blob: 6112f7499756e70cf29bf07c43eae1f5cc56dcc2 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <stdlib.h>
#include <emmintrin.h>
#include <tmmintrin.h>
#include "./aom_config.h"
#include "aom/aom_integer.h"
#include "aom_ports/mem.h"
#include "aom_dsp/aom_filter.h"
// Half pixel shift
#define HALF_PIXEL_OFFSET (BIL_SUBPEL_SHIFTS / 2)
/*****************************************************************************
* Horizontal additions
*****************************************************************************/
static INLINE int32_t hsum_epi32_si32(__m128i v_d) {
v_d = _mm_hadd_epi32(v_d, v_d);
v_d = _mm_hadd_epi32(v_d, v_d);
return _mm_cvtsi128_si32(v_d);
}
static INLINE int64_t hsum_epi64_si64(__m128i v_q) {
v_q = _mm_add_epi64(v_q, _mm_srli_si128(v_q, 8));
#if ARCH_X86_64
return _mm_cvtsi128_si64(v_q);
#else
{
int64_t tmp;
_mm_storel_epi64((__m128i *)&tmp, v_q);
return tmp;
}
#endif
}
#if CONFIG_AOM_HIGHBITDEPTH
static INLINE int64_t hsum_epi32_si64(__m128i v_d) {
const __m128i v_sign_d = _mm_cmplt_epi32(v_d, _mm_setzero_si128());
const __m128i v_0_q = _mm_unpacklo_epi32(v_d, v_sign_d);
const __m128i v_1_q = _mm_unpackhi_epi32(v_d, v_sign_d);
return hsum_epi64_si64(_mm_add_epi64(v_0_q, v_1_q));
}
#endif // CONFIG_AOM_HIGHBITDEPTH
static INLINE uint32_t calc_masked_variance(__m128i v_sum_d, __m128i v_sse_q,
uint32_t *sse, const int w,
const int h) {
int64_t sum64;
uint64_t sse64;
// Horizontal sum
sum64 = hsum_epi32_si32(v_sum_d);
sse64 = hsum_epi64_si64(v_sse_q);
sum64 = (sum64 >= 0) ? sum64 : -sum64;
// Round
sum64 = ROUND_POWER_OF_TWO(sum64, 6);
sse64 = ROUND_POWER_OF_TWO(sse64, 12);
// Store the SSE
*sse = (uint32_t)sse64;
// Compute the variance
return *sse - (uint32_t)((sum64 * sum64) / (w * h));
}
/*****************************************************************************
* n*16 Wide versions
*****************************************************************************/
static INLINE unsigned int masked_variancewxh_ssse3(
const uint8_t *a, int a_stride, const uint8_t *b, int b_stride,
const uint8_t *m, int m_stride, int w, int h, unsigned int *sse) {
int ii, jj;
const __m128i v_zero = _mm_setzero_si128();
__m128i v_sum_d = _mm_setzero_si128();
__m128i v_sse_q = _mm_setzero_si128();
assert((w % 16) == 0);
for (ii = 0; ii < h; ii++) {
for (jj = 0; jj < w; jj += 16) {
// Load inputs - 8 bits
const __m128i v_a_b = _mm_loadu_si128((const __m128i *)(a + jj));
const __m128i v_b_b = _mm_loadu_si128((const __m128i *)(b + jj));
const __m128i v_m_b = _mm_loadu_si128((const __m128i *)(m + jj));
// Unpack to 16 bits - still containing max 8 bits
const __m128i v_a0_w = _mm_unpacklo_epi8(v_a_b, v_zero);
const __m128i v_b0_w = _mm_unpacklo_epi8(v_b_b, v_zero);
const __m128i v_m0_w = _mm_unpacklo_epi8(v_m_b, v_zero);
const __m128i v_a1_w = _mm_unpackhi_epi8(v_a_b, v_zero);
const __m128i v_b1_w = _mm_unpackhi_epi8(v_b_b, v_zero);
const __m128i v_m1_w = _mm_unpackhi_epi8(v_m_b, v_zero);
// Difference: [-255, 255]
const __m128i v_d0_w = _mm_sub_epi16(v_a0_w, v_b0_w);
const __m128i v_d1_w = _mm_sub_epi16(v_a1_w, v_b1_w);
// Error - [-255, 255] * [0, 64] = [0xc040, 0x3fc0] => fits in 15 bits
const __m128i v_e0_w = _mm_mullo_epi16(v_d0_w, v_m0_w);
const __m128i v_e0_d = _mm_madd_epi16(v_d0_w, v_m0_w);
const __m128i v_e1_w = _mm_mullo_epi16(v_d1_w, v_m1_w);
const __m128i v_e1_d = _mm_madd_epi16(v_d1_w, v_m1_w);
// Squared error - using madd it's max (15 bits * 15 bits) * 2 = 31 bits
const __m128i v_se0_d = _mm_madd_epi16(v_e0_w, v_e0_w);
const __m128i v_se1_d = _mm_madd_epi16(v_e1_w, v_e1_w);
// Sum of v_se{0,1}_d - 31 bits + 31 bits = 32 bits
const __m128i v_se_d = _mm_add_epi32(v_se0_d, v_se1_d);
// Unpack Squared error to 64 bits
const __m128i v_se_lo_q = _mm_unpacklo_epi32(v_se_d, v_zero);
const __m128i v_se_hi_q = _mm_unpackhi_epi32(v_se_d, v_zero);
// Accumulate
v_sum_d = _mm_add_epi32(v_sum_d, v_e0_d);
v_sum_d = _mm_add_epi32(v_sum_d, v_e1_d);
v_sse_q = _mm_add_epi64(v_sse_q, v_se_lo_q);
v_sse_q = _mm_add_epi64(v_sse_q, v_se_hi_q);
}
// Move on to next row
a += a_stride;
b += b_stride;
m += m_stride;
}
return calc_masked_variance(v_sum_d, v_sse_q, sse, w, h);
}
#define MASKED_VARWXH(W, H) \
unsigned int aom_masked_variance##W##x##H##_ssse3( \
const uint8_t *a, int a_stride, const uint8_t *b, int b_stride, \
const uint8_t *m, int m_stride, unsigned int *sse) { \
return masked_variancewxh_ssse3(a, a_stride, b, b_stride, m, m_stride, W, \
H, sse); \
}
MASKED_VARWXH(16, 8)
MASKED_VARWXH(16, 16)
MASKED_VARWXH(16, 32)
MASKED_VARWXH(32, 16)
MASKED_VARWXH(32, 32)
MASKED_VARWXH(32, 64)
MASKED_VARWXH(64, 32)
MASKED_VARWXH(64, 64)
#if CONFIG_EXT_PARTITION
MASKED_VARWXH(64, 128)
MASKED_VARWXH(128, 64)
MASKED_VARWXH(128, 128)
#endif // CONFIG_EXT_PARTITION
/*****************************************************************************
* 8 Wide versions
*****************************************************************************/
static INLINE unsigned int masked_variance8xh_ssse3(
const uint8_t *a, int a_stride, const uint8_t *b, int b_stride,
const uint8_t *m, int m_stride, int h, unsigned int *sse) {
int ii;
const __m128i v_zero = _mm_setzero_si128();
__m128i v_sum_d = _mm_setzero_si128();
__m128i v_sse_q = _mm_setzero_si128();
for (ii = 0; ii < h; ii++) {
// Load inputs - 8 bits
const __m128i v_a_b = _mm_loadl_epi64((const __m128i *)a);
const __m128i v_b_b = _mm_loadl_epi64((const __m128i *)b);
const __m128i v_m_b = _mm_loadl_epi64((const __m128i *)m);
// Unpack to 16 bits - still containing max 8 bits
const __m128i v_a_w = _mm_unpacklo_epi8(v_a_b, v_zero);
const __m128i v_b_w = _mm_unpacklo_epi8(v_b_b, v_zero);
const __m128i v_m_w = _mm_unpacklo_epi8(v_m_b, v_zero);
// Difference: [-255, 255]
const __m128i v_d_w = _mm_sub_epi16(v_a_w, v_b_w);
// Error - [-255, 255] * [0, 64] = [0xc040, 0x3fc0] => fits in 15 bits
const __m128i v_e_w = _mm_mullo_epi16(v_d_w, v_m_w);
const __m128i v_e_d = _mm_madd_epi16(v_d_w, v_m_w);
// Squared error - using madd it's max (15 bits * 15 bits) * 2 = 31 bits
const __m128i v_se_d = _mm_madd_epi16(v_e_w, v_e_w);
// Unpack Squared error to 64 bits
const __m128i v_se_lo_q = _mm_unpacklo_epi32(v_se_d, v_zero);
const __m128i v_se_hi_q = _mm_unpackhi_epi32(v_se_d, v_zero);
// Accumulate
v_sum_d = _mm_add_epi32(v_sum_d, v_e_d);
v_sse_q = _mm_add_epi64(v_sse_q, v_se_lo_q);
v_sse_q = _mm_add_epi64(v_sse_q, v_se_hi_q);
// Move on to next row
a += a_stride;
b += b_stride;
m += m_stride;
}
return calc_masked_variance(v_sum_d, v_sse_q, sse, 8, h);
}
#define MASKED_VAR8XH(H) \
unsigned int aom_masked_variance8x##H##_ssse3( \
const uint8_t *a, int a_stride, const uint8_t *b, int b_stride, \
const uint8_t *m, int m_stride, unsigned int *sse) { \
return masked_variance8xh_ssse3(a, a_stride, b, b_stride, m, m_stride, H, \
sse); \
}
MASKED_VAR8XH(4)
MASKED_VAR8XH(8)
MASKED_VAR8XH(16)
/*****************************************************************************
* 4 Wide versions
*****************************************************************************/
static INLINE unsigned int masked_variance4xh_ssse3(
const uint8_t *a, int a_stride, const uint8_t *b, int b_stride,
const uint8_t *m, int m_stride, int h, unsigned int *sse) {
int ii;
const __m128i v_zero = _mm_setzero_si128();
__m128i v_sum_d = _mm_setzero_si128();
__m128i v_sse_q = _mm_setzero_si128();
assert((h % 2) == 0);
for (ii = 0; ii < h / 2; ii++) {
// Load 2 input rows - 8 bits
const __m128i v_a0_b = _mm_cvtsi32_si128(*(const uint32_t *)a);
const __m128i v_b0_b = _mm_cvtsi32_si128(*(const uint32_t *)b);
const __m128i v_m0_b = _mm_cvtsi32_si128(*(const uint32_t *)m);
const __m128i v_a1_b = _mm_cvtsi32_si128(*(const uint32_t *)(a + a_stride));
const __m128i v_b1_b = _mm_cvtsi32_si128(*(const uint32_t *)(b + b_stride));
const __m128i v_m1_b = _mm_cvtsi32_si128(*(const uint32_t *)(m + m_stride));
// Interleave 2 rows into a single register
const __m128i v_a_b = _mm_unpacklo_epi32(v_a0_b, v_a1_b);
const __m128i v_b_b = _mm_unpacklo_epi32(v_b0_b, v_b1_b);
const __m128i v_m_b = _mm_unpacklo_epi32(v_m0_b, v_m1_b);
// Unpack to 16 bits - still containing max 8 bits
const __m128i v_a_w = _mm_unpacklo_epi8(v_a_b, v_zero);
const __m128i v_b_w = _mm_unpacklo_epi8(v_b_b, v_zero);
const __m128i v_m_w = _mm_unpacklo_epi8(v_m_b, v_zero);
// Difference: [-255, 255]
const __m128i v_d_w = _mm_sub_epi16(v_a_w, v_b_w);
// Error - [-255, 255] * [0, 64] = [0xc040, 0x3fc0] => fits in 15 bits
const __m128i v_e_w = _mm_mullo_epi16(v_d_w, v_m_w);
const __m128i v_e_d = _mm_madd_epi16(v_d_w, v_m_w);
// Squared error - using madd it's max (15 bits * 15 bits) * 2 = 31 bits
const __m128i v_se_d = _mm_madd_epi16(v_e_w, v_e_w);
// Unpack Squared error to 64 bits
const __m128i v_se_lo_q = _mm_unpacklo_epi32(v_se_d, v_zero);
const __m128i v_se_hi_q = _mm_unpackhi_epi32(v_se_d, v_zero);
// Accumulate
v_sum_d = _mm_add_epi32(v_sum_d, v_e_d);
v_sse_q = _mm_add_epi64(v_sse_q, v_se_lo_q);
v_sse_q = _mm_add_epi64(v_sse_q, v_se_hi_q);
// Move on to next 2 row
a += a_stride * 2;
b += b_stride * 2;
m += m_stride * 2;
}
return calc_masked_variance(v_sum_d, v_sse_q, sse, 4, h);
}
#define MASKED_VAR4XH(H) \
unsigned int aom_masked_variance4x##H##_ssse3( \
const uint8_t *a, int a_stride, const uint8_t *b, int b_stride, \
const uint8_t *m, int m_stride, unsigned int *sse) { \
return masked_variance4xh_ssse3(a, a_stride, b, b_stride, m, m_stride, H, \
sse); \
}
MASKED_VAR4XH(4)
MASKED_VAR4XH(8)
#if CONFIG_AOM_HIGHBITDEPTH
// Main calculation for n*8 wide blocks
static INLINE void highbd_masked_variance64_ssse3(
const uint16_t *a, int a_stride, const uint16_t *b, int b_stride,
const uint8_t *m, int m_stride, int w, int h, int64_t *sum, uint64_t *sse) {
int ii, jj;
const __m128i v_zero = _mm_setzero_si128();
__m128i v_sum_d = _mm_setzero_si128();
__m128i v_sse_q = _mm_setzero_si128();
assert((w % 8) == 0);
for (ii = 0; ii < h; ii++) {
for (jj = 0; jj < w; jj += 8) {
// Load inputs - 8 bits
const __m128i v_a_w = _mm_loadu_si128((const __m128i *)(a + jj));
const __m128i v_b_w = _mm_loadu_si128((const __m128i *)(b + jj));
const __m128i v_m_b = _mm_loadl_epi64((const __m128i *)(m + jj));
// Unpack m to 16 bits - still containing max 8 bits
const __m128i v_m_w = _mm_unpacklo_epi8(v_m_b, v_zero);
// Difference: [-4095, 4095]
const __m128i v_d_w = _mm_sub_epi16(v_a_w, v_b_w);
// Error - [-4095, 4095] * [0, 64] => sum of 2 of these fits in 19 bits
const __m128i v_e_d = _mm_madd_epi16(v_d_w, v_m_w);
// Squared error - max (18 bits * 18 bits) = 36 bits (no sign bit)
const __m128i v_absd_w = _mm_abs_epi16(v_d_w);
const __m128i v_dlo_d = _mm_unpacklo_epi16(v_absd_w, v_zero);
const __m128i v_mlo_d = _mm_unpacklo_epi16(v_m_w, v_zero);
const __m128i v_elo_d = _mm_madd_epi16(v_dlo_d, v_mlo_d);
const __m128i v_dhi_d = _mm_unpackhi_epi16(v_absd_w, v_zero);
const __m128i v_mhi_d = _mm_unpackhi_epi16(v_m_w, v_zero);
const __m128i v_ehi_d = _mm_madd_epi16(v_dhi_d, v_mhi_d);
// Square and sum the errors -> 36bits * 4 = 38bits
__m128i v_se0_q, v_se1_q, v_se2_q, v_se3_q, v_se_q, v_elo1_d, v_ehi3_d;
v_se0_q = _mm_mul_epu32(v_elo_d, v_elo_d);
v_elo1_d = _mm_srli_si128(v_elo_d, 4);
v_se1_q = _mm_mul_epu32(v_elo1_d, v_elo1_d);
v_se0_q = _mm_add_epi64(v_se0_q, v_se1_q);
v_se2_q = _mm_mul_epu32(v_ehi_d, v_ehi_d);
v_ehi3_d = _mm_srli_si128(v_ehi_d, 4);
v_se3_q = _mm_mul_epu32(v_ehi3_d, v_ehi3_d);
v_se1_q = _mm_add_epi64(v_se2_q, v_se3_q);
v_se_q = _mm_add_epi64(v_se0_q, v_se1_q);
// Accumulate
v_sum_d = _mm_add_epi32(v_sum_d, v_e_d);
v_sse_q = _mm_add_epi64(v_sse_q, v_se_q);
}
// Move on to next row
a += a_stride;
b += b_stride;
m += m_stride;
}
// Horizontal sum
*sum = hsum_epi32_si64(v_sum_d);
*sse = hsum_epi64_si64(v_sse_q);
// Round
*sum = (*sum >= 0) ? *sum : -*sum;
*sum = ROUND_POWER_OF_TWO(*sum, 6);
*sse = ROUND_POWER_OF_TWO(*sse, 12);
}
// Main calculation for 4 wide blocks
static INLINE void highbd_masked_variance64_4wide_ssse3(
const uint16_t *a, int a_stride, const uint16_t *b, int b_stride,
const uint8_t *m, int m_stride, int h, int64_t *sum, uint64_t *sse) {
int ii;
const __m128i v_zero = _mm_setzero_si128();
__m128i v_sum_d = _mm_setzero_si128();
__m128i v_sse_q = _mm_setzero_si128();
assert((h % 2) == 0);
for (ii = 0; ii < h / 2; ii++) {
// Load 2 input rows - 8 bits
const __m128i v_a0_w = _mm_loadl_epi64((const __m128i *)a);
const __m128i v_b0_w = _mm_loadl_epi64((const __m128i *)b);
const __m128i v_m0_b = _mm_cvtsi32_si128(*(const uint32_t *)m);
const __m128i v_a1_w = _mm_loadl_epi64((const __m128i *)(a + a_stride));
const __m128i v_b1_w = _mm_loadl_epi64((const __m128i *)(b + b_stride));
const __m128i v_m1_b = _mm_cvtsi32_si128(*(const uint32_t *)(m + m_stride));
// Interleave 2 rows into a single register
const __m128i v_a_w = _mm_unpacklo_epi64(v_a0_w, v_a1_w);
const __m128i v_b_w = _mm_unpacklo_epi64(v_b0_w, v_b1_w);
const __m128i v_m_b = _mm_unpacklo_epi32(v_m0_b, v_m1_b);
// Unpack to 16 bits - still containing max 8 bits
const __m128i v_m_w = _mm_unpacklo_epi8(v_m_b, v_zero);
// Difference: [-4095, 4095]
const __m128i v_d_w = _mm_sub_epi16(v_a_w, v_b_w);
// Error - [-4095, 4095] * [0, 64] => fits in 19 bits (incld sign bit)
const __m128i v_e_d = _mm_madd_epi16(v_d_w, v_m_w);
// Squared error - max (18 bits * 18 bits) = 36 bits (no sign bit)
const __m128i v_absd_w = _mm_abs_epi16(v_d_w);
const __m128i v_dlo_d = _mm_unpacklo_epi16(v_absd_w, v_zero);
const __m128i v_mlo_d = _mm_unpacklo_epi16(v_m_w, v_zero);
const __m128i v_elo_d = _mm_madd_epi16(v_dlo_d, v_mlo_d);
const __m128i v_dhi_d = _mm_unpackhi_epi16(v_absd_w, v_zero);
const __m128i v_mhi_d = _mm_unpackhi_epi16(v_m_w, v_zero);
const __m128i v_ehi_d = _mm_madd_epi16(v_dhi_d, v_mhi_d);
// Square and sum the errors -> 36bits * 4 = 38bits
__m128i v_se0_q, v_se1_q, v_se2_q, v_se3_q, v_se_q, v_elo1_d, v_ehi3_d;
v_se0_q = _mm_mul_epu32(v_elo_d, v_elo_d);
v_elo1_d = _mm_srli_si128(v_elo_d, 4);
v_se1_q = _mm_mul_epu32(v_elo1_d, v_elo1_d);
v_se0_q = _mm_add_epi64(v_se0_q, v_se1_q);
v_se2_q = _mm_mul_epu32(v_ehi_d, v_ehi_d);
v_ehi3_d = _mm_srli_si128(v_ehi_d, 4);
v_se3_q = _mm_mul_epu32(v_ehi3_d, v_ehi3_d);
v_se1_q = _mm_add_epi64(v_se2_q, v_se3_q);
v_se_q = _mm_add_epi64(v_se0_q, v_se1_q);
// Accumulate
v_sum_d = _mm_add_epi32(v_sum_d, v_e_d);
v_sse_q = _mm_add_epi64(v_sse_q, v_se_q);
// Move on to next row
a += a_stride * 2;
b += b_stride * 2;
m += m_stride * 2;
}
// Horizontal sum
*sum = hsum_epi32_si32(v_sum_d);
*sse = hsum_epi64_si64(v_sse_q);
// Round
*sum = (*sum >= 0) ? *sum : -*sum;
*sum = ROUND_POWER_OF_TWO(*sum, 6);
*sse = ROUND_POWER_OF_TWO(*sse, 12);
}
static INLINE unsigned int highbd_masked_variancewxh_ssse3(
const uint16_t *a, int a_stride, const uint16_t *b, int b_stride,
const uint8_t *m, int m_stride, int w, int h, unsigned int *sse) {
uint64_t sse64;
int64_t sum64;
if (w == 4)
highbd_masked_variance64_4wide_ssse3(a, a_stride, b, b_stride, m, m_stride,
h, &sum64, &sse64);
else
highbd_masked_variance64_ssse3(a, a_stride, b, b_stride, m, m_stride, w, h,
&sum64, &sse64);
// Store the SSE
*sse = (uint32_t)sse64;
// Compute and return variance
return *sse - (uint32_t)((sum64 * sum64) / (w * h));
}
static INLINE unsigned int highbd_10_masked_variancewxh_ssse3(
const uint16_t *a, int a_stride, const uint16_t *b, int b_stride,
const uint8_t *m, int m_stride, int w, int h, unsigned int *sse) {
uint64_t sse64;
int64_t sum64;
if (w == 4)
highbd_masked_variance64_4wide_ssse3(a, a_stride, b, b_stride, m, m_stride,
h, &sum64, &sse64);
else
highbd_masked_variance64_ssse3(a, a_stride, b, b_stride, m, m_stride, w, h,
&sum64, &sse64);
// Normalise
sum64 = ROUND_POWER_OF_TWO(sum64, 2);
sse64 = ROUND_POWER_OF_TWO(sse64, 4);
// Store the SSE
*sse = (uint32_t)sse64;
// Compute and return variance
return *sse - (uint32_t)((sum64 * sum64) / (w * h));
}
static INLINE unsigned int highbd_12_masked_variancewxh_ssse3(
const uint16_t *a, int a_stride, const uint16_t *b, int b_stride,
const uint8_t *m, int m_stride, int w, int h, unsigned int *sse) {
uint64_t sse64;
int64_t sum64;
if (w == 4)
highbd_masked_variance64_4wide_ssse3(a, a_stride, b, b_stride, m, m_stride,
h, &sum64, &sse64);
else
highbd_masked_variance64_ssse3(a, a_stride, b, b_stride, m, m_stride, w, h,
&sum64, &sse64);
sum64 = ROUND_POWER_OF_TWO(sum64, 4);
sse64 = ROUND_POWER_OF_TWO(sse64, 8);
// Store the SSE
*sse = (uint32_t)sse64;
// Compute and return variance
return *sse - (uint32_t)((sum64 * sum64) / (w * h));
}
#define HIGHBD_MASKED_VARWXH(W, H) \
unsigned int aom_highbd_masked_variance##W##x##H##_ssse3( \
const uint8_t *a8, int a_stride, const uint8_t *b8, int b_stride, \
const uint8_t *m, int m_stride, unsigned int *sse) { \
uint16_t *a = CONVERT_TO_SHORTPTR(a8); \
uint16_t *b = CONVERT_TO_SHORTPTR(b8); \
return highbd_masked_variancewxh_ssse3(a, a_stride, b, b_stride, m, \
m_stride, W, H, sse); \
} \
\
unsigned int aom_highbd_10_masked_variance##W##x##H##_ssse3( \
const uint8_t *a8, int a_stride, const uint8_t *b8, int b_stride, \
const uint8_t *m, int m_stride, unsigned int *sse) { \
uint16_t *a = CONVERT_TO_SHORTPTR(a8); \
uint16_t *b = CONVERT_TO_SHORTPTR(b8); \
return highbd_10_masked_variancewxh_ssse3(a, a_stride, b, b_stride, m, \
m_stride, W, H, sse); \
} \
\
unsigned int aom_highbd_12_masked_variance##W##x##H##_ssse3( \
const uint8_t *a8, int a_stride, const uint8_t *b8, int b_stride, \
const uint8_t *m, int m_stride, unsigned int *sse) { \
uint16_t *a = CONVERT_TO_SHORTPTR(a8); \
uint16_t *b = CONVERT_TO_SHORTPTR(b8); \
return highbd_12_masked_variancewxh_ssse3(a, a_stride, b, b_stride, m, \
m_stride, W, H, sse); \
}
HIGHBD_MASKED_VARWXH(4, 4)
HIGHBD_MASKED_VARWXH(4, 8)
HIGHBD_MASKED_VARWXH(8, 4)
HIGHBD_MASKED_VARWXH(8, 8)
HIGHBD_MASKED_VARWXH(8, 16)
HIGHBD_MASKED_VARWXH(16, 8)
HIGHBD_MASKED_VARWXH(16, 16)
HIGHBD_MASKED_VARWXH(16, 32)
HIGHBD_MASKED_VARWXH(32, 16)
HIGHBD_MASKED_VARWXH(32, 32)
HIGHBD_MASKED_VARWXH(32, 64)
HIGHBD_MASKED_VARWXH(64, 32)
HIGHBD_MASKED_VARWXH(64, 64)
#if CONFIG_EXT_PARTITION
HIGHBD_MASKED_VARWXH(64, 128)
HIGHBD_MASKED_VARWXH(128, 64)
HIGHBD_MASKED_VARWXH(128, 128)
#endif // CONFIG_EXT_PARTITION
#endif
//////////////////////////////////////////////////////////////////////////////
// Sub pixel versions
//////////////////////////////////////////////////////////////////////////////
typedef __m128i (*filter_fn_t)(__m128i v_a_b, __m128i v_b_b,
__m128i v_filter_b);
static INLINE __m128i apply_filter_avg(const __m128i v_a_b, const __m128i v_b_b,
const __m128i v_filter_b) {
(void)v_filter_b;
return _mm_avg_epu8(v_a_b, v_b_b);
}
static INLINE __m128i apply_filter(const __m128i v_a_b, const __m128i v_b_b,
const __m128i v_filter_b) {
const __m128i v_rounding_w = _mm_set1_epi16(1 << (FILTER_BITS - 1));
__m128i v_input_lo_b = _mm_unpacklo_epi8(v_a_b, v_b_b);
__m128i v_input_hi_b = _mm_unpackhi_epi8(v_a_b, v_b_b);
__m128i v_temp0_w = _mm_maddubs_epi16(v_input_lo_b, v_filter_b);
__m128i v_temp1_w = _mm_maddubs_epi16(v_input_hi_b, v_filter_b);
__m128i v_res_lo_w =
_mm_srai_epi16(_mm_add_epi16(v_temp0_w, v_rounding_w), FILTER_BITS);
__m128i v_res_hi_w =
_mm_srai_epi16(_mm_add_epi16(v_temp1_w, v_rounding_w), FILTER_BITS);
return _mm_packus_epi16(v_res_lo_w, v_res_hi_w);
}
// Apply the filter to the contents of the lower half of a and b
static INLINE void apply_filter_lo(const __m128i v_a_lo_b,
const __m128i v_b_lo_b,
const __m128i v_filter_b, __m128i *v_res_w) {
const __m128i v_rounding_w = _mm_set1_epi16(1 << (FILTER_BITS - 1));
__m128i v_input_b = _mm_unpacklo_epi8(v_a_lo_b, v_b_lo_b);
__m128i v_temp0_w = _mm_maddubs_epi16(v_input_b, v_filter_b);
*v_res_w =
_mm_srai_epi16(_mm_add_epi16(v_temp0_w, v_rounding_w), FILTER_BITS);
}
static void sum_and_sse(const __m128i v_a_b, const __m128i v_b_b,
const __m128i v_m_b, __m128i *v_sum_d,
__m128i *v_sse_q) {
const __m128i v_zero = _mm_setzero_si128();
// Unpack to 16 bits - still containing max 8 bits
const __m128i v_a0_w = _mm_unpacklo_epi8(v_a_b, v_zero);
const __m128i v_b0_w = _mm_unpacklo_epi8(v_b_b, v_zero);
const __m128i v_m0_w = _mm_unpacklo_epi8(v_m_b, v_zero);
const __m128i v_a1_w = _mm_unpackhi_epi8(v_a_b, v_zero);
const __m128i v_b1_w = _mm_unpackhi_epi8(v_b_b, v_zero);
const __m128i v_m1_w = _mm_unpackhi_epi8(v_m_b, v_zero);
// Difference: [-255, 255]
const __m128i v_d0_w = _mm_sub_epi16(v_a0_w, v_b0_w);
const __m128i v_d1_w = _mm_sub_epi16(v_a1_w, v_b1_w);
// Error - [-255, 255] * [0, 64] = [0xc040, 0x3fc0] => fits in 15 bits
const __m128i v_e0_w = _mm_mullo_epi16(v_d0_w, v_m0_w);
const __m128i v_e0_d = _mm_madd_epi16(v_d0_w, v_m0_w);
const __m128i v_e1_w = _mm_mullo_epi16(v_d1_w, v_m1_w);
const __m128i v_e1_d = _mm_madd_epi16(v_d1_w, v_m1_w);
// Squared error - using madd it's max (15 bits * 15 bits) * 2 = 31 bits
const __m128i v_se0_d = _mm_madd_epi16(v_e0_w, v_e0_w);
const __m128i v_se1_d = _mm_madd_epi16(v_e1_w, v_e1_w);
// Sum of v_se{0,1}_d - 31 bits + 31 bits = 32 bits
const __m128i v_se_d = _mm_add_epi32(v_se0_d, v_se1_d);
// Unpack Squared error to 64 bits
const __m128i v_se_lo_q = _mm_unpacklo_epi32(v_se_d, v_zero);
const __m128i v_se_hi_q = _mm_unpackhi_epi32(v_se_d, v_zero);
// Accumulate
*v_sum_d = _mm_add_epi32(*v_sum_d, v_e0_d);
*v_sum_d = _mm_add_epi32(*v_sum_d, v_e1_d);
*v_sse_q = _mm_add_epi64(*v_sse_q, v_se_lo_q);
*v_sse_q = _mm_add_epi64(*v_sse_q, v_se_hi_q);
}
// Functions for width (W) >= 16
unsigned int aom_masked_subpel_varWxH_xzero(const uint8_t *src, int src_stride,
int yoffset, const uint8_t *dst,
int dst_stride, const uint8_t *msk,
int msk_stride, unsigned int *sse,
int w, int h,
filter_fn_t filter_fn) {
int i, j;
__m128i v_src0_b, v_src1_b, v_res_b, v_dst_b, v_msk_b;
__m128i v_sum_d = _mm_setzero_si128();
__m128i v_sse_q = _mm_setzero_si128();
const __m128i v_filter_b = _mm_set1_epi16(
(bilinear_filters_2t[yoffset][1] << 8) + bilinear_filters_2t[yoffset][0]);
assert(yoffset < BIL_SUBPEL_SHIFTS);
for (j = 0; j < w; j += 16) {
// Load the first row ready
v_src0_b = _mm_loadu_si128((const __m128i *)(src + j));
// Process 2 rows at a time
for (i = 0; i < h; i += 2) {
// Load the next row apply the filter
v_src1_b = _mm_loadu_si128((const __m128i *)(src + j + src_stride));
v_res_b = filter_fn(v_src0_b, v_src1_b, v_filter_b);
// Load the dst and msk for the variance calculation
v_dst_b = _mm_loadu_si128((const __m128i *)(dst + j));
v_msk_b = _mm_loadu_si128((const __m128i *)(msk + j));
sum_and_sse(v_res_b, v_dst_b, v_msk_b, &v_sum_d, &v_sse_q);
// Load the next row apply the filter
v_src0_b = _mm_loadu_si128((const __m128i *)(src + j + src_stride * 2));
v_res_b = filter_fn(v_src1_b, v_src0_b, v_filter_b);
// Load the dst and msk for the variance calculation
v_dst_b = _mm_loadu_si128((const __m128i *)(dst + j + dst_stride));
v_msk_b = _mm_loadu_si128((const __m128i *)(msk + j + msk_stride));
sum_and_sse(v_res_b, v_dst_b, v_msk_b, &v_sum_d, &v_sse_q);
// Move onto the next block of rows
src += src_stride * 2;
dst += dst_stride * 2;
msk += msk_stride * 2;
}
// Reset to the top of the block
src -= src_stride * h;
dst -= dst_stride * h;
msk -= msk_stride * h;
}
return calc_masked_variance(v_sum_d, v_sse_q, sse, w, h);
}
unsigned int aom_masked_subpel_varWxH_yzero(const uint8_t *src, int src_stride,
int xoffset, const uint8_t *dst,
int dst_stride, const uint8_t *msk,
int msk_stride, unsigned int *sse,
int w, int h,
filter_fn_t filter_fn) {
int i, j;
__m128i v_src0_b, v_src1_b, v_res_b, v_dst_b, v_msk_b;
__m128i v_sum_d = _mm_setzero_si128();
__m128i v_sse_q = _mm_setzero_si128();
const __m128i v_filter_b = _mm_set1_epi16(
(bilinear_filters_2t[xoffset][1] << 8) + bilinear_filters_2t[xoffset][0]);
assert(xoffset < BIL_SUBPEL_SHIFTS);
for (i = 0; i < h; i++) {
for (j = 0; j < w; j += 16) {
// Load this row and one below & apply the filter to them
v_src0_b = _mm_loadu_si128((const __m128i *)(src + j));
v_src1_b = _mm_loadu_si128((const __m128i *)(src + j + 1));
v_res_b = filter_fn(v_src0_b, v_src1_b, v_filter_b);
// Load the dst and msk for the variance calculation
v_dst_b = _mm_loadu_si128((const __m128i *)(dst + j));
v_msk_b = _mm_loadu_si128((const __m128i *)(msk + j));
sum_and_sse(v_res_b, v_dst_b, v_msk_b, &v_sum_d, &v_sse_q);
}
src += src_stride;
dst += dst_stride;
msk += msk_stride;
}
return calc_masked_variance(v_sum_d, v_sse_q, sse, w, h);
}
unsigned int aom_masked_subpel_varWxH_xnonzero_ynonzero(
const uint8_t *src, int src_stride, int xoffset, int yoffset,
const uint8_t *dst, int dst_stride, const uint8_t *msk, int msk_stride,
unsigned int *sse, int w, int h, filter_fn_t xfilter_fn,
filter_fn_t yfilter_fn) {
int i, j;
__m128i v_src0_b, v_src1_b, v_src2_b, v_src3_b;
__m128i v_filtered0_b, v_filtered1_b, v_res_b, v_dst_b, v_msk_b;
__m128i v_sum_d = _mm_setzero_si128();
__m128i v_sse_q = _mm_setzero_si128();
const __m128i v_filterx_b = _mm_set1_epi16(
(bilinear_filters_2t[xoffset][1] << 8) + bilinear_filters_2t[xoffset][0]);
const __m128i v_filtery_b = _mm_set1_epi16(
(bilinear_filters_2t[yoffset][1] << 8) + bilinear_filters_2t[yoffset][0]);
assert(yoffset < BIL_SUBPEL_SHIFTS);
assert(xoffset < BIL_SUBPEL_SHIFTS);
for (j = 0; j < w; j += 16) {
// Load the first row ready
v_src0_b = _mm_loadu_si128((const __m128i *)(src + j));
v_src1_b = _mm_loadu_si128((const __m128i *)(src + j + 1));
v_filtered0_b = xfilter_fn(v_src0_b, v_src1_b, v_filterx_b);
// Process 2 rows at a time
for (i = 0; i < h; i += 2) {
// Load the next row & apply the filter
v_src2_b = _mm_loadu_si128((const __m128i *)(src + src_stride + j));
v_src3_b = _mm_loadu_si128((const __m128i *)(src + src_stride + j + 1));
v_filtered1_b = xfilter_fn(v_src2_b, v_src3_b, v_filterx_b);
// Load the dst and msk for the variance calculation
v_dst_b = _mm_loadu_si128((const __m128i *)(dst + j));
v_msk_b = _mm_loadu_si128((const __m128i *)(msk + j));
// Complete the calculation for this row and add it to the running total
v_res_b = yfilter_fn(v_filtered0_b, v_filtered1_b, v_filtery_b);
sum_and_sse(v_res_b, v_dst_b, v_msk_b, &v_sum_d, &v_sse_q);
// Load the next row & apply the filter
v_src0_b = _mm_loadu_si128((const __m128i *)(src + src_stride * 2 + j));
v_src1_b =
_mm_loadu_si128((const __m128i *)(src + src_stride * 2 + j + 1));
v_filtered0_b = xfilter_fn(v_src0_b, v_src1_b, v_filterx_b);
// Load the dst and msk for the variance calculation
v_dst_b = _mm_loadu_si128((const __m128i *)(dst + dst_stride + j));
v_msk_b = _mm_loadu_si128((const __m128i *)(msk + msk_stride + j));
// Complete the calculation for this row and add it to the running total
v_res_b = yfilter_fn(v_filtered1_b, v_filtered0_b, v_filtery_b);
sum_and_sse(v_res_b, v_dst_b, v_msk_b, &v_sum_d, &v_sse_q);
// Move onto the next block of rows
src += src_stride * 2;
dst += dst_stride * 2;
msk += msk_stride * 2;
}
// Reset to the top of the block
src -= src_stride * h;
dst -= dst_stride * h;
msk -= msk_stride * h;
}
return calc_masked_variance(v_sum_d, v_sse_q, sse, w, h);
}
// Note order in which rows loaded xmm[127:96] = row 1, xmm[95:64] = row 2,
// xmm[63:32] = row 3, xmm[31:0] = row 4
unsigned int aom_masked_subpel_var4xH_xzero(const uint8_t *src, int src_stride,
int yoffset, const uint8_t *dst,
int dst_stride, const uint8_t *msk,
int msk_stride, unsigned int *sse,
int h) {
int i;
__m128i v_src0_b, v_src1_b, v_src2_b, v_src3_b, v_filtered1_w, v_filtered2_w;
__m128i v_dst0_b, v_dst1_b, v_dst2_b, v_dst3_b;
__m128i v_msk0_b, v_msk1_b, v_msk2_b, v_msk3_b, v_res_b;
__m128i v_sum_d = _mm_setzero_si128();
__m128i v_sse_q = _mm_setzero_si128();
__m128i v_filter_b = _mm_set1_epi16((bilinear_filters_2t[yoffset][1] << 8) +
bilinear_filters_2t[yoffset][0]);
assert(yoffset < BIL_SUBPEL_SHIFTS);
// Load the first row of src data ready
v_src0_b = _mm_loadl_epi64((const __m128i *)src);
for (i = 0; i < h; i += 4) {
// Load the rest of the source data for these rows
v_src1_b = _mm_loadl_epi64((const __m128i *)(src + src_stride * 1));
v_src1_b = _mm_unpacklo_epi32(v_src1_b, v_src0_b);
v_src2_b = _mm_loadl_epi64((const __m128i *)(src + src_stride * 2));
v_src3_b = _mm_loadl_epi64((const __m128i *)(src + src_stride * 3));
v_src3_b = _mm_unpacklo_epi32(v_src3_b, v_src2_b);
v_src0_b = _mm_loadl_epi64((const __m128i *)(src + src_stride * 4));
// Load the dst data
v_dst0_b = _mm_cvtsi32_si128(*(const uint32_t *)(dst + dst_stride * 0));
v_dst1_b = _mm_cvtsi32_si128(*(const uint32_t *)(dst + dst_stride * 1));
v_dst0_b = _mm_unpacklo_epi32(v_dst1_b, v_dst0_b);
v_dst2_b = _mm_cvtsi32_si128(*(const uint32_t *)(dst + dst_stride * 2));
v_dst3_b = _mm_cvtsi32_si128(*(const uint32_t *)(dst + dst_stride * 3));
v_dst2_b = _mm_unpacklo_epi32(v_dst3_b, v_dst2_b);
v_dst0_b = _mm_unpacklo_epi64(v_dst2_b, v_dst0_b);
// Load the mask data
v_msk0_b = _mm_cvtsi32_si128(*(const uint32_t *)(msk + msk_stride * 0));
v_msk1_b = _mm_cvtsi32_si128(*(const uint32_t *)(msk + msk_stride * 1));
v_msk0_b = _mm_unpacklo_epi32(v_msk1_b, v_msk0_b);
v_msk2_b = _mm_cvtsi32_si128(*(const uint32_t *)(msk + msk_stride * 2));
v_msk3_b = _mm_cvtsi32_si128(*(const uint32_t *)(msk + msk_stride * 3));
v_msk2_b = _mm_unpacklo_epi32(v_msk3_b, v_msk2_b);
v_msk0_b = _mm_unpacklo_epi64(v_msk2_b, v_msk0_b);
// Apply the y filter
if (yoffset == HALF_PIXEL_OFFSET) {
v_src1_b = _mm_unpacklo_epi64(v_src3_b, v_src1_b);
v_src2_b =
_mm_or_si128(_mm_slli_si128(v_src1_b, 4),
_mm_and_si128(v_src0_b, _mm_setr_epi32(-1, 0, 0, 0)));
v_res_b = _mm_avg_epu8(v_src1_b, v_src2_b);
} else {
v_src2_b =
_mm_or_si128(_mm_slli_si128(v_src1_b, 4),
_mm_and_si128(v_src2_b, _mm_setr_epi32(-1, 0, 0, 0)));
apply_filter_lo(v_src1_b, v_src2_b, v_filter_b, &v_filtered1_w);
v_src2_b =
_mm_or_si128(_mm_slli_si128(v_src3_b, 4),
_mm_and_si128(v_src0_b, _mm_setr_epi32(-1, 0, 0, 0)));
apply_filter_lo(v_src3_b, v_src2_b, v_filter_b, &v_filtered2_w);
v_res_b = _mm_packus_epi16(v_filtered2_w, v_filtered1_w);
}
// Compute the sum and SSE
sum_and_sse(v_res_b, v_dst0_b, v_msk0_b, &v_sum_d, &v_sse_q);
// Move onto the next set of rows
src += src_stride * 4;
dst += dst_stride * 4;
msk += msk_stride * 4;
}
return calc_masked_variance(v_sum_d, v_sse_q, sse, 4, h);
}
// Note order in which rows loaded xmm[127:64] = row 1, xmm[63:0] = row 2
unsigned int aom_masked_subpel_var8xH_xzero(const uint8_t *src, int src_stride,
int yoffset, const uint8_t *dst,
int dst_stride, const uint8_t *msk,
int msk_stride, unsigned int *sse,
int h) {
int i;
__m128i v_src0_b, v_src1_b, v_filtered0_w, v_filtered1_w, v_res_b;
__m128i v_dst_b = _mm_setzero_si128();
__m128i v_msk_b = _mm_setzero_si128();
__m128i v_sum_d = _mm_setzero_si128();
__m128i v_sse_q = _mm_setzero_si128();
__m128i v_filter_b = _mm_set1_epi16((bilinear_filters_2t[yoffset][1] << 8) +
bilinear_filters_2t[yoffset][0]);
assert(yoffset < BIL_SUBPEL_SHIFTS);
// Load the first row of src data ready
v_src0_b = _mm_loadl_epi64((const __m128i *)src);
for (i = 0; i < h; i += 2) {
if (yoffset == HALF_PIXEL_OFFSET) {
// Load the rest of the source data for these rows
v_src1_b = _mm_or_si128(
_mm_slli_si128(v_src0_b, 8),
_mm_loadl_epi64((const __m128i *)(src + src_stride * 1)));
v_src0_b = _mm_or_si128(
_mm_slli_si128(v_src1_b, 8),
_mm_loadl_epi64((const __m128i *)(src + src_stride * 2)));
// Apply the y filter
v_res_b = _mm_avg_epu8(v_src1_b, v_src0_b);
} else {
// Load the data and apply the y filter
v_src1_b = _mm_loadl_epi64((const __m128i *)(src + src_stride * 1));
apply_filter_lo(v_src0_b, v_src1_b, v_filter_b, &v_filtered0_w);
v_src0_b = _mm_loadl_epi64((const __m128i *)(src + src_stride * 2));
apply_filter_lo(v_src1_b, v_src0_b, v_filter_b, &v_filtered1_w);
v_res_b = _mm_packus_epi16(v_filtered1_w, v_filtered0_w);
}
// Load the dst data
v_dst_b = _mm_unpacklo_epi64(
_mm_loadl_epi64((const __m128i *)(dst + dst_stride * 1)),
_mm_loadl_epi64((const __m128i *)(dst + dst_stride * 0)));
// Load the mask data
v_msk_b = _mm_unpacklo_epi64(
_mm_loadl_epi64((const __m128i *)(msk + msk_stride * 1)),
_mm_loadl_epi64((const __m128i *)(msk + msk_stride * 0)));
// Compute the sum and SSE
sum_and_sse(v_res_b, v_dst_b, v_msk_b, &v_sum_d, &v_sse_q);
// Move onto the next set of rows
src += src_stride * 2;
dst += dst_stride * 2;
msk += msk_stride * 2;
}
return calc_masked_variance(v_sum_d, v_sse_q, sse, 8, h);
}
// Note order in which rows loaded xmm[127:96] = row 1, xmm[95:64] = row 2,
// xmm[63:32] = row 3, xmm[31:0] = row 4
unsigned int aom_masked_subpel_var4xH_yzero(const uint8_t *src, int src_stride,
int xoffset, const uint8_t *dst,
int dst_stride, const uint8_t *msk,
int msk_stride, unsigned int *sse,
int h) {
int i;
__m128i v_src0_b, v_src1_b, v_src2_b, v_src3_b, v_filtered0_w, v_filtered2_w;
__m128i v_src0_shift_b, v_src1_shift_b, v_src2_shift_b, v_src3_shift_b;
__m128i v_dst0_b, v_dst1_b, v_dst2_b, v_dst3_b;
__m128i v_msk0_b, v_msk1_b, v_msk2_b, v_msk3_b, v_res_b;
__m128i v_sum_d = _mm_setzero_si128();
__m128i v_sse_q = _mm_setzero_si128();
__m128i v_filter_b = _mm_set1_epi16((bilinear_filters_2t[xoffset][1] << 8) +
bilinear_filters_2t[xoffset][0]);
assert(xoffset < BIL_SUBPEL_SHIFTS);
for (i = 0; i < h; i += 4) {
// Load the src data
v_src0_b = _mm_loadl_epi64((const __m128i *)src);
v_src0_shift_b = _mm_srli_si128(v_src0_b, 1);
v_src1_b = _mm_loadl_epi64((const __m128i *)(src + src_stride * 1));
v_src0_b = _mm_unpacklo_epi32(v_src1_b, v_src0_b);
v_src1_shift_b = _mm_srli_si128(v_src1_b, 1);
v_src2_b = _mm_loadl_epi64((const __m128i *)(src + src_stride * 2));
v_src0_shift_b = _mm_unpacklo_epi32(v_src1_shift_b, v_src0_shift_b);
v_src2_shift_b = _mm_srli_si128(v_src2_b, 1);
v_src3_b = _mm_loadl_epi64((const __m128i *)(src + src_stride * 3));
v_src2_b = _mm_unpacklo_epi32(v_src3_b, v_src2_b);
v_src3_shift_b = _mm_srli_si128(v_src3_b, 1);
v_src2_shift_b = _mm_unpacklo_epi32(v_src3_shift_b, v_src2_shift_b);
// Load the dst data
v_dst0_b = _mm_cvtsi32_si128(*(const uint32_t *)(dst + dst_stride * 0));
v_dst1_b = _mm_cvtsi32_si128(*(const uint32_t *)(dst + dst_stride * 1));
v_dst0_b = _mm_unpacklo_epi32(v_dst1_b, v_dst0_b);
v_dst2_b = _mm_cvtsi32_si128(*(const uint32_t *)(dst + dst_stride * 2));
v_dst3_b = _mm_cvtsi32_si128(*(const uint32_t *)(dst + dst_stride * 3));
v_dst2_b = _mm_unpacklo_epi32(v_dst3_b, v_dst2_b);
v_dst0_b = _mm_unpacklo_epi64(v_dst2_b, v_dst0_b);
// Load the mask data
v_msk0_b = _mm_cvtsi32_si128(*(const uint32_t *)(msk + msk_stride * 0));
v_msk1_b = _mm_cvtsi32_si128(*(const uint32_t *)(msk + msk_stride * 1));
v_msk0_b = _mm_unpacklo_epi32(v_msk1_b, v_msk0_b);
v_msk2_b = _mm_cvtsi32_si128(*(const uint32_t *)(msk + msk_stride * 2));
v_msk3_b = _mm_cvtsi32_si128(*(const uint32_t *)(msk + msk_stride * 3));
v_msk2_b = _mm_unpacklo_epi32(v_msk3_b, v_msk2_b);
v_msk0_b = _mm_unpacklo_epi64(v_msk2_b, v_msk0_b);
// Apply the x filter
if (xoffset == HALF_PIXEL_OFFSET) {
v_src0_b = _mm_unpacklo_epi64(v_src2_b, v_src0_b);
v_src0_shift_b = _mm_unpacklo_epi64(v_src2_shift_b, v_src0_shift_b);
v_res_b = _mm_avg_epu8(v_src0_b, v_src0_shift_b);
} else {
apply_filter_lo(v_src0_b, v_src0_shift_b, v_filter_b, &v_filtered0_w);
apply_filter_lo(v_src2_b, v_src2_shift_b, v_filter_b, &v_filtered2_w);
v_res_b = _mm_packus_epi16(v_filtered2_w, v_filtered0_w);
}
// Compute the sum and SSE
sum_and_sse(v_res_b, v_dst0_b, v_msk0_b, &v_sum_d, &v_sse_q);
// Move onto the next set of rows
src += src_stride * 4;
dst += dst_stride * 4;
msk += msk_stride * 4;
}
return calc_masked_variance(v_sum_d, v_sse_q, sse, 4, h);
}
unsigned int aom_masked_subpel_var8xH_yzero(const uint8_t *src, int src_stride,
int xoffset, const uint8_t *dst,
int dst_stride, const uint8_t *msk,
int msk_stride, unsigned int *sse,
int h) {
int i;
__m128i v_src0_b, v_src1_b, v_filtered0_w, v_filtered1_w;
__m128i v_src0_shift_b, v_src1_shift_b, v_res_b, v_dst_b, v_msk_b;
__m128i v_sum_d = _mm_setzero_si128();
__m128i v_sse_q = _mm_setzero_si128();
__m128i v_filter_b = _mm_set1_epi16((bilinear_filters_2t[xoffset][1] << 8) +
bilinear_filters_2t[xoffset][0]);
assert(xoffset < BIL_SUBPEL_SHIFTS);
for (i = 0; i < h; i += 2) {
// Load the src data
v_src0_b = _mm_loadu_si128((const __m128i *)(src));
v_src0_shift_b = _mm_srli_si128(v_src0_b, 1);
v_src1_b = _mm_loadu_si128((const __m128i *)(src + src_stride));
v_src1_shift_b = _mm_srli_si128(v_src1_b, 1);
// Apply the x filter
if (xoffset == HALF_PIXEL_OFFSET) {
v_src1_b = _mm_unpacklo_epi64(v_src0_b, v_src1_b);
v_src1_shift_b = _mm_unpacklo_epi64(v_src0_shift_b, v_src1_shift_b);
v_res_b = _mm_avg_epu8(v_src1_b, v_src1_shift_b);
} else {
apply_filter_lo(v_src0_b, v_src0_shift_b, v_filter_b, &v_filtered0_w);
apply_filter_lo(v_src1_b, v_src1_shift_b, v_filter_b, &v_filtered1_w);
v_res_b = _mm_packus_epi16(v_filtered0_w, v_filtered1_w);
}
// Load the dst data
v_dst_b = _mm_unpacklo_epi64(
_mm_loadl_epi64((const __m128i *)(dst + dst_stride * 0)),
_mm_loadl_epi64((const __m128i *)(dst + dst_stride * 1)));
// Load the mask data
v_msk_b = _mm_unpacklo_epi64(
_mm_loadl_epi64((const __m128i *)(msk + msk_stride * 0)),
_mm_loadl_epi64((const __m128i *)(msk + msk_stride * 1)));
// Compute the sum and SSE
sum_and_sse(v_res_b, v_dst_b, v_msk_b, &v_sum_d, &v_sse_q);
// Move onto the next set of rows
src += src_stride * 2;
dst += dst_stride * 2;
msk += msk_stride * 2;
}
return calc_masked_variance(v_sum_d, v_sse_q, sse, 8, h);
}
// Note order in which rows loaded xmm[127:96] = row 1, xmm[95:64] = row 2,
// xmm[63:32] = row 3, xmm[31:0] = row 4
unsigned int aom_masked_subpel_var4xH_xnonzero_ynonzero(
const uint8_t *src, int src_stride, int xoffset, int yoffset,
const uint8_t *dst, int dst_stride, const uint8_t *msk, int msk_stride,
unsigned int *sse, int h) {
int i;
__m128i v_src0_b, v_src1_b, v_src2_b, v_src3_b, v_filtered0_w, v_filtered2_w;
__m128i v_src0_shift_b, v_src1_shift_b, v_src2_shift_b, v_src3_shift_b;
__m128i v_dst0_b, v_dst1_b, v_dst2_b, v_dst3_b, v_temp_b;
__m128i v_msk0_b, v_msk1_b, v_msk2_b, v_msk3_b, v_extra_row_b, v_res_b;
__m128i v_xres_b[2];
__m128i v_sum_d = _mm_setzero_si128();
__m128i v_sse_q = _mm_setzero_si128();
__m128i v_filterx_b = _mm_set1_epi16((bilinear_filters_2t[xoffset][1] << 8) +
bilinear_filters_2t[xoffset][0]);
__m128i v_filtery_b = _mm_set1_epi16((bilinear_filters_2t[yoffset][1] << 8) +
bilinear_filters_2t[yoffset][0]);
assert(xoffset < BIL_SUBPEL_SHIFTS);
assert(yoffset < BIL_SUBPEL_SHIFTS);
for (i = 0; i < h; i += 4) {
// Load the src data
v_src0_b = _mm_loadl_epi64((const __m128i *)src);
v_src0_shift_b = _mm_srli_si128(v_src0_b, 1);
v_src1_b = _mm_loadl_epi64((const __m128i *)(src + src_stride * 1));
v_src0_b = _mm_unpacklo_epi32(v_src1_b, v_src0_b);
v_src1_shift_b = _mm_srli_si128(v_src1_b, 1);
v_src2_b = _mm_loadl_epi64((const __m128i *)(src + src_stride * 2));
v_src0_shift_b = _mm_unpacklo_epi32(v_src1_shift_b, v_src0_shift_b);
v_src2_shift_b = _mm_srli_si128(v_src2_b, 1);
v_src3_b = _mm_loadl_epi64((const __m128i *)(src + src_stride * 3));
v_src2_b = _mm_unpacklo_epi32(v_src3_b, v_src2_b);
v_src3_shift_b = _mm_srli_si128(v_src3_b, 1);
v_src2_shift_b = _mm_unpacklo_epi32(v_src3_shift_b, v_src2_shift_b);
// Apply the x filter
if (xoffset == HALF_PIXEL_OFFSET) {
v_src0_b = _mm_unpacklo_epi64(v_src2_b, v_src0_b);
v_src0_shift_b = _mm_unpacklo_epi64(v_src2_shift_b, v_src0_shift_b);
v_xres_b[i == 0 ? 0 : 1] = _mm_avg_epu8(v_src0_b, v_src0_shift_b);
} else {
apply_filter_lo(v_src0_b, v_src0_shift_b, v_filterx_b, &v_filtered0_w);
apply_filter_lo(v_src2_b, v_src2_shift_b, v_filterx_b, &v_filtered2_w);
v_xres_b[i == 0 ? 0 : 1] = _mm_packus_epi16(v_filtered2_w, v_filtered0_w);
}
// Move onto the next set of rows
src += src_stride * 4;
}
// Load one more row to be used in the y filter
v_src0_b = _mm_loadl_epi64((const __m128i *)src);
v_src0_shift_b = _mm_srli_si128(v_src0_b, 1);
// Apply the x filter
if (xoffset == HALF_PIXEL_OFFSET) {
v_extra_row_b = _mm_and_si128(_mm_avg_epu8(v_src0_b, v_src0_shift_b),
_mm_setr_epi32(-1, 0, 0, 0));
} else {
apply_filter_lo(v_src0_b, v_src0_shift_b, v_filterx_b, &v_filtered0_w);
v_extra_row_b =
_mm_and_si128(_mm_packus_epi16(v_filtered0_w, _mm_setzero_si128()),
_mm_setr_epi32(-1, 0, 0, 0));
}
for (i = 0; i < h; i += 4) {
if (h == 8 && i == 0) {
v_temp_b = _mm_or_si128(_mm_slli_si128(v_xres_b[0], 4),
_mm_srli_si128(v_xres_b[1], 12));
} else {
v_temp_b = _mm_or_si128(_mm_slli_si128(v_xres_b[i == 0 ? 0 : 1], 4),
v_extra_row_b);
}
// Apply the y filter
if (yoffset == HALF_PIXEL_OFFSET) {
v_res_b = _mm_avg_epu8(v_xres_b[i == 0 ? 0 : 1], v_temp_b);
} else {
v_res_b = apply_filter(v_xres_b[i == 0 ? 0 : 1], v_temp_b, v_filtery_b);
}
// Load the dst data
v_dst0_b = _mm_cvtsi32_si128(*(const uint32_t *)(dst + dst_stride * 0));
v_dst1_b = _mm_cvtsi32_si128(*(const uint32_t *)(dst + dst_stride * 1));
v_dst0_b = _mm_unpacklo_epi32(v_dst1_b, v_dst0_b);
v_dst2_b = _mm_cvtsi32_si128(*(const uint32_t *)(dst + dst_stride * 2));
v_dst3_b = _mm_cvtsi32_si128(*(const uint32_t *)(dst + dst_stride * 3));
v_dst2_b = _mm_unpacklo_epi32(v_dst3_b, v_dst2_b);
v_dst0_b = _mm_unpacklo_epi64(v_dst2_b, v_dst0_b);
// Load the mask data
v_msk0_b = _mm_cvtsi32_si128(*(const uint32_t *)(msk + msk_stride * 0));
v_msk1_b = _mm_cvtsi32_si128(*(const uint32_t *)(msk + msk_stride * 1));
v_msk0_b = _mm_unpacklo_epi32(v_msk1_b, v_msk0_b);
v_msk2_b = _mm_cvtsi32_si128(*(const uint32_t *)(msk + msk_stride * 2));
v_msk3_b = _mm_cvtsi32_si128(*(const uint32_t *)(msk + msk_stride * 3));
v_msk2_b = _mm_unpacklo_epi32(v_msk3_b, v_msk2_b);
v_msk0_b = _mm_unpacklo_epi64(v_msk2_b, v_msk0_b);
// Compute the sum and SSE
sum_and_sse(v_res_b, v_dst0_b, v_msk0_b, &v_sum_d, &v_sse_q);
// Move onto the next set of rows
dst += dst_stride * 4;
msk += msk_stride * 4;
}
return calc_masked_variance(v_sum_d, v_sse_q, sse, 4, h);
}
unsigned int aom_masked_subpel_var8xH_xnonzero_ynonzero(
const uint8_t *src, int src_stride, int xoffset, int yoffset,
const uint8_t *dst, int dst_stride, const uint8_t *msk, int msk_stride,
unsigned int *sse, int h) {
int i;
__m128i v_src0_b, v_src1_b, v_filtered0_w, v_filtered1_w, v_dst_b, v_msk_b;
__m128i v_src0_shift_b, v_src1_shift_b;
__m128i v_xres0_b, v_xres1_b, v_res_b, v_temp_b;
__m128i v_sum_d = _mm_setzero_si128();
__m128i v_sse_q = _mm_setzero_si128();
__m128i v_filterx_b = _mm_set1_epi16((bilinear_filters_2t[xoffset][1] << 8) +
bilinear_filters_2t[xoffset][0]);
__m128i v_filtery_b = _mm_set1_epi16((bilinear_filters_2t[yoffset][1] << 8) +
bilinear_filters_2t[yoffset][0]);
assert(xoffset < BIL_SUBPEL_SHIFTS);
assert(yoffset < BIL_SUBPEL_SHIFTS);
// Load the first block of src data
v_src0_b = _mm_loadu_si128((const __m128i *)(src));
v_src0_shift_b = _mm_srli_si128(v_src0_b, 1);
v_src1_b = _mm_loadu_si128((const __m128i *)(src + src_stride));
v_src1_shift_b = _mm_srli_si128(v_src1_b, 1);
// Apply the x filter
if (xoffset == HALF_PIXEL_OFFSET) {
v_src1_b = _mm_unpacklo_epi64(v_src0_b, v_src1_b);
v_src1_shift_b = _mm_unpacklo_epi64(v_src0_shift_b, v_src1_shift_b);
v_xres0_b = _mm_avg_epu8(v_src1_b, v_src1_shift_b);
} else {
apply_filter_lo(v_src0_b, v_src0_shift_b, v_filterx_b, &v_filtered0_w);
apply_filter_lo(v_src1_b, v_src1_shift_b, v_filterx_b, &v_filtered1_w);
v_xres0_b = _mm_packus_epi16(v_filtered0_w, v_filtered1_w);
}
for (i = 0; i < h; i += 4) {
// Load the next block of src data
v_src0_b = _mm_loadu_si128((const __m128i *)(src + src_stride * 2));
v_src0_shift_b = _mm_srli_si128(v_src0_b, 1);
v_src1_b = _mm_loadu_si128((const __m128i *)(src + src_stride * 3));
v_src1_shift_b = _mm_srli_si128(v_src1_b, 1);
// Apply the x filter
if (xoffset == HALF_PIXEL_OFFSET) {
v_src1_b = _mm_unpacklo_epi64(v_src0_b, v_src1_b);
v_src1_shift_b = _mm_unpacklo_epi64(v_src0_shift_b, v_src1_shift_b);
v_xres1_b = _mm_avg_epu8(v_src1_b, v_src1_shift_b);
} else {
apply_filter_lo(v_src0_b, v_src0_shift_b, v_filterx_b, &v_filtered0_w);
apply_filter_lo(v_src1_b, v_src1_shift_b, v_filterx_b, &v_filtered1_w);
v_xres1_b = _mm_packus_epi16(v_filtered0_w, v_filtered1_w);
}
// Apply the y filter to the previous block
v_temp_b = _mm_or_si128(_mm_srli_si128(v_xres0_b, 8),
_mm_slli_si128(v_xres1_b, 8));
if (yoffset == HALF_PIXEL_OFFSET) {
v_res_b = _mm_avg_epu8(v_xres0_b, v_temp_b);
} else {
v_res_b = apply_filter(v_xres0_b, v_temp_b, v_filtery_b);
}
// Load the dst data
v_dst_b = _mm_unpacklo_epi64(
_mm_loadl_epi64((const __m128i *)(dst + dst_stride * 0)),
_mm_loadl_epi64((const __m128i *)(dst + dst_stride * 1)));
// Load the mask data
v_msk_b = _mm_unpacklo_epi64(
_mm_loadl_epi64((const __m128i *)(msk + msk_stride * 0)),
_mm_loadl_epi64((const __m128i *)(msk + msk_stride * 1)));
// Compute the sum and SSE
sum_and_sse(v_res_b, v_dst_b, v_msk_b, &v_sum_d, &v_sse_q);
// Load the next block of src data
v_src0_b = _mm_loadu_si128((const __m128i *)(src + src_stride * 4));
v_src0_shift_b = _mm_srli_si128(v_src0_b, 1);
v_src1_b = _mm_loadu_si128((const __m128i *)(src + src_stride * 5));
v_src1_shift_b = _mm_srli_si128(v_src1_b, 1);
// Apply the x filter
if (xoffset == HALF_PIXEL_OFFSET) {
v_src1_b = _mm_unpacklo_epi64(v_src0_b, v_src1_b);
v_src1_shift_b = _mm_unpacklo_epi64(v_src0_shift_b, v_src1_shift_b);
v_xres0_b = _mm_avg_epu8(v_src1_b, v_src1_shift_b);
} else {
apply_filter_lo(v_src0_b, v_src0_shift_b, v_filterx_b, &v_filtered0_w);
apply_filter_lo(v_src1_b, v_src1_shift_b, v_filterx_b, &v_filtered1_w);
v_xres0_b = _mm_packus_epi16(v_filtered0_w, v_filtered1_w);
}
// Apply the y filter to the previous block
v_temp_b = _mm_or_si128(_mm_srli_si128(v_xres1_b, 8),
_mm_slli_si128(v_xres0_b, 8));
if (yoffset == HALF_PIXEL_OFFSET) {
v_res_b = _mm_avg_epu8(v_xres1_b, v_temp_b);
} else {
v_res_b = apply_filter(v_xres1_b, v_temp_b, v_filtery_b);
}
// Load the dst data
v_dst_b = _mm_unpacklo_epi64(
_mm_loadl_epi64((const __m128i *)(dst + dst_stride * 2)),
_mm_loadl_epi64((const __m128i *)(dst + dst_stride * 3)));
// Load the mask data
v_msk_b = _mm_unpacklo_epi64(
_mm_loadl_epi64((const __m128i *)(msk + msk_stride * 2)),
_mm_loadl_epi64((const __m128i *)(msk + msk_stride * 3)));
// Compute the sum and SSE
sum_and_sse(v_res_b, v_dst_b, v_msk_b, &v_sum_d, &v_sse_q);
// Move onto the next set of rows
src += src_stride * 4;
dst += dst_stride * 4;
msk += msk_stride * 4;
}
return calc_masked_variance(v_sum_d, v_sse_q, sse, 8, h);
}
// For W >=16
#define MASK_SUBPIX_VAR_LARGE(W, H) \
unsigned int aom_masked_sub_pixel_variance##W##x##H##_ssse3( \
const uint8_t *src, int src_stride, int xoffset, int yoffset, \
const uint8_t *dst, int dst_stride, const uint8_t *msk, int msk_stride, \
unsigned int *sse) { \
assert(W % 16 == 0); \
if (xoffset == 0) { \
if (yoffset == 0) \
return aom_masked_variance##W##x##H##_ssse3( \
src, src_stride, dst, dst_stride, msk, msk_stride, sse); \
else if (yoffset == HALF_PIXEL_OFFSET) \
return aom_masked_subpel_varWxH_xzero( \
src, src_stride, HALF_PIXEL_OFFSET, dst, dst_stride, msk, \
msk_stride, sse, W, H, apply_filter_avg); \
else \
return aom_masked_subpel_varWxH_xzero(src, src_stride, yoffset, dst, \
dst_stride, msk, msk_stride, \
sse, W, H, apply_filter); \
} else if (yoffset == 0) { \
if (xoffset == HALF_PIXEL_OFFSET) \
return aom_masked_subpel_varWxH_yzero( \
src, src_stride, HALF_PIXEL_OFFSET, dst, dst_stride, msk, \
msk_stride, sse, W, H, apply_filter_avg); \
else \
return aom_masked_subpel_varWxH_yzero(src, src_stride, xoffset, dst, \
dst_stride, msk, msk_stride, \
sse, W, H, apply_filter); \
} else if (xoffset == HALF_PIXEL_OFFSET) { \
if (yoffset == HALF_PIXEL_OFFSET) \
return aom_masked_subpel_varWxH_xnonzero_ynonzero( \
src, src_stride, HALF_PIXEL_OFFSET, HALF_PIXEL_OFFSET, dst, \
dst_stride, msk, msk_stride, sse, W, H, apply_filter_avg, \
apply_filter_avg); \
else \
return aom_masked_subpel_varWxH_xnonzero_ynonzero( \
src, src_stride, HALF_PIXEL_OFFSET, yoffset, dst, dst_stride, msk, \
msk_stride, sse, W, H, apply_filter_avg, apply_filter); \
} else { \
if (yoffset == HALF_PIXEL_OFFSET) \
return aom_masked_subpel_varWxH_xnonzero_ynonzero( \
src, src_stride, xoffset, HALF_PIXEL_OFFSET, dst, dst_stride, msk, \
msk_stride, sse, W, H, apply_filter, apply_filter_avg); \
else \
return aom_masked_subpel_varWxH_xnonzero_ynonzero( \
src, src_stride, xoffset, yoffset, dst, dst_stride, msk, \
msk_stride, sse, W, H, apply_filter, apply_filter); \
} \
}
// For W < 16
#define MASK_SUBPIX_VAR_SMALL(W, H) \
unsigned int aom_masked_sub_pixel_variance##W##x##H##_ssse3( \
const uint8_t *src, int src_stride, int xoffset, int yoffset, \
const uint8_t *dst, int dst_stride, const uint8_t *msk, int msk_stride, \
unsigned int *sse) { \
assert(W == 4 || W == 8); \
if (xoffset == 0 && yoffset == 0) \
return aom_masked_variance##W##x##H##_ssse3( \
src, src_stride, dst, dst_stride, msk, msk_stride, sse); \
else if (xoffset == 0) \
return aom_masked_subpel_var##W##xH_xzero( \
src, src_stride, yoffset, dst, dst_stride, msk, msk_stride, sse, H); \
else if (yoffset == 0) \
return aom_masked_subpel_var##W##xH_yzero( \
src, src_stride, xoffset, dst, dst_stride, msk, msk_stride, sse, H); \
else \
return aom_masked_subpel_var##W##xH_xnonzero_ynonzero( \
src, src_stride, xoffset, yoffset, dst, dst_stride, msk, msk_stride, \
sse, H); \
}
MASK_SUBPIX_VAR_SMALL(4, 4)
MASK_SUBPIX_VAR_SMALL(4, 8)
MASK_SUBPIX_VAR_SMALL(8, 4)
MASK_SUBPIX_VAR_SMALL(8, 8)
MASK_SUBPIX_VAR_SMALL(8, 16)
MASK_SUBPIX_VAR_LARGE(16, 8)
MASK_SUBPIX_VAR_LARGE(16, 16)
MASK_SUBPIX_VAR_LARGE(16, 32)
MASK_SUBPIX_VAR_LARGE(32, 16)
MASK_SUBPIX_VAR_LARGE(32, 32)
MASK_SUBPIX_VAR_LARGE(32, 64)
MASK_SUBPIX_VAR_LARGE(64, 32)
MASK_SUBPIX_VAR_LARGE(64, 64)
#if CONFIG_EXT_PARTITION
MASK_SUBPIX_VAR_LARGE(64, 128)
MASK_SUBPIX_VAR_LARGE(128, 64)
MASK_SUBPIX_VAR_LARGE(128, 128)
#endif // CONFIG_EXT_PARTITION
#if CONFIG_AOM_HIGHBITDEPTH
typedef uint32_t (*highbd_calc_masked_var_t)(__m128i v_sum_d, __m128i v_sse_q,
uint32_t *sse, const int w,
const int h);
typedef unsigned int (*highbd_variance_fn_t)(const uint8_t *a8, int a_stride,
const uint8_t *b8, int b_stride,
const uint8_t *m, int m_stride,
unsigned int *sse);
typedef __m128i (*highbd_filter_fn_t)(__m128i v_a_w, __m128i v_b_w,
__m128i v_filter_w);
static INLINE __m128i highbd_apply_filter_avg(const __m128i v_a_w,
const __m128i v_b_w,
const __m128i v_filter_w) {
(void)v_filter_w;
return _mm_avg_epu16(v_a_w, v_b_w);
}
static INLINE __m128i highbd_apply_filter(const __m128i v_a_w,
const __m128i v_b_w,
const __m128i v_filter_w) {
const __m128i v_rounding_d = _mm_set1_epi32(1 << (FILTER_BITS - 1));
__m128i v_input_lo_w = _mm_unpacklo_epi16(v_a_w, v_b_w);
__m128i v_input_hi_w = _mm_unpackhi_epi16(v_a_w, v_b_w);
__m128i v_temp0_d = _mm_madd_epi16(v_input_lo_w, v_filter_w);
__m128i v_temp1_d = _mm_madd_epi16(v_input_hi_w, v_filter_w);
__m128i v_res_lo_d =
_mm_srai_epi32(_mm_add_epi32(v_temp0_d, v_rounding_d), FILTER_BITS);
__m128i v_res_hi_d =
_mm_srai_epi32(_mm_add_epi32(v_temp1_d, v_rounding_d), FILTER_BITS);
return _mm_packs_epi32(v_res_lo_d, v_res_hi_d);
}
// Apply the filter to the contents of the lower half of a and b
static INLINE void highbd_apply_filter_lo(const __m128i v_a_lo_w,
const __m128i v_b_lo_w,
const __m128i v_filter_w,
__m128i *v_res_d) {
const __m128i v_rounding_d = _mm_set1_epi32(1 << (FILTER_BITS - 1));
__m128i v_input_w = _mm_unpacklo_epi16(v_a_lo_w, v_b_lo_w);
__m128i v_temp0_d = _mm_madd_epi16(v_input_w, v_filter_w);
*v_res_d =
_mm_srai_epi32(_mm_add_epi32(v_temp0_d, v_rounding_d), FILTER_BITS);
}
static void highbd_sum_and_sse(const __m128i v_a_w, const __m128i v_b_w,
const __m128i v_m_b, __m128i *v_sum_d,
__m128i *v_sse_q) {
const __m128i v_zero = _mm_setzero_si128();
const __m128i v_m_w = _mm_unpacklo_epi8(v_m_b, v_zero);
// Difference: [-2^12, 2^12] => 13 bits (incld sign bit)
const __m128i v_d_w = _mm_sub_epi16(v_a_w, v_b_w);
// Error - [-4095, 4095] * [0, 64] & sum pairs => fits in 19 + 1 bits
const __m128i v_e_d = _mm_madd_epi16(v_d_w, v_m_w);
// Squared error - max (18 bits * 18 bits) = 36 bits (no sign bit)
const __m128i v_absd_w = _mm_abs_epi16(v_d_w);
const __m128i v_dlo_d = _mm_unpacklo_epi16(v_absd_w, v_zero);
const __m128i v_mlo_d = _mm_unpacklo_epi16(v_m_w, v_zero);
const __m128i v_elo_d = _mm_madd_epi16(v_dlo_d, v_mlo_d);
const __m128i v_dhi_d = _mm_unpackhi_epi16(v_absd_w, v_zero);
const __m128i v_mhi_d = _mm_unpackhi_epi16(v_m_w, v_zero);
const __m128i v_ehi_d = _mm_madd_epi16(v_dhi_d, v_mhi_d);
// Square and sum the errors -> 36bits * 4 = 38bits
__m128i v_se0_q, v_se1_q, v_se2_q, v_se3_q, v_se_q, v_elo1_d, v_ehi3_d;
v_se0_q = _mm_mul_epu32(v_elo_d, v_elo_d);
v_elo1_d = _mm_srli_si128(v_elo_d, 4);
v_se1_q = _mm_mul_epu32(v_elo1_d, v_elo1_d);
v_se0_q = _mm_add_epi64(v_se0_q, v_se1_q);
v_se2_q = _mm_mul_epu32(v_ehi_d, v_ehi_d);
v_ehi3_d = _mm_srli_si128(v_ehi_d, 4);
v_se3_q = _mm_mul_epu32(v_ehi3_d, v_ehi3_d);
v_se1_q = _mm_add_epi64(v_se2_q, v_se3_q);
v_se_q = _mm_add_epi64(v_se0_q, v_se1_q);
// Accumulate
*v_sum_d = _mm_add_epi32(*v_sum_d, v_e_d);
*v_sse_q = _mm_add_epi64(*v_sse_q, v_se_q);
}
static INLINE uint32_t highbd_10_calc_masked_variance(
__m128i v_sum_d, __m128i v_sse_q, uint32_t *sse, const int w, const int h) {
int64_t sum64;
uint64_t sse64;
// Horizontal sum
sum64 = hsum_epi32_si32(v_sum_d);
sse64 = hsum_epi64_si64(v_sse_q);
sum64 = (sum64 >= 0) ? sum64 : -sum64;
// Round
sum64 = ROUND_POWER_OF_TWO(sum64, 6);
sse64 = ROUND_POWER_OF_TWO(sse64, 12);
// Normalise
sum64 = ROUND_POWER_OF_TWO(sum64, 2);
sse64 = ROUND_POWER_OF_TWO(sse64, 4);
// Store the SSE
*sse = (uint32_t)sse64;
// Compute the variance
return *sse - (uint32_t)((sum64 * sum64) / (w * h));
}
static INLINE uint32_t highbd_12_calc_masked_variance(
__m128i v_sum_d, __m128i v_sse_q, uint32_t *sse, const int w, const int h) {
int64_t sum64;
uint64_t sse64;
// Horizontal sum
sum64 = hsum_epi32_si64(v_sum_d);
sse64 = hsum_epi64_si64(v_sse_q);
sum64 = (sum64 >= 0) ? sum64 : -sum64;
// Round
sum64 = ROUND_POWER_OF_TWO(sum64, 6);
sse64 = ROUND_POWER_OF_TWO(sse64, 12);
// Normalise
sum64 = ROUND_POWER_OF_TWO(sum64, 4);
sse64 = ROUND_POWER_OF_TWO(sse64, 8);
// Store the SSE
*sse = (uint32_t)sse64;
// Compute the variance
return *sse - (uint32_t)((sum64 * sum64) / (w * h));
}
// High bit depth functions for width (W) >= 8
unsigned int aom_highbd_masked_subpel_varWxH_xzero(
const uint16_t *src, int src_stride, int yoffset, const uint16_t *dst,
int dst_stride, const uint8_t *msk, int msk_stride, unsigned int *sse,
int w, int h, highbd_filter_fn_t filter_fn,
highbd_calc_masked_var_t calc_var) {
int i, j;
__m128i v_src0_w, v_src1_w, v_res_w, v_dst_w, v_msk_b;
__m128i v_sum_d = _mm_setzero_si128();
__m128i v_sse_q = _mm_setzero_si128();
const __m128i v_filter_w =
_mm_set1_epi32((bilinear_filters_2t[yoffset][1] << 16) +
bilinear_filters_2t[yoffset][0]);
assert(yoffset < BIL_SUBPEL_SHIFTS);
for (j = 0; j < w; j += 8) {
// Load the first row ready
v_src0_w = _mm_loadu_si128((const __m128i *)(src + j));
// Process 2 rows at a time
for (i = 0; i < h; i += 2) {
// Load the next row apply the filter
v_src1_w = _mm_loadu_si128((const __m128i *)(src + j + src_stride));
v_res_w = filter_fn(v_src0_w, v_src1_w, v_filter_w);
// Load the dst and msk for the variance calculation
v_dst_w = _mm_loadu_si128((const __m128i *)(dst + j));
v_msk_b = _mm_loadl_epi64((const __m128i *)(msk + j));
highbd_sum_and_sse(v_res_w, v_dst_w, v_msk_b, &v_sum_d, &v_sse_q);
// Load the next row apply the filter
v_src0_w = _mm_loadu_si128((const __m128i *)(src + j + src_stride * 2));
v_res_w = filter_fn(v_src1_w, v_src0_w, v_filter_w);
// Load the dst and msk for the variance calculation
v_dst_w = _mm_loadu_si128((const __m128i *)(dst + j + dst_stride));
v_msk_b = _mm_loadl_epi64((const __m128i *)(msk + j + msk_stride));
highbd_sum_and_sse(v_res_w, v_dst_w, v_msk_b, &v_sum_d, &v_sse_q);
// Move onto the next block of rows
src += src_stride * 2;
dst += dst_stride * 2;
msk += msk_stride * 2;
}
// Reset to the top of the block
src -= src_stride * h;
dst -= dst_stride * h;
msk -= msk_stride * h;
}
return calc_var(v_sum_d, v_sse_q, sse, w, h);
}
unsigned int aom_highbd_masked_subpel_varWxH_yzero(
const uint16_t *src, int src_stride, int xoffset, const uint16_t *dst,
int dst_stride, const uint8_t *msk, int msk_stride, unsigned int *sse,
int w, int h, highbd_filter_fn_t filter_fn,
highbd_calc_masked_var_t calc_var) {
int i, j;
__m128i v_src0_w, v_src1_w, v_res_w, v_dst_w, v_msk_b;
__m128i v_sum_d = _mm_setzero_si128();
__m128i v_sse_q = _mm_setzero_si128();
const __m128i v_filter_w =
_mm_set1_epi32((bilinear_filters_2t[xoffset][1] << 16) +
bilinear_filters_2t[xoffset][0]);
assert(xoffset < BIL_SUBPEL_SHIFTS);
for (i = 0; i < h; i++) {
for (j = 0; j < w; j += 8) {
// Load this row & apply the filter to them
v_src0_w = _mm_loadu_si128((const __m128i *)(src + j));
v_src1_w = _mm_loadu_si128((const __m128i *)(src + j + 1));
v_res_w = filter_fn(v_src0_w, v_src1_w, v_filter_w);
// Load the dst and msk for the variance calculation
v_dst_w = _mm_loadu_si128((const __m128i *)(dst + j));
v_msk_b = _mm_loadl_epi64((const __m128i *)(msk + j));
highbd_sum_and_sse(v_res_w, v_dst_w, v_msk_b, &v_sum_d, &v_sse_q);
}
src += src_stride;
dst += dst_stride;
msk += msk_stride;
}
return calc_var(v_sum_d, v_sse_q, sse, w, h);
}
unsigned int aom_highbd_masked_subpel_varWxH_xnonzero_ynonzero(
const uint16_t *src, int src_stride, int xoffset, int yoffset,
const uint16_t *dst, int dst_stride, const uint8_t *msk, int msk_stride,
unsigned int *sse, int w, int h, highbd_filter_fn_t xfilter_fn,
highbd_filter_fn_t yfilter_fn, highbd_calc_masked_var_t calc_var) {
int i, j;
__m128i v_src0_w, v_src1_w, v_src2_w, v_src3_w;
__m128i v_filtered0_w, v_filtered1_w, v_res_w, v_dst_w, v_msk_b;
__m128i v_sum_d = _mm_setzero_si128();
__m128i v_sse_q = _mm_setzero_si128();
const __m128i v_filterx_w =
_mm_set1_epi32((bilinear_filters_2t[xoffset][1] << 16) +
bilinear_filters_2t[xoffset][0]);
const __m128i v_filtery_w =
_mm_set1_epi32((bilinear_filters_2t[yoffset][1] << 16) +
bilinear_filters_2t[yoffset][0]);
assert(xoffset < BIL_SUBPEL_SHIFTS);
assert(yoffset < BIL_SUBPEL_SHIFTS);
for (j = 0; j < w; j += 8) {
// Load the first row ready
v_src0_w = _mm_loadu_si128((const __m128i *)(src + j));
v_src1_w = _mm_loadu_si128((const __m128i *)(src + j + 1));
v_filtered0_w = xfilter_fn(v_src0_w, v_src1_w, v_filterx_w);
// Process 2 rows at a time
for (i = 0; i < h; i += 2) {
// Load the next row & apply the filter
v_src2_w = _mm_loadu_si128((const __m128i *)(src + src_stride + j));
v_src3_w = _mm_loadu_si128((const __m128i *)(src + src_stride + j + 1));
v_filtered1_w = xfilter_fn(v_src2_w, v_src3_w, v_filterx_w);
// Load the dst and msk for the variance calculation
v_dst_w = _mm_loadu_si128((const __m128i *)(dst + j));
v_msk_b = _mm_loadl_epi64((const __m128i *)(msk + j));
// Complete the calculation for this row and add it to the running total
v_res_w = yfilter_fn(v_filtered0_w, v_filtered1_w, v_filtery_w);
highbd_sum_and_sse(v_res_w, v_dst_w, v_msk_b, &v_sum_d, &v_sse_q);
// Load the next row & apply the filter
v_src0_w = _mm_loadu_si128((const __m128i *)(src + src_stride * 2 + j));
v_src1_w =
_mm_loadu_si128((const __m128i *)(src + src_stride * 2 + j + 1));
v_filtered0_w = xfilter_fn(v_src0_w, v_src1_w, v_filterx_w);
// Load the dst and msk for the variance calculation
v_dst_w = _mm_loadu_si128((const __m128i *)(dst + dst_stride + j));
v_msk_b = _mm_loadl_epi64((const __m128i *)(msk + msk_stride + j));
// Complete the calculation for this row and add it to the running total
v_res_w = yfilter_fn(v_filtered1_w, v_filtered0_w, v_filtery_w);
highbd_sum_and_sse(v_res_w, v_dst_w, v_msk_b, &v_sum_d, &v_sse_q);
// Move onto the next block of rows
src += src_stride * 2;
dst += dst_stride * 2;
msk += msk_stride * 2;
}
// Reset to the top of the block
src -= src_stride * h;
dst -= dst_stride * h;
msk -= msk_stride * h;
}
return calc_var(v_sum_d, v_sse_q, sse, w, h);
}
// Note order in which rows loaded xmm[127:64] = row 1, xmm[63:0] = row 2
unsigned int aom_highbd_masked_subpel_var4xH_xzero(
const uint16_t *src, int src_stride, int yoffset, const uint16_t *dst,
int dst_stride, const uint8_t *msk, int msk_stride, unsigned int *sse,
int h, highbd_calc_masked_var_t calc_var) {
int i;
__m128i v_src0_w, v_src1_w, v_filtered0_d, v_filtered1_d, v_res_w;
__m128i v_dst_w, v_msk_b;
__m128i v_sum_d = _mm_setzero_si128();
__m128i v_sse_q = _mm_setzero_si128();
__m128i v_filter_w = _mm_set1_epi32((bilinear_filters_2t[yoffset][1] << 16) +
bilinear_filters_2t[yoffset][0]);
assert(yoffset < BIL_SUBPEL_SHIFTS);
// Load the first row of src data ready
v_src0_w = _mm_loadl_epi64((const __m128i *)src);
for (i = 0; i < h; i += 2) {
if (yoffset == HALF_PIXEL_OFFSET) {
// Load the rest of the source data for these rows
v_src1_w = _mm_or_si128(
_mm_slli_si128(v_src0_w, 8),
_mm_loadl_epi64((const __m128i *)(src + src_stride * 1)));
v_src0_w = _mm_or_si128(
_mm_slli_si128(v_src1_w, 8),
_mm_loadl_epi64((const __m128i *)(src + src_stride * 2)));
// Apply the y filter
v_res_w = _mm_avg_epu16(v_src1_w, v_src0_w);
} else {
// Load the data and apply the y filter
v_src1_w = _mm_loadl_epi64((const __m128i *)(src + src_stride * 1));
highbd_apply_filter_lo(v_src0_w, v_src1_w, v_filter_w, &v_filtered0_d);
v_src0_w = _mm_loadl_epi64((const __m128i *)(src + src_stride * 2));
highbd_apply_filter_lo(v_src1_w, v_src0_w, v_filter_w, &v_filtered1_d);
v_res_w = _mm_packs_epi32(v_filtered1_d, v_filtered0_d);
}
// Load the dst data
v_dst_w = _mm_unpacklo_epi64(
_mm_loadl_epi64((const __m128i *)(dst + dst_stride * 1)),
_mm_loadl_epi64((const __m128i *)(dst + dst_stride * 0)));
// Load the mask data
v_msk_b = _mm_unpacklo_epi32(
_mm_loadl_epi64((const __m128i *)(msk + msk_stride * 1)),
_mm_loadl_epi64((const __m128i *)(msk + msk_stride * 0)));
// Compute the sum and SSE
highbd_sum_and_sse(v_res_w, v_dst_w, v_msk_b, &v_sum_d, &v_sse_q);
// Move onto the next set of rows
src += src_stride * 2;
dst += dst_stride * 2;
msk += msk_stride * 2;
}
return calc_var(v_sum_d, v_sse_q, sse, 4, h);
}
unsigned int aom_highbd_masked_subpel_var4xH_yzero(
const uint16_t *src, int src_stride, int xoffset, const uint16_t *dst,
int dst_stride, const uint8_t *msk, int msk_stride, unsigned int *sse,
int h, highbd_calc_masked_var_t calc_var) {
int i;
__m128i v_src0_w, v_src1_w, v_filtered0_d, v_filtered1_d;
__m128i v_src0_shift_w, v_src1_shift_w, v_res_w, v_dst_w, v_msk_b;
__m128i v_sum_d = _mm_setzero_si128();
__m128i v_sse_q = _mm_setzero_si128();
__m128i v_filter_w = _mm_set1_epi32((bilinear_filters_2t[xoffset][1] << 16) +
bilinear_filters_2t[xoffset][0]);
assert(xoffset < BIL_SUBPEL_SHIFTS);
for (i = 0; i < h; i += 2) {
// Load the src data
v_src0_w = _mm_loadu_si128((const __m128i *)(src));
v_src0_shift_w = _mm_srli_si128(v_src0_w, 2);
v_src1_w = _mm_loadu_si128((const __m128i *)(src + src_stride));
v_src1_shift_w = _mm_srli_si128(v_src1_w, 2);
// Apply the x filter
if (xoffset == HALF_PIXEL_OFFSET) {
v_src1_w = _mm_unpacklo_epi64(v_src0_w, v_src1_w);
v_src1_shift_w = _mm_unpacklo_epi64(v_src0_shift_w, v_src1_shift_w);
v_res_w = _mm_avg_epu16(v_src1_w, v_src1_shift_w);
} else {
highbd_apply_filter_lo(v_src0_w, v_src0_shift_w, v_filter_w,
&v_filtered0_d);
highbd_apply_filter_lo(v_src1_w, v_src1_shift_w, v_filter_w,
&v_filtered1_d);
v_res_w = _mm_packs_epi32(v_filtered0_d, v_filtered1_d);
}
// Load the dst data
v_dst_w = _mm_unpacklo_epi64(
_mm_loadl_epi64((const __m128i *)(dst + dst_stride * 0)),
_mm_loadl_epi64((const __m128i *)(dst + dst_stride * 1)));
// Load the mask data
v_msk_b = _mm_unpacklo_epi32(
_mm_loadl_epi64((const __m128i *)(msk + msk_stride * 0)),
_mm_loadl_epi64((const __m128i *)(msk + msk_stride * 1)));
// Compute the sum and SSE
highbd_sum_and_sse(v_res_w, v_dst_w, v_msk_b, &v_sum_d, &v_sse_q);
// Move onto the next set of rows
src += src_stride * 2;
dst += dst_stride * 2;
msk += msk_stride * 2;
}
return calc_var(v_sum_d, v_sse_q, sse, 4, h);
}
unsigned int aom_highbd_masked_subpel_var4xH_xnonzero_ynonzero(
const uint16_t *src, int src_stride, int xoffset, int yoffset,
const uint16_t *dst, int dst_stride, const uint8_t *msk, int msk_stride,
unsigned int *sse, int h, highbd_calc_masked_var_t calc_var) {
int i;
__m128i v_src0_w, v_src1_w, v_filtered0_d, v_filtered1_d, v_dst_w, v_msk_b;
__m128i v_src0_shift_w, v_src1_shift_w;
__m128i v_xres0_w, v_xres1_w, v_res_w, v_temp_w;
__m128i v_sum_d = _mm_setzero_si128();
__m128i v_sse_q = _mm_setzero_si128();
__m128i v_filterx_w = _mm_set1_epi32((bilinear_filters_2t[xoffset][1] << 16) +
bilinear_filters_2t[xoffset][0]);
__m128i v_filtery_w = _mm_set1_epi32((bilinear_filters_2t[yoffset][1] << 16) +
bilinear_filters_2t[yoffset][0]);
assert(xoffset < BIL_SUBPEL_SHIFTS);
assert(yoffset < BIL_SUBPEL_SHIFTS);
// Load the first block of src data
v_src0_w = _mm_loadu_si128((const __m128i *)(src));
v_src0_shift_w = _mm_srli_si128(v_src0_w, 2);
v_src1_w = _mm_loadu_si128((const __m128i *)(src + src_stride));
v_src1_shift_w = _mm_srli_si128(v_src1_w, 2);
// Apply the x filter
if (xoffset == HALF_PIXEL_OFFSET) {
v_src1_w = _mm_unpacklo_epi64(v_src0_w, v_src1_w);
v_src1_shift_w = _mm_unpacklo_epi64(v_src0_shift_w, v_src1_shift_w);
v_xres0_w = _mm_avg_epu16(v_src1_w, v_src1_shift_w);
} else {
highbd_apply_filter_lo(v_src0_w, v_src0_shift_w, v_filterx_w,
&v_filtered0_d);
highbd_apply_filter_lo(v_src1_w, v_src1_shift_w, v_filterx_w,
&v_filtered1_d);
v_xres0_w = _mm_packs_epi32(v_filtered0_d, v_filtered1_d);
}
for (i = 0; i < h; i += 4) {
// Load the next block of src data
v_src0_w = _mm_loadu_si128((const __m128i *)(src + src_stride * 2));
v_src0_shift_w = _mm_srli_si128(v_src0_w, 2);
v_src1_w = _mm_loadu_si128((const __m128i *)(src + src_stride * 3));
v_src1_shift_w = _mm_srli_si128(v_src1_w, 2);
// Apply the x filter
if (xoffset == HALF_PIXEL_OFFSET) {
v_src1_w = _mm_unpacklo_epi64(v_src0_w, v_src1_w);
v_src1_shift_w = _mm_unpacklo_epi64(v_src0_shift_w, v_src1_shift_w);
v_xres1_w = _mm_avg_epu16(v_src1_w, v_src1_shift_w);
} else {
highbd_apply_filter_lo(v_src0_w, v_src0_shift_w, v_filterx_w,
&v_filtered0_d);
highbd_apply_filter_lo(v_src1_w, v_src1_shift_w, v_filterx_w,
&v_filtered1_d);
v_xres1_w = _mm_packs_epi32(v_filtered0_d, v_filtered1_d);
}
// Apply the y filter to the previous block
v_temp_w = _mm_or_si128(_mm_srli_si128(v_xres0_w, 8),
_mm_slli_si128(v_xres1_w, 8));
if (yoffset == HALF_PIXEL_OFFSET) {
v_res_w = _mm_avg_epu16(v_xres0_w, v_temp_w);
} else {
v_res_w = highbd_apply_filter(v_xres0_w, v_temp_w, v_filtery_w);
}
// Load the dst data
v_dst_w = _mm_unpacklo_epi64(
_mm_loadl_epi64((const __m128i *)(dst + dst_stride * 0)),
_mm_loadl_epi64((const __m128i *)(dst + dst_stride * 1)));
// Load the mask data
v_msk_b = _mm_unpacklo_epi32(
_mm_loadl_epi64((const __m128i *)(msk + msk_stride * 0)),
_mm_loadl_epi64((const __m128i *)(msk + msk_stride * 1)));
// Compute the sum and SSE
highbd_sum_and_sse(v_res_w, v_dst_w, v_msk_b, &v_sum_d, &v_sse_q);
// Load the next block of src data
v_src0_w = _mm_loadu_si128((const __m128i *)(src + src_stride * 4));
v_src0_shift_w = _mm_srli_si128(v_src0_w, 2);
v_src1_w = _mm_loadu_si128((const __m128i *)(src + src_stride * 5));
v_src1_shift_w = _mm_srli_si128(v_src1_w, 2);
// Apply the x filter
if (xoffset == HALF_PIXEL_OFFSET) {
v_src1_w = _mm_unpacklo_epi64(v_src0_w, v_src1_w);
v_src1_shift_w = _mm_unpacklo_epi64(v_src0_shift_w, v_src1_shift_w);
v_xres0_w = _mm_avg_epu16(v_src1_w, v_src1_shift_w);
} else {
highbd_apply_filter_lo(v_src0_w, v_src0_shift_w, v_filterx_w,
&v_filtered0_d);
highbd_apply_filter_lo(v_src1_w, v_src1_shift_w, v_filterx_w,
&v_filtered1_d);
v_xres0_w = _mm_packs_epi32(v_filtered0_d, v_filtered1_d);
}
// Apply the y filter to the previous block
v_temp_w = _mm_or_si128(_mm_srli_si128(v_xres1_w, 8),
_mm_slli_si128(v_xres0_w, 8));
if (yoffset == HALF_PIXEL_OFFSET) {
v_res_w = _mm_avg_epu16(v_xres1_w, v_temp_w);
} else {
v_res_w = highbd_apply_filter(v_xres1_w, v_temp_w, v_filtery_w);
}
// Load the dst data
v_dst_w = _mm_unpacklo_epi64(
_mm_loadl_epi64((const __m128i *)(dst + dst_stride * 2)),
_mm_loadl_epi64((const __m128i *)(dst + dst_stride * 3)));
// Load the mask data
v_msk_b = _mm_unpacklo_epi32(
_mm_loadl_epi64((const __m128i *)(msk + msk_stride * 2)),
_mm_loadl_epi64((const __m128i *)(msk + msk_stride * 3)));
// Compute the sum and SSE
highbd_sum_and_sse(v_res_w, v_dst_w, v_msk_b, &v_sum_d, &v_sse_q);
// Move onto the next set of rows
src += src_stride * 4;
dst += dst_stride * 4;
msk += msk_stride * 4;
}
return calc_var(v_sum_d, v_sse_q, sse, 4, h);
}
// For W >=8
#define HIGHBD_MASK_SUBPIX_VAR_LARGE(W, H) \
unsigned int highbd_masked_sub_pixel_variance##W##x##H##_ssse3( \
const uint8_t *src8, int src_stride, int xoffset, int yoffset, \
const uint8_t *dst8, int dst_stride, const uint8_t *msk, int msk_stride, \
unsigned int *sse, highbd_calc_masked_var_t calc_var, \
highbd_variance_fn_t full_variance_function) { \
uint16_t *src = CONVERT_TO_SHORTPTR(src8); \
uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); \
assert(W % 8 == 0); \
if (xoffset == 0) { \
if (yoffset == 0) \
return full_variance_function(src8, src_stride, dst8, dst_stride, msk, \
msk_stride, sse); \
else if (yoffset == HALF_PIXEL_OFFSET) \
return aom_highbd_masked_subpel_varWxH_xzero( \
src, src_stride, HALF_PIXEL_OFFSET, dst, dst_stride, msk, \
msk_stride, sse, W, H, highbd_apply_filter_avg, calc_var); \
else \
return aom_highbd_masked_subpel_varWxH_xzero( \
src, src_stride, yoffset, dst, dst_stride, msk, msk_stride, sse, \
W, H, highbd_apply_filter, calc_var); \
} else if (yoffset == 0) { \
if (xoffset == HALF_PIXEL_OFFSET) \
return aom_highbd_masked_subpel_varWxH_yzero( \
src, src_stride, HALF_PIXEL_OFFSET, dst, dst_stride, msk, \
msk_stride, sse, W, H, highbd_apply_filter_avg, calc_var); \
else \
return aom_highbd_masked_subpel_varWxH_yzero( \
src, src_stride, xoffset, dst, dst_stride, msk, msk_stride, sse, \
W, H, highbd_apply_filter, calc_var); \
} else if (xoffset == HALF_PIXEL_OFFSET) { \
if (yoffset == HALF_PIXEL_OFFSET) \
return aom_highbd_masked_subpel_varWxH_xnonzero_ynonzero( \
src, src_stride, HALF_PIXEL_OFFSET, HALF_PIXEL_OFFSET, dst, \
dst_stride, msk, msk_stride, sse, W, H, highbd_apply_filter_avg, \
highbd_apply_filter_avg, calc_var); \
else \
return aom_highbd_masked_subpel_varWxH_xnonzero_ynonzero( \
src, src_stride, HALF_PIXEL_OFFSET, yoffset, dst, dst_stride, msk, \
msk_stride, sse, W, H, highbd_apply_filter_avg, \
highbd_apply_filter, calc_var); \
} else { \
if (yoffset == HALF_PIXEL_OFFSET) \
return aom_highbd_masked_subpel_varWxH_xnonzero_ynonzero( \
src, src_stride, xoffset, HALF_PIXEL_OFFSET, dst, dst_stride, msk, \
msk_stride, sse, W, H, highbd_apply_filter, \
highbd_apply_filter_avg, calc_var); \
else \
return aom_highbd_masked_subpel_varWxH_xnonzero_ynonzero( \
src, src_stride, xoffset, yoffset, dst, dst_stride, msk, \
msk_stride, sse, W, H, highbd_apply_filter, highbd_apply_filter, \
calc_var); \
} \
}
// For W < 8
#define HIGHBD_MASK_SUBPIX_VAR_SMALL(W, H) \
unsigned int highbd_masked_sub_pixel_variance##W##x##H##_ssse3( \
const uint8_t *src8, int src_stride, int xoffset, int yoffset, \
const uint8_t *dst8, int dst_stride, const uint8_t *msk, int msk_stride, \
unsigned int *sse, highbd_calc_masked_var_t calc_var, \
highbd_variance_fn_t full_variance_function) { \
uint16_t *src = CONVERT_TO_SHORTPTR(src8); \
uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); \
assert(W == 4); \
if (xoffset == 0 && yoffset == 0) \
return full_variance_function(src8, src_stride, dst8, dst_stride, msk, \
msk_stride, sse); \
else if (xoffset == 0) \
return aom_highbd_masked_subpel_var4xH_xzero( \
src, src_stride, yoffset, dst, dst_stride, msk, msk_stride, sse, H, \
calc_var); \
else if (yoffset == 0) \
return aom_highbd_masked_subpel_var4xH_yzero( \
src, src_stride, xoffset, dst, dst_stride, msk, msk_stride, sse, H, \
calc_var); \
else \
return aom_highbd_masked_subpel_var4xH_xnonzero_ynonzero( \
src, src_stride, xoffset, yoffset, dst, dst_stride, msk, msk_stride, \
sse, H, calc_var); \
}
#define HIGHBD_MASK_SUBPIX_VAR_WRAPPERS(W, H) \
unsigned int aom_highbd_masked_sub_pixel_variance##W##x##H##_ssse3( \
const uint8_t *src8, int src_stride, int xoffset, int yoffset, \
const uint8_t *dst8, int dst_stride, const uint8_t *msk, int msk_stride, \
unsigned int *sse) { \
return highbd_masked_sub_pixel_variance##W##x##H##_ssse3( \
src8, src_stride, xoffset, yoffset, dst8, dst_stride, msk, msk_stride, \
sse, calc_masked_variance, \
aom_highbd_masked_variance##W##x##H##_ssse3); \
} \
unsigned int aom_highbd_10_masked_sub_pixel_variance##W##x##H##_ssse3( \
const uint8_t *src8, int src_stride, int xoffset, int yoffset, \
const uint8_t *dst8, int dst_stride, const uint8_t *msk, int msk_stride, \
unsigned int *sse) { \
return highbd_masked_sub_pixel_variance##W##x##H##_ssse3( \
src8, src_stride, xoffset, yoffset, dst8, dst_stride, msk, msk_stride, \
sse, highbd_10_calc_masked_variance, \
aom_highbd_10_masked_variance##W##x##H##_ssse3); \
} \
unsigned int aom_highbd_12_masked_sub_pixel_variance##W##x##H##_ssse3( \
const uint8_t *src8, int src_stride, int xoffset, int yoffset, \
const uint8_t *dst8, int dst_stride, const uint8_t *msk, int msk_stride, \
unsigned int *sse) { \
return highbd_masked_sub_pixel_variance##W##x##H##_ssse3( \
src8, src_stride, xoffset, yoffset, dst8, dst_stride, msk, msk_stride, \
sse, highbd_12_calc_masked_variance, \
aom_highbd_12_masked_variance##W##x##H##_ssse3); \
}
HIGHBD_MASK_SUBPIX_VAR_SMALL(4, 4)
HIGHBD_MASK_SUBPIX_VAR_WRAPPERS(4, 4)
HIGHBD_MASK_SUBPIX_VAR_SMALL(4, 8)
HIGHBD_MASK_SUBPIX_VAR_WRAPPERS(4, 8)
HIGHBD_MASK_SUBPIX_VAR_LARGE(8, 4)
HIGHBD_MASK_SUBPIX_VAR_WRAPPERS(8, 4)
HIGHBD_MASK_SUBPIX_VAR_LARGE(8, 8)
HIGHBD_MASK_SUBPIX_VAR_WRAPPERS(8, 8)
HIGHBD_MASK_SUBPIX_VAR_LARGE(8, 16)
HIGHBD_MASK_SUBPIX_VAR_WRAPPERS(8, 16)
HIGHBD_MASK_SUBPIX_VAR_LARGE(16, 8)
HIGHBD_MASK_SUBPIX_VAR_WRAPPERS(16, 8)
HIGHBD_MASK_SUBPIX_VAR_LARGE(16, 16)
HIGHBD_MASK_SUBPIX_VAR_WRAPPERS(16, 16)
HIGHBD_MASK_SUBPIX_VAR_LARGE(16, 32)
HIGHBD_MASK_SUBPIX_VAR_WRAPPERS(16, 32)
HIGHBD_MASK_SUBPIX_VAR_LARGE(32, 16)
HIGHBD_MASK_SUBPIX_VAR_WRAPPERS(32, 16)
HIGHBD_MASK_SUBPIX_VAR_LARGE(32, 32)
HIGHBD_MASK_SUBPIX_VAR_WRAPPERS(32, 32)
HIGHBD_MASK_SUBPIX_VAR_LARGE(32, 64)
HIGHBD_MASK_SUBPIX_VAR_WRAPPERS(32, 64)
HIGHBD_MASK_SUBPIX_VAR_LARGE(64, 32)
HIGHBD_MASK_SUBPIX_VAR_WRAPPERS(64, 32)
HIGHBD_MASK_SUBPIX_VAR_LARGE(64, 64)
HIGHBD_MASK_SUBPIX_VAR_WRAPPERS(64, 64)
#if CONFIG_EXT_PARTITION
HIGHBD_MASK_SUBPIX_VAR_LARGE(64, 128)
HIGHBD_MASK_SUBPIX_VAR_WRAPPERS(64, 128)
HIGHBD_MASK_SUBPIX_VAR_LARGE(128, 64)
HIGHBD_MASK_SUBPIX_VAR_WRAPPERS(128, 64)
HIGHBD_MASK_SUBPIX_VAR_LARGE(128, 128)
HIGHBD_MASK_SUBPIX_VAR_WRAPPERS(128, 128)
#endif // CONFIG_EXT_PARTITION
#endif