |
| const YV12_BUFFER_CONFIG *dgd = &cm->cur_frame->buf; |
| const int is_uv = plane != AOM_PLANE_Y; |
| rsc->plane_width = src->crop_widths[is_uv]; |
| rsc->plane_height = src->crop_heights[is_uv]; |
| rsc->src_buffer = src->buffers[plane]; |
| rsc->src_stride = src->strides[is_uv]; |
| rsc->dgd_buffer = dgd->buffers[plane]; |
| rsc->dgd_stride = dgd->strides[is_uv]; |
| rsc->tile_rect = av1_whole_frame_rect(cm, is_uv); |
| assert(src->crop_widths[is_uv] == dgd->crop_widths[is_uv]); |
| assert(src->crop_heights[is_uv] == dgd->crop_heights[is_uv]); |
| } |
| |
| static int64_t try_restoration_unit(const RestSearchCtxt *rsc, |
| const RestorationTileLimits *limits, |
| const AV1PixelRect *tile_rect, |
| const RestorationUnitInfo *rui) { |
| const AV1_COMMON *const cm = rsc->cm; |
| const int plane = rsc->plane; |
| const int is_uv = plane > 0; |
| const RestorationInfo *rsi = &cm->rst_info[plane]; |
| RestorationLineBuffers rlbs; |
| const int bit_depth = cm->seq_params.bit_depth; |
| const int highbd = cm->seq_params.use_highbitdepth; |
| |
| const YV12_BUFFER_CONFIG *fts = &cm->cur_frame->buf; |
| // TODO(yunqing): For now, only use optimized LR filter in decoder. Can be |
| // also used in encoder. |
| const int optimized_lr = 0; |
| |
| av1_loop_restoration_filter_unit( |
| limits, rui, &rsi->boundaries, &rlbs, tile_rect, rsc->tile_stripe0, |
| is_uv && cm->seq_params.subsampling_x, |
| is_uv && cm->seq_params.subsampling_y, highbd, bit_depth, |
| fts->buffers[plane], fts->strides[is_uv], rsc->dst->buffers[plane], |
| rsc->dst->strides[is_uv], cm->rst_tmpbuf, optimized_lr); |
| |
| return sse_restoration_unit(limits, rsc->src, rsc->dst, plane, highbd); |
| } |
| |
| int64_t av1_lowbd_pixel_proj_error_c(const uint8_t *src8, int width, int height, |
| int src_stride, const uint8_t *dat8, |
| int dat_stride, int32_t *flt0, |
| int flt0_stride, int32_t *flt1, |
| int flt1_stride, int xq[2], |
| const sgr_params_type *params) { |
| int i, j; |
| const uint8_t *src = src8; |
| const uint8_t *dat = dat8; |
| int64_t err = 0; |
| if (params->r[0] > 0 && params->r[1] > 0) { |
| for (i = 0; i < height; ++i) { |
| for (j = 0; j < width; ++j) { |
| assert(flt1[j] < (1 << 15) && flt1[j] > -(1 << 15)); |
| assert(flt0[j] < (1 << 15) && flt0[j] > -(1 << 15)); |
| const int32_t u = (int32_t)(dat[j] << SGRPROJ_RST_BITS); |
| int32_t v = u << SGRPROJ_PRJ_BITS; |
| v += xq[0] * (flt0[j] - u) + xq[1] * (flt1[j] - u); |
| const int32_t e = |
| ROUND_POWER_OF_TWO(v, SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS) - src[j]; |
| err += ((int64_t)e * e); |
| } |
| dat += dat_stride; |
| src += src_stride; |
| flt0 += flt0_stride; |
| flt1 += flt1_stride; |
| } |
| } else if (params->r[0] > 0) { |
| for (i = 0; i < height; ++i) { |
| for (j = 0; j < width; ++j) { |
| assert(flt0[j] < (1 << 15) && flt0[j] > -(1 << 15)); |
| const int32_t u = (int32_t)(dat[j] << SGRPROJ_RST_BITS); |
| int32_t v = u << SGRPROJ_PRJ_BITS; |
| v += xq[0] * (flt0[j] - u); |
| const int32_t e = |
| ROUND_POWER_OF_TWO(v, SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS) - src[j]; |
| err += ((int64_t)e * e); |
| } |
| dat += dat_stride; |
| src += src_stride; |
| flt0 += flt0_stride; |
| } |
| } else if (params->r[1] > 0) { |
| for (i = 0; i < height; ++i) { |
| for (j = 0; j < width; ++j) { |
| assert(flt1[j] < (1 << 15) && flt1[j] > -(1 << 15)); |
| const int32_t u = (int32_t)(dat[j] << SGRPROJ_RST_BITS); |
| int32_t v = u << SGRPROJ_PRJ_BITS; |
| v += xq[1] * (flt1[j] - u); |
| const int32_t e = |
| ROUND_POWER_OF_TWO(v, SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS) - src[j]; |
| err += ((int64_t)e * e); |
| } |
| dat += dat_stride; |
| src += src_stride; |
| flt1 += flt1_stride; |
| } |
| } else { |
| for (i = 0; i < height; ++i) { |
| for (j = 0; j < width; ++j) { |
| const int32_t e = (int32_t)(dat[j]) - src[j]; |
| err += ((int64_t)e * e); |
| } |
| dat += dat_stride; |
| src += src_stride; |
| } |
| } |
| |
| return err; |
| } |
| |
| #if CONFIG_AV1_HIGHBITDEPTH |
| int64_t av1_highbd_pixel_proj_error_c(const uint8_t *src8, int width, |
| int height, int src_stride, |
| const uint8_t *dat8, int dat_stride, |
| int32_t *flt0, int flt0_stride, |
| int32_t *flt1, int flt1_stride, int xq[2], |
| const sgr_params_type *params) { |
| const uint16_t *src = CONVERT_TO_SHORTPTR(src8); |
| const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8); |
| int i, j; |
| int64_t err = 0; |
| const int32_t half = 1 << (SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS - 1); |
| if (params->r[0] > 0 && params->r[1] > 0) { |
| int xq0 = xq[0]; |
| int xq1 = xq[1]; |
| for (i = 0; i < height; ++i) { |
| for (j = 0; j < width; ++j) { |
| const int32_t d = dat[j]; |
| const int32_t s = src[j]; |
| const int32_t u = (int32_t)(d << SGRPROJ_RST_BITS); |
| int32_t v0 = flt0[j] - u; |
| int32_t v1 = flt1[j] - u; |
| int32_t v = half; |
| v += xq0 * v0; |
| v += xq1 * v1; |
| const int32_t e = (v >> (SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS)) + d - s; |
| err += ((int64_t)e * e); |
| } |
| dat += dat_stride; |
| flt0 += flt0_stride; |
| flt1 += flt1_stride; |
| src += src_stride; |
| } |
| } else if (params->r[0] > 0 || params->r[1] > 0) { |
| int exq; |
| int32_t *flt; |
| int flt_stride; |
| if (params->r[0] > 0) { |
| exq = xq[0]; |
| flt = flt0; |
| flt_stride = flt0_stride; |
| } else { |
| exq = xq[1]; |
| flt = flt1; |
| flt_stride = flt1_stride; |
| } |
| for (i = 0; i < height; ++i) { |
| for (j = 0; j < width; ++j) { |
| const int32_t d = dat[j]; |
| const int32_t s = src[j]; |
| const int32_t u = (int32_t)(d << SGRPROJ_RST_BITS); |
| int32_t v = half; |
| v += exq * (flt[j] - u); |
| const int32_t e = (v >> (SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS)) + d - s; |
| err += ((int64_t)e * e); |
| } |
| dat += dat_stride; |
| flt += flt_stride; |
| src += src_stride; |
| } |
| } else { |
| for (i = 0; i < height; ++i) { |
| for (j = 0; j < width; ++j) { |
| const int32_t d = dat[j]; |
| const int32_t s = src[j]; |
| const int32_t e = d - s; |
| err += ((int64_t)e * e); |
| } |
| dat += dat_stride; |
| src += src_stride; |
| } |
| } |
| return err; |
| } |
| #endif // CONFIG_AV1_HIGHBITDEPTH |
| |
| static int64_t get_pixel_proj_error(const uint8_t *src8, int width, int height, |
| int src_stride, const uint8_t *dat8, |
| int dat_stride, int use_highbitdepth, |
| int32_t *flt0, int flt0_stride, |
| int32_t *flt1, int flt1_stride, int *xqd, |
| const sgr_params_type *params) { |
| int xq[2]; |
| av1_decode_xq(xqd, xq, params); |
| |
| #if CONFIG_AV1_HIGHBITDEPTH |
| if (use_highbitdepth) { |
| return av1_highbd_pixel_proj_error(src8, width, height, src_stride, dat8, |
| dat_stride, flt0, flt0_stride, flt1, |
| flt1_stride, xq, params); |
| |
| } else { |
| return av1_lowbd_pixel_proj_error(src8, width, height, src_stride, dat8, |
| dat_stride, flt0, flt0_stride, flt1, |
| flt1_stride, xq, params); |
| } |
| #else |
| (void)use_highbitdepth; |
| return av1_lowbd_pixel_proj_error(src8, width, height, src_stride, dat8, |
| dat_stride, flt0, flt0_stride, flt1, |
| flt1_stride, xq, params); |
| #endif |
| } |
| |
| #define USE_SGRPROJ_REFINEMENT_SEARCH 1 |
| static int64_t finer_search_pixel_proj_error( |
| const uint8_t *src8, int width, int height, int src_stride, |
| const uint8_t *dat8, int dat_stride, int use_highbitdepth, int32_t *flt0, |
| int flt0_stride, int32_t *flt1, int flt1_stride, int start_step, int *xqd, |
| const sgr_params_type *params) { |
| int64_t err = get_pixel_proj_error( |
| src8, width, height, src_stride, dat8, dat_stride, use_highbitdepth, flt0, |
| flt0_stride, flt1, flt1_stride, xqd, params); |
| (void)start_step; |
| #if USE_SGRPROJ_REFINEMENT_SEARCH |
| int64_t err2; |
| int tap_min[] = { SGRPROJ_PRJ_MIN0, SGRPROJ_PRJ_MIN1 }; |
| int tap_max[] = { SGRPROJ_PRJ_MAX0, SGRPROJ_PRJ_MAX1 }; |
| for (int s = start_step; s >= 1; s >>= 1) { |
| for (int p = 0; p < 2; ++p) { |
| if ((params->r[0] == 0 && p == 0) || (params->r[1] == 0 && p == 1)) { |
| continue; |
| } |
| int skip = 0; |
| do { |
| if (xqd[p] - s >= tap_min[p]) { |
| xqd[p] -= s; |
| err2 = |
| get_pixel_proj_error(src8, width, height, src_stride, dat8, |
| dat_stride, use_highbitdepth, flt0, |
| flt0_stride, flt1, flt1_stride, xqd, params); |
| if (err2 > err) { |
| xqd[p] += s; |
| } else { |
| err = err2; |
| skip = 1; |
| // At the highest step size continue moving in the same direction |
| if (s == start_step) continue; |
| } |
| } |
| break; |
| } while (1); |
| if (skip) break; |
| do { |
| if (xqd[p] + s <= tap_max[p]) { |
| xqd[p] += s; |
| err2 = |
| get_pixel_proj_error(src8, width, height, src_stride, dat8, |
| dat_stride, use_highbitdepth, flt0, |
| flt0_stride, flt1, flt1_stride, xqd, params); |
| if (err2 > err) { |
| xqd[p] -= s; |
| } else { |
| err = err2; |
| // At the highest step size continue moving in the same direction |
| if (s == start_step) continue; |
| } |
| } |
| break; |
| } while (1); |
| } |
| } |
| #endif // USE_SGRPROJ_REFINEMENT_SEARCH |
| return err; |
| } |
| |
| static int64_t signed_rounded_divide(int64_t dividend, int64_t divisor) { |
| if (dividend < 0) |
| return (dividend - divisor / 2) / divisor; |
| else |
| return (dividend + divisor / 2) / divisor; |
| } |
| |
| static AOM_INLINE void calc_proj_params_r0_r1_c( |
| const uint8_t *src8, int width, int height, int src_stride, |
| const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride, |
| int32_t *flt1, int flt1_stride, int64_t H[2][2], int64_t C[2]) { |
| const int size = width * height; |
| const uint8_t *src = src8; |
| const uint8_t *dat = dat8; |
| for (int i = 0; i < height; ++i) { |
| for (int j = 0; j < width; ++j) { |
| const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS); |
| const int32_t s = |
| (int32_t)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u; |
| const int32_t f1 = (int32_t)flt0[i * flt0_stride + j] - u; |
| const int32_t f2 = (int32_t)flt1[i * flt1_stride + j] - u; |
| H[0][0] += (int64_t)f1 * f1; |
| H[1][1] += (int64_t)f2 * f2; |
| H[0][1] += (int64_t)f1 * f2; |
| C[0] += (int64_t)f1 * s; |
| C[1] += (int64_t)f2 * s; |
| } |
| } |
| H[0][0] /= size; |
| H[0][1] /= size; |
| H[1][1] /= size; |
| H[1][0] = H[0][1]; |
| C[0] /= size; |
| C[1] /= size; |
| } |
| |
| static AOM_INLINE void calc_proj_params_r0_r1_high_bd_c( |
| const uint8_t *src8, int width, int height, int src_stride, |
| const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride, |
| int32_t *flt1, int flt1_stride, int64_t H[2][2], int64_t C[2]) { |
| const int size = width * height; |
| const uint16_t *src = CONVERT_TO_SHORTPTR(src8); |
| const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8); |
| for (int i = 0; i < height; ++i) { |
| for (int j = 0; j < width; ++j) { |
| const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS); |
| const int32_t s = |
| (int32_t)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u; |
| const int32_t f1 = (int32_t)flt0[i * flt0_stride + j] - u; |
| const int32_t f2 = (int32_t)flt1[i * flt1_stride + j] - u; |
| H[0][0] += (int64_t)f1 * f1; |
| H[1][1] += (int64_t)f2 * f2; |
| H[0][1] += (int64_t)f1 * f2; |
| C[0] += (int64_t)f1 * s; |
| C[1] += (int64_t)f2 * s; |
| } |
| } |
| H[0][0] /= size; |
| H[0][1] /= size; |
| H[1][1] /= size; |
| H[1][0] = H[0][1]; |
| C[0] /= size; |
| C[1] /= size; |
| } |
| |
| static AOM_INLINE void calc_proj_params_r0_c(const uint8_t *src8, int width, |
| int height, int src_stride, |
| const uint8_t *dat8, |
| int dat_stride, int32_t *flt0, |
| int flt0_stride, int64_t H[2][2], |
| int64_t C[2]) { |
| const int size = width * height; |
| const uint8_t *src = src8; |
| const uint8_t *dat = dat8; |
| for (int i = 0; i < height; ++i) { |
| for (int j = 0; j < width; ++j) { |
| const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS); |
| const int32_t s = |
| (int32_t)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u; |
| const int32_t f1 = (int32_t)flt0[i * flt0_stride + j] - u; |
| H[0][0] += (int64_t)f1 * f1; |
| C[0] += (int64_t)f1 * s; |
| } |
| } |
| H[0][0] /= size; |
| C[0] /= size; |
| } |
| |
| static AOM_INLINE void calc_proj_params_r0_high_bd_c( |
| const uint8_t *src8, int width, int height, int src_stride, |
| const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride, |
| int64_t H[2][2], int64_t C[2]) { |
| const int size = width * height; |
| const uint16_t *src = CONVERT_TO_SHORTPTR(src8); |
| const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8); |
| for (int i = 0; i < height; ++i) { |
| for (int j = 0; j < width; ++j) { |
| const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS); |
| const int32_t s = |
| (int32_t)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u; |
| const int32_t f1 = (int32_t)flt0[i * flt0_stride + j] - u; |
| H[0][0] += (int64_t)f1 * f1; |
| C[0] += (int64_t)f1 * s; |
| } |
| } |
| H[0][0] /= size; |
| C[0] /= size; |
| } |
| |
| static AOM_INLINE void calc_proj_params_r1_c(const uint8_t *src8, int width, |
| int height, int src_stride, |
| const uint8_t *dat8, |
| int dat_stride, int32_t *flt1, |
| int flt1_stride, int64_t H[2][2], |
| int64_t C[2]) { |
| const int size = width * height; |
| const uint8_t *src = src8; |
| const uint8_t *dat = dat8; |
| for (int i = 0; i < height; ++i) { |
| for (int j = 0; j < width; ++j) { |
| const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS); |
| const int32_t s = |
| (int32_t)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u; |
| const int32_t f2 = (int32_t)flt1[i * flt1_stride + j] - u; |
| H[1][1] += (int64_t)f2 * f2; |
| C[1] += (int64_t)f2 * s; |
| } |
| } |
| H[1][1] /= size; |
| C[1] /= size; |
| } |
| |
| static AOM_INLINE void calc_proj_params_r1_high_bd_c( |
| const uint8_t *src8, int width, int height, int src_stride, |
| const uint8_t *dat8, int dat_stride, int32_t *flt1, int flt1_stride, |
| int64_t H[2][2], int64_t C[2]) { |
| const int size = width * height; |
| const uint16_t *src = CONVERT_TO_SHORTPTR(src8); |
| const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8); |
| for (int i = 0; i < height; ++i) { |
| for (int j = 0; j < width; ++j) { |
| const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS); |
| const int32_t s = |
| (int32_t)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u; |
| const int32_t f2 = (int32_t)flt1[i * flt1_stride + j] - u; |
| H[1][1] += (int64_t)f2 * f2; |
| C[1] += (int64_t)f2 * s; |
| } |
| } |
| H[1][1] /= size; |
| C[1] /= size; |
| } |
| |
| // The function calls 3 subfunctions for the following cases : |
| // 1) When params->r[0] > 0 and params->r[1] > 0. In this case all elements |
| // of C and H need to be computed. |
| // 2) When only params->r[0] > 0. In this case only H[0][0] and C[0] are |
| // non-zero and need to be computed. |
| // 3) When only params->r[1] > 0. In this case only H[1][1] and C[1] are |
| // non-zero and need to be computed. |
| void av1_calc_proj_params_c(const uint8_t *src8, int width, int height, |
| int src_stride, const uint8_t *dat8, int dat_stride, |
| int32_t *flt0, int flt0_stride, int32_t *flt1, |
| int flt1_stride, int64_t H[2][2], int64_t C[2], |
| const sgr_params_type *params) { |
| if ((params->r[0] > 0) && (params->r[1] > 0)) { |
| calc_proj_params_r0_r1_c(src8, width, height, src_stride, dat8, dat_stride, |
| flt0, flt0_stride, flt1, flt1_stride, H, C); |
| } else if (params->r[0] > 0) { |
| calc_proj_params_r0_c(src8, width, height, src_stride, dat8, dat_stride, |
| flt0, flt0_stride, H, C); |
| } else if (params->r[1] > 0) { |
| calc_proj_params_r1_c(src8, width, height, src_stride, dat8, dat_stride, |
| flt1, flt1_stride, H, C); |
| } |
| } |
| |
| static AOM_INLINE void av1_calc_proj_params_high_bd_c( |
| const uint8_t *src8, int width, int height, int src_stride, |
| const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride, |
| int32_t *flt1, int flt1_stride, int64_t H[2][2], int64_t C[2], |
| const sgr_params_type *params) { |
| if ((params->r[0] > 0) && (params->r[1] > 0)) { |
| calc_proj_params_r0_r1_high_bd_c(src8, width, height, src_stride, dat8, |
| dat_stride, flt0, flt0_stride, flt1, |
| flt1_stride, H, C); |
| } else if (params->r[0] > 0) { |
| calc_proj_params_r0_high_bd_c(src8, width, height, src_stride, dat8, |
| dat_stride, flt0, flt0_stride, H, C); |
| } else if (params->r[1] > 0) { |
| calc_proj_params_r1_high_bd_c(src8, width, height, src_stride, dat8, |
| dat_stride, flt1, flt1_stride, H, C); |
| } |
| } |
| |
| static AOM_INLINE void get_proj_subspace(const uint8_t *src8, int width, |
| int height, int src_stride, |
| const uint8_t *dat8, int dat_stride, |
| int use_highbitdepth, int32_t *flt0, |
| int flt0_stride, int32_t *flt1, |
| int flt1_stride, int *xq, |
| const sgr_params_type *params) { |
| int64_t H[2][2] = { { 0, 0 }, { 0, 0 } }; |
| int64_t C[2] = { 0, 0 }; |
| |
| // Default values to be returned if the problem becomes ill-posed |
| xq[0] = 0; |
| xq[1] = 0; |
| |
| if (!use_highbitdepth) { |
| if ((width & 0x7) == 0) { |
| av1_calc_proj_params(src8, width, height, src_stride, dat8, dat_stride, |
| flt0, flt0_stride, flt1, flt1_stride, H, C, params); |
| } else { |
| av1_calc_proj_params_c(src8, width, height, src_stride, dat8, dat_stride, |
| flt0, flt0_stride, flt1, flt1_stride, H, C, |
| params); |
| } |
| } else { |
| av1_calc_proj_params_high_bd_c(src8, width, height, src_stride, dat8, |
| dat_stride, flt0, flt0_stride, flt1, |
| flt1_stride, H, C, params); |
| } |
| |
| if (params->r[0] == 0) { |
| // H matrix is now only the scalar H[1][1] |
| // C vector is now only the scalar C[1] |
| const int64_t Det = H[1][1]; |
| if (Det == 0) return; // ill-posed, return default values |
| xq[0] = 0; |
| xq[1] = (int)signed_rounded_divide(C[1] * (1 << SGRPROJ_PRJ_BITS), Det); |
| } else if (params->r[1] == 0) { |
| // H matrix is now only the scalar H[0][0] |
| // C vector is now only the scalar C[0] |
| const int64_t Det = H[0][0]; |
| if (Det == 0) return; // ill-posed, return default values |
| xq[0] = (int)signed_rounded_divide(C[0] * (1 << SGRPROJ_PRJ_BITS), Det); |
| xq[1] = 0; |
| } else { |
| const int64_t Det = H[0][0] * H[1][1] - H[0][1] * H[1][0]; |
| if (Det == 0) return; // ill-posed, return default values |
| |
| // If scaling up dividend would overflow, instead scale down the divisor |
| const int64_t div1 = H[1][1] * C[0] - H[0][1] * C[1]; |
| if ((div1 > 0 && INT64_MAX / (1 << SGRPROJ_PRJ_BITS) < div1) || |
| (div1 < 0 && INT64_MIN / (1 << SGRPROJ_PRJ_BITS) > div1)) |
| xq[0] = (int)signed_rounded_divide(div1, Det / (1 << SGRPROJ_PRJ_BITS)); |
| else |
| xq[0] = (int)signed_rounded_divide(div1 * (1 << SGRPROJ_PRJ_BITS), Det); |
| |
| const int64_t div2 = H[0][0] * C[1] - H[1][0] * C[0]; |
| if ((div2 > 0 && INT64_MAX / (1 << SGRPROJ_PRJ_BITS) < div2) || |
| (div2 < 0 && INT64_MIN / (1 << SGRPROJ_PRJ_BITS) > div2)) |
| xq[1] = (int)signed_rounded_divide(div2, Det / (1 << SGRPROJ_PRJ_BITS)); |
| else |
| xq[1] = (int)signed_rounded_divide(div2 * (1 << SGRPROJ_PRJ_BITS), Det); |
| } |
| } |
| |
| static AOM_INLINE void encode_xq(int *xq, int *xqd, |
| const sgr_params_type *params) { |
| if (params->r[0] == 0) { |
| xqd[0] = 0; |
| xqd[1] = clamp((1 << SGRPROJ_PRJ_BITS) - xq[1], SGRPROJ_PRJ_MIN1, |
| SGRPROJ_PRJ_MAX1); |
| } else if (params->r[1] == 0) { |
| xqd[0] = clamp(xq[0], SGRPROJ_PRJ_MIN0, SGRPROJ_PRJ_MAX0); |
| xqd[1] = clamp((1 << SGRPROJ_PRJ_BITS) - xqd[0], SGRPROJ_PRJ_MIN1, |
| SGRPROJ_PRJ_MAX1); |
| } else { |
| xqd[0] = clamp(xq[0], SGRPROJ_PRJ_MIN0, SGRPROJ_PRJ_MAX0); |
| xqd[1] = clamp((1 << SGRPROJ_PRJ_BITS) - xqd[0] - xq[1], SGRPROJ_PRJ_MIN1, |
| SGRPROJ_PRJ_MAX1); |
| } |
| } |
| |
| // Apply the self-guided filter across an entire restoration unit. |
| static AOM_INLINE void apply_sgr(int sgr_params_idx, const uint8_t *dat8, |
| int width, int height, int dat_stride, |
| int use_highbd, int bit_depth, int pu_width, |
| int pu_height, int32_t *flt0, int32_t *flt1, |
| int flt_stride) { |
| for (int i = 0; i < height; i += pu_height) { |
| const int h = AOMMIN(pu_height, height - i); |
| int32_t *flt0_row = flt0 + i * flt_stride; |
| int32_t *flt1_row = flt1 + i * flt_stride; |
| const uint8_t *dat8_row = dat8 + i * dat_stride; |
| |
| // Iterate over the stripe in blocks of width pu_width |
| for (int j = 0; j < width; j += pu_width) { |
| const int w = AOMMIN(pu_width, width - j); |
| const int ret = av1_selfguided_restoration( |
| dat8_row + j, w, h, dat_stride, flt0_row + j, flt1_row + j, |
| flt_stride, sgr_params_idx, bit_depth, use_highbd); |
| (void)ret; |
| assert(!ret); |
| } |
| } |
| } |
| |
| static AOM_INLINE void compute_sgrproj_err( |
| const uint8_t *dat8, const int width, const int height, |
| const int dat_stride, const uint8_t *src8, const int src_stride, |
| const int use_highbitdepth, const int bit_depth, const int pu_width, |
| const int pu_height, const int ep, int32_t *flt0, int32_t *flt1, |
| const int flt_stride, int *exqd, int64_t *err) { |
| int exq[2]; |
| apply_sgr(ep, dat8, width, height, dat_stride, use_highbitdepth, bit_depth, |
| pu_width, pu_height, flt0, flt1, flt_stride); |
| aom_clear_system_state(); |
| const sgr_params_type *const params = &av1_sgr_params[ep]; |
| get_proj_subspace(src8, width, height, src_stride, dat8, dat_stride, |
| use_highbitdepth, flt0, flt_stride, flt1, flt_stride, exq, |
| params); |
| aom_clear_system_state(); |
| encode_xq(exq, exqd, params); |
| *err = finer_search_pixel_proj_error( |
| src8, width, height, src_stride, dat8, dat_stride, use_highbitdepth, flt0, |
| flt_stride, flt1, flt_stride, 2, exqd, params); |
| } |
| |
| static AOM_INLINE void get_best_error(int64_t *besterr, const int64_t err, |
| const int *exqd, int *bestxqd, |
| int *bestep, const int ep) { |
| if (*besterr == -1 || err < *besterr) { |
| *bestep = ep; |
| *besterr = err; |
| bestxqd[0] = exqd[0]; |
| bestxqd[1] = exqd[1]; |
| } |
| } |
| |
| static SgrprojInfo search_selfguided_restoration( |
| const uint8_t *dat8, int width, int height, int dat_stride, |
| const uint8_t *src8, int src_stride, int use_highbitdepth, int bit_depth, |
| int pu_width, int pu_height, int32_t *rstbuf, int enable_sgr_ep_pruning) { |
| int32_t *flt0 = rstbuf; |
| int32_t *flt1 = flt0 + RESTORATION_UNITPELS_MAX; |
| int ep, idx, bestep = 0; |
| int64_t besterr = -1; |
| int exqd[2], bestxqd[2] = { 0, 0 }; |
| int flt_stride = ((width + 7) & ~7) + 8; |
| assert(pu_width == (RESTORATION_PROC_UNIT_SIZE >> 1) || |
| pu_width == RESTORATION_PROC_UNIT_SIZE); |
| assert(pu_height == (RESTORATION_PROC_UNIT_SIZE >> 1) || |
| pu_height == RESTORATION_PROC_UNIT_SIZE); |
| if (!enable_sgr_ep_pruning) { |
| for (ep = 0; ep < SGRPROJ_PARAMS; ep++) { |
| int64_t err; |
| compute_sgrproj_err(dat8, width, height, dat_stride, src8, src_stride, |
| use_highbitdepth, bit_depth, pu_width, pu_height, ep, |
| flt0, flt1, flt_stride, exqd, &err); |
| get_best_error(&besterr, err, exqd, bestxqd, &bestep, ep); |
| } |
| } else { |
| // evaluate first four seed ep in first group |
| for (idx = 0; idx < SGRPROJ_EP_GRP1_SEARCH_COUNT; idx++) { |
| ep = sgproj_ep_grp1_seed[idx]; |
| int64_t err; |
| compute_sgrproj_err(dat8, width, height, dat_stride, src8, src_stride, |
| use_highbitdepth, bit_depth, pu_width, pu_height, ep, |
| flt0, flt1, flt_stride, exqd, &err); |
| get_best_error(&besterr, err, exqd, bestxqd, &bestep, ep); |
| } |
| // evaluate left and right ep of winner in seed ep |
| int bestep_ref = bestep; |
| for (ep = bestep_ref - 1; ep < bestep_ref + 2; ep += 2) { |
| if (ep < SGRPROJ_EP_GRP1_START_IDX || ep > SGRPROJ_EP_GRP1_END_IDX) |
| continue; |
| int64_t err; |
| compute_sgrproj_err(dat8, width, height, dat_stride, src8, src_stride, |
| use_highbitdepth, bit_depth, pu_width, pu_height, ep, |
| flt0, flt1, flt_stride, exqd, &err); |
| get_best_error(&besterr, err, exqd, bestxqd, &bestep, ep); |
| } |
| // evaluate last two group |
| for (idx = 0; idx < SGRPROJ_EP_GRP2_3_SEARCH_COUNT; idx++) { |
| ep = sgproj_ep_grp2_3[idx][bestep]; |
| int64_t err; |
| compute_sgrproj_err(dat8, width, height, dat_stride, src8, src_stride, |
| use_highbitdepth, bit_depth, pu_width, pu_height, ep, |
| flt0, flt1, flt_stride, exqd, &err); |
| get_best_error(&besterr, err, exqd, bestxqd, &bestep, ep); |
| } |
| } |
| |
| SgrprojInfo ret; |
| ret.ep = bestep; |
| ret.xqd[0] = bestxqd[0]; |
| ret.xqd[1] = bestxqd[1]; |
| return ret; |
| } |
| |
| static int count_sgrproj_bits(SgrprojInfo *sgrproj_info, |
| SgrprojInfo *ref_sgrproj_info) { |
| int bits = SGRPROJ_PARAMS_BITS; |
| const sgr_params_type *params = &av1_sgr_params[sgrproj_info->ep]; |
| if (params->r[0] > 0) |
| bits += aom_count_primitive_refsubexpfin( |
| SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K, |
| ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0, |
| sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0); |
| if (params->r[1] > 0) |
| bits += aom_count_primitive_refsubexpfin( |
| SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K, |
| ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1, |
| sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1); |
| return bits; |
| } |
| |
| static AOM_INLINE void search_sgrproj(const RestorationTileLimits *limits, |
| const AV1PixelRect *tile, |
| int rest_unit_idx, void *priv, |
| int32_t *tmpbuf, |
| RestorationLineBuffers *rlbs) { |
| (void)rlbs; |
| RestSearchCtxt *rsc = (RestSearchCtxt *)priv; |
| RestUnitSearchInfo *rusi = &rsc->rusi[rest_unit_idx]; |
| |
| const MACROBLOCK *const x = rsc->x; |
| const AV1_COMMON *const cm = rsc->cm; |
| const int highbd = cm->seq_params.use_highbitdepth; |
| const int bit_depth = cm->seq_params.bit_depth; |
| |
| const int64_t bits_none = x->sgrproj_restore_cost[0]; |
| // Prune evaluation of RESTORE_SGRPROJ if 'skip_sgr_eval' is set |
| if (rusi->skip_sgr_eval) { |
| rsc->bits += bits_none; |
| rsc->sse += rusi->sse[RESTORE_NONE]; |
| rusi->best_rtype[RESTORE_SGRPROJ - 1] = RESTORE_NONE; |
| rusi->sse[RESTORE_SGRPROJ] = INT64_MAX; |
| return; |
| } |
| |
| uint8_t *dgd_start = |
| rsc->dgd_buffer + limits->v_start * rsc->dgd_stride + limits->h_start; |
| const uint8_t *src_start = |
| rsc->src_buffer + limits->v_start * rsc->src_stride + limits->h_start; |
| |
| const int is_uv = rsc->plane > 0; |
| const int ss_x = is_uv && cm->seq_params.subsampling_x; |
| const int ss_y = is_uv && cm->seq_params.subsampling_y; |
| const int procunit_width = RESTORATION_PROC_UNIT_SIZE >> ss_x; |
| const int procunit_height = RESTORATION_PROC_UNIT_SIZE >> ss_y; |
| |
| rusi->sgrproj = search_selfguided_restoration( |
| dgd_start, limits->h_end - limits->h_start, |
| limits->v_end - limits->v_start, rsc->dgd_stride, src_start, |
| rsc->src_stride, highbd, bit_depth, procunit_width, procunit_height, |
| tmpbuf, rsc->sf->lpf_sf.enable_sgr_ep_pruning); |
| |
| RestorationUnitInfo rui; |
| rui.restoration_type = RESTORE_SGRPROJ; |
| rui.sgrproj_info = rusi->sgrproj; |
| |
| rusi->sse[RESTORE_SGRPROJ] = try_restoration_unit(rsc, limits, tile, &rui); |
| |
| const int64_t bits_sgr = x->sgrproj_restore_cost[1] + |
| (count_sgrproj_bits(&rusi->sgrproj, &rsc->sgrproj) |
| << AV1_PROB_COST_SHIFT); |
| |
| double cost_none = |
| RDCOST_DBL(x->rdmult, bits_none >> 4, rusi->sse[RESTORE_NONE]); |
| double cost_sgr = |
| RDCOST_DBL(x->rdmult, bits_sgr >> 4, rusi->sse[RESTORE_SGRPROJ]); |
| if (rusi->sgrproj.ep < 10) |
| cost_sgr *= |
| (1 + DUAL_SGR_PENALTY_MULT * rsc->sf->lpf_sf.dual_sgr_penalty_level); |
| |
| RestorationType rtype = |
| (cost_sgr < cost_none) ? RESTORE_SGRPROJ : RESTORE_NONE; |
| rusi->best_rtype[RESTORE_SGRPROJ - 1] = rtype; |
| |
| rsc->sse += rusi->sse[rtype]; |
| rsc->bits += (cost_sgr < cost_none) ? bits_sgr : bits_none; |
| if (cost_sgr < cost_none) rsc->sgrproj = rusi->sgrproj; |
| } |
| |
| void av1_compute_stats_c(int wiener_win, const uint8_t *dgd, const uint8_t *src, |
| int h_start, int h_end, int v_start, int v_end, |
| int dgd_stride, int src_stride, int64_t *M, |
| int64_t *H) { |
| int i, j, k, l; |
| int16_t Y[WIENER_WIN2]; |
| const int wiener_win2 = wiener_win * wiener_win; |
| const int wiener_halfwin = (wiener_win >> 1); |
| uint8_t avg = find_average(dgd, h_start, h_end, v_start, v_end, dgd_stride); |
| |
| memset(M, 0, sizeof(*M) * wiener_win2); |
| memset(H, 0, sizeof(*H) * wiener_win2 * wiener_win2); |
| for (i = v_start; i < v_end; i++) { |
| for (j = h_start; j < h_end; j++) { |
| const int16_t X = (int16_t)src[i * src_stride + j] - (int16_t)avg; |
| int idx = 0; |
| for (k = -wiener_halfwin; k <= wiener_halfwin; k++) { |
| for (l = -wiener_halfwin; l <= wiener_halfwin; l++) { |
| Y[idx] = (int16_t)dgd[(i + l) * dgd_stride + (j + k)] - (int16_t)avg; |
| idx++; |
| } |
| } |
| assert(idx == wiener_win2); |
| for (k = 0; k < wiener_win2; ++k) { |
| M[k] += (int32_t)Y[k] * X; |
| for (l = k; l < wiener_win2; ++l) { |
| // H is a symmetric matrix, so we only need to fill out the upper |
| // triangle here. We can copy it down to the lower triangle outside |
| // the (i, j) loops. |
| H[k * wiener_win2 + l] += (int32_t)Y[k] * Y[l]; |
| } |
| } |
| } |
| } |
| for (k = 0; k < wiener_win2; ++k) { |
| for (l = k + 1; l < wiener_win2; ++l) { |
| H[l * wiener_win2 + k] = H[k * wiener_win2 + l]; |
| } |
| } |
| } |
| |
| #if CONFIG_AV1_HIGHBITDEPTH |
| void av1_compute_stats_highbd_c(int wiener_win, const uint8_t *dgd8, |
| const uint8_t *src8, int h_start, int h_end, |
| int v_start, int v_end, int dgd_stride, |
| int src_stride, int64_t *M, int64_t *H, |
| aom_bit_depth_t bit_depth) { |
| int i, j, k, l; |
| int32_t Y[WIENER_WIN2]; |
| const int wiener_win2 = wiener_win * wiener_win; |
| const int wiener_halfwin = (wiener_win >> 1); |
| const uint16_t *src = CONVERT_TO_SHORTPTR(src8); |
| const uint16_t *dgd = CONVERT_TO_SHORTPTR(dgd8); |
| uint16_t avg = |
| find_average_highbd(dgd, h_start, h_end, v_start, v_end, dgd_stride); |
| |
| uint8_t bit_depth_divider = 1; |
| if (bit_depth == AOM_BITS_12) |
| bit_depth_divider = 16; |
| else if (bit_depth == AOM_BITS_10) |
| bit_depth_divider = 4; |
| |
| memset(M, 0, sizeof(*M) * wiener_win2); |
| memset(H, 0, sizeof(*H) * wiener_win2 * wiener_win2); |
| for (i = v_start; i < v_end; i++) { |
| for (j = h_start; j < h_end; j++) { |
| const int32_t X = (int32_t)src[i * src_stride + j] - (int32_t)avg; |
| int idx = 0; |
| for (k = -wiener_halfwin; k <= wiener_halfwin; k++) { |
| for (l = -wiener_halfwin; l <= wiener_halfwin; l++) { |
| Y[idx] = (int32_t)dgd[(i + l) * dgd_stride + (j + k)] - (int32_t)avg; |
| idx++; |
| } |
| } |
| assert(idx == wiener_win2); |
| for (k = 0; k < wiener_win2; ++k) { |
| M[k] += (int64_t)Y[k] * X; |
| for (l = k; l < wiener_win2; ++l) { |
| // H is a symmetric matrix, so we only need to fill out the upper |
| // triangle here. We can copy it down to the lower triangle outside |
| // the (i, j) loops. |
| H[k * wiener_win2 + l] += (int64_t)Y[k] * Y[l]; |
| } |
| } |
| } |
| } |
| for (k = 0; k < wiener_win2; ++k) { |
| M[k] /= bit_depth_divider; |
| H[k * wiener_win2 + k] /= bit_depth_divider; |
| for (l = k + 1; l < wiener_win2; ++l) { |
| H[k * wiener_win2 + l] /= bit_depth_divider; |
| H[l * wiener_win2 + k] = H[k * wiener_win2 + l]; |
| } |
| } |
| } |
| #endif // CONFIG_AV1_HIGHBITDEPTH |
| |
| static INLINE int wrap_index(int i, int wiener_win) { |
| const int wiener_halfwin1 = (wiener_win >> 1) + 1; |
| return (i >= wiener_halfwin1 ? wiener_win - 1 - i : i); |
| } |
| |
| // Solve linear equations to find Wiener filter tap values |
| // Taps are output scaled by WIENER_FILT_STEP |
| static int linsolve_wiener(int n, int64_t *A, int stride, int64_t *b, |
| int32_t *x) { |
| for (int k = 0; k < n - 1; k++) { |
| // Partial pivoting: bring the row with the largest pivot to the top |
| for (int i = n - 1; i > k; i--) { |
| // If row i has a better (bigger) pivot than row (i-1), swap them |
| if (llabs(A[(i - 1) * stride + k]) < llabs(A[i * stride + k])) { |
| for (int j = 0; j < n; j++) { |
| const int64_t c = A[i * stride + j]; |
| A[i * stride + j] = A[(i - 1) * stride + j]; |
| A[(i - 1) * stride + j] = c; |
| } |
| const int64_t c = b[i]; |
| b[i] = b[i - 1]; |
| b[i - 1] = c; |
| } |
| } |
| // Forward elimination (convert A to row-echelon form) |
| for (int i = k; i < n - 1; i++) { |
| if (A[k * stride + k] == 0) return 0; |
| const int64_t c = A[(i + 1) * stride + k]; |
| const int64_t cd = A[k * stride + k]; |
| for (int j = 0; j < n; j++) { |
| A[(i + 1) * stride + j] -= c / 256 * A[k * stride + j] / cd * 256; |
| } |
| b[i + 1] -= c * b[k] / cd; |
| } |
| } |
| // Back-substitution |
| for (int i = n - 1; i >= 0; i--) { |
| if (A[i * stride + i] == 0) return 0; |
| int64_t c = 0; |
| for (int j = i + 1; j <= n - 1; j++) { |
| c += A[i * stride + j] * x[j] / WIENER_TAP_SCALE_FACTOR; |
| } |
| // Store filter taps x in scaled form. |
| x[i] = (int32_t)(WIENER_TAP_SCALE_FACTOR * (b[i] - c) / A[i * stride + i]); |
| } |
| |
| return 1; |
| } |
| |
| // Fix vector b, update vector a |
| static AOM_INLINE void update_a_sep_sym(int wiener_win, int64_t **Mc, |
| int64_t **Hc, int32_t *a, int32_t *b) { |
| int i, j; |
| int32_t S[WIENER_WIN]; |
| int64_t A[WIENER_HALFWIN1], B[WIENER_HALFWIN1 * WIENER_HALFWIN1]; |
| const int wiener_win2 = wiener_win * wiener_win; |
| const int wiener_halfwin1 = (wiener_win >> 1) + 1; |
| memset(A, 0, sizeof(A)); |
| memset(B, 0, sizeof(B)); |
| for (i = 0; i < wiener_win; i++) { |
| for (j = 0; j < wiener_win; ++j) { |
| const int jj = wrap_index(j, wiener_win); |
| A[jj] += Mc[i][j] * b[i] / WIENER_TAP_SCALE_FACTOR; |
| } |
| } |
| for (i = 0; i < wiener_win; i++) { |
| for (j = 0; j < wiener_win; j++) { |
| int k, l; |
| for (k = 0; k < wiener_win; ++k) { |
| for (l = 0; l < wiener_win; ++l) { |
| const int kk = wrap_index(k, wiener_win); |
| const int ll = wrap_index(l, wiener_win); |
| B[ll * wiener_halfwin1 + kk] += |
| Hc[j * wiener_win + i][k * wiener_win2 + l] * b[i] / |
| WIENER_TAP_SCALE_FACTOR * b[j] / WIENER_TAP_SCALE_FACTOR; |
| } |
| } |
| } |
| } |
| // Normalization enforcement in the system of equations itself |
| for (i = 0; i < wiener_halfwin1 - 1; ++i) { |
| A[i] -= |
| A[wiener_halfwin1 - 1] * 2 + |
| B[i * wiener_halfwin1 + wiener_halfwin1 - 1] - |
| 2 * B[(wiener_halfwin1 - 1) * wiener_halfwin1 + (wiener_halfwin1 - 1)]; |
| } |
| for (i = 0; i < wiener_halfwin1 - 1; ++i) { |
| for (j = 0; j < wiener_halfwin1 - 1; ++j) { |
| B[i * wiener_halfwin1 + j] -= |
| 2 * (B[i * wiener_halfwin1 + (wiener_halfwin1 - 1)] + |
| B[(wiener_halfwin1 - 1) * wiener_halfwin1 + j] - |
| 2 * B[(wiener_halfwin1 - 1) * wiener_halfwin1 + |
| (wiener_halfwin1 - 1)]); |
| } |
| } |
| if (linsolve_wiener(wiener_halfwin1 - 1, B, wiener_halfwin1, A, S)) { |
| S[wiener_halfwin1 - 1] = WIENER_TAP_SCALE_FACTOR; |
| for (i = wiener_halfwin1; i < wiener_win; ++i) { |
| S[i] = S[wiener_win - 1 - i]; |
| S[wiener_halfwin1 - 1] -= 2 * S[i]; |
| } |
| memcpy(a, S, wiener_win * sizeof(*a)); |
| } |
| } |
| |
| // Fix vector a, update vector b |
| static AOM_INLINE void update_b_sep_sym(int wiener_win, int64_t **Mc, |
| int64_t **Hc, int32_t *a, int32_t *b) { |
| int i, j; |
| int32_t S[WIENER_WIN]; |
| int64_t A[WIENER_HALFWIN1], B[WIENER_HALFWIN1 * WIENER_HALFWIN1]; |
| const int wiener_win2 = wiener_win * wiener_win; |
| const int wiener_halfwin1 = (wiener_win >> 1) + 1; |
| memset(A, 0, sizeof(A)); |
| memset(B, 0, sizeof(B)); |
| for (i = 0; i < wiener_win; i++) { |
| const int ii = wrap_index(i, wiener_win); |
| for (j = 0; j < wiener_win; j++) { |
| A[ii] += Mc[i][j] * a[j] / WIENER_TAP_SCALE_FACTOR; |
| } |
| } |
| |
| for (i = 0; i < wiener_win; i++) { |
| for (j = 0; j < wiener_win; j++) { |
| const int ii = wrap_index(i, wiener_win); |
| const int jj = wrap_index(j, wiener_win); |
| int k, l; |
| for (k = 0; k < wiener_win; ++k) { |
| for (l = 0; l < wiener_win; ++l) { |
| B[jj * wiener_halfwin1 + ii] += |
| Hc[i * wiener_win + j][k * wiener_win2 + l] * a[k] / |
| WIENER_TAP_SCALE_FACTOR * a[l] / WIENER_TAP_SCALE_FACTOR; |
| } |
| } |
| } |
| } |
| // Normalization enforcement in the system of equations itself |
| for (i = 0; i < wiener_halfwin1 - 1; ++i) { |
| A[i] -= |
| A[wiener_halfwin1 - 1] * 2 + |
| B[i * wiener_halfwin1 + wiener_halfwin1 - 1] - |
| 2 * B[(wiener_halfwin1 - 1) * wiener_halfwin1 + (wiener_halfwin1 - 1)]; |
| } |
| for (i = 0; i < wiener_halfwin1 - 1; ++i) { |
| for (j = 0; j < wiener_halfwin1 - 1; ++j) { |
| B[i * wiener_halfwin1 + j] -= |
| 2 * (B[i * wiener_halfwin1 + (wiener_halfwin1 - 1)] + |
| B[(wiener_halfwin1 - 1) * wiener_halfwin1 + j] - |
| 2 * B[(wiener_halfwin1 - 1) * wiener_halfwin1 + |
| (wiener_halfwin1 - 1)]); |
| } |
| } |
| if (linsolve_wiener(wiener_halfwin1 - 1, B, wiener_halfwin1, A, S)) { |
| S[wiener_halfwin1 - 1] = WIENER_TAP_SCALE_FACTOR; |
| for (i = wiener_halfwin1; i < wiener_win; ++i) { |
| S[i] = S[wiener_win - 1 - i]; |
| S[wiener_halfwin1 - 1] -= 2 * S[i]; |
| } |
| memcpy(b, S, wiener_win * sizeof(*b)); |
| } |
| } |
| |
| static int wiener_decompose_sep_sym(int wiener_win, int64_t *M, int64_t *H, |
| int32_t *a, int32_t *b) { |
| static const int32_t init_filt[WIENER_WIN] = { |
| WIENER_FILT_TAP0_MIDV, WIENER_FILT_TAP1_MIDV, WIENER_FILT_TAP2_MIDV, |
| WIENER_FILT_TAP3_MIDV, WIENER_FILT_TAP2_MIDV, WIENER_FILT_TAP1_MIDV, |
| WIENER_FILT_TAP0_MIDV, |
| }; |
| int64_t *Hc[WIENER_WIN2]; |
| int64_t *Mc[WIENER_WIN]; |
| int i, j, iter; |
| const int plane_off = (WIENER_WIN - wiener_win) >> 1; |
| const int wiener_win2 = wiener_win * wiener_win; |
| for (i = 0; i < wiener_win; i++) { |
| a[i] = b[i] = |
| WIENER_TAP_SCALE_FACTOR / WIENER_FILT_STEP * init_filt[i + plane_off]; |
| } |
| for (i = 0; i < wiener_win; i++) { |
| Mc[i] = M + i * wiener_win; |
| for (j = 0; j < wiener_win; j++) { |
| Hc[i * wiener_win + j] = |
| H + i * wiener_win * wiener_win2 + j * wiener_win; |
| } |
| } |
| |
| iter = 1; |
| while (iter < NUM_WIENER_ITERS) { |
| update_a_sep_sym(wiener_win, Mc, Hc, a, b); |
| update_b_sep_sym(wiener_win, Mc, Hc, a, b); |
| iter++; |
| } |
| return 1; |
| } |
| |
| // Computes the function x'*H*x - x'*M for the learned 2D filter x, and compares |
| // against identity filters; Final score is defined as the difference between |
| // the function values |
| static int64_t compute_score(int wiener_win, int64_t *M, int64_t *H, |
| InterpKernel vfilt, InterpKernel hfilt) { |
| int32_t ab[WIENER_WIN * WIENER_WIN]; |
| int16_t a[WIENER_WIN], b[WIENER_WIN]; |
| int64_t P = 0, Q = 0; |
| int64_t iP = 0, iQ = 0; |
| int64_t Score, iScore; |
| int i, k, l; |
| const int plane_off = (WIENER_WIN - wiener_win) >> 1; |
| const int wiener_win2 = wiener_win * wiener_win; |
| |
| aom_clear_system_state(); |
| |
| a[WIENER_HALFWIN] = b[WIENER_HALFWIN] = WIENER_FILT_STEP; |
| for (i = 0; i < WIENER_HALFWIN; ++i) { |
| a[i] = a[WIENER_WIN - i - 1] = vfilt[i]; |
| b[i] = b[WIENER_WIN - i - 1] = hfilt[i]; |
| a[WIENER_HALFWIN] -= 2 * a[i]; |
| b[WIENER_HALFWIN] -= 2 * b[i]; |
| } |
| memset(ab, 0, sizeof(ab)); |
| for (k = 0; k < wiener_win; ++k) { |
| for (l = 0; l < wiener_win; ++l) |
| ab[k * wiener_win + l] = a[l + plane_off] * b[k + plane_off]; |
| } |
| for (k = 0; k < wiener_win2; ++k) { |
| P += ab[k] * M[k] / WIENER_FILT_STEP / WIENER_FILT_STEP; |
| for (l = 0; l < wiener_win2; ++l) { |
| Q += ab[k] * H[k * wiener_win2 + l] * ab[l] / WIENER_FILT_STEP / |
| WIENER_FILT_STEP / WIENER_FILT_STEP / WIENER_FILT_STEP; |
| } |
| } |
| Score = Q - 2 * P; |
| |
| iP = M[wiener_win2 >> 1]; |
| iQ = H[(wiener_win2 >> 1) * wiener_win2 + (wiener_win2 >> 1)]; |
| iScore = iQ - 2 * iP; |
| |
| return Score - iScore; |
| } |
| |
| static AOM_INLINE void finalize_sym_filter(int wiener_win, int32_t *f, |
| InterpKernel fi) { |
| int i; |
| const int wiener_halfwin = (wiener_win >> 1); |
| |
| for (i = 0; i < wiener_halfwin; ++i) { |
| const int64_t dividend = f[i] * WIENER_FILT_STEP; |
| const int64_t divisor = WIENER_TAP_SCALE_FACTOR; |
| // Perform this division with proper rounding rather than truncation |
| if (dividend < 0) { |
| fi[i] = (int16_t)((dividend - (divisor / 2)) / divisor); |
| } else { |
| fi[i] = (int16_t)((dividend + (divisor / 2)) / divisor); |
| } |
| } |
| // Specialize for 7-tap filter |
| if (wiener_win == WIENER_WIN) { |
| fi[0] = CLIP(fi[0], WIENER_FILT_TAP0_MINV, WIENER_FILT_TAP0_MAXV); |
| fi[1] = CLIP(fi[1], WIENER_FILT_TAP1_MINV, WIENER_FILT_TAP1_MAXV); |
| fi[2] = CLIP(fi[2], WIENER_FILT_TAP2_MINV, WIENER_FILT_TAP2_MAXV); |
| } else { |
| fi[2] = CLIP(fi[1], WIENER_FILT_TAP2_MINV, WIENER_FILT_TAP2_MAXV); |
| fi[1] = CLIP(fi[0], WIENER_FILT_TAP1_MINV, WIENER_FILT_TAP1_MAXV); |
| fi[0] = 0; |
| } |
| // Satisfy filter constraints |
| fi[WIENER_WIN - 1] = fi[0]; |
| fi[WIENER_WIN - 2] = fi[1]; |
| fi[WIENER_WIN - 3] = fi[2]; |
| // The central element has an implicit +WIENER_FILT_STEP |
| fi[3] = -2 * (fi[0] + fi[1] + fi[2]); |
| } |
| |
| static int count_wiener_bits(int wiener_win, WienerInfo *wiener_info, |
| WienerInfo *ref_wiener_info) { |
| int bits = 0; |
| if (wiener_win == WIENER_WIN) |
| bits += aom_count_primitive_refsubexpfin( |
| WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1, |
| WIENER_FILT_TAP0_SUBEXP_K, |
| ref_wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV, |
| wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV); |
| bits += aom_count_primitive_refsubexpfin( |
| WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1, |
| WIENER_FILT_TAP1_SUBEXP_K, |
| ref_wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV, |
| wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV); |
| bits += aom_count_primitive_refsubexpfin( |
| WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1, |
| WIENER_FILT_TAP2_SUBEXP_K, |
| ref_wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV, |
| wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV); |
| if (wiener_win == WIENER_WIN) |
| bits += aom_count_primitive_refsubexpfin( |
| WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1, |
| WIENER_FILT_TAP0_SUBEXP_K, |
| ref_wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV, |
| wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV); |
| bits += aom_count_primitive_refsubexpfin( |
| WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1, |
| WIENER_FILT_TAP1_SUBEXP_K, |
| ref_wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV, |
| wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV); |
| bits += aom_count_primitive_refsubexpfin( |
| WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1, |
| WIENER_FILT_TAP2_SUBEXP_K, |
| ref_wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV, |
| wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV); |
| return bits; |
| } |
| |
| #define USE_WIENER_REFINEMENT_SEARCH 1 |
| static int64_t finer_tile_search_wiener(const RestSearchCtxt *rsc, |
| const RestorationTileLimits *limits, |
| const AV1PixelRect *tile, |
| RestorationUnitInfo *rui, |
| int wiener_win) { |
| const int plane_off = (WIENER_WIN - wiener_win) >> 1; |
| int64_t err = try_restoration_unit(rsc, limits, tile, rui); |
| #if USE_WIENER_REFINEMENT_SEARCH |
| int64_t err2; |
| int tap_min[] = { WIENER_FILT_TAP0_MINV, WIENER_FILT_TAP1_MINV, |
| WIENER_FILT_TAP2_MINV }; |
| int tap_max[] = { WIENER_FILT_TAP0_MAXV, WIENER_FILT_TAP1_MAXV, |
| WIENER_FILT_TAP2_MAXV }; |
| |
| WienerInfo *plane_wiener = &rui->wiener_info; |
| |
| // printf("err pre = %"PRId64"\n", err); |
| const int start_step = 4; |
| for (int s = start_step; s >= 1; s >>= 1) { |
| for (int p = plane_off; p < WIENER_HALFWIN; ++p) { |
| int skip = 0; |
| do { |
| if (plane_wiener->hfilter[p] - s >= tap_min[p]) { |
| plane_wiener->hfilter[p] -= s; |
| plane_wiener->hfilter[WIENER_WIN - p - 1] -= s; |
| plane_wiener->hfilter[WIENER_HALFWIN] += 2 * s; |
| err2 = try_restoration_unit(rsc, limits, tile, rui); |
| if (err2 > err) { |
| plane_wiener->hfilter[p] += s; |
| plane_wiener->hfilter[WIENER_WIN - p - 1] += s; |
| plane_wiener->hfilter[WIENER_HALFWIN] -= 2 * s; |
| } else { |
| err = err2; |
| skip = 1; |
| // At the highest step size continue moving in the same direction |
| if (s == start_step) continue; |
| } |
| } |
| break; |
| } while (1); |
| if (skip) break; |
| do { |
| if (plane_wiener->hfilter[p] + s <= tap_max[p]) { |
| plane_wiener->hfilter[p] += s; |
| plane_wiener->hfilter[WIENER_WIN - p - 1] += s; |
| plane_wiener->hfilter[WIENER_HALFWIN] -= 2 * s; |
| err2 = try_restoration_unit(rsc, limits, tile, rui); |
| if (err2 > err) { |
| plane_wiener->hfilter[p] -= s; |
| plane_wiener->hfilter[WIENER_WIN - p - 1] -= s; |
| plane_wiener->hfilter[WIENER_HALFWIN] += 2 * s; |
| } else { |
| err = err2; |
| // At the highest step size continue moving in the same direction |
| if (s == start_step) continue; |
| } |
| } |
| break; |
| } while (1); |
| } |
| for (int p = plane_off; p < WIENER_HALFWIN; ++p) { |
| int skip = 0; |
| do { |
| if (plane_wiener->vfilter[p] - s >= tap_min[p]) { |
| plane_wiener->vfilter[p] -= s; |
| plane_wiener->vfilter[WIENER_WIN - p - 1] -= s; |
| plane_wiener->vfilter[WIENER_HALFWIN] += 2 * s; |
| err2 = try_restoration_unit(rsc, limits, tile, rui); |
| if (err2 > err) { |
| plane_wiener->vfilter[p] += s; |
| plane_wiener->vfilter[WIENER_WIN - p - 1] += s; |
| plane_wiener->vfilter[WIENER_HALFWIN] -= 2 * s; |
| } else { |
| err = err2; |
| skip = 1; |
| // At the highest step size continue moving in the same direction |
| if (s == start_step) continue; |
| } |
| } |
| break; |
| } while (1); |
| if (skip) break; |
| do { |
| if (plane_wiener->vfilter[p] + s <= tap_max[p]) { |
| plane_wiener->vfilter[p] += s; |
| plane_wiener->vfilter[WIENER_WIN - p - 1] += s; |
| plane_wiener->vfilter[WIENER_HALFWIN] -= 2 * s; |
| err2 = try_restoration_unit(rsc, limits, tile, rui); |
| if (err2 > err) { |
| plane_wiener->vfilter[p] -= s; |
| plane_wiener->vfilter[WIENER_WIN - p - 1] -= s; |
| plane_wiener->vfilter[WIENER_HALFWIN] += 2 * s; |
| } else { |
| err = err2; |
| // At the highest step size continue moving in the same direction |
| if (s == start_step) continue; |
| } |
| } |
| break; |
| } while (1); |
| } |
| } |
| // printf("err post = %"PRId64"\n", err); |
| #endif // USE_WIENER_REFINEMENT_SEARCH |
| return err; |
| } |
| |
| static AOM_INLINE void search_wiener(const RestorationTileLimits *limits, |
| const AV1PixelRect *tile_rect, |
| int rest_unit_idx, void *priv, |
| int32_t *tmpbuf, |
| RestorationLineBuffers *rlbs) { |
| (void)tmpbuf; |
| (void)rlbs; |
| RestSearchCtxt *rsc = (RestSearchCtxt *)priv; |
| RestUnitSearchInfo *rusi = &rsc->rusi[rest_unit_idx]; |
| |
| const MACROBLOCK *const x = rsc->x; |
| const int64_t bits_none = x->wiener_restore_cost[0]; |
| |
| // Skip Wiener search for low variance contents |
| if (rsc->sf->lpf_sf.prune_wiener_based_on_src_var) { |
| const int scale[3] = { 0, 1, 2 }; |
| // Obtain the normalized Qscale |
| const int qs = av1_dc_quant_QTX(rsc->cm->base_qindex, 0, |
| rsc->cm->seq_params.bit_depth) >> |
| 3; |
| // Derive threshold as sqr(normalized Qscale) * scale / 16, |
| const uint64_t thresh = |
| (qs * qs * scale[rsc->sf->lpf_sf.prune_wiener_based_on_src_var]) >> 4; |
| const int highbd = rsc->cm->seq_params.use_highbitdepth; |
| const uint64_t src_var = |
| var_restoration_unit(limits, rsc->src, rsc->plane, highbd); |
| // Do not perform Wiener search if source variance is lower than threshold |
| // or if the reconstruction error is zero |
| int prune_wiener = (src_var < thresh) || (rusi->sse[RESTORE_NONE] == 0); |
| if (prune_wiener) { |
| rsc->bits += bits_none; |
| rsc->sse += rusi->sse[RESTORE_NONE]; |
| rusi->best_rtype[RESTORE_WIENER - 1] = RESTORE_NONE; |
| rusi->sse[RESTORE_WIENER] = INT64_MAX; |
| if (rsc->sf->lpf_sf.prune_sgr_based_on_wiener == 2) |
| rusi->skip_sgr_eval = 1; |
| return; |
| } |
| } |
| |
| const int wiener_win = |
| (rsc->plane == AOM_PLANE_Y) ? WIENER_WIN : WIENER_WIN_CHROMA; |
| |
| int reduced_wiener_win = wiener_win; |
| if (rsc->sf->lpf_sf.reduce_wiener_window_size) { |
| reduced_wiener_win = |
| (rsc->plane == AOM_PLANE_Y) ? WIENER_WIN_REDUCED : WIENER_WIN_CHROMA; |
| } |
| |
| int64_t M[WIENER_WIN2]; |
| int64_t H[WIENER_WIN2 * WIENER_WIN2]; |
| int32_t vfilter[WIENER_WIN], hfilter[WIENER_WIN]; |
| |
| #if CONFIG_AV1_HIGHBITDEPTH |
| const AV1_COMMON *const cm = rsc->cm; |
| if (cm->seq_params.use_highbitdepth) { |
| av1_compute_stats_highbd(reduced_wiener_win, rsc->dgd_buffer, |
| rsc->src_buffer, limits->h_start, limits->h_end, |
| limits->v_start, limits->v_end, rsc->dgd_stride, |
| rsc->src_stride, M, H, cm->seq_params.bit_depth); |
| } else { |
| av1_compute_stats(reduced_wiener_win, rsc->dgd_buffer, rsc->src_buffer, |
| limits->h_start, limits->h_end, limits->v_start, |
| limits->v_end, rsc->dgd_stride, rsc->src_stride, M, H); |
| } |
| #else |
| av1_compute_stats(reduced_wiener_win, rsc->dgd_buffer, rsc->src_buffer, |
| limits->h_start, limits->h_end, limits->v_start, |
| limits->v_end, rsc->dgd_stride, rsc->src_stride, M, H); |
| #endif |
| |
| if (!wiener_decompose_sep_sym(reduced_wiener_win, M, H, vfilter, hfilter)) { |
| rsc->bits += bits_none; |
| rsc->sse += rusi->sse[RESTORE_NONE]; |
| rusi->best_rtype[RESTORE_WIENER - 1] = RESTORE_NONE; |
| rusi->sse[RESTORE_WIENER] = INT64_MAX; |
| if (rsc->sf->lpf_sf.prune_sgr_based_on_wiener == 2) rusi->skip_sgr_eval = 1; |
| return; |
| } |
| |
| RestorationUnitInfo rui; |
| memset(&rui, 0, sizeof(rui)); |
| rui.restoration_type = RESTORE_WIENER; |
| finalize_sym_filter(reduced_wiener_win, vfilter, rui.wiener_info.vfilter); |
| finalize_sym_filter(reduced_wiener_win, hfilter, rui.wiener_info.hfilter); |
| |
| // Filter score computes the value of the function x'*A*x - x'*b for the |
| // learned filter and compares it against identity filer. If there is no |
| // reduction in the function, the filter is reverted back to identity |
| if (compute_score(reduced_wiener_win, M, H, rui.wiener_info.vfilter, |
| rui.wiener_info.hfilter) > 0) { |
| rsc->bits += bits_none; |
| rsc->sse += rusi->sse[RESTORE_NONE]; |
| rusi->best_rtype[RESTORE_WIENER - 1] = RESTORE_NONE; |
| rusi->sse[RESTORE_WIENER] = INT64_MAX; |
| if (rsc->sf->lpf_sf.prune_sgr_based_on_wiener == 2) rusi->skip_sgr_eval = 1; |
| return; |
| } |
| |
| aom_clear_system_state(); |
| |
| rusi->sse[RESTORE_WIENER] = finer_tile_search_wiener( |
| rsc, limits, tile_rect, &rui, reduced_wiener_win); |
| rusi->wiener = rui.wiener_info; |
| |
| if (reduced_wiener_win != WIENER_WIN) { |
| assert(rui.wiener_info.vfilter[0] == 0 && |
| rui.wiener_info.vfilter[WIENER_WIN - 1] == 0); |
| assert(rui.wiener_info.hfilter[0] == 0 && |
| rui.wiener_info.hfilter[WIENER_WIN - 1] == 0); |
| } |
| |
| const int64_t bits_wiener = |
| x->wiener_restore_cost[1] + |
| (count_wiener_bits(wiener_win, &rusi->wiener, &rsc->wiener) |
| << AV1_PROB_COST_SHIFT); |
| |
| double cost_none = |
| RDCOST_DBL(x->rdmult, bits_none >> 4, rusi->sse[RESTORE_NONE]); |
| double cost_wiener = |
| RDCOST_DBL(x->rdmult, bits_wiener >> 4, rusi->sse[RESTORE_WIENER]); |
| |
| RestorationType rtype = |
| (cost_wiener < cost_none) ? RESTORE_WIENER : RESTORE_NONE; |
| rusi->best_rtype[RESTORE_WIENER - 1] = rtype; |
| |
| // Set 'skip_sgr_eval' based on rdcost ratio of RESTORE_WIENER and |
| // RESTORE_NONE or based on best_rtype |
| if (rsc->sf->lpf_sf.prune_sgr_based_on_wiener == 1) { |
| rusi->skip_sgr_eval = cost_wiener > (1.01 * cost_none); |
| } else if (rsc->sf->lpf_sf.prune_sgr_based_on_wiener == 2) { |
| rusi->skip_sgr_eval = rusi->best_rtype[RESTORE_WIENER - 1] == RESTORE_NONE; |
| } |
| |
| rsc->sse += rusi->sse[rtype]; |
| rsc->bits += (cost_wiener < cost_none) ? bits_wiener : bits_none; |
| if (cost_wiener < cost_none) rsc->wiener = rusi->wiener; |
| } |
| |
| static AOM_INLINE void search_norestore(const RestorationTileLimits *limits, |
| const AV1PixelRect *tile_rect, |
| int rest_unit_idx, void *priv, |
| int32_t *tmpbuf, |
| RestorationLineBuffers *rlbs) { |
| (void)tile_rect; |
| (void)tmpbuf; |
| (void)rlbs; |
| |
| RestSearchCtxt *rsc = (RestSearchCtxt *)priv; |
| RestUnitSearchInfo *rusi = &rsc->rusi[rest_unit_idx]; |
| |
| const int highbd = rsc->cm->seq_params.use_highbitdepth; |
| rusi->sse[RESTORE_NONE] = sse_restoration_unit( |
| limits, rsc->src, &rsc->cm->cur_frame->buf, rsc->plane, highbd); |
| |
| rsc->sse += rusi->sse[RESTORE_NONE]; |
| } |
| |
| static AOM_INLINE void search_switchable(const RestorationTileLimits *limits, |
| const AV1PixelRect *tile_rect, |
| int rest_unit_idx, void *priv, |
| int32_t *tmpbuf, |
| RestorationLineBuffers *rlbs) { |
| (void)limits; |
| (void)tile_rect; |
| (void)tmpbuf; |
| (void)rlbs; |
| RestSearchCtxt *rsc = (RestSearchCtxt *)priv; |
| RestUnitSearchInfo *rusi = &rsc->rusi[rest_unit_idx]; |
| |
| const MACROBLOCK *const x = rsc->x; |
| |
| const int wiener_win = |
| (rsc->plane == AOM_PLANE_Y) ? WIENER_WIN : WIENER_WIN_CHROMA; |
| |
| double best_cost = 0; |
| int64_t best_bits = 0; |
| RestorationType best_rtype = RESTORE_NONE; |
| |
| for (RestorationType r = 0; r < RESTORE_SWITCHABLE_TYPES; ++r) { |
| // Check for the condition that wiener or sgrproj search could not |
| // find a solution or the solution was worse than RESTORE_NONE. |
| // In either case the best_rtype will be set as RESTORE_NONE. These |
| // should be skipped from the test below. |
| if (r > RESTORE_NONE) { |
| if (rusi->best_rtype[r - 1] == RESTORE_NONE) continue; |
| } |
| |
| const int64_t sse = rusi->sse[r]; |
| int64_t coeff_pcost = 0; |
| switch (r) { |
| case RESTORE_NONE: coeff_pcost = 0; break; |
| case RESTORE_WIENER: |
| coeff_pcost = |
| count_wiener_bits(wiener_win, &rusi->wiener, &rsc->wiener); |
| break; |
| case RESTORE_SGRPROJ: |
| coeff_pcost = count_sgrproj_bits(&rusi->sgrproj, &rsc->sgrproj); |
| break; |
| default: assert(0); break; |
| } |
| const int64_t coeff_bits = coeff_pcost << AV1_PROB_COST_SHIFT; |
| const int64_t bits = x->switchable_restore_cost[r] + coeff_bits; |
| double cost = RDCOST_DBL(x->rdmult, bits >> 4, sse); |
| if (r == RESTORE_SGRPROJ && rusi->sgrproj.ep < 10) |
| cost *= |
| (1 + DUAL_SGR_PENALTY_MULT * rsc->sf->lpf_sf.dual_sgr_penalty_level); |
| if (r == 0 || cost < best_cost) { |
| best_cost = cost; |
| best_bits = bits; |
| best_rtype = r; |
| } |
| } |
| |
| rusi->best_rtype[RESTORE_SWITCHABLE - 1] = best_rtype; |
| |
| rsc->sse += rusi->sse[best_rtype]; |
| rsc->bits += best_bits; |
| if (best_rtype == RESTORE_WIENER) rsc->wiener = rusi->wiener; |
| if (best_rtype == RESTORE_SGRPROJ) rsc->sgrproj = rusi->sgrproj; |
| } |
| |
| static AOM_INLINE void copy_unit_info(RestorationType frame_rtype, |
| const RestUnitSearchInfo *rusi, |
| RestorationUnitInfo *rui) { |
| assert(frame_rtype > 0); |
| rui->restoration_type = rusi->best_rtype[frame_rtype - 1]; |
| if (rui->restoration_type == RESTORE_WIENER) |
| rui->wiener_info = rusi->wiener; |
| else |
| rui->sgrproj_info = rusi->sgrproj; |
| } |
| |
| static double search_rest_type(RestSearchCtxt *rsc, RestorationType rtype) { |
| static const rest_unit_visitor_t funs[RESTORE_TYPES] = { |
| search_norestore, search_wiener, search_sgrproj, search_switchable |
| }; |
| |
| reset_rsc(rsc); |
| rsc_on_tile(rsc); |
| |
| av1_foreach_rest_unit_in_plane(rsc->cm, rsc->plane, funs[rtype], rsc, |
| &rsc->tile_rect, rsc->cm->rst_tmpbuf, NULL); |
| return RDCOST_DBL(rsc->x->rdmult, rsc->bits >> 4, rsc->sse); |
| } |
| |
| static int rest_tiles_in_plane(const AV1_COMMON *cm, int plane) { |
| const RestorationInfo *rsi = &cm->rst_info[plane]; |
| return rsi->units_per_tile; |
| } |
| |
| void av1_pick_filter_restoration(const YV12_BUFFER_CONFIG *src, AV1_COMP *cpi) { |
| AV1_COMMON *const cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| assert(!cm->all_lossless); |
| |
| int ntiles[2]; |
| for (int is_uv = 0; is_uv < 2; ++is_uv) |
| ntiles[is_uv] = rest_tiles_in_plane(cm, is_uv); |
| |
| assert(ntiles[1] <= ntiles[0]); |
| RestUnitSearchInfo *rusi = |
| (RestUnitSearchInfo *)aom_memalign(16, sizeof(*rusi) * ntiles[0]); |
| |
| // If the restoration unit dimensions are not multiples of |
| // rsi->restoration_unit_size then some elements of the rusi array may be |
| // left uninitialised when we reach copy_unit_info(...). This is not a |
| // problem, as these elements are ignored later, but in order to quiet |
| // Valgrind's warnings we initialise the array below. |
| memset(rusi, 0, sizeof(*rusi) * ntiles[0]); |
| cpi->td.mb.rdmult = cpi->rd.RDMULT; |
| |
| RestSearchCtxt rsc; |
| const int plane_start = AOM_PLANE_Y; |
| const int plane_end = num_planes > 1 ? AOM_PLANE_V : AOM_PLANE_Y; |
| for (int plane = plane_start; plane <= plane_end; ++plane) { |
| init_rsc(src, &cpi->common, &cpi->td.mb, &cpi->sf, plane, rusi, |
| &cpi->trial_frame_rst, &rsc); |
| |
| const int plane_ntiles = ntiles[plane > 0]; |
| const RestorationType num_rtypes = |
| (plane_ntiles > 1) ? RESTORE_TYPES : RESTORE_SWITCHABLE_TYPES; |
| |
| double best_cost = 0; |
| RestorationType best_rtype = RESTORE_NONE; |
| |
| const int highbd = rsc.cm->seq_params.use_highbitdepth; |
| if (!cpi->sf.lpf_sf.disable_loop_restoration_chroma || !plane) { |
| av1_extend_frame(rsc.dgd_buffer, rsc.plane_width, rsc.plane_height, |
| rsc.dgd_stride, RESTORATION_BORDER, RESTORATION_BORDER, |
| highbd); |
| |
| for (RestorationType r = 0; r < num_rtypes; ++r) { |
| if ((force_restore_type != RESTORE_TYPES) && (r != RESTORE_NONE) && |
| (r != force_restore_type)) |
| continue; |
| |
| double cost = search_rest_type(&rsc, r); |
| |
| if (r == 0 || cost < best_cost) { |
| best_cost = cost; |
| best_rtype = r; |
| } |
| } |
| } |
| |
| cm->rst_info[plane].frame_restoration_type = best_rtype; |
| if (force_restore_type != RESTORE_TYPES) |
| assert(best_rtype == force_restore_type || best_rtype == RESTORE_NONE); |
| |
| if (best_rtype != RESTORE_NONE) { |
| for (int u = 0; u < plane_ntiles; ++u) { |
| copy_unit_info(best_rtype, &rusi[u], &cm->rst_info[plane].unit_info[u]); |
| } |
| } |
| } |
| |
| aom_free(rusi); |
| } |