blob: d627891bf50efe986b08cb35447aa05c16e2c435 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#ifndef AOM_AV1_COMMON_CFL_H_
#define AOM_AV1_COMMON_CFL_H_
#include "av1/common/blockd.h"
#include "av1/common/onyxc_int.h"
// Can we use CfL for the current block?
static INLINE CFL_ALLOWED_TYPE is_cfl_allowed(const MACROBLOCKD *xd) {
const MB_MODE_INFO *mbmi = xd->mi[0];
const BLOCK_SIZE bsize = mbmi->sb_type;
assert(bsize < BLOCK_SIZES_ALL);
if (xd->lossless[mbmi->segment_id]) {
// In lossless, CfL is available when the partition size is equal to the
// transform size.
const int ssx = xd->plane[AOM_PLANE_U].subsampling_x;
const int ssy = xd->plane[AOM_PLANE_U].subsampling_y;
const int plane_bsize = get_plane_block_size(bsize, ssx, ssy);
return (CFL_ALLOWED_TYPE)(plane_bsize == BLOCK_4X4);
}
// Spec: CfL is available to luma partitions lesser than or equal to 32x32
return (CFL_ALLOWED_TYPE)(block_size_wide[bsize] <= 32 &&
block_size_high[bsize] <= 32);
}
// Do we need to save the luma pixels from the current block,
// for a possible future CfL prediction?
static INLINE CFL_ALLOWED_TYPE store_cfl_required(const AV1_COMMON *cm,
const MACROBLOCKD *xd) {
const MB_MODE_INFO *mbmi = xd->mi[0];
if (cm->seq_params.monochrome) return CFL_DISALLOWED;
if (!xd->cfl.is_chroma_reference) {
// For non-chroma-reference blocks, we should always store the luma pixels,
// in case the corresponding chroma-reference block uses CfL.
// Note that this can only happen for block sizes which are <8 on
// their shortest side, as otherwise they would be chroma reference
// blocks.
return CFL_ALLOWED;
}
// If this block has chroma information, we know whether we're
// actually going to perform a CfL prediction
return (CFL_ALLOWED_TYPE)(!is_inter_block(mbmi) &&
mbmi->uv_mode == UV_CFL_PRED);
}
static INLINE int get_scaled_luma_q0(int alpha_q3, int16_t pred_buf_q3) {
int scaled_luma_q6 = alpha_q3 * pred_buf_q3;
return ROUND_POWER_OF_TWO_SIGNED(scaled_luma_q6, 6);
}
static INLINE CFL_PRED_TYPE get_cfl_pred_type(PLANE_TYPE plane) {
assert(plane > 0);
return (CFL_PRED_TYPE)(plane - 1);
}
void cfl_predict_block(MACROBLOCKD *const xd, uint8_t *dst, int dst_stride,
TX_SIZE tx_size, int plane);
void cfl_store_block(MACROBLOCKD *const xd, BLOCK_SIZE bsize, TX_SIZE tx_size);
void cfl_store_tx(MACROBLOCKD *const xd, int row, int col, TX_SIZE tx_size,
BLOCK_SIZE bsize);
void cfl_store_dc_pred(MACROBLOCKD *const xd, const uint8_t *input,
CFL_PRED_TYPE pred_plane, int width);
void cfl_load_dc_pred(MACROBLOCKD *const xd, uint8_t *dst, int dst_stride,
TX_SIZE tx_size, CFL_PRED_TYPE pred_plane);
// Null function used for invalid tx_sizes
void cfl_subsample_lbd_null(const uint8_t *input, int input_stride,
uint16_t *output_q3);
// Null function used for invalid tx_sizes
void cfl_subsample_hbd_null(const uint16_t *input, int input_stride,
uint16_t *output_q3);
// Allows the CFL_SUBSAMPLE function to switch types depending on the bitdepth.
#define CFL_lbd_TYPE uint8_t *cfl_type
#define CFL_hbd_TYPE uint16_t *cfl_type
// Declare a size-specific wrapper for the size-generic function. The compiler
// will inline the size generic function in here, the advantage is that the size
// will be constant allowing for loop unrolling and other constant propagated
// goodness.
#define CFL_SUBSAMPLE(arch, sub, bd, width, height) \
void subsample_##bd##_##sub##_##width##x##height##_##arch( \
const CFL_##bd##_TYPE, int input_stride, uint16_t *output_q3) { \
cfl_luma_subsampling_##sub##_##bd##_##arch(cfl_type, input_stride, \
output_q3, width, height); \
}
// Declare size-specific wrappers for all valid CfL sizes.
#define CFL_SUBSAMPLE_FUNCTIONS(arch, sub, bd) \
CFL_SUBSAMPLE(arch, sub, bd, 4, 4) \
CFL_SUBSAMPLE(arch, sub, bd, 8, 8) \
CFL_SUBSAMPLE(arch, sub, bd, 16, 16) \
CFL_SUBSAMPLE(arch, sub, bd, 32, 32) \
CFL_SUBSAMPLE(arch, sub, bd, 4, 8) \
CFL_SUBSAMPLE(arch, sub, bd, 8, 4) \
CFL_SUBSAMPLE(arch, sub, bd, 8, 16) \
CFL_SUBSAMPLE(arch, sub, bd, 16, 8) \
CFL_SUBSAMPLE(arch, sub, bd, 16, 32) \
CFL_SUBSAMPLE(arch, sub, bd, 32, 16) \
CFL_SUBSAMPLE(arch, sub, bd, 4, 16) \
CFL_SUBSAMPLE(arch, sub, bd, 16, 4) \
CFL_SUBSAMPLE(arch, sub, bd, 8, 32) \
CFL_SUBSAMPLE(arch, sub, bd, 32, 8) \
cfl_subsample_##bd##_fn cfl_get_luma_subsampling_##sub##_##bd##_##arch( \
TX_SIZE tx_size) { \
CFL_SUBSAMPLE_FUNCTION_ARRAY(arch, sub, bd) \
return subfn_##sub[tx_size]; \
}
// Declare an architecture-specific array of function pointers for size-specific
// wrappers.
#define CFL_SUBSAMPLE_FUNCTION_ARRAY(arch, sub, bd) \
static const cfl_subsample_##bd##_fn subfn_##sub[TX_SIZES_ALL] = { \
subsample_##bd##_##sub##_4x4_##arch, /* 4x4 */ \
subsample_##bd##_##sub##_8x8_##arch, /* 8x8 */ \
subsample_##bd##_##sub##_16x16_##arch, /* 16x16 */ \
subsample_##bd##_##sub##_32x32_##arch, /* 32x32 */ \
cfl_subsample_##bd##_null, /* 64x64 (invalid CFL size) */ \
subsample_##bd##_##sub##_4x8_##arch, /* 4x8 */ \
subsample_##bd##_##sub##_8x4_##arch, /* 8x4 */ \
subsample_##bd##_##sub##_8x16_##arch, /* 8x16 */ \
subsample_##bd##_##sub##_16x8_##arch, /* 16x8 */ \
subsample_##bd##_##sub##_16x32_##arch, /* 16x32 */ \
subsample_##bd##_##sub##_32x16_##arch, /* 32x16 */ \
cfl_subsample_##bd##_null, /* 32x64 (invalid CFL size) */ \
cfl_subsample_##bd##_null, /* 64x32 (invalid CFL size) */ \
subsample_##bd##_##sub##_4x16_##arch, /* 4x16 */ \
subsample_##bd##_##sub##_16x4_##arch, /* 16x4 */ \
subsample_##bd##_##sub##_8x32_##arch, /* 8x32 */ \
subsample_##bd##_##sub##_32x8_##arch, /* 32x8 */ \
cfl_subsample_##bd##_null, /* 16x64 (invalid CFL size) */ \
cfl_subsample_##bd##_null, /* 64x16 (invalid CFL size) */ \
};
// The RTCD script does not support passing in an array, so we wrap it in this
// function.
#define CFL_GET_SUBSAMPLE_FUNCTION(arch) \
CFL_SUBSAMPLE_FUNCTIONS(arch, 420, lbd) \
CFL_SUBSAMPLE_FUNCTIONS(arch, 422, lbd) \
CFL_SUBSAMPLE_FUNCTIONS(arch, 444, lbd) \
CFL_SUBSAMPLE_FUNCTIONS(arch, 420, hbd) \
CFL_SUBSAMPLE_FUNCTIONS(arch, 422, hbd) \
CFL_SUBSAMPLE_FUNCTIONS(arch, 444, hbd)
// Null function used for invalid tx_sizes
static INLINE void cfl_subtract_average_null(const uint16_t *src,
int16_t *dst) {
(void)dst;
(void)src;
assert(0);
}
// Declare a size-specific wrapper for the size-generic function. The compiler
// will inline the size generic function in here, the advantage is that the size
// will be constant allowing for loop unrolling and other constant propagated
// goodness.
#define CFL_SUB_AVG_X(arch, width, height, round_offset, num_pel_log2) \
void subtract_average_##width##x##height##_##arch(const uint16_t *src, \
int16_t *dst) { \
subtract_average_##arch(src, dst, width, height, round_offset, \
num_pel_log2); \
}
// Declare size-specific wrappers for all valid CfL sizes.
#define CFL_SUB_AVG_FN(arch) \
CFL_SUB_AVG_X(arch, 4, 4, 8, 4) \
CFL_SUB_AVG_X(arch, 4, 8, 16, 5) \
CFL_SUB_AVG_X(arch, 4, 16, 32, 6) \
CFL_SUB_AVG_X(arch, 8, 4, 16, 5) \
CFL_SUB_AVG_X(arch, 8, 8, 32, 6) \
CFL_SUB_AVG_X(arch, 8, 16, 64, 7) \
CFL_SUB_AVG_X(arch, 8, 32, 128, 8) \
CFL_SUB_AVG_X(arch, 16, 4, 32, 6) \
CFL_SUB_AVG_X(arch, 16, 8, 64, 7) \
CFL_SUB_AVG_X(arch, 16, 16, 128, 8) \
CFL_SUB_AVG_X(arch, 16, 32, 256, 9) \
CFL_SUB_AVG_X(arch, 32, 8, 128, 8) \
CFL_SUB_AVG_X(arch, 32, 16, 256, 9) \
CFL_SUB_AVG_X(arch, 32, 32, 512, 10) \
cfl_subtract_average_fn get_subtract_average_fn_##arch(TX_SIZE tx_size) { \
static const cfl_subtract_average_fn sub_avg[TX_SIZES_ALL] = { \
subtract_average_4x4_##arch, /* 4x4 */ \
subtract_average_8x8_##arch, /* 8x8 */ \
subtract_average_16x16_##arch, /* 16x16 */ \
subtract_average_32x32_##arch, /* 32x32 */ \
cfl_subtract_average_null, /* 64x64 (invalid CFL size) */ \
subtract_average_4x8_##arch, /* 4x8 */ \
subtract_average_8x4_##arch, /* 8x4 */ \
subtract_average_8x16_##arch, /* 8x16 */ \
subtract_average_16x8_##arch, /* 16x8 */ \
subtract_average_16x32_##arch, /* 16x32 */ \
subtract_average_32x16_##arch, /* 32x16 */ \
cfl_subtract_average_null, /* 32x64 (invalid CFL size) */ \
cfl_subtract_average_null, /* 64x32 (invalid CFL size) */ \
subtract_average_4x16_##arch, /* 4x16 (invalid CFL size) */ \
subtract_average_16x4_##arch, /* 16x4 (invalid CFL size) */ \
subtract_average_8x32_##arch, /* 8x32 (invalid CFL size) */ \
subtract_average_32x8_##arch, /* 32x8 (invalid CFL size) */ \
cfl_subtract_average_null, /* 16x64 (invalid CFL size) */ \
cfl_subtract_average_null, /* 64x16 (invalid CFL size) */ \
}; \
/* Modulo TX_SIZES_ALL to ensure that an attacker won't be able to */ \
/* index the function pointer array out of bounds. */ \
return sub_avg[tx_size % TX_SIZES_ALL]; \
}
// For VSX SIMD optimization, the C versions of width == 4 subtract are
// faster than the VSX. As such, the VSX code calls the C versions.
void subtract_average_4x4_c(const uint16_t *src, int16_t *dst);
void subtract_average_4x8_c(const uint16_t *src, int16_t *dst);
void subtract_average_4x16_c(const uint16_t *src, int16_t *dst);
#define CFL_PREDICT_lbd(arch, width, height) \
void predict_lbd_##width##x##height##_##arch(const int16_t *pred_buf_q3, \
uint8_t *dst, int dst_stride, \
int alpha_q3) { \
cfl_predict_lbd_##arch(pred_buf_q3, dst, dst_stride, alpha_q3, width, \
height); \
}
#define CFL_PREDICT_hbd(arch, width, height) \
void predict_hbd_##width##x##height##_##arch(const int16_t *pred_buf_q3, \
uint16_t *dst, int dst_stride, \
int alpha_q3, int bd) { \
cfl_predict_hbd_##arch(pred_buf_q3, dst, dst_stride, alpha_q3, bd, width, \
height); \
}
// This wrapper exists because clang format does not like calling macros with
// lowercase letters.
#define CFL_PREDICT_X(arch, width, height, bd) \
CFL_PREDICT_##bd(arch, width, height)
// Null function used for invalid tx_sizes
void cfl_predict_lbd_null(const int16_t *pred_buf_q3, uint8_t *dst,
int dst_stride, int alpha_q3);
// Null function used for invalid tx_sizes
void cfl_predict_hbd_null(const int16_t *pred_buf_q3, uint16_t *dst,
int dst_stride, int alpha_q3, int bd);
#define CFL_PREDICT_FN(arch, bd) \
CFL_PREDICT_X(arch, 4, 4, bd) \
CFL_PREDICT_X(arch, 4, 8, bd) \
CFL_PREDICT_X(arch, 4, 16, bd) \
CFL_PREDICT_X(arch, 8, 4, bd) \
CFL_PREDICT_X(arch, 8, 8, bd) \
CFL_PREDICT_X(arch, 8, 16, bd) \
CFL_PREDICT_X(arch, 8, 32, bd) \
CFL_PREDICT_X(arch, 16, 4, bd) \
CFL_PREDICT_X(arch, 16, 8, bd) \
CFL_PREDICT_X(arch, 16, 16, bd) \
CFL_PREDICT_X(arch, 16, 32, bd) \
CFL_PREDICT_X(arch, 32, 8, bd) \
CFL_PREDICT_X(arch, 32, 16, bd) \
CFL_PREDICT_X(arch, 32, 32, bd) \
cfl_predict_##bd##_fn get_predict_##bd##_fn_##arch(TX_SIZE tx_size) { \
static const cfl_predict_##bd##_fn pred[TX_SIZES_ALL] = { \
predict_##bd##_4x4_##arch, /* 4x4 */ \
predict_##bd##_8x8_##arch, /* 8x8 */ \
predict_##bd##_16x16_##arch, /* 16x16 */ \
predict_##bd##_32x32_##arch, /* 32x32 */ \
cfl_predict_##bd##_null, /* 64x64 (invalid CFL size) */ \
predict_##bd##_4x8_##arch, /* 4x8 */ \
predict_##bd##_8x4_##arch, /* 8x4 */ \
predict_##bd##_8x16_##arch, /* 8x16 */ \
predict_##bd##_16x8_##arch, /* 16x8 */ \
predict_##bd##_16x32_##arch, /* 16x32 */ \
predict_##bd##_32x16_##arch, /* 32x16 */ \
cfl_predict_##bd##_null, /* 32x64 (invalid CFL size) */ \
cfl_predict_##bd##_null, /* 64x32 (invalid CFL size) */ \
predict_##bd##_4x16_##arch, /* 4x16 */ \
predict_##bd##_16x4_##arch, /* 16x4 */ \
predict_##bd##_8x32_##arch, /* 8x32 */ \
predict_##bd##_32x8_##arch, /* 32x8 */ \
cfl_predict_##bd##_null, /* 16x64 (invalid CFL size) */ \
cfl_predict_##bd##_null, /* 64x16 (invalid CFL size) */ \
}; \
/* Modulo TX_SIZES_ALL to ensure that an attacker won't be able to */ \
/* index the function pointer array out of bounds. */ \
return pred[tx_size % TX_SIZES_ALL]; \
}
#endif // AOM_AV1_COMMON_CFL_H_