| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved. |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <assert.h> |
| #include <stdbool.h> |
| #include <stddef.h> |
| |
| #include "config/aom_config.h" |
| #include "config/aom_scale_rtcd.h" |
| |
| #include "aom/aom_codec.h" |
| #include "aom/aom_image.h" |
| #include "aom/internal/aom_codec_internal.h" |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "aom_dsp/binary_codes_reader.h" |
| #include "aom_dsp/bitreader.h" |
| #include "aom_dsp/bitreader_buffer.h" |
| #include "aom_dsp/txfm_common.h" |
| #include "aom_mem/aom_mem.h" |
| #include "aom_ports/aom_timer.h" |
| #include "aom_ports/mem.h" |
| #include "aom_ports/mem_ops.h" |
| #include "aom_scale/yv12config.h" |
| #include "aom_util/aom_pthread.h" |
| #include "aom_util/aom_thread.h" |
| |
| #if CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG |
| #include "aom_util/debug_util.h" |
| #endif // CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG |
| |
| #include "av1/common/alloccommon.h" |
| #include "av1/common/av1_common_int.h" |
| #include "av1/common/blockd.h" |
| #include "av1/common/cdef.h" |
| #include "av1/common/cfl.h" |
| #include "av1/common/common_data.h" |
| #include "av1/common/common.h" |
| #include "av1/common/entropy.h" |
| #include "av1/common/entropymode.h" |
| #include "av1/common/entropymv.h" |
| #include "av1/common/enums.h" |
| #include "av1/common/frame_buffers.h" |
| #include "av1/common/idct.h" |
| #include "av1/common/mv.h" |
| #include "av1/common/mvref_common.h" |
| #include "av1/common/obmc.h" |
| #include "av1/common/pred_common.h" |
| #include "av1/common/quant_common.h" |
| #include "av1/common/reconinter.h" |
| #include "av1/common/reconintra.h" |
| #include "av1/common/resize.h" |
| #include "av1/common/restoration.h" |
| #include "av1/common/scale.h" |
| #include "av1/common/seg_common.h" |
| #include "av1/common/thread_common.h" |
| #include "av1/common/tile_common.h" |
| #include "av1/common/warped_motion.h" |
| |
| #include "av1/decoder/decodeframe.h" |
| #include "av1/decoder/decodemv.h" |
| #include "av1/decoder/decoder.h" |
| #include "av1/decoder/decodetxb.h" |
| #include "av1/decoder/detokenize.h" |
| #if CONFIG_INSPECTION |
| #include "av1/decoder/inspection.h" |
| #endif |
| |
| #define ACCT_STR __func__ |
| |
| #define AOM_MIN_THREADS_PER_TILE 1 |
| #define AOM_MAX_THREADS_PER_TILE 2 |
| |
| // This is needed by ext_tile related unit tests. |
| #define EXT_TILE_DEBUG 1 |
| #define MC_TEMP_BUF_PELS \ |
| (((MAX_SB_SIZE)*2 + (AOM_INTERP_EXTEND)*2) * \ |
| ((MAX_SB_SIZE)*2 + (AOM_INTERP_EXTEND)*2)) |
| |
| // Checks that the remaining bits start with a 1 and ends with 0s. |
| // It consumes an additional byte, if already byte aligned before the check. |
| int av1_check_trailing_bits(AV1Decoder *pbi, struct aom_read_bit_buffer *rb) { |
| // bit_offset is set to 0 (mod 8) when the reader is already byte aligned |
| int bits_before_alignment = 8 - rb->bit_offset % 8; |
| int trailing = aom_rb_read_literal(rb, bits_before_alignment); |
| if (trailing != (1 << (bits_before_alignment - 1))) { |
| pbi->error.error_code = AOM_CODEC_CORRUPT_FRAME; |
| return -1; |
| } |
| return 0; |
| } |
| |
| // Use only_chroma = 1 to only set the chroma planes |
| static inline void set_planes_to_neutral_grey( |
| const SequenceHeader *const seq_params, const YV12_BUFFER_CONFIG *const buf, |
| int only_chroma) { |
| if (seq_params->use_highbitdepth) { |
| const int val = 1 << (seq_params->bit_depth - 1); |
| for (int plane = only_chroma; plane < MAX_MB_PLANE; plane++) { |
| const int is_uv = plane > 0; |
| uint16_t *const base = CONVERT_TO_SHORTPTR(buf->buffers[plane]); |
| // Set the first row to neutral grey. Then copy the first row to all |
| // subsequent rows. |
| if (buf->crop_heights[is_uv] > 0) { |
| aom_memset16(base, val, buf->crop_widths[is_uv]); |
| for (int row_idx = 1; row_idx < buf->crop_heights[is_uv]; row_idx++) { |
| memcpy(&base[row_idx * buf->strides[is_uv]], base, |
| sizeof(*base) * buf->crop_widths[is_uv]); |
| } |
| } |
| } |
| } else { |
| for (int plane = only_chroma; plane < MAX_MB_PLANE; plane++) { |
| const int is_uv = plane > 0; |
| for (int row_idx = 0; row_idx < buf->crop_heights[is_uv]; row_idx++) { |
| memset(&buf->buffers[plane][row_idx * buf->strides[is_uv]], 1 << 7, |
| buf->crop_widths[is_uv]); |
| } |
| } |
| } |
| } |
| |
| static inline void loop_restoration_read_sb_coeffs(const AV1_COMMON *const cm, |
| MACROBLOCKD *xd, |
| aom_reader *const r, |
| int plane, int runit_idx); |
| |
| static int read_is_valid(const uint8_t *start, size_t len, const uint8_t *end) { |
| return len != 0 && len <= (size_t)(end - start); |
| } |
| |
| static TX_MODE read_tx_mode(struct aom_read_bit_buffer *rb, |
| int coded_lossless) { |
| if (coded_lossless) return ONLY_4X4; |
| return aom_rb_read_bit(rb) ? TX_MODE_SELECT : TX_MODE_LARGEST; |
| } |
| |
| static REFERENCE_MODE read_frame_reference_mode( |
| const AV1_COMMON *cm, struct aom_read_bit_buffer *rb) { |
| if (frame_is_intra_only(cm)) { |
| return SINGLE_REFERENCE; |
| } else { |
| return aom_rb_read_bit(rb) ? REFERENCE_MODE_SELECT : SINGLE_REFERENCE; |
| } |
| } |
| |
| static inline void inverse_transform_block(DecoderCodingBlock *dcb, int plane, |
| const TX_TYPE tx_type, |
| const TX_SIZE tx_size, uint8_t *dst, |
| int stride, int reduced_tx_set) { |
| tran_low_t *const dqcoeff = dcb->dqcoeff_block[plane] + dcb->cb_offset[plane]; |
| eob_info *eob_data = dcb->eob_data[plane] + dcb->txb_offset[plane]; |
| uint16_t scan_line = eob_data->max_scan_line; |
| uint16_t eob = eob_data->eob; |
| av1_inverse_transform_block(&dcb->xd, dqcoeff, plane, tx_type, tx_size, dst, |
| stride, eob, reduced_tx_set); |
| memset(dqcoeff, 0, (scan_line + 1) * sizeof(dqcoeff[0])); |
| } |
| |
| static inline void read_coeffs_tx_intra_block( |
| const AV1_COMMON *const cm, DecoderCodingBlock *dcb, aom_reader *const r, |
| const int plane, const int row, const int col, const TX_SIZE tx_size) { |
| MB_MODE_INFO *mbmi = dcb->xd.mi[0]; |
| if (!mbmi->skip_txfm) { |
| #if TXCOEFF_TIMER |
| struct aom_usec_timer timer; |
| aom_usec_timer_start(&timer); |
| #endif |
| av1_read_coeffs_txb_facade(cm, dcb, r, plane, row, col, tx_size); |
| #if TXCOEFF_TIMER |
| aom_usec_timer_mark(&timer); |
| const int64_t elapsed_time = aom_usec_timer_elapsed(&timer); |
| cm->txcoeff_timer += elapsed_time; |
| ++cm->txb_count; |
| #endif |
| } |
| } |
| |
| static inline void decode_block_void(const AV1_COMMON *const cm, |
| DecoderCodingBlock *dcb, |
| aom_reader *const r, const int plane, |
| const int row, const int col, |
| const TX_SIZE tx_size) { |
| (void)cm; |
| (void)dcb; |
| (void)r; |
| (void)plane; |
| (void)row; |
| (void)col; |
| (void)tx_size; |
| } |
| |
| static inline void predict_inter_block_void(AV1_COMMON *const cm, |
| DecoderCodingBlock *dcb, |
| BLOCK_SIZE bsize) { |
| (void)cm; |
| (void)dcb; |
| (void)bsize; |
| } |
| |
| static inline void cfl_store_inter_block_void(AV1_COMMON *const cm, |
| MACROBLOCKD *const xd) { |
| (void)cm; |
| (void)xd; |
| } |
| |
| static inline void predict_and_reconstruct_intra_block( |
| const AV1_COMMON *const cm, DecoderCodingBlock *dcb, aom_reader *const r, |
| const int plane, const int row, const int col, const TX_SIZE tx_size) { |
| (void)r; |
| MACROBLOCKD *const xd = &dcb->xd; |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| PLANE_TYPE plane_type = get_plane_type(plane); |
| |
| av1_predict_intra_block_facade(cm, xd, plane, col, row, tx_size); |
| |
| if (!mbmi->skip_txfm) { |
| eob_info *eob_data = dcb->eob_data[plane] + dcb->txb_offset[plane]; |
| if (eob_data->eob) { |
| const bool reduced_tx_set_used = cm->features.reduced_tx_set_used; |
| // tx_type was read out in av1_read_coeffs_txb. |
| const TX_TYPE tx_type = av1_get_tx_type(xd, plane_type, row, col, tx_size, |
| reduced_tx_set_used); |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| uint8_t *dst = &pd->dst.buf[(row * pd->dst.stride + col) << MI_SIZE_LOG2]; |
| inverse_transform_block(dcb, plane, tx_type, tx_size, dst, pd->dst.stride, |
| reduced_tx_set_used); |
| } |
| } |
| if (plane == AOM_PLANE_Y && store_cfl_required(cm, xd)) { |
| cfl_store_tx(xd, row, col, tx_size, mbmi->bsize); |
| } |
| } |
| |
| static inline void inverse_transform_inter_block( |
| const AV1_COMMON *const cm, DecoderCodingBlock *dcb, aom_reader *const r, |
| const int plane, const int blk_row, const int blk_col, |
| const TX_SIZE tx_size) { |
| (void)r; |
| MACROBLOCKD *const xd = &dcb->xd; |
| PLANE_TYPE plane_type = get_plane_type(plane); |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const bool reduced_tx_set_used = cm->features.reduced_tx_set_used; |
| // tx_type was read out in av1_read_coeffs_txb. |
| const TX_TYPE tx_type = av1_get_tx_type(xd, plane_type, blk_row, blk_col, |
| tx_size, reduced_tx_set_used); |
| |
| uint8_t *dst = |
| &pd->dst.buf[(blk_row * pd->dst.stride + blk_col) << MI_SIZE_LOG2]; |
| inverse_transform_block(dcb, plane, tx_type, tx_size, dst, pd->dst.stride, |
| reduced_tx_set_used); |
| #if CONFIG_MISMATCH_DEBUG |
| int pixel_c, pixel_r; |
| BLOCK_SIZE bsize = txsize_to_bsize[tx_size]; |
| int blk_w = block_size_wide[bsize]; |
| int blk_h = block_size_high[bsize]; |
| const int mi_row = -xd->mb_to_top_edge >> (3 + MI_SIZE_LOG2); |
| const int mi_col = -xd->mb_to_left_edge >> (3 + MI_SIZE_LOG2); |
| mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, blk_col, blk_row, |
| pd->subsampling_x, pd->subsampling_y); |
| mismatch_check_block_tx(dst, pd->dst.stride, cm->current_frame.order_hint, |
| plane, pixel_c, pixel_r, blk_w, blk_h, |
| xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH); |
| #endif |
| } |
| |
| static inline void set_cb_buffer_offsets(DecoderCodingBlock *dcb, |
| TX_SIZE tx_size, int plane) { |
| dcb->cb_offset[plane] += tx_size_wide[tx_size] * tx_size_high[tx_size]; |
| dcb->txb_offset[plane] = |
| dcb->cb_offset[plane] / (TX_SIZE_W_MIN * TX_SIZE_H_MIN); |
| } |
| |
| static inline void decode_reconstruct_tx(AV1_COMMON *cm, ThreadData *const td, |
| aom_reader *r, |
| MB_MODE_INFO *const mbmi, int plane, |
| BLOCK_SIZE plane_bsize, int blk_row, |
| int blk_col, int block, |
| TX_SIZE tx_size, int *eob_total) { |
| DecoderCodingBlock *const dcb = &td->dcb; |
| MACROBLOCKD *const xd = &dcb->xd; |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const TX_SIZE plane_tx_size = |
| plane ? av1_get_max_uv_txsize(mbmi->bsize, pd->subsampling_x, |
| pd->subsampling_y) |
| : mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row, |
| blk_col)]; |
| // Scale to match transform block unit. |
| const int max_blocks_high = max_block_high(xd, plane_bsize, plane); |
| const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); |
| |
| if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; |
| |
| if (tx_size == plane_tx_size || plane) { |
| td->read_coeffs_tx_inter_block_visit(cm, dcb, r, plane, blk_row, blk_col, |
| tx_size); |
| |
| td->inverse_tx_inter_block_visit(cm, dcb, r, plane, blk_row, blk_col, |
| tx_size); |
| eob_info *eob_data = dcb->eob_data[plane] + dcb->txb_offset[plane]; |
| *eob_total += eob_data->eob; |
| set_cb_buffer_offsets(dcb, tx_size, plane); |
| } else { |
| const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; |
| assert(IMPLIES(tx_size <= TX_4X4, sub_txs == tx_size)); |
| assert(IMPLIES(tx_size > TX_4X4, sub_txs < tx_size)); |
| const int bsw = tx_size_wide_unit[sub_txs]; |
| const int bsh = tx_size_high_unit[sub_txs]; |
| const int sub_step = bsw * bsh; |
| const int row_end = |
| AOMMIN(tx_size_high_unit[tx_size], max_blocks_high - blk_row); |
| const int col_end = |
| AOMMIN(tx_size_wide_unit[tx_size], max_blocks_wide - blk_col); |
| |
| assert(bsw > 0 && bsh > 0); |
| |
| for (int row = 0; row < row_end; row += bsh) { |
| const int offsetr = blk_row + row; |
| for (int col = 0; col < col_end; col += bsw) { |
| const int offsetc = blk_col + col; |
| |
| decode_reconstruct_tx(cm, td, r, mbmi, plane, plane_bsize, offsetr, |
| offsetc, block, sub_txs, eob_total); |
| block += sub_step; |
| } |
| } |
| } |
| } |
| |
| static inline void set_offsets(AV1_COMMON *const cm, MACROBLOCKD *const xd, |
| BLOCK_SIZE bsize, int mi_row, int mi_col, int bw, |
| int bh, int x_mis, int y_mis) { |
| const int num_planes = av1_num_planes(cm); |
| const CommonModeInfoParams *const mi_params = &cm->mi_params; |
| const TileInfo *const tile = &xd->tile; |
| |
| set_mi_offsets(mi_params, xd, mi_row, mi_col); |
| xd->mi[0]->bsize = bsize; |
| #if CONFIG_RD_DEBUG |
| xd->mi[0]->mi_row = mi_row; |
| xd->mi[0]->mi_col = mi_col; |
| #endif |
| |
| assert(x_mis && y_mis); |
| for (int x = 1; x < x_mis; ++x) xd->mi[x] = xd->mi[0]; |
| int idx = mi_params->mi_stride; |
| for (int y = 1; y < y_mis; ++y) { |
| memcpy(&xd->mi[idx], &xd->mi[0], x_mis * sizeof(xd->mi[0])); |
| idx += mi_params->mi_stride; |
| } |
| |
| set_plane_n4(xd, bw, bh, num_planes); |
| set_entropy_context(xd, mi_row, mi_col, num_planes); |
| |
| // Distance of Mb to the various image edges. These are specified to 8th pel |
| // as they are always compared to values that are in 1/8th pel units |
| set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, mi_params->mi_rows, |
| mi_params->mi_cols); |
| |
| av1_setup_dst_planes(xd->plane, bsize, &cm->cur_frame->buf, mi_row, mi_col, 0, |
| num_planes); |
| } |
| |
| static inline void decode_mbmi_block(AV1Decoder *const pbi, |
| DecoderCodingBlock *dcb, int mi_row, |
| int mi_col, aom_reader *r, |
| PARTITION_TYPE partition, |
| BLOCK_SIZE bsize) { |
| AV1_COMMON *const cm = &pbi->common; |
| const SequenceHeader *const seq_params = cm->seq_params; |
| const int bw = mi_size_wide[bsize]; |
| const int bh = mi_size_high[bsize]; |
| const int x_mis = AOMMIN(bw, cm->mi_params.mi_cols - mi_col); |
| const int y_mis = AOMMIN(bh, cm->mi_params.mi_rows - mi_row); |
| MACROBLOCKD *const xd = &dcb->xd; |
| |
| #if CONFIG_ACCOUNTING |
| aom_accounting_set_context(&pbi->accounting, mi_col, mi_row); |
| #endif |
| set_offsets(cm, xd, bsize, mi_row, mi_col, bw, bh, x_mis, y_mis); |
| xd->mi[0]->partition = partition; |
| av1_read_mode_info(pbi, dcb, r, x_mis, y_mis); |
| if (bsize >= BLOCK_8X8 && |
| (seq_params->subsampling_x || seq_params->subsampling_y)) { |
| const BLOCK_SIZE uv_subsize = |
| av1_ss_size_lookup[bsize][seq_params->subsampling_x] |
| [seq_params->subsampling_y]; |
| if (uv_subsize == BLOCK_INVALID) |
| aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME, |
| "Invalid block size."); |
| } |
| } |
| |
| typedef struct PadBlock { |
| int x0; |
| int x1; |
| int y0; |
| int y1; |
| } PadBlock; |
| |
| #if CONFIG_AV1_HIGHBITDEPTH |
| static inline void highbd_build_mc_border(const uint8_t *src8, int src_stride, |
| uint8_t *dst8, int dst_stride, int x, |
| int y, int b_w, int b_h, int w, |
| int h) { |
| // Get a pointer to the start of the real data for this row. |
| const uint16_t *src = CONVERT_TO_SHORTPTR(src8); |
| uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); |
| const uint16_t *ref_row = src - x - y * src_stride; |
| |
| if (y >= h) |
| ref_row += (h - 1) * src_stride; |
| else if (y > 0) |
| ref_row += y * src_stride; |
| |
| do { |
| int right = 0, copy; |
| int left = x < 0 ? -x : 0; |
| |
| if (left > b_w) left = b_w; |
| |
| if (x + b_w > w) right = x + b_w - w; |
| |
| if (right > b_w) right = b_w; |
| |
| copy = b_w - left - right; |
| |
| if (left) aom_memset16(dst, ref_row[0], left); |
| |
| if (copy) memcpy(dst + left, ref_row + x + left, copy * sizeof(uint16_t)); |
| |
| if (right) aom_memset16(dst + left + copy, ref_row[w - 1], right); |
| |
| dst += dst_stride; |
| ++y; |
| |
| if (y > 0 && y < h) ref_row += src_stride; |
| } while (--b_h); |
| } |
| #endif // CONFIG_AV1_HIGHBITDEPTH |
| |
| static inline void build_mc_border(const uint8_t *src, int src_stride, |
| uint8_t *dst, int dst_stride, int x, int y, |
| int b_w, int b_h, int w, int h) { |
| // Get a pointer to the start of the real data for this row. |
| const uint8_t *ref_row = src - x - y * src_stride; |
| |
| if (y >= h) |
| ref_row += (h - 1) * src_stride; |
| else if (y > 0) |
| ref_row += y * src_stride; |
| |
| do { |
| int right = 0, copy; |
| int left = x < 0 ? -x : 0; |
| |
| if (left > b_w) left = b_w; |
| |
| if (x + b_w > w) right = x + b_w - w; |
| |
| if (right > b_w) right = b_w; |
| |
| copy = b_w - left - right; |
| |
| if (left) memset(dst, ref_row[0], left); |
| |
| if (copy) memcpy(dst + left, ref_row + x + left, copy); |
| |
| if (right) memset(dst + left + copy, ref_row[w - 1], right); |
| |
| dst += dst_stride; |
| ++y; |
| |
| if (y > 0 && y < h) ref_row += src_stride; |
| } while (--b_h); |
| } |
| |
| static inline int update_extend_mc_border_params( |
| const struct scale_factors *const sf, struct buf_2d *const pre_buf, |
| MV32 scaled_mv, PadBlock *block, int subpel_x_mv, int subpel_y_mv, |
| int do_warp, int is_intrabc, int *x_pad, int *y_pad) { |
| const int is_scaled = av1_is_scaled(sf); |
| // Get reference width and height. |
| int frame_width = pre_buf->width; |
| int frame_height = pre_buf->height; |
| |
| // Do border extension if there is motion or |
| // width/height is not a multiple of 8 pixels. |
| if ((!is_intrabc) && (!do_warp) && |
| (is_scaled || scaled_mv.col || scaled_mv.row || (frame_width & 0x7) || |
| (frame_height & 0x7))) { |
| if (subpel_x_mv || (sf->x_step_q4 != SUBPEL_SHIFTS)) { |
| block->x0 -= AOM_INTERP_EXTEND - 1; |
| block->x1 += AOM_INTERP_EXTEND; |
| *x_pad = 1; |
| } |
| |
| if (subpel_y_mv || (sf->y_step_q4 != SUBPEL_SHIFTS)) { |
| block->y0 -= AOM_INTERP_EXTEND - 1; |
| block->y1 += AOM_INTERP_EXTEND; |
| *y_pad = 1; |
| } |
| |
| // Skip border extension if block is inside the frame. |
| if (block->x0 < 0 || block->x1 > frame_width - 1 || block->y0 < 0 || |
| block->y1 > frame_height - 1) { |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| static inline void extend_mc_border(const struct scale_factors *const sf, |
| struct buf_2d *const pre_buf, |
| MV32 scaled_mv, PadBlock block, |
| int subpel_x_mv, int subpel_y_mv, |
| int do_warp, int is_intrabc, int highbd, |
| uint8_t *mc_buf, uint8_t **pre, |
| int *src_stride) { |
| int x_pad = 0, y_pad = 0; |
| if (update_extend_mc_border_params(sf, pre_buf, scaled_mv, &block, |
| subpel_x_mv, subpel_y_mv, do_warp, |
| is_intrabc, &x_pad, &y_pad)) { |
| // Get reference block pointer. |
| const uint8_t *const buf_ptr = |
| pre_buf->buf0 + block.y0 * pre_buf->stride + block.x0; |
| int buf_stride = pre_buf->stride; |
| const int b_w = block.x1 - block.x0; |
| const int b_h = block.y1 - block.y0; |
| |
| #if CONFIG_AV1_HIGHBITDEPTH |
| // Extend the border. |
| if (highbd) { |
| highbd_build_mc_border(buf_ptr, buf_stride, mc_buf, b_w, block.x0, |
| block.y0, b_w, b_h, pre_buf->width, |
| pre_buf->height); |
| } else { |
| build_mc_border(buf_ptr, buf_stride, mc_buf, b_w, block.x0, block.y0, b_w, |
| b_h, pre_buf->width, pre_buf->height); |
| } |
| #else |
| (void)highbd; |
| build_mc_border(buf_ptr, buf_stride, mc_buf, b_w, block.x0, block.y0, b_w, |
| b_h, pre_buf->width, pre_buf->height); |
| #endif |
| *src_stride = b_w; |
| *pre = mc_buf + y_pad * (AOM_INTERP_EXTEND - 1) * b_w + |
| x_pad * (AOM_INTERP_EXTEND - 1); |
| } |
| } |
| |
| static inline void dec_calc_subpel_params( |
| const MV *const src_mv, InterPredParams *const inter_pred_params, |
| const MACROBLOCKD *const xd, int mi_x, int mi_y, uint8_t **pre, |
| SubpelParams *subpel_params, int *src_stride, PadBlock *block, |
| MV32 *scaled_mv, int *subpel_x_mv, int *subpel_y_mv) { |
| const struct scale_factors *sf = inter_pred_params->scale_factors; |
| struct buf_2d *pre_buf = &inter_pred_params->ref_frame_buf; |
| const int bw = inter_pred_params->block_width; |
| const int bh = inter_pred_params->block_height; |
| const int is_scaled = av1_is_scaled(sf); |
| if (is_scaled) { |
| int ssx = inter_pred_params->subsampling_x; |
| int ssy = inter_pred_params->subsampling_y; |
| int orig_pos_y = inter_pred_params->pix_row << SUBPEL_BITS; |
| orig_pos_y += src_mv->row * (1 << (1 - ssy)); |
| int orig_pos_x = inter_pred_params->pix_col << SUBPEL_BITS; |
| orig_pos_x += src_mv->col * (1 << (1 - ssx)); |
| int pos_y = av1_scaled_y(orig_pos_y, sf); |
| int pos_x = av1_scaled_x(orig_pos_x, sf); |
| pos_x += SCALE_EXTRA_OFF; |
| pos_y += SCALE_EXTRA_OFF; |
| |
| const int top = -AOM_LEFT_TOP_MARGIN_SCALED(ssy); |
| const int left = -AOM_LEFT_TOP_MARGIN_SCALED(ssx); |
| const int bottom = (pre_buf->height + AOM_INTERP_EXTEND) |
| << SCALE_SUBPEL_BITS; |
| const int right = (pre_buf->width + AOM_INTERP_EXTEND) << SCALE_SUBPEL_BITS; |
| pos_y = clamp(pos_y, top, bottom); |
| pos_x = clamp(pos_x, left, right); |
| |
| subpel_params->subpel_x = pos_x & SCALE_SUBPEL_MASK; |
| subpel_params->subpel_y = pos_y & SCALE_SUBPEL_MASK; |
| subpel_params->xs = sf->x_step_q4; |
| subpel_params->ys = sf->y_step_q4; |
| |
| // Get reference block top left coordinate. |
| block->x0 = pos_x >> SCALE_SUBPEL_BITS; |
| block->y0 = pos_y >> SCALE_SUBPEL_BITS; |
| |
| // Get reference block bottom right coordinate. |
| block->x1 = |
| ((pos_x + (bw - 1) * subpel_params->xs) >> SCALE_SUBPEL_BITS) + 1; |
| block->y1 = |
| ((pos_y + (bh - 1) * subpel_params->ys) >> SCALE_SUBPEL_BITS) + 1; |
| |
| MV temp_mv; |
| temp_mv = clamp_mv_to_umv_border_sb(xd, src_mv, bw, bh, |
| inter_pred_params->subsampling_x, |
| inter_pred_params->subsampling_y); |
| *scaled_mv = av1_scale_mv(&temp_mv, mi_x, mi_y, sf); |
| scaled_mv->row += SCALE_EXTRA_OFF; |
| scaled_mv->col += SCALE_EXTRA_OFF; |
| |
| *subpel_x_mv = scaled_mv->col & SCALE_SUBPEL_MASK; |
| *subpel_y_mv = scaled_mv->row & SCALE_SUBPEL_MASK; |
| } else { |
| // Get block position in current frame. |
| int pos_x = inter_pred_params->pix_col << SUBPEL_BITS; |
| int pos_y = inter_pred_params->pix_row << SUBPEL_BITS; |
| |
| const MV mv_q4 = clamp_mv_to_umv_border_sb( |
| xd, src_mv, bw, bh, inter_pred_params->subsampling_x, |
| inter_pred_params->subsampling_y); |
| subpel_params->xs = subpel_params->ys = SCALE_SUBPEL_SHIFTS; |
| subpel_params->subpel_x = (mv_q4.col & SUBPEL_MASK) << SCALE_EXTRA_BITS; |
| subpel_params->subpel_y = (mv_q4.row & SUBPEL_MASK) << SCALE_EXTRA_BITS; |
| |
| // Get reference block top left coordinate. |
| pos_x += mv_q4.col; |
| pos_y += mv_q4.row; |
| block->x0 = pos_x >> SUBPEL_BITS; |
| block->y0 = pos_y >> SUBPEL_BITS; |
| |
| // Get reference block bottom right coordinate. |
| block->x1 = (pos_x >> SUBPEL_BITS) + (bw - 1) + 1; |
| block->y1 = (pos_y >> SUBPEL_BITS) + (bh - 1) + 1; |
| |
| scaled_mv->row = mv_q4.row; |
| scaled_mv->col = mv_q4.col; |
| *subpel_x_mv = scaled_mv->col & SUBPEL_MASK; |
| *subpel_y_mv = scaled_mv->row & SUBPEL_MASK; |
| } |
| *pre = pre_buf->buf0 + block->y0 * pre_buf->stride + block->x0; |
| *src_stride = pre_buf->stride; |
| } |
| |
| static inline void dec_calc_subpel_params_and_extend( |
| const MV *const src_mv, InterPredParams *const inter_pred_params, |
| MACROBLOCKD *const xd, int mi_x, int mi_y, int ref, uint8_t **mc_buf, |
| uint8_t **pre, SubpelParams *subpel_params, int *src_stride) { |
| PadBlock block; |
| MV32 scaled_mv; |
| int subpel_x_mv, subpel_y_mv; |
| dec_calc_subpel_params(src_mv, inter_pred_params, xd, mi_x, mi_y, pre, |
| subpel_params, src_stride, &block, &scaled_mv, |
| &subpel_x_mv, &subpel_y_mv); |
| extend_mc_border( |
| inter_pred_params->scale_factors, &inter_pred_params->ref_frame_buf, |
| scaled_mv, block, subpel_x_mv, subpel_y_mv, |
| inter_pred_params->mode == WARP_PRED, inter_pred_params->is_intrabc, |
| inter_pred_params->use_hbd_buf, mc_buf[ref], pre, src_stride); |
| } |
| |
| #define IS_DEC 1 |
| #include "av1/common/reconinter_template.inc" |
| #undef IS_DEC |
| |
| static void dec_build_inter_predictors(const AV1_COMMON *cm, |
| DecoderCodingBlock *dcb, int plane, |
| const MB_MODE_INFO *mi, |
| int build_for_obmc, int bw, int bh, |
| int mi_x, int mi_y) { |
| build_inter_predictors(cm, &dcb->xd, plane, mi, build_for_obmc, bw, bh, mi_x, |
| mi_y, dcb->mc_buf); |
| } |
| |
| static inline void dec_build_inter_predictor(const AV1_COMMON *cm, |
| DecoderCodingBlock *dcb, |
| int mi_row, int mi_col, |
| BLOCK_SIZE bsize) { |
| MACROBLOCKD *const xd = &dcb->xd; |
| const int num_planes = av1_num_planes(cm); |
| for (int plane = 0; plane < num_planes; ++plane) { |
| if (plane && !xd->is_chroma_ref) break; |
| const int mi_x = mi_col * MI_SIZE; |
| const int mi_y = mi_row * MI_SIZE; |
| dec_build_inter_predictors(cm, dcb, plane, xd->mi[0], 0, |
| xd->plane[plane].width, xd->plane[plane].height, |
| mi_x, mi_y); |
| if (is_interintra_pred(xd->mi[0])) { |
| BUFFER_SET ctx = { { xd->plane[0].dst.buf, xd->plane[1].dst.buf, |
| xd->plane[2].dst.buf }, |
| { xd->plane[0].dst.stride, xd->plane[1].dst.stride, |
| xd->plane[2].dst.stride } }; |
| av1_build_interintra_predictor(cm, xd, xd->plane[plane].dst.buf, |
| xd->plane[plane].dst.stride, &ctx, plane, |
| bsize); |
| } |
| } |
| } |
| |
| static inline void dec_build_prediction_by_above_pred( |
| MACROBLOCKD *const xd, int rel_mi_row, int rel_mi_col, uint8_t op_mi_size, |
| int dir, MB_MODE_INFO *above_mbmi, void *fun_ctxt, const int num_planes) { |
| struct build_prediction_ctxt *ctxt = (struct build_prediction_ctxt *)fun_ctxt; |
| const int above_mi_col = xd->mi_col + rel_mi_col; |
| int mi_x, mi_y; |
| MB_MODE_INFO backup_mbmi = *above_mbmi; |
| |
| (void)rel_mi_row; |
| (void)dir; |
| |
| av1_setup_build_prediction_by_above_pred(xd, rel_mi_col, op_mi_size, |
| &backup_mbmi, ctxt, num_planes); |
| mi_x = above_mi_col << MI_SIZE_LOG2; |
| mi_y = xd->mi_row << MI_SIZE_LOG2; |
| |
| const BLOCK_SIZE bsize = xd->mi[0]->bsize; |
| |
| for (int j = 0; j < num_planes; ++j) { |
| const struct macroblockd_plane *pd = &xd->plane[j]; |
| int bw = (op_mi_size * MI_SIZE) >> pd->subsampling_x; |
| int bh = clamp(block_size_high[bsize] >> (pd->subsampling_y + 1), 4, |
| block_size_high[BLOCK_64X64] >> (pd->subsampling_y + 1)); |
| |
| if (av1_skip_u4x4_pred_in_obmc(bsize, pd, 0)) continue; |
| dec_build_inter_predictors(ctxt->cm, (DecoderCodingBlock *)ctxt->dcb, j, |
| &backup_mbmi, 1, bw, bh, mi_x, mi_y); |
| } |
| } |
| |
| static inline void dec_build_prediction_by_above_preds( |
| const AV1_COMMON *cm, DecoderCodingBlock *dcb, |
| uint8_t *tmp_buf[MAX_MB_PLANE], int tmp_width[MAX_MB_PLANE], |
| int tmp_height[MAX_MB_PLANE], int tmp_stride[MAX_MB_PLANE]) { |
| MACROBLOCKD *const xd = &dcb->xd; |
| if (!xd->up_available) return; |
| |
| // Adjust mb_to_bottom_edge to have the correct value for the OBMC |
| // prediction block. This is half the height of the original block, |
| // except for 128-wide blocks, where we only use a height of 32. |
| const int this_height = xd->height * MI_SIZE; |
| const int pred_height = AOMMIN(this_height / 2, 32); |
| xd->mb_to_bottom_edge += GET_MV_SUBPEL(this_height - pred_height); |
| struct build_prediction_ctxt ctxt = { |
| cm, tmp_buf, tmp_width, tmp_height, tmp_stride, xd->mb_to_right_edge, dcb |
| }; |
| const BLOCK_SIZE bsize = xd->mi[0]->bsize; |
| foreach_overlappable_nb_above(cm, xd, |
| max_neighbor_obmc[mi_size_wide_log2[bsize]], |
| dec_build_prediction_by_above_pred, &ctxt); |
| |
| xd->mb_to_left_edge = -GET_MV_SUBPEL(xd->mi_col * MI_SIZE); |
| xd->mb_to_right_edge = ctxt.mb_to_far_edge; |
| xd->mb_to_bottom_edge -= GET_MV_SUBPEL(this_height - pred_height); |
| } |
| |
| static inline void dec_build_prediction_by_left_pred( |
| MACROBLOCKD *const xd, int rel_mi_row, int rel_mi_col, uint8_t op_mi_size, |
| int dir, MB_MODE_INFO *left_mbmi, void *fun_ctxt, const int num_planes) { |
| struct build_prediction_ctxt *ctxt = (struct build_prediction_ctxt *)fun_ctxt; |
| const int left_mi_row = xd->mi_row + rel_mi_row; |
| int mi_x, mi_y; |
| MB_MODE_INFO backup_mbmi = *left_mbmi; |
| |
| (void)rel_mi_col; |
| (void)dir; |
| |
| av1_setup_build_prediction_by_left_pred(xd, rel_mi_row, op_mi_size, |
| &backup_mbmi, ctxt, num_planes); |
| mi_x = xd->mi_col << MI_SIZE_LOG2; |
| mi_y = left_mi_row << MI_SIZE_LOG2; |
| const BLOCK_SIZE bsize = xd->mi[0]->bsize; |
| |
| for (int j = 0; j < num_planes; ++j) { |
| const struct macroblockd_plane *pd = &xd->plane[j]; |
| int bw = clamp(block_size_wide[bsize] >> (pd->subsampling_x + 1), 4, |
| block_size_wide[BLOCK_64X64] >> (pd->subsampling_x + 1)); |
| int bh = (op_mi_size << MI_SIZE_LOG2) >> pd->subsampling_y; |
| |
| if (av1_skip_u4x4_pred_in_obmc(bsize, pd, 1)) continue; |
| dec_build_inter_predictors(ctxt->cm, (DecoderCodingBlock *)ctxt->dcb, j, |
| &backup_mbmi, 1, bw, bh, mi_x, mi_y); |
| } |
| } |
| |
| static inline void dec_build_prediction_by_left_preds( |
| const AV1_COMMON *cm, DecoderCodingBlock *dcb, |
| uint8_t *tmp_buf[MAX_MB_PLANE], int tmp_width[MAX_MB_PLANE], |
| int tmp_height[MAX_MB_PLANE], int tmp_stride[MAX_MB_PLANE]) { |
| MACROBLOCKD *const xd = &dcb->xd; |
| if (!xd->left_available) return; |
| |
| // Adjust mb_to_right_edge to have the correct value for the OBMC |
| // prediction block. This is half the width of the original block, |
| // except for 128-wide blocks, where we only use a width of 32. |
| const int this_width = xd->width * MI_SIZE; |
| const int pred_width = AOMMIN(this_width / 2, 32); |
| xd->mb_to_right_edge += GET_MV_SUBPEL(this_width - pred_width); |
| |
| struct build_prediction_ctxt ctxt = { |
| cm, tmp_buf, tmp_width, tmp_height, tmp_stride, xd->mb_to_bottom_edge, dcb |
| }; |
| const BLOCK_SIZE bsize = xd->mi[0]->bsize; |
| foreach_overlappable_nb_left(cm, xd, |
| max_neighbor_obmc[mi_size_high_log2[bsize]], |
| dec_build_prediction_by_left_pred, &ctxt); |
| |
| xd->mb_to_top_edge = -GET_MV_SUBPEL(xd->mi_row * MI_SIZE); |
| xd->mb_to_right_edge -= GET_MV_SUBPEL(this_width - pred_width); |
| xd->mb_to_bottom_edge = ctxt.mb_to_far_edge; |
| } |
| |
| static inline void dec_build_obmc_inter_predictors_sb(const AV1_COMMON *cm, |
| DecoderCodingBlock *dcb) { |
| const int num_planes = av1_num_planes(cm); |
| uint8_t *dst_buf1[MAX_MB_PLANE], *dst_buf2[MAX_MB_PLANE]; |
| int dst_stride1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; |
| int dst_stride2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; |
| int dst_width1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; |
| int dst_width2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; |
| int dst_height1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; |
| int dst_height2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; |
| |
| MACROBLOCKD *const xd = &dcb->xd; |
| av1_setup_obmc_dst_bufs(xd, dst_buf1, dst_buf2); |
| |
| dec_build_prediction_by_above_preds(cm, dcb, dst_buf1, dst_width1, |
| dst_height1, dst_stride1); |
| dec_build_prediction_by_left_preds(cm, dcb, dst_buf2, dst_width2, dst_height2, |
| dst_stride2); |
| const int mi_row = xd->mi_row; |
| const int mi_col = xd->mi_col; |
| av1_setup_dst_planes(xd->plane, xd->mi[0]->bsize, &cm->cur_frame->buf, mi_row, |
| mi_col, 0, num_planes); |
| av1_build_obmc_inter_prediction(cm, xd, dst_buf1, dst_stride1, dst_buf2, |
| dst_stride2); |
| } |
| |
| static inline void cfl_store_inter_block(AV1_COMMON *const cm, |
| MACROBLOCKD *const xd) { |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| if (store_cfl_required(cm, xd)) { |
| cfl_store_block(xd, mbmi->bsize, mbmi->tx_size); |
| } |
| } |
| |
| static inline void predict_inter_block(AV1_COMMON *const cm, |
| DecoderCodingBlock *dcb, |
| BLOCK_SIZE bsize) { |
| MACROBLOCKD *const xd = &dcb->xd; |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| const int num_planes = av1_num_planes(cm); |
| const int mi_row = xd->mi_row; |
| const int mi_col = xd->mi_col; |
| for (int ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) { |
| const MV_REFERENCE_FRAME frame = mbmi->ref_frame[ref]; |
| if (frame < LAST_FRAME) { |
| assert(is_intrabc_block(mbmi)); |
| assert(frame == INTRA_FRAME); |
| assert(ref == 0); |
| } else { |
| const RefCntBuffer *ref_buf = get_ref_frame_buf(cm, frame); |
| const struct scale_factors *ref_scale_factors = |
| get_ref_scale_factors_const(cm, frame); |
| |
| xd->block_ref_scale_factors[ref] = ref_scale_factors; |
| av1_setup_pre_planes(xd, ref, &ref_buf->buf, mi_row, mi_col, |
| ref_scale_factors, num_planes); |
| } |
| } |
| |
| dec_build_inter_predictor(cm, dcb, mi_row, mi_col, bsize); |
| if (mbmi->motion_mode == OBMC_CAUSAL) { |
| dec_build_obmc_inter_predictors_sb(cm, dcb); |
| } |
| #if CONFIG_MISMATCH_DEBUG |
| for (int plane = 0; plane < num_planes; ++plane) { |
| const struct macroblockd_plane *pd = &xd->plane[plane]; |
| int pixel_c, pixel_r; |
| mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, 0, 0, pd->subsampling_x, |
| pd->subsampling_y); |
| if (!is_chroma_reference(mi_row, mi_col, bsize, pd->subsampling_x, |
| pd->subsampling_y)) |
| continue; |
| mismatch_check_block_pre(pd->dst.buf, pd->dst.stride, |
| cm->current_frame.order_hint, plane, pixel_c, |
| pixel_r, pd->width, pd->height, |
| xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH); |
| } |
| #endif |
| } |
| |
| static inline void set_color_index_map_offset(MACROBLOCKD *const xd, int plane, |
| aom_reader *r) { |
| (void)r; |
| Av1ColorMapParam params; |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| av1_get_block_dimensions(mbmi->bsize, plane, xd, ¶ms.plane_width, |
| ¶ms.plane_height, NULL, NULL); |
| xd->color_index_map_offset[plane] += params.plane_width * params.plane_height; |
| } |
| |
| static inline void decode_token_recon_block(AV1Decoder *const pbi, |
| ThreadData *const td, aom_reader *r, |
| BLOCK_SIZE bsize) { |
| AV1_COMMON *const cm = &pbi->common; |
| DecoderCodingBlock *const dcb = &td->dcb; |
| MACROBLOCKD *const xd = &dcb->xd; |
| const int num_planes = av1_num_planes(cm); |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| |
| if (!is_inter_block(mbmi)) { |
| int row, col; |
| assert(bsize == get_plane_block_size(bsize, xd->plane[0].subsampling_x, |
| xd->plane[0].subsampling_y)); |
| const int max_blocks_wide = max_block_wide(xd, bsize, 0); |
| const int max_blocks_high = max_block_high(xd, bsize, 0); |
| const BLOCK_SIZE max_unit_bsize = BLOCK_64X64; |
| int mu_blocks_wide = mi_size_wide[max_unit_bsize]; |
| int mu_blocks_high = mi_size_high[max_unit_bsize]; |
| mu_blocks_wide = AOMMIN(max_blocks_wide, mu_blocks_wide); |
| mu_blocks_high = AOMMIN(max_blocks_high, mu_blocks_high); |
| |
| for (row = 0; row < max_blocks_high; row += mu_blocks_high) { |
| for (col = 0; col < max_blocks_wide; col += mu_blocks_wide) { |
| for (int plane = 0; plane < num_planes; ++plane) { |
| if (plane && !xd->is_chroma_ref) break; |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const TX_SIZE tx_size = av1_get_tx_size(plane, xd); |
| const int stepr = tx_size_high_unit[tx_size]; |
| const int stepc = tx_size_wide_unit[tx_size]; |
| |
| const int unit_height = ROUND_POWER_OF_TWO( |
| AOMMIN(mu_blocks_high + row, max_blocks_high), pd->subsampling_y); |
| const int unit_width = ROUND_POWER_OF_TWO( |
| AOMMIN(mu_blocks_wide + col, max_blocks_wide), pd->subsampling_x); |
| |
| for (int blk_row = row >> pd->subsampling_y; blk_row < unit_height; |
| blk_row += stepr) { |
| for (int blk_col = col >> pd->subsampling_x; blk_col < unit_width; |
| blk_col += stepc) { |
| td->read_coeffs_tx_intra_block_visit(cm, dcb, r, plane, blk_row, |
| blk_col, tx_size); |
| td->predict_and_recon_intra_block_visit( |
| cm, dcb, r, plane, blk_row, blk_col, tx_size); |
| set_cb_buffer_offsets(dcb, tx_size, plane); |
| } |
| } |
| } |
| } |
| } |
| } else { |
| td->predict_inter_block_visit(cm, dcb, bsize); |
| // Reconstruction |
| if (!mbmi->skip_txfm) { |
| int eobtotal = 0; |
| |
| const int max_blocks_wide = max_block_wide(xd, bsize, 0); |
| const int max_blocks_high = max_block_high(xd, bsize, 0); |
| int row, col; |
| |
| const BLOCK_SIZE max_unit_bsize = BLOCK_64X64; |
| assert(max_unit_bsize == |
| get_plane_block_size(BLOCK_64X64, xd->plane[0].subsampling_x, |
| xd->plane[0].subsampling_y)); |
| int mu_blocks_wide = mi_size_wide[max_unit_bsize]; |
| int mu_blocks_high = mi_size_high[max_unit_bsize]; |
| |
| mu_blocks_wide = AOMMIN(max_blocks_wide, mu_blocks_wide); |
| mu_blocks_high = AOMMIN(max_blocks_high, mu_blocks_high); |
| |
| for (row = 0; row < max_blocks_high; row += mu_blocks_high) { |
| for (col = 0; col < max_blocks_wide; col += mu_blocks_wide) { |
| for (int plane = 0; plane < num_planes; ++plane) { |
| if (plane && !xd->is_chroma_ref) break; |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const int ss_x = pd->subsampling_x; |
| const int ss_y = pd->subsampling_y; |
| const BLOCK_SIZE plane_bsize = |
| get_plane_block_size(bsize, ss_x, ss_y); |
| const TX_SIZE max_tx_size = |
| get_vartx_max_txsize(xd, plane_bsize, plane); |
| const int bh_var_tx = tx_size_high_unit[max_tx_size]; |
| const int bw_var_tx = tx_size_wide_unit[max_tx_size]; |
| int block = 0; |
| int step = |
| tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size]; |
| int blk_row, blk_col; |
| const int unit_height = ROUND_POWER_OF_TWO( |
| AOMMIN(mu_blocks_high + row, max_blocks_high), ss_y); |
| const int unit_width = ROUND_POWER_OF_TWO( |
| AOMMIN(mu_blocks_wide + col, max_blocks_wide), ss_x); |
| |
| for (blk_row = row >> ss_y; blk_row < unit_height; |
| blk_row += bh_var_tx) { |
| for (blk_col = col >> ss_x; blk_col < unit_width; |
| blk_col += bw_var_tx) { |
| decode_reconstruct_tx(cm, td, r, mbmi, plane, plane_bsize, |
| blk_row, blk_col, block, max_tx_size, |
| &eobtotal); |
| block += step; |
| } |
| } |
| } |
| } |
| } |
| } |
| td->cfl_store_inter_block_visit(cm, xd); |
| } |
| |
| av1_visit_palette(pbi, xd, r, set_color_index_map_offset); |
| } |
| |
| static inline void set_inter_tx_size(MB_MODE_INFO *mbmi, int stride_log2, |
| int tx_w_log2, int tx_h_log2, int min_txs, |
| int split_size, int txs, int blk_row, |
| int blk_col) { |
| for (int idy = 0; idy < tx_size_high_unit[split_size]; |
| idy += tx_size_high_unit[min_txs]) { |
| for (int idx = 0; idx < tx_size_wide_unit[split_size]; |
| idx += tx_size_wide_unit[min_txs]) { |
| const int index = (((blk_row + idy) >> tx_h_log2) << stride_log2) + |
| ((blk_col + idx) >> tx_w_log2); |
| mbmi->inter_tx_size[index] = txs; |
| } |
| } |
| } |
| |
| static inline void read_tx_size_vartx(MACROBLOCKD *xd, MB_MODE_INFO *mbmi, |
| TX_SIZE tx_size, int depth, int blk_row, |
| int blk_col, aom_reader *r) { |
| FRAME_CONTEXT *ec_ctx = xd->tile_ctx; |
| int is_split = 0; |
| const BLOCK_SIZE bsize = mbmi->bsize; |
| const int max_blocks_high = max_block_high(xd, bsize, 0); |
| const int max_blocks_wide = max_block_wide(xd, bsize, 0); |
| if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; |
| assert(tx_size > TX_4X4); |
| TX_SIZE txs = max_txsize_rect_lookup[bsize]; |
| for (int level = 0; level < MAX_VARTX_DEPTH - 1; ++level) |
| txs = sub_tx_size_map[txs]; |
| const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2; |
| const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2; |
| const int bw_log2 = mi_size_wide_log2[bsize]; |
| const int stride_log2 = bw_log2 - tx_w_log2; |
| |
| if (depth == MAX_VARTX_DEPTH) { |
| set_inter_tx_size(mbmi, stride_log2, tx_w_log2, tx_h_log2, txs, tx_size, |
| tx_size, blk_row, blk_col); |
| mbmi->tx_size = tx_size; |
| txfm_partition_update(xd->above_txfm_context + blk_col, |
| xd->left_txfm_context + blk_row, tx_size, tx_size); |
| return; |
| } |
| |
| const int ctx = txfm_partition_context(xd->above_txfm_context + blk_col, |
| xd->left_txfm_context + blk_row, |
| mbmi->bsize, tx_size); |
| is_split = aom_read_symbol(r, ec_ctx->txfm_partition_cdf[ctx], 2, ACCT_STR); |
| |
| if (is_split) { |
| const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; |
| const int bsw = tx_size_wide_unit[sub_txs]; |
| const int bsh = tx_size_high_unit[sub_txs]; |
| |
| if (sub_txs == TX_4X4) { |
| set_inter_tx_size(mbmi, stride_log2, tx_w_log2, tx_h_log2, txs, tx_size, |
| sub_txs, blk_row, blk_col); |
| mbmi->tx_size = sub_txs; |
| txfm_partition_update(xd->above_txfm_context + blk_col, |
| xd->left_txfm_context + blk_row, sub_txs, tx_size); |
| return; |
| } |
| |
| assert(bsw > 0 && bsh > 0); |
| for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) { |
| for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) { |
| int offsetr = blk_row + row; |
| int offsetc = blk_col + col; |
| read_tx_size_vartx(xd, mbmi, sub_txs, depth + 1, offsetr, offsetc, r); |
| } |
| } |
| } else { |
| set_inter_tx_size(mbmi, stride_log2, tx_w_log2, tx_h_log2, txs, tx_size, |
| tx_size, blk_row, blk_col); |
| mbmi->tx_size = tx_size; |
| txfm_partition_update(xd->above_txfm_context + blk_col, |
| xd->left_txfm_context + blk_row, tx_size, tx_size); |
| } |
| } |
| |
| static TX_SIZE read_selected_tx_size(const MACROBLOCKD *const xd, |
| aom_reader *r) { |
| // TODO(debargha): Clean up the logic here. This function should only |
| // be called for intra. |
| const BLOCK_SIZE bsize = xd->mi[0]->bsize; |
| const int32_t tx_size_cat = bsize_to_tx_size_cat(bsize); |
| const int max_depths = bsize_to_max_depth(bsize); |
| const int ctx = get_tx_size_context(xd); |
| FRAME_CONTEXT *ec_ctx = xd->tile_ctx; |
| const int depth = aom_read_symbol(r, ec_ctx->tx_size_cdf[tx_size_cat][ctx], |
| max_depths + 1, ACCT_STR); |
| assert(depth >= 0 && depth <= max_depths); |
| const TX_SIZE tx_size = depth_to_tx_size(depth, bsize); |
| return tx_size; |
| } |
| |
| static TX_SIZE read_tx_size(const MACROBLOCKD *const xd, TX_MODE tx_mode, |
| int is_inter, int allow_select_inter, |
| aom_reader *r) { |
| const BLOCK_SIZE bsize = xd->mi[0]->bsize; |
| if (xd->lossless[xd->mi[0]->segment_id]) return TX_4X4; |
| |
| if (block_signals_txsize(bsize)) { |
| if ((!is_inter || allow_select_inter) && tx_mode == TX_MODE_SELECT) { |
| const TX_SIZE coded_tx_size = read_selected_tx_size(xd, r); |
| return coded_tx_size; |
| } else { |
| return tx_size_from_tx_mode(bsize, tx_mode); |
| } |
| } else { |
| assert(IMPLIES(tx_mode == ONLY_4X4, bsize == BLOCK_4X4)); |
| return max_txsize_rect_lookup[bsize]; |
| } |
| } |
| |
| static inline void parse_decode_block(AV1Decoder *const pbi, |
| ThreadData *const td, int mi_row, |
| int mi_col, aom_reader *r, |
| PARTITION_TYPE partition, |
| BLOCK_SIZE bsize) { |
| DecoderCodingBlock *const dcb = &td->dcb; |
| MACROBLOCKD *const xd = &dcb->xd; |
| decode_mbmi_block(pbi, dcb, mi_row, mi_col, r, partition, bsize); |
| |
| av1_visit_palette(pbi, xd, r, av1_decode_palette_tokens); |
| |
| AV1_COMMON *cm = &pbi->common; |
| const int num_planes = av1_num_planes(cm); |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| int inter_block_tx = is_inter_block(mbmi) || is_intrabc_block(mbmi); |
| if (cm->features.tx_mode == TX_MODE_SELECT && block_signals_txsize(bsize) && |
| !mbmi->skip_txfm && inter_block_tx && !xd->lossless[mbmi->segment_id]) { |
| const TX_SIZE max_tx_size = max_txsize_rect_lookup[bsize]; |
| const int bh = tx_size_high_unit[max_tx_size]; |
| const int bw = tx_size_wide_unit[max_tx_size]; |
| const int width = mi_size_wide[bsize]; |
| const int height = mi_size_high[bsize]; |
| |
| for (int idy = 0; idy < height; idy += bh) |
| for (int idx = 0; idx < width; idx += bw) |
| read_tx_size_vartx(xd, mbmi, max_tx_size, 0, idy, idx, r); |
| } else { |
| mbmi->tx_size = read_tx_size(xd, cm->features.tx_mode, inter_block_tx, |
| !mbmi->skip_txfm, r); |
| if (inter_block_tx) |
| memset(mbmi->inter_tx_size, mbmi->tx_size, sizeof(mbmi->inter_tx_size)); |
| set_txfm_ctxs(mbmi->tx_size, xd->width, xd->height, |
| mbmi->skip_txfm && is_inter_block(mbmi), xd); |
| } |
| |
| if (cm->delta_q_info.delta_q_present_flag) { |
| for (int i = 0; i < MAX_SEGMENTS; i++) { |
| const int current_qindex = |
| av1_get_qindex(&cm->seg, i, xd->current_base_qindex); |
| const CommonQuantParams *const quant_params = &cm->quant_params; |
| for (int j = 0; j < num_planes; ++j) { |
| const int dc_delta_q = j == 0 ? quant_params->y_dc_delta_q |
| : (j == 1 ? quant_params->u_dc_delta_q |
| : quant_params->v_dc_delta_q); |
| const int ac_delta_q = j == 0 ? 0 |
| : (j == 1 ? quant_params->u_ac_delta_q |
| : quant_params->v_ac_delta_q); |
| xd->plane[j].seg_dequant_QTX[i][0] = av1_dc_quant_QTX( |
| current_qindex, dc_delta_q, cm->seq_params->bit_depth); |
| xd->plane[j].seg_dequant_QTX[i][1] = av1_ac_quant_QTX( |
| current_qindex, ac_delta_q, cm->seq_params->bit_depth); |
| } |
| } |
| } |
| if (mbmi->skip_txfm) av1_reset_entropy_context(xd, bsize, num_planes); |
| |
| decode_token_recon_block(pbi, td, r, bsize); |
| } |
| |
| static inline void set_offsets_for_pred_and_recon(AV1Decoder *const pbi, |
| ThreadData *const td, |
| int mi_row, int mi_col, |
| BLOCK_SIZE bsize) { |
| AV1_COMMON *const cm = &pbi->common; |
| const CommonModeInfoParams *const mi_params = &cm->mi_params; |
| DecoderCodingBlock *const dcb = &td->dcb; |
| MACROBLOCKD *const xd = &dcb->xd; |
| const int bw = mi_size_wide[bsize]; |
| const int bh = mi_size_high[bsize]; |
| const int num_planes = av1_num_planes(cm); |
| |
| const int offset = mi_row * mi_params->mi_stride + mi_col; |
| const TileInfo *const tile = &xd->tile; |
| |
| xd->mi = mi_params->mi_grid_base + offset; |
| xd->tx_type_map = |
| &mi_params->tx_type_map[mi_row * mi_params->mi_stride + mi_col]; |
| xd->tx_type_map_stride = mi_params->mi_stride; |
| |
| set_plane_n4(xd, bw, bh, num_planes); |
| |
| // Distance of Mb to the various image edges. These are specified to 8th pel |
| // as they are always compared to values that are in 1/8th pel units |
| set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, mi_params->mi_rows, |
| mi_params->mi_cols); |
| |
| av1_setup_dst_planes(xd->plane, bsize, &cm->cur_frame->buf, mi_row, mi_col, 0, |
| num_planes); |
| } |
| |
| static inline void decode_block(AV1Decoder *const pbi, ThreadData *const td, |
| int mi_row, int mi_col, aom_reader *r, |
| PARTITION_TYPE partition, BLOCK_SIZE bsize) { |
| (void)partition; |
| set_offsets_for_pred_and_recon(pbi, td, mi_row, mi_col, bsize); |
| decode_token_recon_block(pbi, td, r, bsize); |
| } |
| |
| static PARTITION_TYPE read_partition(MACROBLOCKD *xd, int mi_row, int mi_col, |
| aom_reader *r, int has_rows, int has_cols, |
| BLOCK_SIZE bsize) { |
| const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize); |
| FRAME_CONTEXT *ec_ctx = xd->tile_ctx; |
| |
| if (!has_rows && !has_cols) return PARTITION_SPLIT; |
| |
| assert(ctx >= 0); |
| aom_cdf_prob *partition_cdf = ec_ctx->partition_cdf[ctx]; |
| if (has_rows && has_cols) { |
| return (PARTITION_TYPE)aom_read_symbol( |
| r, partition_cdf, partition_cdf_length(bsize), ACCT_STR); |
| } else if (!has_rows && has_cols) { |
| assert(bsize > BLOCK_8X8); |
| aom_cdf_prob cdf[2]; |
| partition_gather_vert_alike(cdf, partition_cdf, bsize); |
| assert(cdf[1] == AOM_ICDF(CDF_PROB_TOP)); |
| return aom_read_cdf(r, cdf, 2, ACCT_STR) ? PARTITION_SPLIT : PARTITION_HORZ; |
| } else { |
| assert(has_rows && !has_cols); |
| assert(bsize > BLOCK_8X8); |
| aom_cdf_prob cdf[2]; |
| partition_gather_horz_alike(cdf, partition_cdf, bsize); |
| assert(cdf[1] == AOM_ICDF(CDF_PROB_TOP)); |
| return aom_read_cdf(r, cdf, 2, ACCT_STR) ? PARTITION_SPLIT : PARTITION_VERT; |
| } |
| } |
| |
| // TODO(slavarnway): eliminate bsize and subsize in future commits |
| static inline void decode_partition(AV1Decoder *const pbi, ThreadData *const td, |
| int mi_row, int mi_col, aom_reader *reader, |
| BLOCK_SIZE bsize, int parse_decode_flag) { |
| assert(bsize < BLOCK_SIZES_ALL); |
| AV1_COMMON *const cm = &pbi->common; |
| DecoderCodingBlock *const dcb = &td->dcb; |
| MACROBLOCKD *const xd = &dcb->xd; |
| const int bw = mi_size_wide[bsize]; |
| const int hbs = bw >> 1; |
| PARTITION_TYPE partition; |
| BLOCK_SIZE subsize; |
| const int quarter_step = bw / 4; |
| BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT); |
| const int has_rows = (mi_row + hbs) < cm->mi_params.mi_rows; |
| const int has_cols = (mi_col + hbs) < cm->mi_params.mi_cols; |
| |
| if (mi_row >= cm->mi_params.mi_rows || mi_col >= cm->mi_params.mi_cols) |
| return; |
| |
| // parse_decode_flag takes the following values : |
| // 01 - do parse only |
| // 10 - do decode only |
| // 11 - do parse and decode |
| static const block_visitor_fn_t block_visit[4] = { NULL, parse_decode_block, |
| decode_block, |
| parse_decode_block }; |
| |
| if (parse_decode_flag & 1) { |
| const int num_planes = av1_num_planes(cm); |
| for (int plane = 0; plane < num_planes; ++plane) { |
| int rcol0, rcol1, rrow0, rrow1; |
| |
| // Skip some unnecessary work if loop restoration is disabled |
| if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue; |
| |
| if (av1_loop_restoration_corners_in_sb(cm, plane, mi_row, mi_col, bsize, |
| &rcol0, &rcol1, &rrow0, &rrow1)) { |
| const int rstride = cm->rst_info[plane].horz_units; |
| for (int rrow = rrow0; rrow < rrow1; ++rrow) { |
| for (int rcol = rcol0; rcol < rcol1; ++rcol) { |
| const int runit_idx = rcol + rrow * rstride; |
| loop_restoration_read_sb_coeffs(cm, xd, reader, plane, runit_idx); |
| } |
| } |
| } |
| } |
| |
| partition = (bsize < BLOCK_8X8) ? PARTITION_NONE |
| : read_partition(xd, mi_row, mi_col, reader, |
| has_rows, has_cols, bsize); |
| } else { |
| partition = get_partition(cm, mi_row, mi_col, bsize); |
| } |
| subsize = get_partition_subsize(bsize, partition); |
| if (subsize == BLOCK_INVALID) { |
| // When an internal error occurs ensure that xd->mi_row is set appropriately |
| // w.r.t. current tile, which is used to signal processing of current row is |
| // done. |
| xd->mi_row = mi_row; |
| aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME, |
| "Partition is invalid for block size %dx%d", |
| block_size_wide[bsize], block_size_high[bsize]); |
| } |
| // Check the bitstream is conformant: if there is subsampling on the |
| // chroma planes, subsize must subsample to a valid block size. |
| const struct macroblockd_plane *const pd_u = &xd->plane[1]; |
| if (get_plane_block_size(subsize, pd_u->subsampling_x, pd_u->subsampling_y) == |
| BLOCK_INVALID) { |
| // When an internal error occurs ensure that xd->mi_row is set appropriately |
| // w.r.t. current tile, which is used to signal processing of current row is |
| // done. |
| xd->mi_row = mi_row; |
| aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME, |
| "Block size %dx%d invalid with this subsampling mode", |
| block_size_wide[subsize], block_size_high[subsize]); |
| } |
| |
| #define DEC_BLOCK_STX_ARG |
| #define DEC_BLOCK_EPT_ARG partition, |
| #define DEC_BLOCK(db_r, db_c, db_subsize) \ |
| block_visit[parse_decode_flag](pbi, td, DEC_BLOCK_STX_ARG(db_r), (db_c), \ |
| reader, DEC_BLOCK_EPT_ARG(db_subsize)) |
| #define DEC_PARTITION(db_r, db_c, db_subsize) \ |
| decode_partition(pbi, td, DEC_BLOCK_STX_ARG(db_r), (db_c), reader, \ |
| (db_subsize), parse_decode_flag) |
| |
| switch (partition) { |
| case PARTITION_NONE: DEC_BLOCK(mi_row, mi_col, subsize); break; |
| case PARTITION_HORZ: |
| DEC_BLOCK(mi_row, mi_col, subsize); |
| if (has_rows) DEC_BLOCK(mi_row + hbs, mi_col, subsize); |
| break; |
| case PARTITION_VERT: |
| DEC_BLOCK(mi_row, mi_col, subsize); |
| if (has_cols) DEC_BLOCK(mi_row, mi_col + hbs, subsize); |
| break; |
| case PARTITION_SPLIT: |
| DEC_PARTITION(mi_row, mi_col, subsize); |
| DEC_PARTITION(mi_row, mi_col + hbs, subsize); |
| DEC_PARTITION(mi_row + hbs, mi_col, subsize); |
| DEC_PARTITION(mi_row + hbs, mi_col + hbs, subsize); |
| break; |
| case PARTITION_HORZ_A: |
| DEC_BLOCK(mi_row, mi_col, bsize2); |
| DEC_BLOCK(mi_row, mi_col + hbs, bsize2); |
| DEC_BLOCK(mi_row + hbs, mi_col, subsize); |
| break; |
| case PARTITION_HORZ_B: |
| DEC_BLOCK(mi_row, mi_col, subsize); |
| DEC_BLOCK(mi_row + hbs, mi_col, bsize2); |
| DEC_BLOCK(mi_row + hbs, mi_col + hbs, bsize2); |
| break; |
| case PARTITION_VERT_A: |
| DEC_BLOCK(mi_row, mi_col, bsize2); |
| DEC_BLOCK(mi_row + hbs, mi_col, bsize2); |
| DEC_BLOCK(mi_row, mi_col + hbs, subsize); |
| break; |
| case PARTITION_VERT_B: |
| DEC_BLOCK(mi_row, mi_col, subsize); |
| DEC_BLOCK(mi_row, mi_col + hbs, bsize2); |
| DEC_BLOCK(mi_row + hbs, mi_col + hbs, bsize2); |
| break; |
| case PARTITION_HORZ_4: |
| for (int i = 0; i < 4; ++i) { |
| int this_mi_row = mi_row + i * quarter_step; |
| if (i > 0 && this_mi_row >= cm->mi_params.mi_rows) break; |
| DEC_BLOCK(this_mi_row, mi_col, subsize); |
| } |
| break; |
| case PARTITION_VERT_4: |
| for (int i = 0; i < 4; ++i) { |
| int this_mi_col = mi_col + i * quarter_step; |
| if (i > 0 && this_mi_col >= cm->mi_params.mi_cols) break; |
| DEC_BLOCK(mi_row, this_mi_col, subsize); |
| } |
| break; |
| default: assert(0 && "Invalid partition type"); |
| } |
| |
| #undef DEC_PARTITION |
| #undef DEC_BLOCK |
| #undef DEC_BLOCK_EPT_ARG |
| #undef DEC_BLOCK_STX_ARG |
| |
| if (parse_decode_flag & 1) |
| update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition); |
| } |
| |
| static inline void setup_bool_decoder( |
| MACROBLOCKD *const xd, const uint8_t *data, const uint8_t *data_end, |
| const size_t read_size, struct aom_internal_error_info *error_info, |
| aom_reader *r, uint8_t allow_update_cdf) { |
| // Validate the calculated partition length. If the buffer |
| // described by the partition can't be fully read, then restrict |
| // it to the portion that can be (for EC mode) or throw an error. |
| if (!read_is_valid(data, read_size, data_end)) { |
| // When internal error occurs ensure that xd->mi_row is set appropriately |
| // w.r.t. current tile, which is used to signal processing of current row is |
| // done in row-mt decoding. |
| xd->mi_row = xd->tile.mi_row_start; |
| |
| aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME, |
| "Truncated packet or corrupt tile length"); |
| } |
| if (aom_reader_init(r, data, read_size)) { |
| // When internal error occurs ensure that xd->mi_row is set appropriately |
| // w.r.t. current tile, which is used to signal processing of current row is |
| // done in row-mt decoding. |
| xd->mi_row = xd->tile.mi_row_start; |
| |
| aom_internal_error(error_info, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate bool decoder %d", 1); |
| } |
| |
| r->allow_update_cdf = allow_update_cdf; |
| } |
| |
| static inline void setup_segmentation(AV1_COMMON *const cm, |
| struct aom_read_bit_buffer *rb) { |
| struct segmentation *const seg = &cm->seg; |
| |
| seg->update_map = 0; |
| seg->update_data = 0; |
| seg->temporal_update = 0; |
| |
| seg->enabled = aom_rb_read_bit(rb); |
| if (!seg->enabled) { |
| if (cm->cur_frame->seg_map) { |
| memset(cm->cur_frame->seg_map, 0, |
| (cm->cur_frame->mi_rows * cm->cur_frame->mi_cols)); |
| } |
| |
| memset(seg, 0, sizeof(*seg)); |
| segfeatures_copy(&cm->cur_frame->seg, seg); |
| return; |
| } |
| if (cm->seg.enabled && cm->prev_frame && |
| (cm->mi_params.mi_rows == cm->prev_frame->mi_rows) && |
| (cm->mi_params.mi_cols == cm->prev_frame->mi_cols)) { |
| cm->last_frame_seg_map = cm->prev_frame->seg_map; |
| } else { |
| cm->last_frame_seg_map = NULL; |
| } |
| // Read update flags |
| if (cm->features.primary_ref_frame == PRIMARY_REF_NONE) { |
| // These frames can't use previous frames, so must signal map + features |
| seg->update_map = 1; |
| seg->temporal_update = 0; |
| seg->update_data = 1; |
| } else { |
| seg->update_map = aom_rb_read_bit(rb); |
| if (seg->update_map) { |
| seg->temporal_update = aom_rb_read_bit(rb); |
| } else { |
| seg->temporal_update = 0; |
| } |
| seg->update_data = aom_rb_read_bit(rb); |
| } |
| |
| // Segmentation data update |
| if (seg->update_data) { |
| av1_clearall_segfeatures(seg); |
| |
| for (int i = 0; i < MAX_SEGMENTS; i++) { |
| for (int j = 0; j < SEG_LVL_MAX; j++) { |
| int data = 0; |
| const int feature_enabled = aom_rb_read_bit(rb); |
| if (feature_enabled) { |
| av1_enable_segfeature(seg, i, j); |
| |
| const int data_max = av1_seg_feature_data_max(j); |
| const int data_min = -data_max; |
| const int ubits = get_unsigned_bits(data_max); |
| |
| if (av1_is_segfeature_signed(j)) { |
| data = aom_rb_read_inv_signed_literal(rb, ubits); |
| } else { |
| data = aom_rb_read_literal(rb, ubits); |
| } |
| |
| data = clamp(data, data_min, data_max); |
| } |
| av1_set_segdata(seg, i, j, data); |
| } |
| } |
| av1_calculate_segdata(seg); |
| } else if (cm->prev_frame) { |
| segfeatures_copy(seg, &cm->prev_frame->seg); |
| } |
| segfeatures_copy(&cm->cur_frame->seg, seg); |
| } |
| |
| static inline void decode_restoration_mode(AV1_COMMON *cm, |
| struct aom_read_bit_buffer *rb) { |
| assert(!cm->features.all_lossless); |
| const int num_planes = av1_num_planes(cm); |
| if (cm->features.allow_intrabc) return; |
| int all_none = 1, chroma_none = 1; |
| for (int p = 0; p < num_planes; ++p) { |
| RestorationInfo *rsi = &cm->rst_info[p]; |
| if (aom_rb_read_bit(rb)) { |
| rsi->frame_restoration_type = |
| aom_rb_read_bit(rb) ? RESTORE_SGRPROJ : RESTORE_WIENER; |
| } else { |
| rsi->frame_restoration_type = |
| aom_rb_read_bit(rb) ? RESTORE_SWITCHABLE : RESTORE_NONE; |
| } |
| if (rsi->frame_restoration_type != RESTORE_NONE) { |
| all_none = 0; |
| chroma_none &= p == 0; |
| } |
| } |
| if (!all_none) { |
| assert(cm->seq_params->sb_size == BLOCK_64X64 || |
| cm->seq_params->sb_size == BLOCK_128X128); |
| const int sb_size = cm->seq_params->sb_size == BLOCK_128X128 ? 128 : 64; |
| |
| for (int p = 0; p < num_planes; ++p) |
| cm->rst_info[p].restoration_unit_size = sb_size; |
| |
| RestorationInfo *rsi = &cm->rst_info[0]; |
| |
| if (sb_size == 64) { |
| rsi->restoration_unit_size <<= aom_rb_read_bit(rb); |
| } |
| if (rsi->restoration_unit_size > 64) { |
| rsi->restoration_unit_size <<= aom_rb_read_bit(rb); |
| } |
| } else { |
| const int size = RESTORATION_UNITSIZE_MAX; |
| for (int p = 0; p < num_planes; ++p) |
| cm->rst_info[p].restoration_unit_size = size; |
| } |
| |
| if (num_planes > 1) { |
| int s = |
| AOMMIN(cm->seq_params->subsampling_x, cm->seq_params->subsampling_y); |
| if (s && !chroma_none) { |
| cm->rst_info[1].restoration_unit_size = |
| cm->rst_info[0].restoration_unit_size >> (aom_rb_read_bit(rb) * s); |
| } else { |
| cm->rst_info[1].restoration_unit_size = |
| cm->rst_info[0].restoration_unit_size; |
| } |
| cm->rst_info[2].restoration_unit_size = |
| cm->rst_info[1].restoration_unit_size; |
| } |
| } |
| |
| static inline void read_wiener_filter(int wiener_win, WienerInfo *wiener_info, |
| WienerInfo *ref_wiener_info, |
| aom_reader *rb) { |
| memset(wiener_info->vfilter, 0, sizeof(wiener_info->vfilter)); |
| memset(wiener_info->hfilter, 0, sizeof(wiener_info->hfilter)); |
| |
| if (wiener_win == WIENER_WIN) |
| wiener_info->vfilter[0] = wiener_info->vfilter[WIENER_WIN - 1] = |
| aom_read_primitive_refsubexpfin( |
| rb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1, |
| WIENER_FILT_TAP0_SUBEXP_K, |
| ref_wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV, ACCT_STR) + |
| WIENER_FILT_TAP0_MINV; |
| else |
| wiener_info->vfilter[0] = wiener_info->vfilter[WIENER_WIN - 1] = 0; |
| wiener_info->vfilter[1] = wiener_info->vfilter[WIENER_WIN - 2] = |
| aom_read_primitive_refsubexpfin( |
| rb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1, |
| WIENER_FILT_TAP1_SUBEXP_K, |
| ref_wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV, ACCT_STR) + |
| WIENER_FILT_TAP1_MINV; |
| wiener_info->vfilter[2] = wiener_info->vfilter[WIENER_WIN - 3] = |
| aom_read_primitive_refsubexpfin( |
| rb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1, |
| WIENER_FILT_TAP2_SUBEXP_K, |
| ref_wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV, ACCT_STR) + |
| WIENER_FILT_TAP2_MINV; |
| // The central element has an implicit +WIENER_FILT_STEP |
| wiener_info->vfilter[WIENER_HALFWIN] = |
| -2 * (wiener_info->vfilter[0] + wiener_info->vfilter[1] + |
| wiener_info->vfilter[2]); |
| |
| if (wiener_win == WIENER_WIN) |
| wiener_info->hfilter[0] = wiener_info->hfilter[WIENER_WIN - 1] = |
| aom_read_primitive_refsubexpfin( |
| rb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1, |
| WIENER_FILT_TAP0_SUBEXP_K, |
| ref_wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV, ACCT_STR) + |
| WIENER_FILT_TAP0_MINV; |
| else |
| wiener_info->hfilter[0] = wiener_info->hfilter[WIENER_WIN - 1] = 0; |
| wiener_info->hfilter[1] = wiener_info->hfilter[WIENER_WIN - 2] = |
| aom_read_primitive_refsubexpfin( |
| rb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1, |
| WIENER_FILT_TAP1_SUBEXP_K, |
| ref_wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV, ACCT_STR) + |
| WIENER_FILT_TAP1_MINV; |
| wiener_info->hfilter[2] = wiener_info->hfilter[WIENER_WIN - 3] = |
| aom_read_primitive_refsubexpfin( |
| rb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1, |
| WIENER_FILT_TAP2_SUBEXP_K, |
| ref_wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV, ACCT_STR) + |
| WIENER_FILT_TAP2_MINV; |
| // The central element has an implicit +WIENER_FILT_STEP |
| wiener_info->hfilter[WIENER_HALFWIN] = |
| -2 * (wiener_info->hfilter[0] + wiener_info->hfilter[1] + |
| wiener_info->hfilter[2]); |
| memcpy(ref_wiener_info, wiener_info, sizeof(*wiener_info)); |
| } |
| |
| static inline void read_sgrproj_filter(SgrprojInfo *sgrproj_info, |
| SgrprojInfo *ref_sgrproj_info, |
| aom_reader *rb) { |
| sgrproj_info->ep = aom_read_literal(rb, SGRPROJ_PARAMS_BITS, ACCT_STR); |
| const sgr_params_type *params = &av1_sgr_params[sgrproj_info->ep]; |
| |
| if (params->r[0] == 0) { |
| sgrproj_info->xqd[0] = 0; |
| sgrproj_info->xqd[1] = |
| aom_read_primitive_refsubexpfin( |
| rb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K, |
| ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1, ACCT_STR) + |
| SGRPROJ_PRJ_MIN1; |
| } else if (params->r[1] == 0) { |
| sgrproj_info->xqd[0] = |
| aom_read_primitive_refsubexpfin( |
| rb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K, |
| ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0, ACCT_STR) + |
| SGRPROJ_PRJ_MIN0; |
| sgrproj_info->xqd[1] = clamp((1 << SGRPROJ_PRJ_BITS) - sgrproj_info->xqd[0], |
| SGRPROJ_PRJ_MIN1, SGRPROJ_PRJ_MAX1); |
| } else { |
| sgrproj_info->xqd[0] = |
| aom_read_primitive_refsubexpfin( |
| rb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K, |
| ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0, ACCT_STR) + |
| SGRPROJ_PRJ_MIN0; |
| sgrproj_info->xqd[1] = |
| aom_read_primitive_refsubexpfin( |
| rb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K, |
| ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1, ACCT_STR) + |
| SGRPROJ_PRJ_MIN1; |
| } |
| |
| memcpy(ref_sgrproj_info, sgrproj_info, sizeof(*sgrproj_info)); |
| } |
| |
| static inline void loop_restoration_read_sb_coeffs(const AV1_COMMON *const cm, |
| MACROBLOCKD *xd, |
| aom_reader *const r, |
| int plane, int runit_idx) { |
| const RestorationInfo *rsi = &cm->rst_info[plane]; |
| RestorationUnitInfo *rui = &rsi->unit_info[runit_idx]; |
| assert(rsi->frame_restoration_type != RESTORE_NONE); |
| |
| assert(!cm->features.all_lossless); |
| |
| const int wiener_win = (plane > 0) ? WIENER_WIN_CHROMA : WIENER_WIN; |
| WienerInfo *wiener_info = xd->wiener_info + plane; |
| SgrprojInfo *sgrproj_info = xd->sgrproj_info + plane; |
| |
| if (rsi->frame_restoration_type == RESTORE_SWITCHABLE) { |
| rui->restoration_type = |
| aom_read_symbol(r, xd->tile_ctx->switchable_restore_cdf, |
| RESTORE_SWITCHABLE_TYPES, ACCT_STR); |
| switch (rui->restoration_type) { |
| case RESTORE_WIENER: |
| read_wiener_filter(wiener_win, &rui->wiener_info, wiener_info, r); |
| break; |
| case RESTORE_SGRPROJ: |
| read_sgrproj_filter(&rui->sgrproj_info, sgrproj_info, r); |
| break; |
| default: assert(rui->restoration_type == RESTORE_NONE); break; |
| } |
| } else if (rsi->frame_restoration_type == RESTORE_WIENER) { |
| if (aom_read_symbol(r, xd->tile_ctx->wiener_restore_cdf, 2, ACCT_STR)) { |
| rui->restoration_type = RESTORE_WIENER; |
| read_wiener_filter(wiener_win, &rui->wiener_info, wiener_info, r); |
| } else { |
| rui->restoration_type = RESTORE_NONE; |
| } |
| } else if (rsi->frame_restoration_type == RESTORE_SGRPROJ) { |
| if (aom_read_symbol(r, xd->tile_ctx->sgrproj_restore_cdf, 2, ACCT_STR)) { |
| rui->restoration_type = RESTORE_SGRPROJ; |
| read_sgrproj_filter(&rui->sgrproj_info, sgrproj_info, r); |
| } else { |
| rui->restoration_type = RESTORE_NONE; |
| } |
| } |
| } |
| |
| static inline void setup_loopfilter(AV1_COMMON *cm, |
| struct aom_read_bit_buffer *rb) { |
| const int num_planes = av1_num_planes(cm); |
| struct loopfilter *lf = &cm->lf; |
| |
| if (cm->features.allow_intrabc || cm->features.coded_lossless) { |
| // write default deltas to frame buffer |
| av1_set_default_ref_deltas(cm->cur_frame->ref_deltas); |
| av1_set_default_mode_deltas(cm->cur_frame->mode_deltas); |
| return; |
| } |
| assert(!cm->features.coded_lossless); |
| if (cm->prev_frame) { |
| // write deltas to frame buffer |
| memcpy(lf->ref_deltas, cm->prev_frame->ref_deltas, REF_FRAMES); |
| memcpy(lf->mode_deltas, cm->prev_frame->mode_deltas, MAX_MODE_LF_DELTAS); |
| } else { |
| av1_set_default_ref_deltas(lf->ref_deltas); |
| av1_set_default_mode_deltas(lf->mode_deltas); |
| } |
| lf->filter_level[0] = aom_rb_read_literal(rb, 6); |
| lf->filter_level[1] = aom_rb_read_literal(rb, 6); |
| if (num_planes > 1) { |
| if (lf->filter_level[0] || lf->filter_level[1]) { |
| lf->filter_level_u = aom_rb_read_literal(rb, 6); |
| lf->filter_level_v = aom_rb_read_literal(rb, 6); |
| } |
| } |
| lf->sharpness_level = aom_rb_read_literal(rb, 3); |
| |
| // Read in loop filter deltas applied at the MB level based on mode or ref |
| // frame. |
| lf->mode_ref_delta_update = 0; |
| |
| lf->mode_ref_delta_enabled = aom_rb_read_bit(rb); |
| if (lf->mode_ref_delta_enabled) { |
| lf->mode_ref_delta_update = aom_rb_read_bit(rb); |
| if (lf->mode_ref_delta_update) { |
| for (int i = 0; i < REF_FRAMES; i++) |
| if (aom_rb_read_bit(rb)) |
| lf->ref_deltas[i] = aom_rb_read_inv_signed_literal(rb, 6); |
| |
| for (int i = 0; i < MAX_MODE_LF_DELTAS; i++) |
| if (aom_rb_read_bit(rb)) |
| lf->mode_deltas[i] = aom_rb_read_inv_signed_literal(rb, 6); |
| } |
| } |
| |
| // write deltas to frame buffer |
| memcpy(cm->cur_frame->ref_deltas, lf->ref_deltas, REF_FRAMES); |
| memcpy(cm->cur_frame->mode_deltas, lf->mode_deltas, MAX_MODE_LF_DELTAS); |
| } |
| |
| static inline void setup_cdef(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) { |
| const int num_planes = av1_num_planes(cm); |
| CdefInfo *const cdef_info = &cm->cdef_info; |
| |
| if (cm->features.allow_intrabc) return; |
| cdef_info->cdef_damping = aom_rb_read_literal(rb, 2) + 3; |
| cdef_info->cdef_bits = aom_rb_read_literal(rb, 2); |
| cdef_info->nb_cdef_strengths = 1 << cdef_info->cdef_bits; |
| for (int i = 0; i < cdef_info->nb_cdef_strengths; i++) { |
| cdef_info->cdef_strengths[i] = aom_rb_read_literal(rb, CDEF_STRENGTH_BITS); |
| cdef_info->cdef_uv_strengths[i] = |
| num_planes > 1 ? aom_rb_read_literal(rb, CDEF_STRENGTH_BITS) : 0; |
| } |
| } |
| |
| static inline int read_delta_q(struct aom_read_bit_buffer *rb) { |
| return aom_rb_read_bit(rb) ? aom_rb_read_inv_signed_literal(rb, 6) : 0; |
| } |
| |
| static inline void setup_quantization(CommonQuantParams *quant_params, |
| int num_planes, bool separate_uv_delta_q, |
| struct aom_read_bit_buffer *rb) { |
| quant_params->base_qindex = aom_rb_read_literal(rb, QINDEX_BITS); |
| quant_params->y_dc_delta_q = read_delta_q(rb); |
| if (num_planes > 1) { |
| int diff_uv_delta = 0; |
| if (separate_uv_delta_q) diff_uv_delta = aom_rb_read_bit(rb); |
| quant_params->u_dc_delta_q = read_delta_q(rb); |
| quant_params->u_ac_delta_q = read_delta_q(rb); |
| if (diff_uv_delta) { |
| quant_params->v_dc_delta_q = read_delta_q(rb); |
| quant_params->v_ac_delta_q = read_delta_q(rb); |
| } else { |
| quant_params->v_dc_delta_q = quant_params->u_dc_delta_q; |
| quant_params->v_ac_delta_q = quant_params->u_ac_delta_q; |
| } |
| } else { |
| quant_params->u_dc_delta_q = 0; |
| quant_params->u_ac_delta_q = 0; |
| quant_params->v_dc_delta_q = 0; |
| quant_params->v_ac_delta_q = 0; |
| } |
| quant_params->using_qmatrix = aom_rb_read_bit(rb); |
| if (quant_params->using_qmatrix) { |
| quant_params->qmatrix_level_y = aom_rb_read_literal(rb, QM_LEVEL_BITS); |
| quant_params->qmatrix_level_u = aom_rb_read_literal(rb, QM_LEVEL_BITS); |
| if (!separate_uv_delta_q) |
| quant_params->qmatrix_level_v = quant_params->qmatrix_level_u; |
| else |
| quant_params->qmatrix_level_v = aom_rb_read_literal(rb, QM_LEVEL_BITS); |
| } else { |
| quant_params->qmatrix_level_y = 0; |
| quant_params->qmatrix_level_u = 0; |
| quant_params->qmatrix_level_v = 0; |
| } |
| } |
| |
| // Get global dequant matrix. |
| static const qm_val_t *get_iqmatrix(const CommonQuantParams *quant_params, |
| int qmlevel, int plane, TX_SIZE tx_size) { |
| assert(quant_params->giqmatrix[qmlevel][plane][tx_size] != NULL || |
| qmlevel == NUM_QM_LEVELS - 1); |
| return quant_params->giqmatrix[qmlevel][plane][tx_size]; |
| } |
| |
| // Build y/uv dequant values based on segmentation. |
| static inline void setup_segmentation_dequant(AV1_COMMON *const cm, |
| MACROBLOCKD *const xd) { |
| const int bit_depth = cm->seq_params->bit_depth; |
| // When segmentation is disabled, only the first value is used. The |
| // remaining are don't cares. |
| const int max_segments = cm->seg.enabled ? MAX_SEGMENTS : 1; |
| CommonQuantParams *const quant_params = &cm->quant_params; |
| for (int i = 0; i < max_segments; ++i) { |
| const int qindex = xd->qindex[i]; |
| quant_params->y_dequant_QTX[i][0] = |
| av1_dc_quant_QTX(qindex, quant_params->y_dc_delta_q, bit_depth); |
| quant_params->y_dequant_QTX[i][1] = av1_ac_quant_QTX(qindex, 0, bit_depth); |
| quant_params->u_dequant_QTX[i][0] = |
| av1_dc_quant_QTX(qindex, quant_params->u_dc_delta_q, bit_depth); |
| quant_params->u_dequant_QTX[i][1] = |
| av1_ac_quant_QTX(qindex, quant_params->u_ac_delta_q, bit_depth); |
| quant_params->v_dequant_QTX[i][0] = |
| av1_dc_quant_QTX(qindex, quant_params->v_dc_delta_q, bit_depth); |
| quant_params->v_dequant_QTX[i][1] = |
| av1_ac_quant_QTX(qindex, quant_params->v_ac_delta_q, bit_depth); |
| const int use_qmatrix = av1_use_qmatrix(quant_params, xd, i); |
| // NB: depends on base index so there is only 1 set per frame |
| // No quant weighting when lossless or signalled not using QM |
| const int qmlevel_y = |
| use_qmatrix ? quant_params->qmatrix_level_y : NUM_QM_LEVELS - 1; |
| for (int j = 0; j < TX_SIZES_ALL; ++j) { |
| quant_params->y_iqmatrix[i][j] = |
| get_iqmatrix(quant_params, qmlevel_y, AOM_PLANE_Y, j); |
| } |
| const int qmlevel_u = |
| use_qmatrix ? quant_params->qmatrix_level_u : NUM_QM_LEVELS - 1; |
| for (int j = 0; j < TX_SIZES_ALL; ++j) { |
| quant_params->u_iqmatrix[i][j] = |
| get_iqmatrix(quant_params, qmlevel_u, AOM_PLANE_U, j); |
| } |
| const int qmlevel_v = |
| use_qmatrix ? quant_params->qmatrix_level_v : NUM_QM_LEVELS - 1; |
| for (int j = 0; j < TX_SIZES_ALL; ++j) { |
| quant_params->v_iqmatrix[i][j] = |
| get_iqmatrix(quant_params, qmlevel_v, AOM_PLANE_V, j); |
| } |
| } |
| } |
| |
| static InterpFilter read_frame_interp_filter(struct aom_read_bit_buffer *rb) { |
| return aom_rb_read_bit(rb) ? SWITCHABLE |
| : aom_rb_read_literal(rb, LOG_SWITCHABLE_FILTERS); |
| } |
| |
| static inline void setup_render_size(AV1_COMMON *cm, |
| struct aom_read_bit_buffer *rb) { |
| cm->render_width = cm->superres_upscaled_width; |
| cm->render_height = cm->superres_upscaled_height; |
| if (aom_rb_read_bit(rb)) |
| av1_read_frame_size(rb, 16, 16, &cm->render_width, &cm->render_height); |
| } |
| |
| // TODO(afergs): make "struct aom_read_bit_buffer *const rb"? |
| static inline void setup_superres(AV1_COMMON *const cm, |
| struct aom_read_bit_buffer *rb, int *width, |
| int *height) { |
| cm->superres_upscaled_width = *width; |
| cm->superres_upscaled_height = *height; |
| |
| const SequenceHeader *const seq_params = cm->seq_params; |
| if (!seq_params->enable_superres) return; |
| |
| if (aom_rb_read_bit(rb)) { |
| cm->superres_scale_denominator = |
| (uint8_t)aom_rb_read_literal(rb, SUPERRES_SCALE_BITS); |
| cm->superres_scale_denominator += SUPERRES_SCALE_DENOMINATOR_MIN; |
| // Don't edit cm->width or cm->height directly, or the buffers won't get |
| // resized correctly |
| av1_calculate_scaled_superres_size(width, height, |
| cm->superres_scale_denominator); |
| } else { |
| // 1:1 scaling - ie. no scaling, scale not provided |
| cm->superres_scale_denominator = SCALE_NUMERATOR; |
| } |
| } |
| |
| static inline void resize_context_buffers(AV1_COMMON *cm, int width, |
| int height) { |
| #if CONFIG_SIZE_LIMIT |
| if (width > DECODE_WIDTH_LIMIT || height > DECODE_HEIGHT_LIMIT) |
| aom_internal_error(cm->error, AOM_CODEC_CORRUPT_FRAME, |
| "Dimensions of %dx%d beyond allowed size of %dx%d.", |
| width, height, DECODE_WIDTH_LIMIT, DECODE_HEIGHT_LIMIT); |
| #endif |
| if (cm->width != width || cm->height != height) { |
| const int new_mi_rows = CEIL_POWER_OF_TWO(height, MI_SIZE_LOG2); |
| const int new_mi_cols = CEIL_POWER_OF_TWO(width, MI_SIZE_LOG2); |
| |
| // Allocations in av1_alloc_context_buffers() depend on individual |
| // dimensions as well as the overall size. |
| if (new_mi_cols > cm->mi_params.mi_cols || |
| new_mi_rows > cm->mi_params.mi_rows) { |
| if (av1_alloc_context_buffers(cm, width, height, BLOCK_4X4)) { |
| // The cm->mi_* values have been cleared and any existing context |
| // buffers have been freed. Clear cm->width and cm->height to be |
| // consistent and to force a realloc next time. |
| cm->width = 0; |
| cm->height = 0; |
| aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate context buffers"); |
| } |
| } else { |
| cm->mi_params.set_mb_mi(&cm->mi_params, width, height, BLOCK_4X4); |
| } |
| av1_init_mi_buffers(&cm->mi_params); |
| cm->width = width; |
| cm->height = height; |
| } |
| |
| ensure_mv_buffer(cm->cur_frame, cm); |
| cm->cur_frame->width = cm->width; |
| cm->cur_frame->height = cm->height; |
| } |
| |
| static inline void setup_buffer_pool(AV1_COMMON *cm) { |
| BufferPool *const pool = cm->buffer_pool; |
| const SequenceHeader *const seq_params = cm->seq_params; |
| |
| lock_buffer_pool(pool); |
| if (aom_realloc_frame_buffer( |
| &cm->cur_frame->buf, cm->width, cm->height, seq_params->subsampling_x, |
| seq_params->subsampling_y, seq_params->use_highbitdepth, |
| AOM_DEC_BORDER_IN_PIXELS, cm->features.byte_alignment, |
| &cm->cur_frame->raw_frame_buffer, pool->get_fb_cb, pool->cb_priv, |
| false, 0)) { |
| unlock_buffer_pool(pool); |
| aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate frame buffer"); |
| } |
| unlock_buffer_pool(pool); |
| |
| cm->cur_frame->buf.bit_depth = (unsigned int)seq_params->bit_depth; |
| cm->cur_frame->buf.color_primaries = seq_params->color_primaries; |
| cm->cur_frame->buf.transfer_characteristics = |
| seq_params->transfer_characteristics; |
| cm->cur_frame->buf.matrix_coefficients = seq_params->matrix_coefficients; |
| cm->cur_frame->buf.monochrome = seq_params->monochrome; |
| cm->cur_frame->buf.chroma_sample_position = |
| seq_params->chroma_sample_position; |
| cm->cur_frame->buf.color_range = seq_params->color_range; |
| cm->cur_frame->buf.render_width = cm->render_width; |
| cm->cur_frame->buf.render_height = cm->render_height; |
| } |
| |
| static inline void setup_frame_size(AV1_COMMON *cm, |
| int frame_size_override_flag, |
| struct aom_read_bit_buffer *rb) { |
| const SequenceHeader *const seq_params = cm->seq_params; |
| int width, height; |
| |
| if (frame_size_override_flag) { |
| int num_bits_width = seq_params->num_bits_width; |
| int num_bits_height = seq_params->num_bits_height; |
| av1_read_frame_size(rb, num_bits_width, num_bits_height, &width, &height); |
| if (width > seq_params->max_frame_width || |
| height > seq_params->max_frame_height) { |
| aom_internal_error(cm->error, AOM_CODEC_CORRUPT_FRAME, |
| "Frame dimensions are larger than the maximum values"); |
| } |
| } else { |
| width = seq_params->max_frame_width; |
| height = seq_params->max_frame_height; |
| } |
| |
| setup_superres(cm, rb, &width, &height); |
| resize_context_buffers(cm, width, height); |
| setup_render_size(cm, rb); |
| setup_buffer_pool(cm); |
| } |
| |
| static inline void setup_sb_size(SequenceHeader *seq_params, |
| struct aom_read_bit_buffer *rb) { |
| set_sb_size(seq_params, aom_rb_read_bit(rb) ? BLOCK_128X128 : BLOCK_64X64); |
| } |
| |
| static inline int valid_ref_frame_img_fmt(aom_bit_depth_t ref_bit_depth, |
| int ref_xss, int ref_yss, |
| aom_bit_depth_t this_bit_depth, |
| int this_xss, int this_yss) { |
| return ref_bit_depth == this_bit_depth && ref_xss == this_xss && |
| ref_yss == this_yss; |
| } |
| |
| static inline void setup_frame_size_with_refs(AV1_COMMON *cm, |
| struct aom_read_bit_buffer *rb) { |
| int width, height; |
| int found = 0; |
| int has_valid_ref_frame = 0; |
| for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i) { |
| if (aom_rb_read_bit(rb)) { |
| const RefCntBuffer *const ref_buf = get_ref_frame_buf(cm, i); |
| // This will never be NULL in a normal stream, as streams are required to |
| // have a shown keyframe before any inter frames, which would refresh all |
| // the reference buffers. However, it might be null if we're starting in |
| // the middle of a stream, and static analysis will error if we don't do |
| // a null check here. |
| if (ref_buf == NULL) { |
| aom_internal_error(cm->error, AOM_CODEC_CORRUPT_FRAME, |
| "Invalid condition: invalid reference buffer"); |
| } else { |
| const YV12_BUFFER_CONFIG *const buf = &ref_buf->buf; |
| width = buf->y_crop_width; |
| height = buf->y_crop_height; |
| cm->render_width = buf->render_width; |
| cm->render_height = buf->render_height; |
| setup_superres(cm, rb, &width, &height); |
| resize_context_buffers(cm, width, height); |
| found = 1; |
| break; |
| } |
| } |
| } |
| |
| const SequenceHeader *const seq_params = cm->seq_params; |
| if (!found) { |
| int num_bits_width = seq_params->num_bits_width; |
| int num_bits_height = seq_params->num_bits_height; |
| |
| av1_read_frame_size(rb, num_bits_width, num_bits_height, &width, &height); |
| setup_superres(cm, rb, &width, &height); |
| resize_context_buffers(cm, width, height); |
| setup_render_size(cm, rb); |
| } |
| |
| if (width <= 0 || height <= 0) |
| aom_internal_error(cm->error, AOM_CODEC_CORRUPT_FRAME, |
| "Invalid frame size"); |
| |
| // Check to make sure at least one of frames that this frame references |
| // has valid dimensions. |
| for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i) { |
| const RefCntBuffer *const ref_frame = get_ref_frame_buf(cm, i); |
| has_valid_ref_frame |= |
| valid_ref_frame_size(ref_frame->buf.y_crop_width, |
| ref_frame->buf.y_crop_height, width, height); |
| } |
| if (!has_valid_ref_frame) |
| aom_internal_error(cm->error, AOM_CODEC_CORRUPT_FRAME, |
| "Referenced frame has invalid size"); |
| for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i) { |
| const RefCntBuffer *const ref_frame = get_ref_frame_buf(cm, i); |
| if (!valid_ref_frame_img_fmt( |
| ref_frame->buf.bit_depth, ref_frame->buf.subsampling_x, |
| ref_frame->buf.subsampling_y, seq_params->bit_depth, |
| seq_params->subsampling_x, seq_params->subsampling_y)) |
| aom_internal_error(cm->error, AOM_CODEC_CORRUPT_FRAME, |
| "Referenced frame has incompatible color format"); |
| } |
| setup_buffer_pool(cm); |
| } |
| |
| // Same function as av1_read_uniform but reading from uncompresses header wb |
| static int rb_read_uniform(struct aom_read_bit_buffer *const rb, int n) { |
| const int l = get_unsigned_bits(n); |
| const int m = (1 << l) - n; |
| const int v = aom_rb_read_literal(rb, l - 1); |
| assert(l != 0); |
| if (v < m) |
| return v; |
| else |
| return (v << 1) - m + aom_rb_read_bit(rb); |
| } |
| |
| static inline void read_tile_info_max_tile( |
| AV1_COMMON *const cm, struct aom_read_bit_buffer *const rb) { |
| const SequenceHeader *const seq_params = cm->seq_params; |
| CommonTileParams *const tiles = &cm->tiles; |
| int width_sb = |
| CEIL_POWER_OF_TWO(cm->mi_params.mi_cols, seq_params->mib_size_log2); |
| int height_sb = |
| CEIL_POWER_OF_TWO(cm->mi_params.mi_rows, seq_params->mib_size_log2); |
| |
| av1_get_tile_limits(cm); |
| tiles->uniform_spacing = aom_rb_read_bit(rb); |
| |
| // Read tile columns |
| if (tiles->uniform_spacing) { |
| tiles->log2_cols = tiles->min_log2_cols; |
| while (tiles->log2_cols < tiles->max_log2_cols) { |
| if (!aom_rb_read_bit(rb)) { |
| break; |
| } |
| tiles->log2_cols++; |
| } |
| } else { |
| int i; |
| int start_sb; |
| for (i = 0, start_sb = 0; width_sb > 0 && i < MAX_TILE_COLS; i++) { |
| const int size_sb = |
| 1 + rb_read_uniform(rb, AOMMIN(width_sb, tiles->max_width_sb)); |
| tiles->col_start_sb[i] = start_sb; |
| start_sb += size_sb; |
| width_sb -= size_sb; |
| } |
| tiles->cols = i; |
| tiles->col_start_sb[i] = start_sb + width_sb; |
| } |
| av1_calculate_tile_cols(seq_params, cm->mi_params.mi_rows, |
| cm->mi_params.mi_cols, tiles); |
| |
| // Read tile rows |
| if (tiles->uniform_spacing) { |
| tiles->log2_rows = tiles->min_log2_rows; |
| while (tiles->log2_rows < tiles->max_log2_rows) { |
| if (!aom_rb_read_bit(rb)) { |
| break; |
| } |
| tiles->log2_rows++; |
| } |
| } else { |
| int i; |
| int start_sb; |
| for (i = 0, start_sb = 0; height_sb > 0 && i < MAX_TILE_ROWS; i++) { |
| const int size_sb = |
| 1 + rb_read_uniform(rb, AOMMIN(height_sb, tiles->max_height_sb)); |
| tiles->row_start_sb[i] = start_sb; |
| start_sb += size_sb; |
| height_sb -= size_sb; |
| } |
| tiles->rows = i; |
| tiles->row_start_sb[i] = start_sb + height_sb; |
| } |
| av1_calculate_tile_rows(seq_params, cm->mi_params.mi_rows, tiles); |
| } |
| |
| void av1_set_single_tile_decoding_mode(AV1_COMMON *const cm) { |
| cm->tiles.single_tile_decoding = 0; |
| if (cm->tiles.large_scale) { |
| struct loopfilter *lf = &cm->lf; |
| RestorationInfo *const rst_info = cm->rst_info; |
| const CdefInfo *const cdef_info = &cm->cdef_info; |
| |
| // Figure out single_tile_decoding by loopfilter_level. |
| const int no_loopfilter = !(lf->filter_level[0] || lf->filter_level[1]); |
| const int no_cdef = cdef_info->cdef_bits == 0 && |
| cdef_info->cdef_strengths[0] == 0 && |
| cdef_info->cdef_uv_strengths[0] == 0; |
| const int no_restoration = |
| rst_info[0].frame_restoration_type == RESTORE_NONE && |
| rst_info[1].frame_restoration_type == RESTORE_NONE && |
| rst_info[2].frame_restoration_type == RESTORE_NONE; |
| assert(IMPLIES(cm->features.coded_lossless, no_loopfilter && no_cdef)); |
| assert(IMPLIES(cm->features.all_lossless, no_restoration)); |
| cm->tiles.single_tile_decoding = no_loopfilter && no_cdef && no_restoration; |
| } |
| } |
| |
| static inline void read_tile_info(AV1Decoder *const pbi, |
| struct aom_read_bit_buffer *const rb) { |
| AV1_COMMON *const cm = &pbi->common; |
| |
| read_tile_info_max_tile(cm, rb); |
| |
| pbi->context_update_tile_id = 0; |
| if (cm->tiles.rows * cm->tiles.cols > 1) { |
| // tile to use for cdf update |
| pbi->context_update_tile_id = |
| aom_rb_read_literal(rb, cm->tiles.log2_rows + cm->tiles.log2_cols); |
| if (pbi->context_update_tile_id >= cm->tiles.rows * cm->tiles.cols) { |
| aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, |
| "Invalid context_update_tile_id"); |
| } |
| // tile size magnitude |
| pbi->tile_size_bytes = aom_rb_read_literal(rb, 2) + 1; |
| } |
| } |
| |
| #if EXT_TILE_DEBUG |
| static inline void read_ext_tile_info(AV1Decoder *const pbi, |
| struct aom_read_bit_buffer *const rb) { |
| AV1_COMMON *const cm = &pbi->common; |
| |
| // This information is stored as a separate byte. |
| int mod = rb->bit_offset % CHAR_BIT; |
| if (mod > 0) aom_rb_read_literal(rb, CHAR_BIT - mod); |
| assert(rb->bit_offset % CHAR_BIT == 0); |
| |
| if (cm->tiles.cols * cm->tiles.rows > 1) { |
| // Read the number of bytes used to store tile size |
| pbi->tile_col_size_bytes = aom_rb_read_literal(rb, 2) + 1; |
| pbi->tile_size_bytes = aom_rb_read_literal(rb, 2) + 1; |
| } |
| } |
| #endif // EXT_TILE_DEBUG |
| |
| static size_t mem_get_varsize(const uint8_t *src, int sz) { |
| switch (sz) { |
| case 1: return src[0]; |
| case 2: return mem_get_le16(src); |
| case 3: return mem_get_le24(src); |
| case 4: return mem_get_le32(src); |
| default: assert(0 && "Invalid size"); return -1; |
| } |
| } |
| |
| #if EXT_TILE_DEBUG |
| // Reads the next tile returning its size and adjusting '*data' accordingly |
| // based on 'is_last'. On return, '*data' is updated to point to the end of the |
| // raw tile buffer in the bit stream. |
| static inline void get_ls_tile_buffer( |
| const uint8_t *const data_end, struct aom_internal_error_info *error_info, |
| const uint8_t **data, TileBufferDec (*const tile_buffers)[MAX_TILE_COLS], |
| int tile_size_bytes, int col, int row, int tile_copy_mode) { |
| size_t size; |
| |
| size_t copy_size = 0; |
| const uint8_t *copy_data = NULL; |
| |
| if (!read_is_valid(*data, tile_size_bytes, data_end)) |
| aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME, |
| "Truncated packet or corrupt tile length"); |
| size = mem_get_varsize(*data, tile_size_bytes); |
| |
| // If tile_copy_mode = 1, then the top bit of the tile header indicates copy |
| // mode. |
| if (tile_copy_mode && (size >> (tile_size_bytes * 8 - 1)) == 1) { |
| // The remaining bits in the top byte signal the row offset |
| int offset = (size >> (tile_size_bytes - 1) * 8) & 0x7f; |
| if (offset > row) { |
| aom_internal_error( |
| error_info, AOM_CODEC_CORRUPT_FRAME, |
| "Invalid row offset in tile copy mode: row=%d offset=%d", row, |
| offset); |
| } |
| |
| // Currently, only use tiles in same column as reference tiles. |
| copy_data = tile_buffers[row - offset][col].data; |
| copy_size = tile_buffers[row - offset][col].size; |
| size = 0; |
| } else { |
| size += AV1_MIN_TILE_SIZE_BYTES; |
| } |
| |
| *data += tile_size_bytes; |
| |
| if (size > (size_t)(data_end - *data)) |
| aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME, |
| "Truncated packet or corrupt tile size"); |
| |
| if (size > 0) { |
| tile_buffers[row][col].data = *data; |
| tile_buffers[row][col].size = size; |
| } else { |
| tile_buffers[row][col].data = copy_data; |
| tile_buffers[row][col].size = copy_size; |
| } |
| |
| *data += size; |
| } |
| |
| // Returns the end of the last tile buffer |
| // (tile_buffers[cm->tiles.rows - 1][cm->tiles.cols - 1]). |
| static const uint8_t *get_ls_tile_buffers( |
| AV1Decoder *pbi, const uint8_t *data, const uint8_t *data_end, |
| TileBufferDec (*const tile_buffers)[MAX_TILE_COLS]) { |
| AV1_COMMON *const cm = &pbi->common; |
| const int tile_cols = cm->tiles.cols; |
| const int tile_rows = cm->tiles.rows; |
| const int have_tiles = tile_cols * tile_rows > 1; |
| const uint8_t *raw_data_end; // The end of the last tile buffer |
| |
| if (!have_tiles) { |
| const size_t tile_size = data_end - data; |
| tile_buffers[0][0].data = data; |
| tile_buffers[0][0].size = tile_size; |
| raw_data_end = NULL; |
| } else { |
| // We locate only the tile buffers that are required, which are the ones |
| // specified by pbi->dec_tile_col and pbi->dec_tile_row. Also, we always |
| // need the last (bottom right) tile buffer, as we need to know where the |
| // end of the compressed frame buffer is for proper superframe decoding. |
| |
| const uint8_t *tile_col_data_end[MAX_TILE_COLS] = { NULL }; |
| const uint8_t *const data_start = data; |
| |
| const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows); |
| const int single_row = pbi->dec_tile_row >= 0; |
| const int tile_rows_start = single_row ? dec_tile_row : 0; |
| const int tile_rows_end = single_row ? tile_rows_start + 1 : tile_rows; |
| const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols); |
| const int single_col = pbi->dec_tile_col >= 0; |
| const int tile_cols_start = single_col ? dec_tile_col : 0; |
| const int tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols; |
| |
| const int tile_col_size_bytes = pbi->tile_col_size_bytes; |
| const int tile_size_bytes = pbi->tile_size_bytes; |
| int tile_width, tile_height; |
| if (!av1_get_uniform_tile_size(cm, &tile_width, &tile_height)) { |
| aom_internal_error( |
| &pbi->error, AOM_CODEC_CORRUPT_FRAME, |
| "Not all the tiles in the tile list have the same size."); |
| } |
| const int tile_copy_mode = |
| ((AOMMAX(tile_width, tile_height) << MI_SIZE_LOG2) <= 256) ? 1 : 0; |
| // Read tile column sizes for all columns (we need the last tile buffer) |
| for (int c = 0; c < tile_cols; ++c) { |
| const int is_last = c == tile_cols - 1; |
| size_t tile_col_size; |
| |
| if (!is_last) { |
| if (tile_col_size_bytes > data_end - data) { |
| aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, |
| "Not enough data to read tile_col_size"); |
| } |
| tile_col_size = mem_get_varsize(data, tile_col_size_bytes); |
| data += tile_col_size_bytes; |
| if (tile_col_size > (size_t)(data_end - data)) { |
| aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, |
| "tile_col_data_end[%d] is out of bound", c); |
| } |
| tile_col_data_end[c] = data + tile_col_size; |
| } else { |
| tile_col_size = data_end - data; |
| tile_col_data_end[c] = data_end; |
| } |
| data += tile_col_size; |
| } |
| |
| data = data_start; |
| |
| // Read the required tile sizes. |
| for (int c = tile_cols_start; c < tile_cols_end; ++c) { |
| const int is_last = c == tile_cols - 1; |
| |
| if (c > 0) data = tile_col_data_end[c - 1]; |
| |
| if (!is_last) data += tile_col_size_bytes; |
| |
| // Get the whole of the last column, otherwise stop at the required tile. |
| for (int r = 0; r < (is_last ? tile_rows : tile_rows_end); ++r) { |
| get_ls_tile_buffer(tile_col_data_end[c], &pbi->error, &data, |
| tile_buffers, tile_size_bytes, c, r, tile_copy_mode); |
| } |
| } |
| |
| // If we have not read the last column, then read it to get the last tile. |
| if (tile_cols_end != tile_cols) { |
| const int c = tile_cols - 1; |
| |
| data = tile_col_data_end[c - 1]; |
| |
| for (int r = 0; r < tile_rows; ++r) { |
| get_ls_tile_buffer(tile_col_data_end[c], &pbi->error, &data, |
| tile_buffers, tile_size_bytes, c, r, tile_copy_mode); |
| } |
| } |
| raw_data_end = data; |
| } |
| return raw_data_end; |
| } |
| #endif // EXT_TILE_DEBUG |
| |
| static const uint8_t *get_ls_single_tile_buffer( |
| AV1Decoder *pbi, const uint8_t *data, |
| TileBufferDec (*const tile_buffers)[MAX_TILE_COLS]) { |
| assert(pbi->dec_tile_row >= 0 && pbi->dec_tile_col >= 0); |
| tile_buffers[pbi->dec_tile_row][pbi->dec_tile_col].data = data; |
| tile_buffers[pbi->dec_tile_row][pbi->dec_tile_col].size = |
| (size_t)pbi->coded_tile_data_size; |
| return data + pbi->coded_tile_data_size; |
| } |
| |
| // Reads the next tile returning its size and adjusting '*data' accordingly |
| // based on 'is_last'. |
| static inline void get_tile_buffer(const uint8_t *const data_end, |
| const int tile_size_bytes, int is_last, |
| struct aom_internal_error_info *error_info, |
| const uint8_t **data, |
| TileBufferDec *const buf) { |
| size_t size; |
| |
| if (!is_last) { |
| if (!read_is_valid(*data, tile_size_bytes, data_end)) |
| aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME, |
| "Not enough data to read tile size"); |
| |
| size = mem_get_varsize(*data, tile_size_bytes) + AV1_MIN_TILE_SIZE_BYTES; |
| *data += tile_size_bytes; |
| |
| if (size > (size_t)(data_end - *data)) |
| aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME, |
| "Truncated packet or corrupt tile size"); |
| } else { |
| size = data_end - *data; |
| } |
| |
| buf->data = *data; |
| buf->size = size; |
| |
| *data += size; |
| } |
| |
| static inline void get_tile_buffers( |
| AV1Decoder *pbi, const uint8_t *data, const uint8_t *data_end, |
| TileBufferDec (*const tile_buffers)[MAX_TILE_COLS], int start_tile, |
| int end_tile) { |
| AV1_COMMON *const cm = &pbi->common; |
| const int tile_cols = cm->tiles.cols; |
| const int tile_rows = cm->tiles.rows; |
| int tc = 0; |
| |
| for (int r = 0; r < tile_rows; ++r) { |
| for (int c = 0; c < tile_cols; ++c, ++tc) { |
| TileBufferDec *const buf = &tile_buffers[r][c]; |
| |
| const int is_last = (tc == end_tile); |
| const size_t hdr_offset = 0; |
| |
| if (tc < start_tile || tc > end_tile) continue; |
| |
| if (data + hdr_offset >= data_end) |
| aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, |
| "Data ended before all tiles were read."); |
| data += hdr_offset; |
| get_tile_buffer(data_end, pbi->tile_size_bytes, is_last, &pbi->error, |
| &data, buf); |
| } |
| } |
| } |
| |
| static inline void set_cb_buffer(AV1Decoder *pbi, DecoderCodingBlock *dcb, |
| CB_BUFFER *cb_buffer_base, |
| const int num_planes, int mi_row, int mi_col) { |
| AV1_COMMON *const cm = &pbi->common; |
| int mib_size_log2 = cm->seq_params->mib_size_log2; |
| int stride = (cm->mi_params.mi_cols >> mib_size_log2) + 1; |
| int offset = (mi_row >> mib_size_log2) * stride + (mi_col >> mib_size_log2); |
| CB_BUFFER *cb_buffer = cb_buffer_base + offset; |
| |
| for (int plane = 0; plane < num_planes; ++plane) { |
| dcb->dqcoeff_block[plane] = cb_buffer->dqcoeff[plane]; |
| dcb->eob_data[plane] = cb_buffer->eob_data[plane]; |
| dcb->cb_offset[plane] = 0; |
| dcb->txb_offset[plane] = 0; |
| } |
| MACROBLOCKD *const xd = &dcb->xd; |
| xd->plane[0].color_index_map = cb_buffer->color_index_map[0]; |
| xd->plane[1].color_index_map = cb_buffer->color_index_map[1]; |
| xd->color_index_map_offset[0] = 0; |
| xd->color_index_map_offset[1] = 0; |
| } |
| |
| static inline void decoder_alloc_tile_data(AV1Decoder *pbi, const int n_tiles) { |
| AV1_COMMON *const cm = &pbi->common; |
| aom_free(pbi->tile_data); |
| pbi->allocated_tiles = 0; |
| CHECK_MEM_ERROR(cm, pbi->tile_data, |
| aom_memalign(32, n_tiles * sizeof(*pbi->tile_data))); |
| pbi->allocated_tiles = n_tiles; |
| for (int i = 0; i < n_tiles; i++) { |
| TileDataDec *const tile_data = pbi->tile_data + i; |
| av1_zero(tile_data->dec_row_mt_sync); |
| } |
| pbi->allocated_row_mt_sync_rows = 0; |
| } |
| |
| // Set up nsync by width. |
| static inline int get_sync_range(int width) { |
| // nsync numbers are picked by testing. |
| #if 0 |
| if (width < 640) |
| return 1; |
| else if (width <= 1280) |
| return 2; |
| else if (width <= 4096) |
| return 4; |
| else |
| return 8; |
| #else |
| (void)width; |
| #endif |
| return 1; |
| } |
| |
| // Allocate memory for decoder row synchronization |
| static inline void dec_row_mt_alloc(AV1DecRowMTSync *dec_row_mt_sync, |
| AV1_COMMON *cm, int rows) { |
| dec_row_mt_sync->allocated_sb_rows = rows; |
| #if CONFIG_MULTITHREAD |
| { |
| int i; |
| |
| CHECK_MEM_ERROR(cm, dec_row_mt_sync->mutex_, |
| aom_malloc(sizeof(*(dec_row_mt_sync->mutex_)) * rows)); |
| if (dec_row_mt_sync->mutex_) { |
| for (i = 0; i < rows; ++i) { |
| pthread_mutex_init(&dec_row_mt_sync->mutex_[i], NULL); |
| } |
| } |
| |
| CHECK_MEM_ERROR(cm, dec_row_mt_sync->cond_, |
| aom_malloc(sizeof(*(dec_row_mt_sync->cond_)) * rows)); |
| if (dec_row_mt_sync->cond_) { |
| for (i = 0; i < rows; ++i) { |
| pthread_cond_init(&dec_row_mt_sync->cond_[i], NULL); |
| } |
| } |
| } |
| #endif // CONFIG_MULTITHREAD |
| |
| CHECK_MEM_ERROR(cm, dec_row_mt_sync->cur_sb_col, |
| aom_malloc(sizeof(*(dec_row_mt_sync->cur_sb_col)) * rows)); |
| |
| // Set up nsync. |
| dec_row_mt_sync->sync_range = get_sync_range(cm->width); |
| } |
| |
| // Deallocate decoder row synchronization related mutex and data |
| void av1_dec_row_mt_dealloc(AV1DecRowMTSync *dec_row_mt_sync) { |
| if (dec_row_mt_sync != NULL) { |
| #if CONFIG_MULTITHREAD |
| int i; |
| if (dec_row_mt_sync->mutex_ != NULL) { |
| for (i = 0; i < dec_row_mt_sync->allocated_sb_rows; ++i) { |
| pthread_mutex_destroy(&dec_row_mt_sync->mutex_[i]); |
| } |
| aom_free(dec_row_mt_sync->mutex_); |
| } |
| if (dec_row_mt_sync->cond_ != NULL) { |
| for (i = 0; i < dec_row_mt_sync->allocated_sb_rows; ++i) { |
| pthread_cond_destroy(&dec_row_mt_sync->cond_[i]); |
| } |
| aom_free(dec_row_mt_sync->cond_); |
| } |
| #endif // CONFIG_MULTITHREAD |
| aom_free(dec_row_mt_sync->cur_sb_col); |
| |
| // clear the structure as the source of this call may be a resize in which |
| // case this call will be followed by an _alloc() which may fail. |
| av1_zero(*dec_row_mt_sync); |
| } |
| } |
| |
| static inline void sync_read(AV1DecRowMTSync *const dec_row_mt_sync, int r, |
| int c) { |
| #if CONFIG_MULTITHREAD |
| const int nsync = dec_row_mt_sync->sync_range; |
| |
| if (r && !(c & (nsync - 1))) { |
| pthread_mutex_t *const mutex = &dec_row_mt_sync->mutex_[r - 1]; |
| pthread_mutex_lock(mutex); |
| |
| while (c > dec_row_mt_sync->cur_sb_col[r - 1] - nsync - |
| dec_row_mt_sync->intrabc_extra_top_right_sb_delay) { |
| pthread_cond_wait(&dec_row_mt_sync->cond_[r - 1], mutex); |
| } |
| pthread_mutex_unlock(mutex); |
| } |
| #else |
| (void)dec_row_mt_sync; |
| (void)r; |
| (void)c; |
| #endif // CONFIG_MULTITHREAD |
| } |
| |
| static inline void sync_write(AV1DecRowMTSync *const dec_row_mt_sync, int r, |
| int c, const int sb_cols) { |
| #if CONFIG_MULTITHREAD |
| const int nsync = dec_row_mt_sync->sync_range; |
| int cur; |
| int sig = 1; |
| |
| if (c < sb_cols - 1) { |
| cur = c; |
| if (c % nsync) sig = 0; |
| } else { |
| cur = sb_cols + nsync + dec_row_mt_sync->intrabc_extra_top_right_sb_delay; |
| } |
| |
| if (sig) { |
| pthread_mutex_lock(&dec_row_mt_sync->mutex_[r]); |
| |
| dec_row_mt_sync->cur_sb_col[r] = cur; |
| |
| pthread_cond_signal(&dec_row_mt_sync->cond_[r]); |
| pthread_mutex_unlock(&dec_row_mt_sync->mutex_[r]); |
| } |
| #else |
| (void)dec_row_mt_sync; |
| (void)r; |
| (void)c; |
| (void)sb_cols; |
| #endif // CONFIG_MULTITHREAD |
| } |
| |
| static inline void signal_decoding_done_for_erroneous_row( |
| AV1Decoder *const pbi, const MACROBLOCKD *const xd) { |
| AV1_COMMON *const cm = &pbi->common; |
| const TileInfo *const tile = &xd->tile; |
| const int sb_row_in_tile = |
| ((xd->mi_row - tile->mi_row_start) >> cm->seq_params->mib_size_log2); |
| const int sb_cols_in_tile = av1_get_sb_cols_in_tile(cm, tile); |
| TileDataDec *const tile_data = |
| pbi->tile_data + tile->tile_row * cm->tiles.cols + tile->tile_col; |
| AV1DecRowMTSync *dec_row_mt_sync = &tile_data->dec_row_mt_sync; |
| |
| sync_write(dec_row_mt_sync, sb_row_in_tile, sb_cols_in_tile - 1, |
| sb_cols_in_tile); |
| } |
| |
| static inline void decode_tile_sb_row(AV1Decoder *pbi, ThreadData *const td, |
| const TileInfo *tile_info, |
| const int mi_row) { |
| AV1_COMMON *const cm = &pbi->common; |
| const int num_planes = av1_num_planes(cm); |
| TileDataDec *const tile_data = pbi->tile_data + |
| tile_info->tile_row * cm->tiles.cols + |
| tile_info->tile_col; |
| const int sb_cols_in_tile = av1_get_sb_cols_in_tile(cm, tile_info); |
| const int sb_row_in_tile = |
| (mi_row - tile_info->mi_row_start) >> cm->seq_params->mib_size_log2; |
| int sb_col_in_tile = 0; |
| int row_mt_exit = 0; |
| |
| for (int mi_col = tile_info->mi_col_start; mi_col < tile_info->mi_col_end; |
| mi_col += cm->seq_params->mib_size, sb_col_in_tile++) { |
| set_cb_buffer(pbi, &td->dcb, pbi->cb_buffer_base, num_planes, mi_row, |
| mi_col); |
| |
| sync_read(&tile_data->dec_row_mt_sync, sb_row_in_tile, sb_col_in_tile); |
| |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_lock(pbi->row_mt_mutex_); |
| #endif |
| row_mt_exit = pbi->frame_row_mt_info.row_mt_exit; |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_unlock(pbi->row_mt_mutex_); |
| #endif |
| |
| if (!row_mt_exit) { |
| // Decoding of the super-block |
| decode_partition(pbi, td, mi_row, mi_col, td->bit_reader, |
| cm->seq_params->sb_size, 0x2); |
| } |
| |
| sync_write(&tile_data->dec_row_mt_sync, sb_row_in_tile, sb_col_in_tile, |
| sb_cols_in_tile); |
| } |
| } |
| |
| static int check_trailing_bits_after_symbol_coder(aom_reader *r) { |
| if (aom_reader_has_overflowed(r)) return -1; |
| |
| uint32_t nb_bits = aom_reader_tell(r); |
| uint32_t nb_bytes = (nb_bits + 7) >> 3; |
| const uint8_t *p = aom_reader_find_begin(r) + nb_bytes; |
| |
| // aom_reader_tell() returns 1 for a newly initialized decoder, and the |
| // return value only increases as values are decoded. So nb_bits > 0, and |
| // thus p > p_begin. Therefore accessing p[-1] is safe. |
| uint8_t last_byte = p[-1]; |
| uint8_t pattern = 128 >> ((nb_bits - 1) & 7); |
| if ((last_byte & (2 * pattern - 1)) != pattern) return -1; |
| |
| // Make sure that all padding bytes are zero as required by the spec. |
| const uint8_t *p_end = aom_reader_find_end(r); |
| while (p < p_end) { |
| if (*p != 0) return -1; |
| p++; |
| } |
| return 0; |
| } |
| |
| static inline void set_decode_func_pointers(ThreadData *td, |
| int parse_decode_flag) { |
| td->read_coeffs_tx_intra_block_visit = decode_block_void; |
| td->predict_and_recon_intra_block_visit = decode_block_void; |
| td->read_coeffs_tx_inter_block_visit = decode_block_void; |
| td->inverse_tx_inter_block_visit = decode_block_void; |
| td->predict_inter_block_visit = predict_inter_block_void; |
| td->cfl_store_inter_block_visit = cfl_store_inter_block_void; |
| |
| if (parse_decode_flag & 0x1) { |
| td->read_coeffs_tx_intra_block_visit = read_coeffs_tx_intra_block; |
| td->read_coeffs_tx_inter_block_visit = av1_read_coeffs_txb_facade; |
| } |
| if (parse_decode_flag & 0x2) { |
| td->predict_and_recon_intra_block_visit = |
| predict_and_reconstruct_intra_block; |
| td->inverse_tx_inter_block_visit = inverse_transform_inter_block; |
| td->predict_inter_block_visit = predict_inter_block; |
| td->cfl_store_inter_block_visit = cfl_store_inter_block; |
| } |
| } |
| |
| static inline void decode_tile(AV1Decoder *pbi, ThreadData *const td, |
| int tile_row, int tile_col) { |
| TileInfo tile_info; |
| |
| AV1_COMMON *const cm = &pbi->common; |
| const int num_planes = av1_num_planes(cm); |
| |
| av1_tile_set_row(&tile_info, cm, tile_row); |
| av1_tile_set_col(&tile_info, cm, tile_col); |
| DecoderCodingBlock *const dcb = &td->dcb; |
| MACROBLOCKD *const xd = &dcb->xd; |
| |
| av1_zero_above_context(cm, xd, tile_info.mi_col_start, tile_info.mi_col_end, |
| tile_row); |
| av1_reset_loop_filter_delta(xd, num_planes); |
| av1_reset_loop_restoration(xd, num_planes); |
| |
| for (int mi_row = tile_info.mi_row_start; mi_row < tile_info.mi_row_end; |
| mi_row += cm->seq_params->mib_size) { |
| av1_zero_left_context(xd); |
| |
| for (int mi_col = tile_info.mi_col_start; mi_col < tile_info.mi_col_end; |
| mi_col += cm->seq_params->mib_size) { |
| set_cb_buffer(pbi, dcb, &td->cb_buffer_base, num_planes, 0, 0); |
| |
| // Bit-stream parsing and decoding of the superblock |
| decode_partition(pbi, td, mi_row, mi_col, td->bit_reader, |
| cm->seq_params->sb_size, 0x3); |
| |
| if (aom_reader_has_overflowed(td->bit_reader)) { |
| aom_merge_corrupted_flag(&dcb->corrupted, 1); |
| return; |
| } |
| } |
| } |
| |
| int corrupted = |
| (check_trailing_bits_after_symbol_coder(td->bit_reader)) ? 1 : 0; |
| aom_merge_corrupted_flag(&dcb->corrupted, corrupted); |
| } |
| |
| static const uint8_t *decode_tiles(AV1Decoder *pbi, const uint8_t *data, |
| const uint8_t *data_end, int start_tile, |
| int end_tile) { |
| AV1_COMMON *const cm = &pbi->common; |
| ThreadData *const td = &pbi->td; |
| CommonTileParams *const tiles = &cm->tiles; |
| const int tile_cols = tiles->cols; |
| const int tile_rows = tiles->rows; |
| const int n_tiles = tile_cols * tile_rows; |
| TileBufferDec(*const tile_buffers)[MAX_TILE_COLS] = pbi->tile_buffers; |
| const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows); |
| const int single_row = pbi->dec_tile_row >= 0; |
| const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols); |
| const int single_col = pbi->dec_tile_col >= 0; |
| int tile_rows_start; |
| int tile_rows_end; |
| int tile_cols_start; |
| int tile_cols_end; |
| int inv_col_order; |
| int inv_row_order; |
| int tile_row, tile_col; |
| uint8_t allow_update_cdf; |
| const uint8_t *raw_data_end = NULL; |
| |
| if (tiles->large_scale) { |
| tile_rows_start = single_row ? dec_tile_row : 0; |
| tile_rows_end = single_row ? dec_tile_row + 1 : tile_rows; |
| tile_cols_start = single_col ? dec_tile_col : 0; |
| tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols; |
| inv_col_order = pbi->inv_tile_order && !single_col; |
| inv_row_order = pbi->inv_tile_order && !single_row; |
| allow_update_cdf = 0; |
| } else { |
| tile_rows_start = 0; |
| tile_rows_end = tile_rows; |
| tile_cols_start = 0; |
| tile_cols_end = tile_cols; |
| inv_col_order = pbi->inv_tile_order; |
| inv_row_order = pbi->inv_tile_order; |
| allow_update_cdf = 1; |
| } |
| |
| // No tiles to decode. |
| if (tile_rows_end <= tile_rows_start || tile_cols_end <= tile_cols_start || |
| // First tile is larger than end_tile. |
| tile_rows_start * tiles->cols + tile_cols_start > end_tile || |
| // Last tile is smaller than start_tile. |
| (tile_rows_end - 1) * tiles->cols + tile_cols_end - 1 < start_tile) |
| return data; |
| |
| allow_update_cdf = allow_update_cdf && !cm->features.disable_cdf_update; |
| |
| assert(tile_rows <= MAX_TILE_ROWS); |
| assert(tile_cols <= MAX_TILE_COLS); |
| |
| #if EXT_TILE_DEBUG |
| if (tiles->large_scale && !pbi->ext_tile_debug) |
| raw_data_end = get_ls_single_tile_buffer(pbi, data, tile_buffers); |
| else if (tiles->large_scale && pbi->ext_tile_debug) |
| raw_data_end = get_ls_tile_buffers(pbi, data, data_end, tile_buffers); |
| else |
| #endif // EXT_TILE_DEBUG |
| get_tile_buffers(pbi, data, data_end, tile_buffers, start_tile, end_tile); |
| |
| if (pbi->tile_data == NULL || n_tiles != pbi->allocated_tiles) { |
| decoder_alloc_tile_data(pbi, n_tiles); |
| } |
| if (pbi->dcb.xd.seg_mask == NULL) |
| CHECK_MEM_ERROR(cm, pbi->dcb.xd.seg_mask, |
| (uint8_t *)aom_memalign( |
| 16, 2 * MAX_SB_SQUARE * sizeof(*pbi->dcb.xd.seg_mask))); |
| #if CONFIG_ACCOUNTING |
| if (pbi->acct_enabled) { |
| aom_accounting_reset(&pbi->accounting); |
| } |
| #endif |
| |
| set_decode_func_pointers(&pbi->td, 0x3); |
| |
| // Load all tile information into thread_data. |
| td->dcb = pbi->dcb; |
| |
| td->dcb.corrupted = 0; |
| td->dcb.mc_buf[0] = td->mc_buf[0]; |
| td->dcb.mc_buf[1] = td->mc_buf[1]; |
| td->dcb.xd.tmp_conv_dst = td->tmp_conv_dst; |
| for (int j = 0; j < 2; ++j) { |
| td->dcb.xd.tmp_obmc_bufs[j] = td->tmp_obmc_bufs[j]; |
| } |
| |
| for (tile_row = tile_rows_start; tile_row < tile_rows_end; ++tile_row) { |
| const int row = inv_row_order ? tile_rows - 1 - tile_row : tile_row; |
| |
| for (tile_col = tile_cols_start; tile_col < tile_cols_end; ++tile_col) { |
| const int col = inv_col_order ? tile_cols - 1 - tile_col : tile_col; |
| TileDataDec *const tile_data = pbi->tile_data + row * tiles->cols + col; |
| const TileBufferDec *const tile_bs_buf = &tile_buffers[row][col]; |
| |
| if (row * tiles->cols + col < start_tile || |
| row * tiles->cols + col > end_tile) |
| continue; |
| |
| td->bit_reader = &tile_data->bit_reader; |
| av1_zero(td->cb_buffer_base.dqcoeff); |
| av1_tile_init(&td->dcb.xd.tile, cm, row, col); |
| td->dcb.xd.current_base_qindex = cm->quant_params.base_qindex; |
| setup_bool_decoder(&td->dcb.xd, tile_bs_buf->data, data_end, |
| tile_bs_buf->size, &pbi->error, td->bit_reader, |
| allow_update_cdf); |
| #if CONFIG_ACCOUNTING |
| if (pbi->acct_enabled) { |
| td->bit_reader->accounting = &pbi->accounting; |
| td->bit_reader->accounting->last_tell_frac = |
| aom_reader_tell_frac(td->bit_reader); |
| } else { |
| td->bit_reader->accounting = NULL; |
| } |
| #endif |
| av1_init_macroblockd(cm, &td->dcb.xd); |
| av1_init_above_context(&cm->above_contexts, av1_num_planes(cm), row, |
| &td->dcb.xd); |
| |
| // Initialise the tile context from the frame context |
| tile_data->tctx = *cm->fc; |
| td->dcb.xd.tile_ctx = &tile_data->tctx; |
| |
| // decode tile |
| decode_tile(pbi, td, row, col); |
| aom_merge_corrupted_flag(&pbi->dcb.corrupted, td->dcb.corrupted); |
| if (pbi->dcb.corrupted) |
| aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, |
| "Failed to decode tile data"); |
| } |
| } |
| |
| if (tiles->large_scale) { |
| if (n_tiles == 1) { |
| // Find the end of the single tile buffer |
| return aom_reader_find_end(&pbi->tile_data->bit_reader); |
| } |
| // Return the end of the last tile buffer |
| return raw_data_end; |
| } |
| TileDataDec *const tile_data = pbi->tile_data + end_tile; |
| |
| return aom_reader_find_end(&tile_data->bit_reader); |
| } |
| |
| static TileJobsDec *get_dec_job_info(AV1DecTileMT *tile_mt_info) { |
| TileJobsDec *cur_job_info = NULL; |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_lock(tile_mt_info->job_mutex); |
| |
| if (tile_mt_info->jobs_dequeued < tile_mt_info->jobs_enqueued) { |
| cur_job_info = tile_mt_info->job_queue + tile_mt_info->jobs_dequeued; |
| tile_mt_info->jobs_dequeued++; |
| } |
| |
| pthread_mutex_unlock(tile_mt_info->job_mutex); |
| #else |
| (void)tile_mt_info; |
| #endif |
| return cur_job_info; |
| } |
| |
| static inline void tile_worker_hook_init(AV1Decoder *const pbi, |
| DecWorkerData *const thread_data, |
| const TileBufferDec *const tile_buffer, |
| TileDataDec *const tile_data, |
| uint8_t allow_update_cdf) { |
| AV1_COMMON *cm = &pbi->common; |
| ThreadData *const td = thread_data->td; |
| int tile_row = tile_data->tile_info.tile_row; |
| int tile_col = tile_data->tile_info.tile_col; |
| |
| td->bit_reader = &tile_data->bit_reader; |
| av1_zero(td->cb_buffer_base.dqcoeff); |
| |
| MACROBLOCKD *const xd = &td->dcb.xd; |
| av1_tile_init(&xd->tile, cm, tile_row, tile_col); |
| xd->current_base_qindex = cm->quant_params.base_qindex; |
| |
| setup_bool_decoder(xd, tile_buffer->data, thread_data->data_end, |
| tile_buffer->size, &thread_data->error_info, |
| td->bit_reader, allow_update_cdf); |
| #if CONFIG_ACCOUNTING |
| if (pbi->acct_enabled) { |
| td->bit_reader->accounting = &pbi->accounting; |
| td->bit_reader->accounting->last_tell_frac = |
| aom_reader_tell_frac(td->bit_reader); |
| } else { |
| td->bit_reader->accounting = NULL; |
| } |
| #endif |
| av1_init_macroblockd(cm, xd); |
| xd->error_info = &thread_data->error_info; |
| av1_init_above_context(&cm->above_contexts, av1_num_planes(cm), tile_row, xd); |
| |
| // Initialise the tile context from the frame context |
| tile_data->tctx = *cm->fc; |
| xd->tile_ctx = &tile_data->tctx; |
| #if CONFIG_ACCOUNTING |
| if (pbi->acct_enabled) { |
| tile_data->bit_reader.accounting->last_tell_frac = |
| aom_reader_tell_frac(&tile_data->bit_reader); |
| } |
| #endif |
| } |
| |
| static int tile_worker_hook(void *arg1, void *arg2) { |
| DecWorkerData *const thread_data = (DecWorkerData *)arg1; |
| AV1Decoder *const pbi = (AV1Decoder *)arg2; |
| AV1_COMMON *cm = &pbi->common; |
| ThreadData *const td = thread_data->td; |
| uint8_t allow_update_cdf; |
| |
| // The jmp_buf is valid only for the duration of the function that calls |
| // setjmp(). Therefore, this function must reset the 'setjmp' field to 0 |
| // before it returns. |
| if (setjmp(thread_data->error_info.jmp)) { |
| thread_data->error_info.setjmp = 0; |
| thread_data->td->dcb.corrupted = 1; |
| return 0; |
| } |
| thread_data->error_info.setjmp = 1; |
| |
| allow_update_cdf = cm->tiles.large_scale ? 0 : 1; |
| allow_update_cdf = allow_update_cdf && !cm->features.disable_cdf_update; |
| |
| set_decode_func_pointers(td, 0x3); |
| |
| assert(cm->tiles.cols > 0); |
| while (!td->dcb.corrupted) { |
| TileJobsDec *cur_job_info = get_dec_job_info(&pbi->tile_mt_info); |
| |
| if (cur_job_info != NULL) { |
| const TileBufferDec *const tile_buffer = cur_job_info->tile_buffer; |
| TileDataDec *const tile_data = cur_job_info->tile_data; |
| tile_worker_hook_init(pbi, thread_data, tile_buffer, tile_data, |
| allow_update_cdf); |
| // decode tile |
| int tile_row = tile_data->tile_info.tile_row; |
| int tile_col = tile_data->tile_info.tile_col; |
| decode_tile(pbi, td, tile_row, tile_col); |
| } else { |
| break; |
| } |
| } |
| thread_data->error_info.setjmp = 0; |
| return !td->dcb.corrupted; |
| } |
| |
| static inline int get_max_row_mt_workers_per_tile(AV1_COMMON *cm, |
| const TileInfo *tile) { |
| // NOTE: Currently value of max workers is calculated based |
| // on the parse and decode time. As per the theoretical estimate |
| // when percentage of parse time is equal to percentage of decode |
| // time, number of workers needed to parse + decode a tile can not |
| // exceed more than 2. |
| // TODO(any): Modify this value if parsing is optimized in future. |
| int sb_rows = av1_get_sb_rows_in_tile(cm, tile); |
| int max_workers = |
| sb_rows == 1 ? AOM_MIN_THREADS_PER_TILE : AOM_MAX_THREADS_PER_TILE; |
| return max_workers; |
| } |
| |
| // The caller must hold pbi->row_mt_mutex_ when calling this function. |
| // Returns 1 if either the next job is stored in *next_job_info or 1 is stored |
| // in *end_of_frame. |
| // NOTE: The caller waits on pbi->row_mt_cond_ if this function returns 0. |
| // The return value of this function depends on the following variables: |
| // - frame_row_mt_info->mi_rows_parse_done |
| // - frame_row_mt_info->mi_rows_decode_started |
| // - frame_row_mt_info->row_mt_exit |
| // Therefore we may need to signal or broadcast pbi->row_mt_cond_ if any of |
| // these variables is modified. |
| static int get_next_job_info(AV1Decoder *const pbi, |
| AV1DecRowMTJobInfo *next_job_info, |
| int *end_of_frame) { |
| AV1_COMMON *cm = &pbi->common; |
| TileDataDec *tile_data; |
| AV1DecRowMTSync *dec_row_mt_sync; |
| AV1DecRowMTInfo *frame_row_mt_info = &pbi->frame_row_mt_info; |
| const int tile_rows_start = frame_row_mt_info->tile_rows_start; |
| const int tile_rows_end = frame_row_mt_info->tile_rows_end; |
| const int tile_cols_start = frame_row_mt_info->tile_cols_start; |
| const int tile_cols_end = frame_row_mt_info->tile_cols_end; |
| const int start_tile = frame_row_mt_info->start_tile; |
| const int end_tile = frame_row_mt_info->end_tile; |
| const int sb_mi_size = mi_size_wide[cm->seq_params->sb_size]; |
| int num_mis_to_decode, num_threads_working; |
| int num_mis_waiting_for_decode; |
| int min_threads_working = INT_MAX; |
| int max_mis_to_decode = 0; |
| int tile_row_idx, tile_col_idx; |
| int tile_row = -1; |
| int tile_col = -1; |
| |
| memset(next_job_info, 0, sizeof(*next_job_info)); |
| |
| // Frame decode is completed or error is encountered. |
| *end_of_frame = (frame_row_mt_info->mi_rows_decode_started == |
| frame_row_mt_info->mi_rows_to_decode) || |
| (frame_row_mt_info->row_mt_exit == 1); |
| if (*end_of_frame) { |
| return 1; |
| } |
| |
| // Decoding cannot start as bit-stream parsing is not complete. |
| assert(frame_row_mt_info->mi_rows_parse_done >= |
| frame_row_mt_info->mi_rows_decode_started); |
| if (frame_row_mt_info->mi_rows_parse_done == |
| frame_row_mt_info->mi_rows_decode_started) |
| return 0; |
| |
| // Choose the tile to decode. |
| for (tile_row_idx = tile_rows_start; tile_row_idx < tile_rows_end; |
| ++tile_row_idx) { |
| for (tile_col_idx = tile_cols_start; tile_col_idx < tile_cols_end; |
| ++tile_col_idx) { |
| if (tile_row_idx * cm->tiles.cols + tile_col_idx < start_tile || |
| tile_row_idx * cm->tiles.cols + tile_col_idx > end_tile) |
| continue; |
| |
| tile_data = pbi->tile_data + tile_row_idx * cm->tiles.cols + tile_col_idx; |
| dec_row_mt_sync = &tile_data->dec_row_mt_sync; |
| |
| num_threads_working = dec_row_mt_sync->num_threads_working; |
| num_mis_waiting_for_decode = (dec_row_mt_sync->mi_rows_parse_done - |
| dec_row_mt_sync->mi_rows_decode_started) * |
| dec_row_mt_sync->mi_cols; |
| num_mis_to_decode = |
| (dec_row_mt_sync->mi_rows - dec_row_mt_sync->mi_rows_decode_started) * |
| dec_row_mt_sync->mi_cols; |
| |
| assert(num_mis_to_decode >= num_mis_waiting_for_decode); |
| |
| // Pick the tile which has minimum number of threads working on it. |
| if (num_mis_waiting_for_decode > 0) { |
| if (num_threads_working < min_threads_working) { |
| min_threads_working = num_threads_working; |
| max_mis_to_decode = 0; |
| } |
| if (num_threads_working == min_threads_working && |
| num_mis_to_decode > max_mis_to_decode && |
| num_threads_working < |
| get_max_row_mt_workers_per_tile(cm, &tile_data->tile_info)) { |
| max_mis_to_decode = num_mis_to_decode; |
| tile_row = tile_row_idx; |
| tile_col = tile_col_idx; |
| } |
| } |
| } |
| } |
| // No job found to process |
| if (tile_row == -1 || tile_col == -1) return 0; |
| |
| tile_data = pbi->tile_data + tile_row * cm->tiles.cols + tile_col; |
| dec_row_mt_sync = &tile_data->dec_row_mt_sync; |
| |
| next_job_info->tile_row = tile_row; |
| next_job_info->tile_col = tile_col; |
| next_job_info->mi_row = dec_row_mt_sync->mi_rows_decode_started + |
| tile_data->tile_info.mi_row_start; |
| |
| dec_row_mt_sync->num_threads_working++; |
| dec_row_mt_sync->mi_rows_decode_started += sb_mi_size; |
| frame_row_mt_info->mi_rows_decode_started += sb_mi_size; |
| assert(frame_row_mt_info->mi_rows_parse_done >= |
| frame_row_mt_info->mi_rows_decode_started); |
| #if CONFIG_MULTITHREAD |
| if (frame_row_mt_info->mi_rows_decode_started == |
| frame_row_mt_info->mi_rows_to_decode) { |
| pthread_cond_broadcast(pbi->row_mt_cond_); |
| } |
| #endif |
| |
| return 1; |
| } |
| |
| static inline void signal_parse_sb_row_done(AV1Decoder *const pbi, |
| TileDataDec *const tile_data, |
| const int sb_mi_size) { |
| AV1DecRowMTInfo *frame_row_mt_info = &pbi->frame_row_mt_info; |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_lock(pbi->row_mt_mutex_); |
| #endif |
| assert(frame_row_mt_info->mi_rows_parse_done >= |
| frame_row_mt_info->mi_rows_decode_started); |
| tile_data->dec_row_mt_sync.mi_rows_parse_done += sb_mi_size; |
| frame_row_mt_info->mi_rows_parse_done += sb_mi_size; |
| #if CONFIG_MULTITHREAD |
| // A new decode job is available. Wake up one worker thread to handle the |
| // new decode job. |
| // NOTE: This assumes we bump mi_rows_parse_done and mi_rows_decode_started |
| // by the same increment (sb_mi_size). |
| pthread_cond_signal(pbi->row_mt_cond_); |
| pthread_mutex_unlock(pbi->row_mt_mutex_); |
| #endif |
| } |
| |
| // This function is very similar to decode_tile(). It would be good to figure |
| // out how to share code. |
| static inline void parse_tile_row_mt(AV1Decoder *pbi, ThreadData *const td, |
| TileDataDec *const tile_data) { |
| AV1_COMMON *const cm = &pbi->common; |
| const int sb_mi_size = mi_size_wide[cm->seq_params->sb_size]; |
| const int num_planes = av1_num_planes(cm); |
| const TileInfo *const tile_info = &tile_data->tile_info; |
| int tile_row = tile_info->tile_row; |
| DecoderCodingBlock *const dcb = &td->dcb; |
| MACROBLOCKD *const xd = &dcb->xd; |
| |
| av1_zero_above_context(cm, xd, tile_info->mi_col_start, tile_info->mi_col_end, |
| tile_row); |
| av1_reset_loop_filter_delta(xd, num_planes); |
| av1_reset_loop_restoration(xd, num_planes); |
| |
| for (int mi_row = tile_info->mi_row_start; mi_row < tile_info->mi_row_end; |
| mi_row += cm->seq_params->mib_size) { |
| av1_zero_left_context(xd); |
| |
| for (int mi_col = tile_info->mi_col_start; mi_col < tile_info->mi_col_end; |
| mi_col += cm->seq_params->mib_size) { |
| set_cb_buffer(pbi, dcb, pbi->cb_buffer_base, num_planes, mi_row, mi_col); |
| |
| // Bit-stream parsing of the superblock |
| decode_partition(pbi, td, mi_row, mi_col, td->bit_reader, |
| cm->seq_params->sb_size, 0x1); |
| |
| if (aom_reader_has_overflowed(td->bit_reader)) { |
| aom_merge_corrupted_flag(&dcb->corrupted, 1); |
| return; |
| } |
| } |
| signal_parse_sb_row_done(pbi, tile_data, sb_mi_size); |
| } |
| |
| int corrupted = |
| (check_trailing_bits_after_symbol_coder(td->bit_reader)) ? 1 : 0; |
| aom_merge_corrupted_flag(&dcb->corrupted, corrupted); |
| } |
| |
| static int row_mt_worker_hook(void *arg1, void *arg2) { |
| DecWorkerData *const thread_data = (DecWorkerData *)arg1; |
| AV1Decoder *const pbi = (AV1Decoder *)arg2; |
| ThreadData *const td = thread_data->td; |
| uint8_t allow_update_cdf; |
| AV1DecRowMTInfo *frame_row_mt_info = &pbi->frame_row_mt_info; |
| td->dcb.corrupted = 0; |
| |
| // The jmp_buf is valid only for the duration of the function that calls |
| // setjmp(). Therefore, this function must reset the 'setjmp' field to 0 |
| // before it returns. |
| if (setjmp(thread_data->error_info.jmp)) { |
| thread_data->error_info.setjmp = 0; |
| thread_data->td->dcb.corrupted = 1; |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_lock(pbi->row_mt_mutex_); |
| #endif |
| frame_row_mt_info->row_mt_exit = 1; |
| #if CONFIG_MULTITHREAD |
| pthread_cond_broadcast(pbi->row_mt_cond_); |
| pthread_mutex_unlock(pbi->row_mt_mutex_); |
| #endif |
| // If any SB row (erroneous row) processed by a thread encounters an |
| // internal error, there is a need to indicate other threads that decoding |
| // of the erroneous row is complete. This ensures that other threads which |
| // wait upon the completion of SB's present in erroneous row are not waiting |
| // indefinitely. |
| signal_decoding_done_for_erroneous_row(pbi, &thread_data->td->dcb.xd); |
| return 0; |
| } |
| thread_data->error_info.setjmp = 1; |
| |
| AV1_COMMON *cm = &pbi->common; |
| allow_update_cdf = cm->tiles.large_scale ? 0 : 1; |
| allow_update_cdf = allow_update_cdf && !cm->features.disable_cdf_update; |
| |
| set_decode_func_pointers(td, 0x1); |
| |
| assert(cm->tiles.cols > 0); |
| while (!td->dcb.corrupted) { |
| TileJobsDec *cur_job_info = get_dec_job_info(&pbi->tile_mt_info); |
| |
| if (cur_job_info != NULL) { |
| const TileBufferDec *const tile_buffer = cur_job_info->tile_buffer; |
| TileDataDec *const tile_data = cur_job_info->tile_data; |
| tile_worker_hook_init(pbi, thread_data, tile_buffer, tile_data, |
| allow_update_cdf); |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_lock(pbi->row_mt_mutex_); |
| #endif |
| tile_data->dec_row_mt_sync.num_threads_working++; |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_unlock(pbi->row_mt_mutex_); |
| #endif |
| // decode tile |
| parse_tile_row_mt(pbi, td, tile_data); |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_lock(pbi->row_mt_mutex_); |
| #endif |
| tile_data->dec_row_mt_sync.num_threads_working--; |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_unlock(pbi->row_mt_mutex_); |
| #endif |
| } else { |
| break; |
| } |
| } |
| |
| if (td->dcb.corrupted) { |
| thread_data->error_info.setjmp = 0; |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_lock(pbi->row_mt_mutex_); |
| #endif |
| frame_row_mt_info->row_mt_exit = 1; |
| #if CONFIG_MULTITHREAD |
| pthread_cond_broadcast(pbi->row_mt_cond_); |
| pthread_mutex_unlock(pbi->row_mt_mutex_); |
| #endif |
| return 0; |
| } |
| |
| set_decode_func_pointers(td, 0x2); |
| |
| while (1) { |
| AV1DecRowMTJobInfo next_job_info; |
| int end_of_frame = 0; |
| |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_lock(pbi->row_mt_mutex_); |
| #endif |
| while (!get_next_job_info(pbi, &next_job_info, &end_of_frame)) { |
| #if CONFIG_MULTITHREAD |
| pthread_cond_wait(pbi->row_mt_cond_, pbi->row_mt_mutex_); |
| #endif |
| } |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_unlock(pbi->row_mt_mutex_); |
| #endif |
| |
| if (end_of_frame) break; |
| |
| int tile_row = next_job_info.tile_row; |
| int tile_col = next_job_info.tile_col; |
| int mi_row = next_job_info.mi_row; |
| |
| TileDataDec *tile_data = |
| pbi->tile_data + tile_row * cm->tiles.cols + tile_col; |
| AV1DecRowMTSync *dec_row_mt_sync = &tile_data->dec_row_mt_sync; |
| |
| av1_tile_init(&td->dcb.xd.tile, cm, tile_row, tile_col); |
| av1_init_macroblockd(cm, &td->dcb.xd); |
| td->dcb.xd.error_info = &thread_data->error_info; |
| |
| decode_tile_sb_row(pbi, td, &tile_data->tile_info, mi_row); |
| |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_lock(pbi->row_mt_mutex_); |
| #endif |
| dec_row_mt_sync->num_threads_working--; |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_unlock(pbi->row_mt_mutex_); |
| #endif |
| } |
| thread_data->error_info.setjmp = 0; |
| return !td->dcb.corrupted; |
| } |
| |
| // sorts in descending order |
| static int compare_tile_buffers(const void *a, const void *b) { |
| const TileJobsDec *const buf1 = (const TileJobsDec *)a; |
| const TileJobsDec *const buf2 = (const TileJobsDec *)b; |
| return (((int)buf2->tile_buffer->size) - ((int)buf1->tile_buffer->size)); |
| } |
| |
| static inline void enqueue_tile_jobs(AV1Decoder *pbi, AV1_COMMON *cm, |
| int tile_rows_start, int tile_rows_end, |
| int tile_cols_start, int tile_cols_end, |
| int start_tile, int end_tile) { |
| AV1DecTileMT *tile_mt_info = &pbi->tile_mt_info; |
| TileJobsDec *tile_job_queue = tile_mt_info->job_queue; |
| tile_mt_info->jobs_enqueued = 0; |
| tile_mt_info->jobs_dequeued = 0; |
| |
| for (int row = tile_rows_start; row < tile_rows_end; row++) { |
| for (int col = tile_cols_start; col < tile_cols_end; col++) { |
| if (row * cm->tiles.cols + col < start_tile || |
| row * cm->tiles.cols + col > end_tile) |
| continue; |
| tile_job_queue->tile_buffer = &pbi->tile_buffers[row][col]; |
| tile_job_queue->tile_data = pbi->tile_data + row * cm->tiles.cols + col; |
| tile_job_queue++; |
| tile_mt_info->jobs_enqueued++; |
| } |
| } |
| } |
| |
| static inline void alloc_dec_jobs(AV1DecTileMT *tile_mt_info, AV1_COMMON *cm, |
| int tile_rows, int tile_cols) { |
| tile_mt_info->alloc_tile_rows = tile_rows; |
| tile_mt_info->alloc_tile_cols = tile_cols; |
| int num_tiles = tile_rows * tile_cols; |
| #if CONFIG_MULTITHREAD |
| { |
| CHECK_MEM_ERROR(cm, tile_mt_info->job_mutex, |
| aom_malloc(sizeof(*tile_mt_info->job_mutex) * num_tiles)); |
| |
| for (int i = 0; i < num_tiles; i++) { |
| pthread_mutex_init(&tile_mt_info->job_mutex[i], NULL); |
| } |
| } |
| #endif |
| CHECK_MEM_ERROR(cm, tile_mt_info->job_queue, |
| aom_malloc(sizeof(*tile_mt_info->job_queue) * num_tiles)); |
| } |
| |
| void av1_free_mc_tmp_buf(ThreadData *thread_data) { |
| int ref; |
| for (ref = 0; ref < 2; ref++) { |
| if (thread_data->mc_buf_use_highbd) |
| aom_free(CONVERT_TO_SHORTPTR(thread_data->mc_buf[ref])); |
| else |
| aom_free(thread_data->mc_buf[ref]); |
| thread_data->mc_buf[ref] = NULL; |
| } |
| thread_data->mc_buf_size = 0; |
| thread_data->mc_buf_use_highbd = 0; |
| |
| aom_free(thread_data->tmp_conv_dst); |
| thread_data->tmp_conv_dst = NULL; |
| aom_free(thread_data->seg_mask); |
| thread_data->seg_mask = NULL; |
| for (int i = 0; i < 2; ++i) { |
| aom_free(thread_data->tmp_obmc_bufs[i]); |
| thread_data->tmp_obmc_bufs[i] = NULL; |
| } |
| } |
| |
| static inline void allocate_mc_tmp_buf(AV1_COMMON *const cm, |
| ThreadData *thread_data, int buf_size, |
| int use_highbd) { |
| for (int ref = 0; ref < 2; ref++) { |
| // The mc_buf/hbd_mc_buf must be zeroed to fix a intermittent valgrind error |
| // 'Conditional jump or move depends on uninitialised value' from the loop |
| // filter. Uninitialized reads in convolve function (e.g. horiz_4tap path in |
| // av1_convolve_2d_sr_avx2()) from mc_buf/hbd_mc_buf are seen to be the |
| // potential reason for this issue. |
| if (use_highbd) { |
| uint16_t *hbd_mc_buf; |
| CHECK_MEM_ERROR(cm, hbd_mc_buf, (uint16_t *)aom_memalign(16, buf_size)); |
| memset(hbd_mc_buf, 0, buf_size); |
| thread_data->mc_buf[ref] = CONVERT_TO_BYTEPTR(hbd_mc_buf); |
| } else { |
| CHECK_MEM_ERROR(cm, thread_data->mc_buf[ref], |
| (uint8_t *)aom_memalign(16, buf_size)); |
| memset(thread_data->mc_buf[ref], 0, buf_size); |
| } |
| } |
| thread_data->mc_buf_size = buf_size; |
| thread_data->mc_buf_use_highbd = use_highbd; |
| |
| CHECK_MEM_ERROR(cm, thread_data->tmp_conv_dst, |
| aom_memalign(32, MAX_SB_SIZE * MAX_SB_SIZE * |
| sizeof(*thread_data->tmp_conv_dst))); |
| CHECK_MEM_ERROR(cm, thread_data->seg_mask, |
| (uint8_t *)aom_memalign( |
| 16, 2 * MAX_SB_SQUARE * sizeof(*thread_data->seg_mask))); |
| |
| for (int i = 0; i < 2; ++i) { |
| CHECK_MEM_ERROR( |
| cm, thread_data->tmp_obmc_bufs[i], |
| aom_memalign(16, 2 * MAX_MB_PLANE * MAX_SB_SQUARE * |
| sizeof(*thread_data->tmp_obmc_bufs[i]))); |
| } |
| } |
| |
| static inline void reset_dec_workers(AV1Decoder *pbi, AVxWorkerHook worker_hook, |
| int num_workers) { |
| const AVxWorkerInterface *const winterface = aom_get_worker_interface(); |
| |
| // Reset tile decoding hook |
| for (int worker_idx = 0; worker_idx < num_workers; ++worker_idx) { |
| AVxWorker *const worker = &pbi->tile_workers[worker_idx]; |
| DecWorkerData *const thread_data = pbi->thread_data + worker_idx; |
| thread_data->td->dcb = pbi->dcb; |
| thread_data->td->dcb.corrupted = 0; |
| thread_data->td->dcb.mc_buf[0] = thread_data->td->mc_buf[0]; |
| thread_data->td->dcb.mc_buf[1] = thread_data->td->mc_buf[1]; |
| thread_data->td->dcb.xd.tmp_conv_dst = thread_data->td->tmp_conv_dst; |
| if (worker_idx) |
| thread_data->td->dcb.xd.seg_mask = thread_data->td->seg_mask; |
| for (int j = 0; j < 2; ++j) { |
| thread_data->td->dcb.xd.tmp_obmc_bufs[j] = |
| thread_data->td->tmp_obmc_bufs[j]; |
| } |
| winterface->sync(worker); |
| |
| worker->hook = worker_hook; |
| worker->data1 = thread_data; |
| worker->data2 = pbi; |
| } |
| #if CONFIG_ACCOUNTING |
| if (pbi->acct_enabled) { |
| aom_accounting_reset(&pbi->accounting); |
| } |
| #endif |
| } |
| |
| static inline void launch_dec_workers(AV1Decoder *pbi, const uint8_t *data_end, |
| int num_workers) { |
| const AVxWorkerInterface *const winterface = aom_get_worker_interface(); |
| |
| for (int worker_idx = num_workers - 1; worker_idx >= 0; --worker_idx) { |
| AVxWorker *const worker = &pbi->tile_workers[worker_idx]; |
| DecWorkerData *const thread_data = (DecWorkerData *)worker->data1; |
| |
| thread_data->data_end = data_end; |
| |
| worker->had_error = 0; |
| if (worker_idx == 0) { |
| winterface->execute(worker); |
| } else { |
| winterface->launch(worker); |
| } |
| } |
| } |
| |
| static inline void sync_dec_workers(AV1Decoder *pbi, int num_workers) { |
| const AVxWorkerInterface *const winterface = aom_get_worker_interface(); |
| int corrupted = 0; |
| |
| for (int worker_idx = num_workers; worker_idx > 0; --worker_idx) { |
| AVxWorker *const worker = &pbi->tile_workers[worker_idx - 1]; |
| aom_merge_corrupted_flag(&corrupted, !winterface->sync(worker)); |
| } |
| |
| pbi->dcb.corrupted = corrupted; |
| } |
| |
| static inline void decode_mt_init(AV1Decoder *pbi) { |
| AV1_COMMON *const cm = &pbi->common; |
| const AVxWorkerInterface *const winterface = aom_get_worker_interface(); |
| int worker_idx; |
| |
| // Create workers and thread_data |
| if (pbi->num_workers == 0) { |
| const int num_threads = pbi->max_threads; |
| CHECK_MEM_ERROR(cm, pbi->tile_workers, |
| aom_malloc(num_threads * sizeof(*pbi->tile_workers))); |
| CHECK_MEM_ERROR(cm, pbi->thread_data, |
| aom_calloc(num_threads, sizeof(*pbi->thread_data))); |
| |
| for (worker_idx = 0; worker_idx < num_threads; ++worker_idx) { |
| AVxWorker *const worker = &pbi->tile_workers[worker_idx]; |
| DecWorkerData *const thread_data = pbi->thread_data + worker_idx; |
| |
| winterface->init(worker); |
| worker->thread_name = "aom tile worker"; |
| if (worker_idx != 0 && !winterface->reset(worker)) { |
| aom_internal_error(&pbi->error, AOM_CODEC_ERROR, |
| "Tile decoder thread creation failed"); |
| } |
| ++pbi->num_workers; |
| |
| if (worker_idx != 0) { |
| // Allocate thread data. |
| CHECK_MEM_ERROR(cm, thread_data->td, |
| aom_memalign(32, sizeof(*thread_data->td))); |
| av1_zero(*thread_data->td); |
| } else { |
| // Main thread acts as a worker and uses the thread data in pbi |
| thread_data->td = &pbi->td; |
| } |
| thread_data->error_info.error_code = AOM_CODEC_OK; |
| thread_data->error_info.setjmp = 0; |
| } |
| } |
| const int use_highbd = cm->seq_params->use_highbitdepth; |
| const int buf_size = MC_TEMP_BUF_PELS << use_highbd; |
| for (worker_idx = 1; worker_idx < pbi->max_threads; ++worker_idx) { |
| DecWorkerData *const thread_data = pbi->thread_data + worker_idx; |
| if (thread_data->td->mc_buf_size != buf_size) { |
| av1_free_mc_tmp_buf(thread_data->td); |
| allocate_mc_tmp_buf(cm, thread_data->td, buf_size, use_highbd); |
| } |
| } |
| } |
| |
| static inline void tile_mt_queue(AV1Decoder *pbi, int tile_cols, int tile_rows, |
| int tile_rows_start, int tile_rows_end, |
| int tile_cols_start, int tile_cols_end, |
| int start_tile, int end_tile) { |
| AV1_COMMON *const cm = &pbi->common; |
| if (pbi->tile_mt_info.alloc_tile_cols != tile_cols || |
| pbi->tile_mt_info.alloc_tile_rows != tile_rows) { |
| av1_dealloc_dec_jobs(&pbi->tile_mt_info); |
| alloc_dec_jobs(&pbi->tile_mt_info, cm, tile_rows, tile_cols); |
| } |
| enqueue_tile_jobs(pbi, cm, tile_rows_start, tile_rows_end, tile_cols_start, |
| tile_cols_end, start_tile, end_tile); |
| qsort(pbi->tile_mt_info.job_queue, pbi->tile_mt_info.jobs_enqueued, |
| sizeof(pbi->tile_mt_info.job_queue[0]), compare_tile_buffers); |
| } |
| |
| static const uint8_t *decode_tiles_mt(AV1Decoder *pbi, const uint8_t *data, |
| const uint8_t *data_end, int start_tile, |
| int end_tile) { |
| AV1_COMMON *const cm = &pbi->common; |
| CommonTileParams *const tiles = &cm->tiles; |
| const int tile_cols = tiles->cols; |
| const int tile_rows = tiles->rows; |
| const int n_tiles = tile_cols * tile_rows; |
| TileBufferDec(*const tile_buffers)[MAX_TILE_COLS] = pbi->tile_buffers; |
| const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows); |
| const int single_row = pbi->dec_tile_row >= 0; |
| const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols); |
| const int single_col = pbi->dec_tile_col >= 0; |
| int tile_rows_start; |
| int tile_rows_end; |
| int tile_cols_start; |
| int tile_cols_end; |
| int tile_count_tg; |
| int num_workers; |
| const uint8_t *raw_data_end = NULL; |
| |
| if (tiles->large_scale) { |
| tile_rows_start = single_row ? dec_tile_row : 0; |
| tile_rows_end = single_row ? dec_tile_row + 1 : tile_rows; |
| tile_cols_start = single_col ? dec_tile_col : 0; |
| tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols; |
| } else { |
| tile_rows_start = 0; |
| tile_rows_end = tile_rows; |
| tile_cols_start = 0; |
| tile_cols_end = tile_cols; |
| } |
| tile_count_tg = end_tile - start_tile + 1; |
| num_workers = AOMMIN(pbi->max_threads, tile_count_tg); |
| |
| // No tiles to decode. |
| if (tile_rows_end <= tile_rows_start || tile_cols_end <= tile_cols_start || |
| // First tile is larger than end_tile. |
| tile_rows_start * tile_cols + tile_cols_start > end_tile || |
| // Last tile is smaller than start_tile. |
| (tile_rows_end - 1) * tile_cols + tile_cols_end - 1 < start_tile) |
| return data; |
| |
| assert(tile_rows <= MAX_TILE_ROWS); |
| assert(tile_cols <= MAX_TILE_COLS); |
| assert(tile_count_tg > 0); |
| assert(num_workers > 0); |
| assert(start_tile <= end_tile); |
| assert(start_tile >= 0 && end_tile < n_tiles); |
| |
| decode_mt_init(pbi); |
| |
| // get tile size in tile group |
| #if EXT_TILE_DEBUG |
| if (tiles->large_scale) assert(pbi->ext_tile_debug == 1); |
| if (tiles->large_scale) |
| raw_data_end = get_ls_tile_buffers(pbi, data, data_end, tile_buffers); |
| else |
| #endif // EXT_TILE_DEBUG |
| get_tile_buffers(pbi, data, data_end, tile_buffers, start_tile, end_tile); |
| |
| if (pbi->tile_data == NULL || n_tiles != pbi->allocated_tiles) { |
| decoder_alloc_tile_data(pbi, n_tiles); |
| } |
| if (pbi->dcb.xd.seg_mask == NULL) |
| CHECK_MEM_ERROR(cm, pbi->dcb.xd.seg_mask, |
| (uint8_t *)aom_memalign( |
| 16, 2 * MAX_SB_SQUARE * sizeof(*pbi->dcb.xd.seg_mask))); |
| |
| for (int row = 0; row < tile_rows; row++) { |
| for (int col = 0; col < tile_cols; col++) { |
| TileDataDec *tile_data = pbi->tile_data + row * tiles->cols + col; |
| av1_tile_init(&tile_data->tile_info, cm, row, col); |
| } |
| } |
| |
| tile_mt_queue(pbi, tile_cols, tile_rows, tile_rows_start, tile_rows_end, |
| tile_cols_start, tile_cols_end, start_tile, end_tile); |
| |
| reset_dec_workers(pbi, tile_worker_hook, num_workers); |
| launch_dec_workers(pbi, data_end, num_workers); |
| sync_dec_workers(pbi, num_workers); |
| |
| if (pbi->dcb.corrupted) |
| aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, |
| "Failed to decode tile data"); |
| |
| if (tiles->large_scale) { |
| if (n_tiles == 1) { |
| // Find the end of the single tile buffer |
| return aom_reader_find_end(&pbi->tile_data->bit_reader); |
| } |
| // Return the end of the last tile buffer |
| return raw_data_end; |
| } |
| TileDataDec *const tile_data = pbi->tile_data + end_tile; |
| |
| return aom_reader_find_end(&tile_data->bit_reader); |
| } |
| |
| static inline void dec_alloc_cb_buf(AV1Decoder *pbi) { |
| AV1_COMMON *const cm = &pbi->common; |
| int size = ((cm->mi_params.mi_rows >> cm->seq_params->mib_size_log2) + 1) * |
| ((cm->mi_params.mi_cols >> cm->seq_params->mib_size_log2) + 1); |
| |
| if (pbi->cb_buffer_alloc_size < size) { |
| av1_dec_free_cb_buf(pbi); |
| CHECK_MEM_ERROR(cm, pbi->cb_buffer_base, |
| aom_memalign(32, sizeof(*pbi->cb_buffer_base) * size)); |
| memset(pbi->cb_buffer_base, 0, sizeof(*pbi->cb_buffer_base) * size); |
| pbi->cb_buffer_alloc_size = size; |
| } |
| } |
| |
| static inline void row_mt_frame_init(AV1Decoder *pbi, int tile_rows_start, |
| int tile_rows_end, int tile_cols_start, |
| int tile_cols_end, int start_tile, |
| int end_tile, int max_sb_rows) { |
| AV1_COMMON *const cm = &pbi->common; |
| AV1DecRowMTInfo *frame_row_mt_info = &pbi->frame_row_mt_info; |
| |
| frame_row_mt_info->tile_rows_start = tile_rows_start; |
| frame_row_mt_info->tile_rows_end = tile_rows_end; |
| frame_row_mt_info->tile_cols_start = tile_cols_start; |
| frame_row_mt_info->tile_cols_end = tile_cols_end; |
| frame_row_mt_info->start_tile = start_tile; |
| frame_row_mt_info->end_tile = end_tile; |
| frame_row_mt_info->mi_rows_to_decode = 0; |
| frame_row_mt_info->mi_rows_parse_done = 0; |
| frame_row_mt_info->mi_rows_decode_started = 0; |
| frame_row_mt_info->row_mt_exit = 0; |
| |
| for (int tile_row = tile_rows_start; tile_row < tile_rows_end; ++tile_row) { |
| for (int tile_col = tile_cols_start; tile_col < tile_cols_end; ++tile_col) { |
| if (tile_row * cm->tiles.cols + tile_col < start_tile || |
| tile_row * cm->tiles.cols + tile_col > end_tile) |
| continue; |
| |
| TileDataDec *const tile_data = |
| pbi->tile_data + tile_row * cm->tiles.cols + tile_col; |
| const TileInfo *const tile_info = &tile_data->tile_info; |
| |
| tile_data->dec_row_mt_sync.mi_rows_parse_done = 0; |
| tile_data->dec_row_mt_sync.mi_rows_decode_started = 0; |
| tile_data->dec_row_mt_sync.num_threads_working = 0; |
| tile_data->dec_row_mt_sync.mi_rows = |
| ALIGN_POWER_OF_TWO(tile_info->mi_row_end - tile_info->mi_row_start, |
| cm->seq_params->mib_size_log2); |
| tile_data->dec_row_mt_sync.mi_cols = |
| ALIGN_POWER_OF_TWO(tile_info->mi_col_end - tile_info->mi_col_start, |
| cm->seq_params->mib_size_log2); |
| tile_data->dec_row_mt_sync.intrabc_extra_top_right_sb_delay = |
| av1_get_intrabc_extra_top_right_sb_delay(cm); |
| |
| frame_row_mt_info->mi_rows_to_decode += |
| tile_data->dec_row_mt_sync.mi_rows; |
| |
| // Initialize cur_sb_col to -1 for all SB rows. |
| memset(tile_data->dec_row_mt_sync.cur_sb_col, -1, |
| sizeof(*tile_data->dec_row_mt_sync.cur_sb_col) * max_sb_rows); |
| } |
| } |
| |
| #if CONFIG_MULTITHREAD |
| if (pbi->row_mt_mutex_ == NULL) { |
| CHECK_MEM_ERROR(cm, pbi->row_mt_mutex_, |
| aom_malloc(sizeof(*(pbi->row_mt_mutex_)))); |
| if (pbi->row_mt_mutex_) { |
| pthread_mutex_init(pbi->row_mt_mutex_, NULL); |
| } |
| } |
| |
| if (pbi->row_mt_cond_ == NULL) { |
| CHECK_MEM_ERROR(cm, pbi->row_mt_cond_, |
| aom_malloc(sizeof(*(pbi->row_mt_cond_)))); |
| if (pbi->row_mt_cond_) { |
| pthread_cond_init(pbi->row_mt_cond_, NULL); |
| } |
| } |
| #endif |
| } |
| |
| static const uint8_t *decode_tiles_row_mt(AV1Decoder *pbi, const uint8_t *data, |
| const uint8_t *data_end, |
| int start_tile, int end_tile) { |
| AV1_COMMON *const cm = &pbi->common; |
| CommonTileParams *const tiles = &cm->tiles; |
| const int tile_cols = tiles->cols; |
| const int tile_rows = tiles->rows; |
| const int n_tiles = tile_cols * tile_rows; |
| TileBufferDec(*const tile_buffers)[MAX_TILE_COLS] = pbi->tile_buffers; |
| const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows); |
| const int single_row = pbi->dec_tile_row >= 0; |
| const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols); |
| const int single_col = pbi->dec_tile_col >= 0; |
| int tile_rows_start; |
| int tile_rows_end; |
| int tile_cols_start; |
| int tile_cols_end; |
| int tile_count_tg; |
| int num_workers = 0; |
| int max_threads; |
| const uint8_t *raw_data_end = NULL; |
| int max_sb_rows = 0; |
| |
| if (tiles->large_scale) { |
| tile_rows_start = single_row ? dec_tile_row : 0; |
| tile_rows_end = single_row ? dec_tile_row + 1 : tile_rows; |
| tile_cols_start = single_col ? dec_tile_col : 0; |
| tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols; |
| } else { |
| tile_rows_start = 0; |
| tile_rows_end = tile_rows; |
| tile_cols_start = 0; |
| tile_cols_end = tile_cols; |
| } |
| tile_count_tg = end_tile - start_tile + 1; |
| max_threads = pbi->max_threads; |
| |
| // No tiles to decode. |
| if (tile_rows_end <= tile_rows_start || tile_cols_end <= tile_cols_start || |
| // First tile is larger than end_tile. |
| tile_rows_start * tile_cols + tile_cols_start > end_tile || |
| // Last tile is smaller than start_tile. |
| (tile_rows_end - 1) * tile_cols + tile_cols_end - 1 < start_tile) |
| return data; |
| |
| assert(tile_rows <= MAX_TILE_ROWS); |
| assert(tile_cols <= MAX_TILE_COLS); |
| assert(tile_count_tg > 0); |
| assert(max_threads > 0); |
| assert(start_tile <= end_tile); |
| assert(start_tile >= 0 && end_tile < n_tiles); |
| |
| (void)tile_count_tg; |
| |
| decode_mt_init(pbi); |
| |
| // get tile size in tile group |
| #if EXT_TILE_DEBUG |
| if (tiles->large_scale) assert(pbi->ext_tile_debug == 1); |
| if (tiles->large_scale) |
| raw_data_end = get_ls_tile_buffers(pbi, data, data_end, tile_buffers); |
| else |
| #endif // EXT_TILE_DEBUG |
| get_tile_buffers(pbi, data, data_end, tile_buffers, start_tile, end_tile); |
| |
| if (pbi->tile_data == NULL || n_tiles != pbi->allocated_tiles) { |
| if (pbi->tile_data != NULL) { |
| for (int i = 0; i < pbi->allocated_tiles; i++) { |
| TileDataDec *const tile_data = pbi->tile_data + i; |
| av1_dec_row_mt_dealloc(&tile_data->dec_row_mt_sync); |
| } |
| } |
| decoder_alloc_tile_data(pbi, n_tiles); |
| } |
| if (pbi->dcb.xd.seg_mask == NULL) |
| CHECK_MEM_ERROR(cm, pbi->dcb.xd.seg_mask, |
| (uint8_t *)aom_memalign( |
| 16, 2 * MAX_SB_SQUARE * sizeof(*pbi->dcb.xd.seg_mask))); |
| |
| for (int row = 0; row < tile_rows; row++) { |
| for (int col = 0; col < tile_cols; col++) { |
| TileDataDec *tile_data = pbi->tile_data + row * tiles->cols + col; |
| av1_tile_init(&tile_data->tile_info, cm, row, col); |
| |
| max_sb_rows = AOMMAX(max_sb_rows, |
| av1_get_sb_rows_in_tile(cm, &tile_data->tile_info)); |
| num_workers += get_max_row_mt_workers_per_tile(cm, &tile_data->tile_info); |
| } |
| } |
| num_workers = AOMMIN(num_workers, max_threads); |
| |
| if (pbi->allocated_row_mt_sync_rows != max_sb_rows) { |
| for (int i = 0; i < n_tiles; ++i) { |
| TileDataDec *const tile_data = pbi->tile_data + i; |
| av1_dec_row_mt_dealloc(&tile_data->dec_row_mt_sync); |
| dec_row_mt_alloc(&tile_data->dec_row_mt_sync, cm, max_sb_rows); |
| } |
| pbi->allocated_row_mt_sync_rows = max_sb_rows; |
| } |
| |
| tile_mt_queue(pbi, tile_cols, tile_rows, tile_rows_start, tile_rows_end, |
| tile_cols_start, tile_cols_end, start_tile, end_tile); |
| |
| dec_alloc_cb_buf(pbi); |
| |
| row_mt_frame_init(pbi, tile_rows_start, tile_rows_end, tile_cols_start, |
| tile_cols_end, start_tile, end_tile, max_sb_rows); |
| |
| reset_dec_workers(pbi, row_mt_worker_hook, num_workers); |
| launch_dec_workers(pbi, data_end, num_workers); |
| sync_dec_workers(pbi, num_workers); |
| |
| if (pbi->dcb.corrupted) |
| aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, |
| "Failed to decode tile data"); |
| |
| if (tiles->large_scale) { |
| if (n_tiles == 1) { |
| // Find the end of the single tile buffer |
| return aom_reader_find_end(&pbi->tile_data->bit_reader); |
| } |
| // Return the end of the last tile buffer |
| return raw_data_end; |
| } |
| TileDataDec *const tile_data = pbi->tile_data + end_tile; |
| |
| return aom_reader_find_end(&tile_data->bit_reader); |
| } |
| |
| static inline void error_handler(void *data) { |
| AV1_COMMON *const cm = (AV1_COMMON *)data; |
| aom_internal_error(cm->error, AOM_CODEC_CORRUPT_FRAME, "Truncated packet"); |
| } |
| |
| // Reads the high_bitdepth and twelve_bit fields in color_config() and sets |
| // seq_params->bit_depth based on the values of those fields and |
| // seq_params->profile. Reports errors by calling rb->error_handler() or |
| // aom_internal_error(). |
| static inline void read_bitdepth(struct aom_read_bit_buffer *rb, |
| SequenceHeader *seq_params, |
| struct aom_internal_error_info *error_info) { |
| const int high_bitdepth = aom_rb_read_bit(rb); |
| if (seq_params->profile == PROFILE_2 && high_bitdepth) { |
| const int twelve_bit = aom_rb_read_bit(rb); |
| seq_params->bit_depth = twelve_bit ? AOM_BITS_12 : AOM_BITS_10; |
| } else if (seq_params->profile <= PROFILE_2) { |
| seq_params->bit_depth = high_bitdepth ? AOM_BITS_10 : AOM_BITS_8; |
| } else { |
| aom_internal_error(error_info, AOM_CODEC_UNSUP_BITSTREAM, |
| "Unsupported profile/bit-depth combination"); |
| } |
| #if !CONFIG_AV1_HIGHBITDEPTH |
| if (seq_params->bit_depth > AOM_BITS_8) { |
| aom_internal_error(error_info, AOM_CODEC_UNSUP_BITSTREAM, |
| "Bit-depth %d not supported", seq_params->bit_depth); |
| } |
| #endif |
| } |
| |
| static void read_film_grain_params(AV1_COMMON *cm, |
| struct aom_read_bit_buffer *rb) { |
| aom_film_grain_t *pars = &cm->film_grain_params; |
| const SequenceHeader *const seq_params = cm->seq_params; |
| |
| pars->apply_grain = aom_rb_read_bit(rb); |
| if (!pars->apply_grain) { |
| memset(pars, 0, sizeof(*pars)); |
| return; |
| } |
| |
| pars->random_seed = aom_rb_read_literal(rb, 16); |
| if (cm->current_frame.frame_type == INTER_FRAME) |
| pars->update_parameters = aom_rb_read_bit(rb); |
| else |
| pars->update_parameters = 1; |
| |
| pars->bit_depth = seq_params->bit_depth; |
| |
| if (!pars->update_parameters) { |
| // inherit parameters from a previous reference frame |
| int film_grain_params_ref_idx = aom_rb_read_literal(rb, 3); |
| // Section 6.8.20: It is a requirement of bitstream conformance that |
| // film_grain_params_ref_idx is equal to ref_frame_idx[ j ] for some value |
| // of j in the range 0 to REFS_PER_FRAME - 1. |
| int found = 0; |
| for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) { |
| if (film_grain_params_ref_idx == cm->remapped_ref_idx[i]) { |
| found = 1; |
| break; |
| } |
| } |
| if (!found) { |
| aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM, |
| "Invalid film grain reference idx %d. ref_frame_idx = " |
| "{%d, %d, %d, %d, %d, %d, %d}", |
| film_grain_params_ref_idx, cm->remapped_ref_idx[0], |
| cm->remapped_ref_idx[1], cm->remapped_ref_idx[2], |
| cm->remapped_ref_idx[3], cm->remapped_ref_idx[4], |
| cm->remapped_ref_idx[5], cm->remapped_ref_idx[6]); |
| } |
| RefCntBuffer *const buf = cm->ref_frame_map[film_grain_params_ref_idx]; |
| if (buf == NULL) { |
| aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM, |
| "Invalid Film grain reference idx"); |
| } |
| if (!buf->film_grain_params_present) { |
| aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM, |
| "Film grain reference parameters not available"); |
| } |
| uint16_t random_seed = pars->random_seed; |
| *pars = buf->film_grain_params; // inherit paramaters |
| pars->random_seed = random_seed; // with new random seed |
| return; |
| } |
| |
| // Scaling functions parameters |
| pars->num_y_points = aom_rb_read_literal(rb, 4); // max 14 |
| if (pars->num_y_points > 14) |
| aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM, |
| "Number of points for film grain luma scaling function " |
| "exceeds the maximum value."); |
| for (int i = 0; i < pars->num_y_points; i++) { |
| pars->scaling_points_y[i][0] = aom_rb_read_literal(rb, 8); |
| if (i && pars->scaling_points_y[i - 1][0] >= pars->scaling_points_y[i][0]) |
| aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM, |
| "First coordinate of the scaling function points " |
| "shall be increasing."); |
| pars->scaling_points_y[i][1] = aom_rb_read_literal(rb, 8); |
| } |
| |
| if (!seq_params->monochrome) |
| pars->chroma_scaling_from_luma = aom_rb_read_bit(rb); |
| else |
| pars->chroma_scaling_from_luma = 0; |
| |
| if (seq_params->monochrome || pars->chroma_scaling_from_luma || |
| ((seq_params->subsampling_x == 1) && (seq_params->subsampling_y == 1) && |
| (pars->num_y_points == 0))) { |
| pars->num_cb_points = 0; |
| pars->num_cr_points = 0; |
| } else { |
| pars->num_cb_points = aom_rb_read_literal(rb, 4); // max 10 |
| if (pars->num_cb_points > 10) |
| aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM, |
| "Number of points for film grain cb scaling function " |
| "exceeds the maximum value."); |
| for (int i = 0; i < pars->num_cb_points; i++) { |
| pars->scaling_points_cb[i][0] = aom_rb_read_literal(rb, 8); |
| if (i && |
| pars->scaling_points_cb[i - 1][0] >= pars->scaling_points_cb[i][0]) |
| aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM, |
| "First coordinate of the scaling function points " |
| "shall be increasing."); |
| pars->scaling_points_cb[i][1] = aom_rb_read_literal(rb, 8); |
| } |
| |
| pars->num_cr_points = aom_rb_read_literal(rb, 4); // max 10 |
| if (pars->num_cr_points > 10) |
| aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM, |
| "Number of points for film grain cr scaling function " |
| "exceeds the maximum value."); |
| for (int i = 0; i < pars->num_cr_points; i++) { |
| pars->scaling_points_cr[i][0] = aom_rb_read_literal(rb, 8); |
| if (i && |
| pars->scaling_points_cr[i - 1][0] >= pars->scaling_points_cr[i][0]) |
| aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM, |
| "First coordinate of the scaling function points " |
| "shall be increasing."); |
| pars->scaling_points_cr[i][1] = aom_rb_read_literal(rb, 8); |
| } |
| |
| if ((seq_params->subsampling_x == 1) && (seq_params->subsampling_y == 1) && |
| (((pars->num_cb_points == 0) && (pars->num_cr_points != 0)) || |
| ((pars->num_cb_points != 0) && (pars->num_cr_points == 0)))) |
| aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM, |
| "In YCbCr 4:2:0, film grain shall be applied " |
| "to both chroma components or neither."); |
| } |
| |
| pars->scaling_shift = aom_rb_read_literal(rb, 2) + 8; // 8 + value |
| |
| // AR coefficients |
| // Only sent if the corresponsing scaling function has |
| // more than 0 points |
| |
| pars->ar_coeff_lag = aom_rb_read_literal(rb, 2); |
| |
| int num_pos_luma = 2 * pars->ar_coeff_lag * (pars->ar_coeff_lag + 1); |
| int num_pos_chroma = num_pos_luma; |
| if (pars->num_y_points > 0) ++num_pos_chroma; |
| |
| if (pars->num_y_points) |
| for (int i = 0; i < num_pos_luma; i++) |
| pars->ar_coeffs_y[i] = aom_rb_read_literal(rb, 8) - 128; |
| |
| if (pars->num_cb_points || pars->chroma_scaling_from_luma) |
| for (int i = 0; i < num_pos_chroma; i++) |
| pars->ar_coeffs_cb[i] = aom_rb_read_literal(rb, 8) - 128; |
| |
| if (pars->num_cr_points || pars->chroma_scaling_from_luma) |
| for (int i = 0; i < num_pos_chroma; i++) |
| pars->ar_coeffs_cr[i] = aom_rb_read_literal(rb, 8) - 128; |
| |
| pars->ar_coeff_shift = aom_rb_read_literal(rb, 2) + 6; // 6 + value |
| |
| pars->grain_scale_shift = aom_rb_read_literal(rb, 2); |
| |
| if (pars->num_cb_points) { |
| pars->cb_mult = aom_rb_read_literal(rb, 8); |
| pars->cb_luma_mult = aom_rb_read_literal(rb, 8); |
| pars->cb_offset = aom_rb_read_literal(rb, 9); |
| } |
| |
| if (pars->num_cr_points) { |
| pars->cr_mult = aom_rb_read_literal(rb, 8); |
| pars->cr_luma_mult = aom_rb_read_literal(rb, 8); |
| pars->cr_offset = aom_rb_read_literal(rb, 9); |
| } |
| |
| pars->overlap_flag = aom_rb_read_bit(rb); |
| |
| pars->clip_to_restricted_range = aom_rb_read_bit(rb); |
| } |
| |
| static inline void read_film_grain(AV1_COMMON *cm, |
| struct aom_read_bit_buffer *rb) { |
| if (cm->seq_params->film_grain_params_present && |
| (cm->show_frame || cm->showable_frame)) { |
| read_film_grain_params(cm, rb); |
| } else { |
| memset(&cm->film_grain_params, 0, sizeof(cm->film_grain_params)); |
| } |
| cm->film_grain_params.bit_depth = cm->seq_params->bit_depth; |
| memcpy(&cm->cur_frame->film_grain_params, &cm->film_grain_params, |
| sizeof(aom_film_grain_t)); |
| } |
| |
| void av1_read_color_config(struct aom_read_bit_buffer *rb, |
| int allow_lowbitdepth, SequenceHeader *seq_params, |
| struct aom_internal_error_info *error_info) { |
| read_bitdepth(rb, seq_params, error_info); |
| |
| seq_params->use_highbitdepth = |
| seq_params->bit_depth > AOM_BITS_8 || !allow_lowbitdepth; |
| // monochrome bit (not needed for PROFILE_1) |
| const int is_monochrome = |
| seq_params->profile != PROFILE_1 ? aom_rb_read_bit(rb) : 0; |
| seq_params->monochrome = is_monochrome; |
| int color_description_present_flag = aom_rb_read_bit(rb); |
| if (color_description_present_flag) { |
| seq_params->color_primaries = aom_rb_read_literal(rb, 8); |
| seq_params->transfer_characteristics = aom_rb_read_literal(rb, 8); |
| seq_params->matrix_coefficients = aom_rb_read_literal(rb, 8); |
| } else { |
| seq_params->color_primaries = AOM_CICP_CP_UNSPECIFIED; |
| seq_params->transfer_characteristics = AOM_CICP_TC_UNSPECIFIED; |
| seq_params->matrix_coefficients = AOM_CICP_MC_UNSPECIFIED; |
| } |
| if (is_monochrome) { |
| // [16,235] (including xvycc) vs [0,255] range |
| seq_params->color_range = aom_rb_read_bit(rb); |
| seq_params->subsampling_y = seq_params->subsampling_x = 1; |
| seq_params->chroma_sample_position = AOM_CSP_UNKNOWN; |
| seq_params->separate_uv_delta_q = 0; |
| return; |
| } |
| if (seq_params->color_primaries == AOM_CICP_CP_BT_709 && |
| seq_params->transfer_characteristics == AOM_CICP_TC_SRGB && |
| seq_params->matrix_coefficients == AOM_CICP_MC_IDENTITY) { |
| seq_params->subsampling_y = seq_params->subsampling_x = 0; |
| seq_params->color_range = 1; // assume full color-range |
| if (!(seq_params->profile == PROFILE_1 || |
| (seq_params->profile == PROFILE_2 && |
| seq_params->bit_depth == AOM_BITS_12))) { |
| aom_internal_error( |
| error_info, AOM_CODEC_UNSUP_BITSTREAM, |
| "sRGB colorspace not compatible with specified profile"); |
| } |
| } else { |
| // [16,235] (including xvycc) vs [0,255] range |
| seq_params->color_range = aom_rb_read_bit(rb); |
| if (seq_params->profile == PROFILE_0) { |
| // 420 only |
| seq_params->subsampling_x = seq_params->subsampling_y = 1; |
| } else if (seq_params->profile == PROFILE_1) { |
| // 444 only |
| seq_params->subsampling_x = seq_params->subsampling_y = 0; |
| } else { |
| assert(seq_params->profile == PROFILE_2); |
| if (seq_params->bit_depth == AOM_BITS_12) { |
| seq_params->subsampling_x = aom_rb_read_bit(rb); |
| if (seq_params->subsampling_x) |
| seq_params->subsampling_y = aom_rb_read_bit(rb); // 422 or 420 |
| else |
| seq_params->subsampling_y = 0; // 444 |
| } else { |
| // 422 |
| seq_params->subsampling_x = 1; |
| seq_params->subsampling_y = 0; |
| } |
| } |
| if (seq_params->matrix_coefficients == AOM_CICP_MC_IDENTITY && |
| (seq_params->subsampling_x || seq_params->subsampling_y)) { |
| aom_internal_error( |
| error_info, AOM_CODEC_UNSUP_BITSTREAM, |
| "Identity CICP Matrix incompatible with non 4:4:4 color sampling"); |
| } |
| if (seq_params->subsampling_x && seq_params->subsampling_y) { |
| seq_params->chroma_sample_position = aom_rb_read_literal(rb, 2); |
| } |
| } |
| seq_params->separate_uv_delta_q = aom_rb_read_bit(rb); |
| } |
| |
| void av1_read_timing_info_header(aom_timing_info_t *timing_info, |
| struct aom_internal_error_info *error, |
| struct aom_read_bit_buffer *rb) { |
| timing_info->num_units_in_display_tick = |
| aom_rb_read_unsigned_literal(rb, |
| 32); // Number of units in a display tick |
| timing_info->time_scale = aom_rb_read_unsigned_literal(rb, 32); // Time scale |
| if (timing_info->num_units_in_display_tick == 0 || |
| timing_info->time_scale == 0) { |
| aom_internal_error( |
| error, AOM_CODEC_UNSUP_BITSTREAM, |
| "num_units_in_display_tick and time_scale must be greater than 0."); |
| } |
| timing_info->equal_picture_interval = |
| aom_rb_read_bit(rb); // Equal picture interval bit |
| if (timing_info->equal_picture_interval) { |
| const uint32_t num_ticks_per_picture_minus_1 = aom_rb_read_uvlc(rb); |
| if (num_ticks_per_picture_minus_1 == UINT32_MAX) { |
| aom_internal_error( |
| error, AOM_CODEC_UNSUP_BITSTREAM, |
| "num_ticks_per_picture_minus_1 cannot be (1 << 32) - 1."); |
| } |
| timing_info->num_ticks_per_picture = num_ticks_per_picture_minus_1 + 1; |
| } |
| } |
| |
| void av1_read_decoder_model_info(aom_dec_model_info_t *decoder_model_info, |
| struct aom_read_bit_buffer *rb) { |
| decoder_model_info->encoder_decoder_buffer_delay_length = |
| aom_rb_read_literal(rb, 5) + 1; |
| decoder_model_info->num_units_in_decoding_tick = |
| aom_rb_read_unsigned_literal(rb, |
| 32); // Number of units in a decoding tick |
| decoder_model_info->buffer_removal_time_length = |
| aom_rb_read_literal(rb, 5) + 1; |
| decoder_model_info->frame_presentation_time_length = |
| aom_rb_read_literal(rb, 5) + 1; |
| } |
| |
| void av1_read_op_parameters_info(aom_dec_model_op_parameters_t *op_params, |
| int buffer_delay_length, |
| struct aom_read_bit_buffer *rb) { |
| op_params->decoder_buffer_delay = |
| aom_rb_read_unsigned_literal(rb, buffer_delay_length); |
| op_params->encoder_buffer_delay = |
| aom_rb_read_unsigned_literal(rb, buffer_delay_length); |
| op_params->low_delay_mode_flag = aom_rb_read_bit(rb); |
| } |
| |
| static inline void read_temporal_point_info(AV1_COMMON *const cm, |
| struct aom_read_bit_buffer *rb) { |
| cm->frame_presentation_time = aom_rb_read_unsigned_literal( |
| rb, cm->seq_params->decoder_model_info.frame_presentation_time_length); |
| } |
| |
| void av1_read_sequence_header(AV1_COMMON *cm, struct aom_read_bit_buffer *rb, |
| SequenceHeader *seq_params) { |
| const int num_bits_width = aom_rb_read_literal(rb, 4) + 1; |
| const int num_bits_height = aom_rb_read_literal(rb, 4) + 1; |
| const int max_frame_width = aom_rb_read_literal(rb, num_bits_width) + 1; |
| const int max_frame_height = aom_rb_read_literal(rb, num_bits_height) + 1; |
| |
| seq_params->num_bits_width = num_bits_width; |
| seq_params->num_bits_height = num_bits_height; |
| seq_params->max_frame_width = max_frame_width; |
| seq_params->max_frame_height = max_frame_height; |
| |
| if (seq_params->reduced_still_picture_hdr) { |
| seq_params->frame_id_numbers_present_flag = 0; |
| } else { |
| seq_params->frame_id_numbers_present_flag = aom_rb_read_bit(rb); |
| } |
| if (seq_params->frame_id_numbers_present_flag) { |
| // We must always have delta_frame_id_length < frame_id_length, |
| // in order for a frame to be referenced with a unique delta. |
| // Avoid wasting bits by using a coding that enforces this restriction. |
| seq_params->delta_frame_id_length = aom_rb_read_literal(rb, 4) + 2; |
| seq_params->frame_id_length = |
| aom_rb_read_literal(rb, 3) + seq_params->delta_frame_id_length + 1; |
| if (seq_params->frame_id_length > 16) |
| aom_internal_error(cm->error, AOM_CODEC_CORRUPT_FRAME, |
| "Invalid frame_id_length"); |
| } |
| |
| setup_sb_size(seq_params, rb); |
| |
| seq_params->enable_filter_intra = aom_rb_read_bit(rb); |
| seq_params->enable_intra_edge_filter = aom_rb_read_bit(rb); |
| |
| if (seq_params->reduced_still_picture_hdr) { |
| seq_params->enable_interintra_compound = 0; |
| seq_params->enable_masked_compound = 0; |
| seq_params->enable_warped_motion = 0; |
| seq_params->enable_dual_filter = 0; |
| seq_params->order_hint_info.enable_order_hint = 0; |
| seq_params->order_hint_info.enable_dist_wtd_comp = 0; |
| seq_params->order_hint_info.enable_ref_frame_mvs = 0; |
| seq_params->force_screen_content_tools = 2; // SELECT_SCREEN_CONTENT_TOOLS |
| seq_params->force_integer_mv = 2; // SELECT_INTEGER_MV |
| seq_params->order_hint_info.order_hint_bits_minus_1 = -1; |
| } else { |
| seq_params->enable_interintra_compound = aom_rb_read_bit(rb); |
| seq_params->enable_masked_compound = aom_rb_read_bit(rb); |
| seq_params->enable_warped_motion = aom_rb_read_bit(rb); |
| seq_params->enable_dual_filter = aom_rb_read_bit(rb); |
| |
| seq_params->order_hint_info.enable_order_hint = aom_rb_read_bit(rb); |
| seq_params->order_hint_info.enable_dist_wtd_comp = |
| seq_params->order_hint_info.enable_order_hint ? aom_rb_read_bit(rb) : 0; |
| seq_params->order_hint_info.enable_ref_frame_mvs = |
| seq_params->order_hint_info.enable_order_hint ? aom_rb_read_bit(rb) : 0; |
| |
| if (aom_rb_read_bit(rb)) { |
| seq_params->force_screen_content_tools = |
| 2; // SELECT_SCREEN_CONTENT_TOOLS |
| } else { |
| seq_params->force_screen_content_tools = aom_rb_read_bit(rb); |
| } |
| |
| if (seq_params->force_screen_content_tools > 0) { |
| if (aom_rb_read_bit(rb)) { |
| seq_params->force_integer_mv = 2; // SELECT_INTEGER_MV |
| } else { |
| seq_params->force_integer_mv = aom_rb_read_bit(rb); |
| } |
| } else { |
| seq_params->force_integer_mv = 2; // SELECT_INTEGER_MV |
| } |
| seq_params->order_hint_info.order_hint_bits_minus_1 = |
| seq_params->order_hint_info.enable_order_hint |
| ? aom_rb_read_literal(rb, 3) |
| : -1; |
| } |
| |
| seq_params->enable_superres = aom_rb_read_bit(rb); |
| seq_params->enable_cdef = aom_rb_read_bit(rb); |
| seq_params->enable_restoration = aom_rb_read_bit(rb); |
| } |
| |
| static int read_global_motion_params(WarpedMotionParams *params, |
| const WarpedMotionParams *ref_params, |
| struct aom_read_bit_buffer *rb, |
| int allow_hp) { |
| TransformationType type = aom_rb_read_bit(rb); |
| if (type != IDENTITY) { |
| if (aom_rb_read_bit(rb)) |
| type = ROTZOOM; |
| else |
| type = aom_rb_read_bit(rb) ? TRANSLATION : AFFINE; |
| } |
| |
| *params = default_warp_params; |
| params->wmtype = type; |
| |
| if (type >= ROTZOOM) { |
| params->wmmat[2] = aom_rb_read_signed_primitive_refsubexpfin( |
| rb, GM_ALPHA_MAX + 1, SUBEXPFIN_K, |
| (ref_params->wmmat[2] >> GM_ALPHA_PREC_DIFF) - |
| (1 << GM_ALPHA_PREC_BITS)) * |
| GM_ALPHA_DECODE_FACTOR + |
| (1 << WARPEDMODEL_PREC_BITS); |
| params->wmmat[3] = aom_rb_read_signed_primitive_refsubexpfin( |
| rb, GM_ALPHA_MAX + 1, SUBEXPFIN_K, |
| (ref_params->wmmat[3] >> GM_ALPHA_PREC_DIFF)) * |
| GM_ALPHA_DECODE_FACTOR; |
| } |
| |
| if (type >= AFFINE) { |
| params->wmmat[4] = aom_rb_read_signed_primitive_refsubexpfin( |
| rb, GM_ALPHA_MAX + 1, SUBEXPFIN_K, |
| (ref_params->wmmat[4] >> GM_ALPHA_PREC_DIFF)) * |
| GM_ALPHA_DECODE_FACTOR; |
| params->wmmat[5] = aom_rb_read_signed_primitive_refsubexpfin( |
| rb, GM_ALPHA_MAX + 1, SUBEXPFIN_K, |
| (ref_params->wmmat[5] >> GM_ALPHA_PREC_DIFF) - |
| (1 << GM_ALPHA_PREC_BITS)) * |
| GM_ALPHA_DECODE_FACTOR + |
| (1 << WARPEDMODEL_PREC_BITS); |
| } else { |
| params->wmmat[4] = -params->wmmat[3]; |
| params->wmmat[5] = params->wmmat[2]; |
| } |
| |
| if (type >= TRANSLATION) { |
| const int trans_bits = (type == TRANSLATION) |
| ? GM_ABS_TRANS_ONLY_BITS - !allow_hp |
| : GM_ABS_TRANS_BITS; |
| const int trans_dec_factor = |
| (type == TRANSLATION) ? GM_TRANS_ONLY_DECODE_FACTOR * (1 << !allow_hp) |
| : GM_TRANS_DECODE_FACTOR; |
| const int trans_prec_diff = (type == TRANSLATION) |
| ? GM_TRANS_ONLY_PREC_DIFF + !allow_hp |
| : GM_TRANS_PREC_DIFF; |
| params->wmmat[0] = aom_rb_read_signed_primitive_refsubexpfin( |
| rb, (1 << trans_bits) + 1, SUBEXPFIN_K, |
| (ref_params->wmmat[0] >> trans_prec_diff)) * |
| trans_dec_factor; |
| params->wmmat[1] = aom_rb_read_signed_primitive_refsubexpfin( |
| rb, (1 << trans_bits) + 1, SUBEXPFIN_K, |
| (ref_params->wmmat[1] >> trans_prec_diff)) * |
| trans_dec_factor; |
| } |
| |
| int good_shear_params = av1_get_shear_params(params); |
| if (!good_shear_params) return 0; |
| |
| return 1; |
| } |
| |
| static inline void read_global_motion(AV1_COMMON *cm, |
| struct aom_read_bit_buffer *rb) { |
| for (int frame = LAST_FRAME; frame <= ALTREF_FRAME; ++frame) { |
| const WarpedMotionParams *ref_params = |
| cm->prev_frame ? &cm->prev_frame->global_motion[frame] |
| : &default_warp_params; |
| int good_params = |
| read_global_motion_params(&cm->global_motion[frame], ref_params, rb, |
| cm->features.allow_high_precision_mv); |
| if (!good_params) { |
| #if WARPED_MOTION_DEBUG |
| printf("Warning: unexpected global motion shear params from aomenc\n"); |
| #endif |
| cm->global_motion[frame].invalid = 1; |
| } |
| |
| // TODO(sarahparker, debargha): The logic in the commented out code below |
| // does not work currently and causes mismatches when resize is on. Fix it |
| // before turning the optimization back on. |
| /* |
| YV12_BUFFER_CONFIG *ref_buf = get_ref_frame(cm, frame); |
| if (cm->width == ref_buf->y_crop_width && |
| cm->height == ref_buf->y_crop_height) { |
| read_global_motion_params(&cm->global_motion[frame], |
| &cm->prev_frame->global_motion[frame], rb, |
| cm->features.allow_high_precision_mv); |
| } else { |
| cm->global_motion[frame] = default_warp_params; |
| } |
| */ |
| /* |
| printf("Dec Ref %d [%d/%d]: %d %d %d %d\n", |
| frame, cm->current_frame.frame_number, cm->show_frame, |
| cm->global_motion[frame].wmmat[0], |
| cm->global_motion[frame].wmmat[1], |
| cm->global_motion[frame].wmmat[2], |
| cm->global_motion[frame].wmmat[3]); |
| */ |
| } |
| memcpy(cm->cur_frame->global_motion, cm->global_motion, |
| REF_FRAMES * sizeof(WarpedMotionParams)); |
| } |
| |
| // Release the references to the frame buffers in cm->ref_frame_map and reset |
| // all elements of cm->ref_frame_map to NULL. |
| static inline void reset_ref_frame_map(AV1_COMMON *const cm) { |
| BufferPool *const pool = cm->buffer_pool; |
| |
| for (int i = 0; i < REF_FRAMES; i++) { |
| decrease_ref_count(cm->ref_frame_map[i], pool); |
| cm->ref_frame_map[i] = NULL; |
| } |
| } |
| |
| // If the refresh_frame_flags bitmask is set, update reference frame id values |
| // and mark frames as valid for reference. |
| static inline void update_ref_frame_id(AV1Decoder *const pbi) { |
| AV1_COMMON *const cm = &pbi->common; |
| int refresh_frame_flags = cm->current_frame.refresh_frame_flags; |
| for (int i = 0; i < REF_FRAMES; i++) { |
| if ((refresh_frame_flags >> i) & 1) { |
| cm->ref_frame_id[i] = cm->current_frame_id; |
| pbi->valid_for_referencing[i] = 1; |
| } |
| } |
| } |
| |
| static inline void show_existing_frame_reset(AV1Decoder *const pbi, |
| int existing_frame_idx) { |
| AV1_COMMON *const cm = &pbi->common; |
| |
| assert(cm->show_existing_frame); |
| |
| cm->current_frame.frame_type = KEY_FRAME; |
| |
| cm->current_frame.refresh_frame_flags = (1 << REF_FRAMES) - 1; |
| |
| for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) { |
| cm->remapped_ref_idx[i] = INVALID_IDX; |
| } |
| |
| if (pbi->need_resync) { |
| reset_ref_frame_map(cm); |
| pbi->need_resync = 0; |
| } |
| |
| // Note that the displayed frame must be valid for referencing in order to |
| // have been selected. |
| cm->current_frame_id = cm->ref_frame_id[existing_frame_idx]; |
| update_ref_frame_id(pbi); |
| |
| cm->features.refresh_frame_context = REFRESH_FRAME_CONTEXT_DISABLED; |
| } |
| |
| static inline void reset_frame_buffers(AV1_COMMON *cm) { |
| RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs; |
| int i; |
| |
| lock_buffer_pool(cm->buffer_pool); |
| reset_ref_frame_map(cm); |
| assert(cm->cur_frame->ref_count == 1); |
| for (i = 0; i < cm->buffer_pool->num_frame_bufs; ++i) { |
| // Reset all unreferenced frame buffers. We can also reset cm->cur_frame |
| // because we are the sole owner of cm->cur_frame. |
| if (frame_bufs[i].ref_count > 0 && &frame_bufs[i] != cm->cur_frame) { |
| continue; |
| } |
| frame_bufs[i].order_hint = 0; |
| av1_zero(frame_bufs[i].ref_order_hints); |
| } |
| av1_zero_unused_internal_frame_buffers(&cm->buffer_pool->int_frame_buffers); |
| unlock_buffer_pool(cm->buffer_pool); |
| } |
| |
| // On success, returns 0. On failure, calls aom_internal_error and does not |
| // return. |
| static int read_uncompressed_header(AV1Decoder *pbi, |
| struct aom_read_bit_buffer *rb) { |
| AV1_COMMON *const cm = &pbi->common; |
| const SequenceHeader *const seq_params = cm->seq_params; |
| CurrentFrame *const current_frame = &cm->current_frame; |
| FeatureFlags *const features = &cm->features; |
| MACROBLOCKD *const xd = &pbi->dcb.xd; |
| BufferPool *const pool = cm->buffer_pool; |
| RefCntBuffer *const frame_bufs = pool->frame_bufs; |
| aom_s_frame_info *sframe_info = &pbi->sframe_info; |
| sframe_info->is_s_frame = 0; |
| sframe_info->is_s_frame_at_altref = 0; |
| |
| if (!pbi->sequence_header_ready) { |
| aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, |
| "No sequence header"); |
| } |
| |
| if (seq_params->reduced_still_picture_hdr) { |
| cm->show_existing_frame = 0; |
| cm->show_frame = 1; |
| current_frame->frame_type = KEY_FRAME; |
| if (pbi->sequence_header_changed) { |
| // This is the start of a new coded video sequence. |
| pbi->sequence_header_changed = 0; |
| pbi->decoding_first_frame = 1; |
| reset_frame_buffers(cm); |
| } |
| features->error_resilient_mode = 1; |
| } else { |
| cm->show_existing_frame = aom_rb_read_bit(rb); |
| pbi->reset_decoder_state = 0; |
| |
| if (cm->show_existing_frame) { |
| if (pbi->sequence_header_changed) { |
| aom_internal_error( |
| &pbi->error, AOM_CODEC_CORRUPT_FRAME, |
| "New sequence header starts with a show_existing_frame."); |
| } |
| // Show an existing frame directly. |
| const int existing_frame_idx = aom_rb_read_literal(rb, 3); |
| RefCntBuffer *const frame_to_show = cm->ref_frame_map[existing_frame_idx]; |
| if (frame_to_show == NULL) { |
| aom_internal_error(&pbi->error, AOM_CODEC_UNSUP_BITSTREAM, |
| "Buffer does not contain a decoded frame"); |
| } |
| if (seq_params->decoder_model_info_present_flag && |
| seq_params->timing_info.equal_picture_interval == 0) { |
| read_temporal_point_info(cm, rb); |
| } |
| if (seq_params->frame_id_numbers_present_flag) { |
| int frame_id_length = seq_params->frame_id_length; |
| int display_frame_id = aom_rb_read_literal(rb, frame_id_length); |
| /* Compare display_frame_id with ref_frame_id and check valid for |
| * referencing */ |
| if (display_frame_id != cm->ref_frame_id[existing_frame_idx] || |
| pbi->valid_for_referencing[existing_frame_idx] == 0) |
| aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, |
| "Reference buffer frame ID mismatch"); |
| } |
| lock_buffer_pool(pool); |
| assert(frame_to_show->ref_count > 0); |
| // cm->cur_frame should be the buffer referenced by the return value |
| // of the get_free_fb() call in assign_cur_frame_new_fb() (called by |
| // av1_receive_compressed_data()), so the ref_count should be 1. |
| assert(cm->cur_frame->ref_count == 1); |
| // assign_frame_buffer_p() decrements ref_count directly rather than |
| // call decrease_ref_count(). If cm->cur_frame->raw_frame_buffer has |
| // already been allocated, it will not be released by |
| // assign_frame_buffer_p()! |
| assert(!cm->cur_frame->raw_frame_buffer.data); |
| assign_frame_buffer_p(&cm->cur_frame, frame_to_show); |
| pbi->reset_decoder_state = frame_to_show->frame_type == KEY_FRAME; |
| unlock_buffer_pool(pool); |
| |
| cm->lf.filter_level[0] = 0; |
| cm->lf.filter_level[1] = 0; |
| cm->show_frame = 1; |
| current_frame->order_hint = frame_to_show->order_hint; |
| |
| // Section 6.8.2: It is a requirement of bitstream conformance that when |
| // show_existing_frame is used to show a previous frame, that the value |
| // of showable_frame for the previous frame was equal to 1. |
| if (!frame_to_show->showable_frame) { |
| aom_internal_error(&pbi->error, AOM_CODEC_UNSUP_BITSTREAM, |
| "Buffer does not contain a showable frame"); |
| } |
| // Section 6.8.2: It is a requirement of bitstream conformance that when |
| // show_existing_frame is used to show a previous frame with |
| // RefFrameType[ frame_to_show_map_idx ] equal to KEY_FRAME, that the |
| // frame is output via the show_existing_frame mechanism at most once. |
| if (pbi->reset_decoder_state) frame_to_show->showable_frame = 0; |
| |
| cm->film_grain_params = frame_to_show->film_grain_params; |
| |
| if (pbi->reset_decoder_state) { |
| show_existing_frame_reset(pbi, existing_frame_idx); |
| } else { |
| current_frame->refresh_frame_flags = 0; |
| } |
| |
| return 0; |
| } |
| |
| current_frame->frame_type = (FRAME_TYPE)aom_rb_read_literal(rb, 2); |
| if (pbi->sequence_header_changed) { |
| if (current_frame->frame_type == KEY_FRAME) { |
| // This is the start of a new coded video sequence. |
| pbi->sequence_header_changed = 0; |
| pbi->decoding_first_frame = 1; |
| reset_frame_buffers(cm); |
| } else { |
| aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, |
| "Sequence header has changed without a keyframe."); |
| } |
| } |
| |
| cm->show_frame = aom_rb_read_bit(rb); |
| if (cm->show_frame == 0) pbi->is_arf_frame_present = 1; |
| if (cm->show_frame == 0 && cm->current_frame.frame_type == KEY_FRAME) |
| pbi->is_fwd_kf_present = 1; |
| if (cm->current_frame.frame_type == S_FRAME) { |
| sframe_info->is_s_frame = 1; |
| sframe_info->is_s_frame_at_altref = cm->show_frame ? 0 : 1; |
| } |
| if (seq_params->still_picture && |
| (current_frame->frame_type != KEY_FRAME || !cm->show_frame)) { |
| aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, |
| "Still pictures must be coded as shown keyframes"); |
| } |
| cm->showable_frame = current_frame->frame_type != KEY_FRAME; |
| if (cm->show_frame) { |
| if (seq_params->decoder_model_info_present_flag && |
| seq_params->timing_info.equal_picture_interval == 0) |
| read_temporal_point_info(cm, rb); |
| } else { |
| // See if this frame can be used as show_existing_frame in future |
| cm->showable_frame = aom_rb_read_bit(rb); |
| } |
| cm->cur_frame->showable_frame = cm->showable_frame; |
| features->error_resilient_mode = |
| frame_is_sframe(cm) || |
| (current_frame->frame_type == KEY_FRAME && cm->show_frame) |
| ? 1 |
| : aom_rb_read_bit(rb); |
| } |
| |
| if (current_frame->frame_type == KEY_FRAME && cm->show_frame) { |
| /* All frames need to be marked as not valid for referencing */ |
| for (int i = 0; i < REF_FRAMES; i++) { |
| pbi->valid_for_referencing[i] = 0; |
| } |
| } |
| features->disable_cdf_update = aom_rb_read_bit(rb); |
| if (seq_params->force_screen_content_tools == 2) { |
| features->allow_screen_content_tools = aom_rb_read_bit(rb); |
| } else { |
| features->allow_screen_content_tools = |
| seq_params->force_screen_content_tools; |
| } |
| |
| if (features->allow_screen_content_tools) { |
| if (seq_params->force_integer_mv == 2) { |
| features->cur_frame_force_integer_mv = aom_rb_read_bit(rb); |
| } else { |
| features->cur_frame_force_integer_mv = seq_params->force_integer_mv; |
| } |
| } else { |
| features->cur_frame_force_integer_mv = 0; |
| } |
| |
| int frame_size_override_flag = 0; |
| features->allow_intrabc = 0; |
| features->primary_ref_frame = PRIMARY_REF_NONE; |
| |
| if (!seq_params->reduced_still_picture_hdr) { |
| if (seq_params->frame_id_numbers_present_flag) { |
| int frame_id_length = seq_params->frame_id_length; |
| int diff_len = seq_params->delta_frame_id_length; |
| int prev_frame_id = 0; |
| int have_prev_frame_id = |
| !pbi->decoding_first_frame && |
| !(current_frame->frame_type == KEY_FRAME && cm->show_frame); |
| if (have_prev_frame_id) { |
| prev_frame_id = cm->current_frame_id; |
| } |
| cm->current_frame_id = aom_rb_read_literal(rb, frame_id_length); |
| |
| if (have_prev_frame_id) { |
| int diff_frame_id; |
| if (cm->current_frame_id > prev_frame_id) { |
| diff_frame_id = cm->current_frame_id - prev_frame_id; |
| } else { |
| diff_frame_id = |
| (1 << frame_id_length) + cm->current_frame_id - prev_frame_id; |
| } |
| /* Check current_frame_id for conformance */ |
| if (prev_frame_id == cm->current_frame_id || |
| diff_frame_id >= (1 << (frame_id_length - 1))) { |
| aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, |
| "Invalid value of current_frame_id"); |
| } |
| } |
| /* Check if some frames need to be marked as not valid for referencing */ |
| for (int i = 0; i < REF_FRAMES; i++) { |
| if (cm->current_frame_id - (1 << diff_len) > 0) { |
| if (cm->ref_frame_id[i] > cm->current_frame_id || |
| cm->ref_frame_id[i] < cm->current_frame_id - (1 << diff_len)) |
| pbi->valid_for_referencing[i] = 0; |
| } else { |
| if (cm->ref_frame_id[i] > cm->current_frame_id && |
| cm->ref_frame_id[i] < (1 << frame_id_length) + |
| cm->current_frame_id - (1 << diff_len)) |
| pbi->valid_for_referencing[i] = 0; |
| } |
| } |
| } |
| |
| frame_size_override_flag = frame_is_sframe(cm) ? 1 : aom_rb_read_bit(rb); |
| |
| current_frame->order_hint = aom_rb_read_literal( |
| rb, seq_params->order_hint_info.order_hint_bits_minus_1 + 1); |
| |
| if (seq_params->order_hint_info.enable_order_hint) |
| current_frame->frame_number = current_frame->order_hint; |
| |
| if (!features->error_resilient_mode && !frame_is_intra_only(cm)) { |
| features->primary_ref_frame = aom_rb_read_literal(rb, PRIMARY_REF_BITS); |
| } |
| } |
| |
| if (seq_params->decoder_model_info_present_flag) { |
| pbi->buffer_removal_time_present = aom_rb_read_bit(rb); |
| if (pbi->buffer_removal_time_present) { |
| for (int op_num = 0; |
| op_num < seq_params->operating_points_cnt_minus_1 + 1; op_num++) { |
| if (seq_params->op_params[op_num].decoder_model_param_present_flag) { |
| if (seq_params->operating_point_idc[op_num] == 0 || |
| (((seq_params->operating_point_idc[op_num] >> |
| cm->temporal_layer_id) & |
| 0x1) && |
| ((seq_params->operating_point_idc[op_num] >> |
| (cm->spatial_layer_id + 8)) & |
| 0x1))) { |
| cm->buffer_removal_times[op_num] = aom_rb_read_unsigned_literal( |
| rb, seq_params->decoder_model_info.buffer_removal_time_length); |
| } else { |
| cm->buffer_removal_times[op_num] = 0; |
| } |
| } else { |
| cm->buffer_removal_times[op_num] = 0; |
| } |
| } |
| } |
| } |
| if (current_frame->frame_type == KEY_FRAME) { |
| if (!cm->show_frame) { // unshown keyframe (forward keyframe) |
| current_frame->refresh_frame_flags = aom_rb_read_literal(rb, REF_FRAMES); |
| } else { // shown keyframe |
| current_frame->refresh_frame_flags = (1 << REF_FRAMES) - 1; |
| } |
| |
| for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) { |
| cm->remapped_ref_idx[i] = INVALID_IDX; |
| } |
| if (pbi->need_resync) { |
| reset_ref_frame_map(cm); |
| pbi->need_resync = 0; |
| } |
| } else { |
| if (current_frame->frame_type == INTRA_ONLY_FRAME) { |
| current_frame->refresh_frame_flags = aom_rb_read_literal(rb, REF_FRAMES); |
| if (current_frame->refresh_frame_flags == 0xFF) { |
| aom_internal_error(&pbi->error, AOM_CODEC_UNSUP_BITSTREAM, |
| "Intra only frames cannot have refresh flags 0xFF"); |
| } |
| if (pbi->need_resync) { |
| reset_ref_frame_map(cm); |
| pbi->need_resync = 0; |
| } |
| } else if (pbi->need_resync != 1) { /* Skip if need resync */ |
| current_frame->refresh_frame_flags = |
| frame_is_sframe(cm) ? 0xFF : aom_rb_read_literal(rb, REF_FRAMES); |
| } |
| } |
| |
| if (!frame_is_intra_only(cm) || current_frame->refresh_frame_flags != 0xFF) { |
| // Read all ref frame order hints if error_resilient_mode == 1 |
| if (features->error_resilient_mode && |
| seq_params->order_hint_info.enable_order_hint) { |
| for (int ref_idx = 0; ref_idx < REF_FRAMES; ref_idx++) { |
| // Read order hint from bit stream |
| unsigned int order_hint = aom_rb_read_literal( |
| rb, seq_params->order_hint_info.order_hint_bits_minus_1 + 1); |
| // Get buffer |
| RefCntBuffer *buf = cm->ref_frame_map[ref_idx]; |
| if (buf == NULL || order_hint != buf->order_hint) { |
| if (buf != NULL) { |
| lock_buffer_pool(pool); |
| decrease_ref_count(buf, pool); |
| unlock_buffer_pool(pool); |
| cm->ref_frame_map[ref_idx] = NULL; |
| } |
| // If no corresponding buffer exists, allocate a new buffer with all |
| // pixels set to neutral grey. |
| int buf_idx = get_free_fb(cm); |
| if (buf_idx == INVALID_IDX) { |
| aom_internal_error(&pbi->error, AOM_CODEC_MEM_ERROR, |
| "Unable to find free frame buffer"); |
| } |
| buf = &frame_bufs[buf_idx]; |
| lock_buffer_pool(pool); |
| if (aom_realloc_frame_buffer( |
| &buf->buf, seq_params->max_frame_width, |
| seq_params->max_frame_height, seq_params->subsampling_x, |
| seq_params->subsampling_y, seq_params->use_highbitdepth, |
| AOM_BORDER_IN_PIXELS, features->byte_alignment, |
| &buf->raw_frame_buffer, pool->get_fb_cb, pool->cb_priv, false, |
| 0)) { |
| decrease_ref_count(buf, pool); |
| unlock_buffer_pool(pool); |
| aom_internal_error(&pbi->error, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate frame buffer"); |
| } |
| unlock_buffer_pool(pool); |
| // According to the specification, valid bitstreams are required to |
| // never use missing reference frames so the filling process for |
| // missing frames is not normatively defined and RefValid for missing |
| // frames is set to 0. |
| |
| // To make libaom more robust when the bitstream has been corrupted |
| // by the loss of some frames of data, this code adds a neutral grey |
| // buffer in place of missing frames, i.e. |
| // |
| set_planes_to_neutral_grey(seq_params, &buf->buf, 0); |
| // |
| // and allows the frames to be used for referencing, i.e. |
| // |
| pbi->valid_for_referencing[ref_idx] = 1; |
| // |
| // Please note such behavior is not normative and other decoders may |
| // use a different approach. |
| cm->ref_frame_map[ref_idx] = buf; |
| buf->order_hint = order_hint; |
| } |
| } |
| } |
| } |
| |
| if (current_frame->frame_type == KEY_FRAME) { |
| setup_frame_size(cm, frame_size_override_flag, rb); |
| |
| if (features->allow_screen_content_tools && !av1_superres_scaled(cm)) |
| features->allow_intrabc = aom_rb_read_bit(rb); |
| features->allow_ref_frame_mvs = 0; |
| cm->prev_frame = NULL; |
| } else { |
| features->allow_ref_frame_mvs = 0; |
| |
| if (current_frame->frame_type == INTRA_ONLY_FRAME) { |
| cm->cur_frame->film_grain_params_present = |
| seq_params->film_grain_params_present; |
| setup_frame_size(cm, frame_size_override_flag, rb); |
| if (features->allow_screen_content_tools && !av1_superres_scaled(cm)) |
| features->allow_intrabc = aom_rb_read_bit(rb); |
| |
| } else if (pbi->need_resync != 1) { /* Skip if need resync */ |
| int frame_refs_short_signaling = 0; |
| // Frame refs short signaling is off when error resilient mode is on. |
| if (seq_params->order_hint_info.enable_order_hint) |
| frame_refs_short_signaling = aom_rb_read_bit(rb); |
| |
| if (frame_refs_short_signaling) { |
| // == LAST_FRAME == |
| const int lst_ref = aom_rb_read_literal(rb, REF_FRAMES_LOG2); |
| const RefCntBuffer *const lst_buf = cm->ref_frame_map[lst_ref]; |
| |
| // == GOLDEN_FRAME == |
| const int gld_ref = aom_rb_read_literal(rb, REF_FRAMES_LOG2); |
| const RefCntBuffer *const gld_buf = cm->ref_frame_map[gld_ref]; |
| |
| // Most of the time, streams start with a keyframe. In that case, |
| // ref_frame_map will have been filled in at that point and will not |
| // contain any NULLs. However, streams are explicitly allowed to start |
| // with an intra-only frame, so long as they don't then signal a |
| // reference to a slot that hasn't been set yet. That's what we are |
| // checking here. |
| if (lst_buf == NULL) |
| aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, |
| "Inter frame requests nonexistent reference"); |
| if (gld_buf == NULL) |
| aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, |
| "Inter frame requests nonexistent reference"); |
| |
| av1_set_frame_refs(cm, cm->remapped_ref_idx, lst_ref, gld_ref); |
| } |
| |
| for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) { |
| int ref = 0; |
| if (!frame_refs_short_signaling) { |
| ref = aom_rb_read_literal(rb, REF_FRAMES_LOG2); |
| |
| // Most of the time, streams start with a keyframe. In that case, |
| // ref_frame_map will have been filled in at that point and will not |
| // contain any NULLs. However, streams are explicitly allowed to start |
| // with an intra-only frame, so long as they don't then signal a |
| // reference to a slot that hasn't been set yet. That's what we are |
| // checking here. |
| if (cm->ref_frame_map[ref] == NULL) |
| aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, |
| "Inter frame requests nonexistent reference"); |
| cm->remapped_ref_idx[i] = ref; |
| } else { |
| ref = cm->remapped_ref_idx[i]; |
| } |
| // Check valid for referencing |
| if (pbi->valid_for_referencing[ref] == 0) |
| aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, |
| "Reference frame not valid for referencing"); |
| |
| cm->ref_frame_sign_bias[LAST_FRAME + i] = 0; |
| |
| if (seq_params->frame_id_numbers_present_flag) { |
| int frame_id_length = seq_params->frame_id_length; |
| int diff_len = seq_params->delta_frame_id_length; |
| int delta_frame_id_minus_1 = aom_rb_read_literal(rb, diff_len); |
| int ref_frame_id = |
| ((cm->current_frame_id - (delta_frame_id_minus_1 + 1) + |
| (1 << frame_id_length)) % |
| (1 << frame_id_length)); |
| // Compare values derived from delta_frame_id_minus_1 and |
| // refresh_frame_flags. |
| if (ref_frame_id != cm->ref_frame_id[ref]) |
| aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, |
| "Reference buffer frame ID mismatch"); |
| } |
| } |
| |
| if (!features->error_resilient_mode && frame_size_override_flag) { |
| setup_frame_size_with_refs(cm, rb); |
| } else { |
| setup_frame_size(cm, frame_size_override_flag, rb); |
| } |
| |
| if (features->cur_frame_force_integer_mv) { |
| features->allow_high_precision_mv = 0; |
| } else { |
| features->allow_high_precision_mv = aom_rb_read_bit(rb); |
| } |
| features->interp_filter = read_frame_interp_filter(rb); |
| features->switchable_motion_mode = aom_rb_read_bit(rb); |
| } |
| |
| cm->prev_frame = get_primary_ref_frame_buf(cm); |
| if (features->primary_ref_frame != PRIMARY_REF_NONE && |
| get_primary_ref_frame_buf(cm) == NULL) { |
| aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, |
| "Reference frame containing this frame's initial " |
| "frame context is unavailable."); |
| } |
| |
| if (!(current_frame->frame_type == INTRA_ONLY_FRAME) && |
| pbi->need_resync != 1) { |
| if (frame_might_allow_ref_frame_mvs(cm)) |
| features->allow_ref_frame_mvs = aom_rb_read_bit(rb); |
| else |
| features->allow_ref_frame_mvs = 0; |
| |
| for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i) { |
| const RefCntBuffer *const ref_buf = get_ref_frame_buf(cm, i); |
| struct scale_factors *const ref_scale_factors = |
| get_ref_scale_factors(cm, i); |
| av1_setup_scale_factors_for_frame( |
| ref_scale_factors, ref_buf->buf.y_crop_width, |
| ref_buf->buf.y_crop_height, cm->width, cm->height); |
| if ((!av1_is_valid_scale(ref_scale_factors))) |
| aom_internal_error(&pbi->error, AOM_CODEC_UNSUP_BITSTREAM, |
| "Reference frame has invalid dimensions"); |
| } |
| } |
| } |
| |
| av1_setup_frame_buf_refs(cm); |
| |
| av1_setup_frame_sign_bias(cm); |
| |
| cm->cur_frame->frame_type = current_frame->frame_type; |
| |
| update_ref_frame_id(pbi); |
| |
| const int might_bwd_adapt = !(seq_params->reduced_still_picture_hdr) && |
| !(features->disable_cdf_update); |
| if (might_bwd_adapt) { |
| features->refresh_frame_context = aom_rb_read_bit(rb) |
| ? REFRESH_FRAME_CONTEXT_DISABLED |
| : REFRESH_FRAME_CONTEXT_BACKWARD; |
| } else { |
| features->refresh_frame_context = REFRESH_FRAME_CONTEXT_DISABLED; |
| } |
| |
| cm->cur_frame->buf.bit_depth = seq_params->bit_depth; |
| cm->cur_frame->buf.color_primaries = seq_params->color_primaries; |
| cm->cur_frame->buf.transfer_characteristics = |
| seq_params->transfer_characteristics; |
| cm->cur_frame->buf.matrix_coefficients = seq_params->matrix_coefficients; |
| cm->cur_frame->buf.monochrome = seq_params->monochrome; |
| cm->cur_frame->buf.chroma_sample_position = |
| seq_params->chroma_sample_position; |
| cm->cur_frame->buf.color_range = seq_params->color_range; |
| cm->cur_frame->buf.render_width = cm->render_width; |
| cm->cur_frame->buf.render_height = cm->render_height; |
| |
| if (pbi->need_resync) { |
| aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, |
| "Keyframe / intra-only frame required to reset decoder" |
| " state"); |
| } |
| |
| if (features->allow_intrabc) { |
| // Set parameters corresponding to no filtering. |
| struct loopfilter *lf = &cm->lf; |
| lf->filter_level[0] = 0; |
| lf->filter_level[1] = 0; |
| cm->cdef_info.cdef_bits = 0; |
| cm->cdef_info.cdef_strengths[0] = 0; |
| cm->cdef_info.nb_cdef_strengths = 1; |
| cm->cdef_info.cdef_uv_strengths[0] = 0; |
| cm->rst_info[0].frame_restoration_type = RESTORE_NONE; |
| cm->rst_info[1].frame_restoration_type = RESTORE_NONE; |
| cm->rst_info[2].frame_restoration_type = RESTORE_NONE; |
| } |
| |
| read_tile_info(pbi, rb); |
| if (!av1_is_min_tile_width_satisfied(cm)) { |
| aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, |
| "Minimum tile width requirement not satisfied"); |
| } |
| |
| CommonQuantParams *const quant_params = &cm->quant_params; |
| setup_quantization(quant_params, av1_num_planes(cm), |
| cm->seq_params->separate_uv_delta_q, rb); |
| xd->bd = (int)seq_params->bit_depth; |
| |
| CommonContexts *const above_contexts = &cm->above_contexts; |
| if (above_contexts->num_planes < av1_num_planes(cm) || |
| above_contexts->num_mi_cols < cm->mi_params.mi_cols || |
| above_contexts->num_tile_rows < cm->tiles.rows) { |
| av1_free_above_context_buffers(above_contexts); |
| if (av1_alloc_above_context_buffers(above_contexts, cm->tiles.rows, |
| cm->mi_params.mi_cols, |
| av1_num_planes(cm))) { |
| aom_internal_error(&pbi->error, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate context buffers"); |
| } |
| } |
| |
| if (features->primary_ref_frame == PRIMARY_REF_NONE) { |
| av1_setup_past_independence(cm); |
| } |
| |
| setup_segmentation(cm, rb); |
| |
| cm->delta_q_info.delta_q_res = 1; |
| cm->delta_q_info.delta_lf_res = 1; |
| cm->delta_q_info.delta_lf_present_flag = 0; |
| cm->delta_q_info.delta_lf_multi = 0; |
| cm->delta_q_info.delta_q_present_flag = |
| quant_params->base_qindex > 0 ? aom_rb_read_bit(rb) : 0; |
| if (cm->delta_q_info.delta_q_present_flag) { |
| xd->current_base_qindex = quant_params->base_qindex; |
| cm->delta_q_info.delta_q_res = 1 << aom_rb_read_literal(rb, 2); |
| if (!features->allow_intrabc) |
| cm->delta_q_info.delta_lf_present_flag = aom_rb_read_bit(rb); |
| if (cm->delta_q_info.delta_lf_present_flag) { |
| cm->delta_q_info.delta_lf_res = 1 << aom_rb_read_literal(rb, 2); |
| cm->delta_q_info.delta_lf_multi = aom_rb_read_bit(rb); |
| av1_reset_loop_filter_delta(xd, av1_num_planes(cm)); |
| } |
| } |
| |
| xd->cur_frame_force_integer_mv = features->cur_frame_force_integer_mv; |
| |
| for (int i = 0; i < MAX_SEGMENTS; ++i) { |
| const int qindex = av1_get_qindex(&cm->seg, i, quant_params->base_qindex); |
| xd->lossless[i] = |
| qindex == 0 && quant_params->y_dc_delta_q == 0 && |
| quant_params->u_dc_delta_q == 0 && quant_params->u_ac_delta_q == 0 && |
| quant_params->v_dc_delta_q == 0 && quant_params->v_ac_delta_q == 0; |
| xd->qindex[i] = qindex; |
| } |
| features->coded_lossless = is_coded_lossless(cm, xd); |
| features->all_lossless = features->coded_lossless && !av1_superres_scaled(cm); |
| setup_segmentation_dequant(cm, xd); |
| if (features->coded_lossless) { |
| cm->lf.filter_level[0] = 0; |
| cm->lf.filter_level[1] = 0; |
| } |
| if (features->coded_lossless || !seq_params->enable_cdef) { |
| cm->cdef_info.cdef_bits = 0; |
| cm->cdef_info.cdef_strengths[0] = 0; |
| cm->cdef_info.cdef_uv_strengths[0] = 0; |
| } |
| if (features->all_lossless || !seq_params->enable_restoration) { |
| cm->rst_info[0].frame_restoration_type = RESTORE_NONE; |
| cm->rst_info[1].frame_restoration_type = RESTORE_NONE; |
| cm->rst_info[2].frame_restoration_type = RESTORE_NONE; |
| } |
| setup_loopfilter(cm, rb); |
| |
| if (!features->coded_lossless && seq_params->enable_cdef) { |
| setup_cdef(cm, rb); |
| } |
| if (!features->all_lossless && seq_params->enable_restoration) { |
| decode_restoration_mode(cm, rb); |
| } |
| |
| features->tx_mode = read_tx_mode(rb, features->coded_lossless); |
| current_frame->reference_mode = read_frame_reference_mode(cm, rb); |
| |
| av1_setup_skip_mode_allowed(cm); |
| current_frame->skip_mode_info.skip_mode_flag = |
| current_frame->skip_mode_info.skip_mode_allowed ? aom_rb_read_bit(rb) : 0; |
| |
| if (frame_might_allow_warped_motion(cm)) |
| features->allow_warped_motion = aom_rb_read_bit(rb); |
| else |
| features->allow_warped_motion = 0; |
| |
| features->reduced_tx_set_used = aom_rb_read_bit(rb); |
| |
| if (features->allow_ref_frame_mvs && !frame_might_allow_ref_frame_mvs(cm)) { |
| aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, |
| "Frame wrongly requests reference frame MVs"); |
| } |
| |
| if (!frame_is_intra_only(cm)) read_global_motion(cm, rb); |
| |
| cm->cur_frame->film_grain_params_present = |
| seq_params->film_grain_params_present; |
| read_film_grain(cm, rb); |
| |
| #if EXT_TILE_DEBUG |
| if (pbi->ext_tile_debug && cm->tiles.large_scale) { |
| read_ext_tile_info(pbi, rb); |
| av1_set_single_tile_decoding_mode(cm); |
| } |
| #endif // EXT_TILE_DEBUG |
| return 0; |
| } |
| |
| struct aom_read_bit_buffer *av1_init_read_bit_buffer( |
| AV1Decoder *pbi, struct aom_read_bit_buffer *rb, const uint8_t *data, |
| const uint8_t *data_end) { |
| rb->bit_offset = 0; |
| rb->error_handler = error_handler; |
| rb->error_handler_data = &pbi->common; |
| rb->bit_buffer = data; |
| rb->bit_buffer_end = data_end; |
| return rb; |
| } |
| |
| void av1_read_frame_size(struct aom_read_bit_buffer *rb, int num_bits_width, |
| int num_bits_height, int *width, int *height) { |
| *width = aom_rb_read_literal(rb, num_bits_width) + 1; |
| *height = aom_rb_read_literal(rb, num_bits_height) + 1; |
| } |
| |
| BITSTREAM_PROFILE av1_read_profile(struct aom_read_bit_buffer *rb) { |
| int profile = aom_rb_read_literal(rb, PROFILE_BITS); |
| return (BITSTREAM_PROFILE)profile; |
| } |
| |
| static inline void superres_post_decode(AV1Decoder *pbi) { |
| AV1_COMMON *const cm = &pbi->common; |
| BufferPool *const pool = cm->buffer_pool; |
| |
| if (!av1_superres_scaled(cm)) return; |
| assert(!cm->features.all_lossless); |
| |
| av1_superres_upscale(cm, pool, 0); |
| } |
| |
| uint32_t av1_decode_frame_headers_and_setup(AV1Decoder *pbi, |
| struct aom_read_bit_buffer *rb, |
| int trailing_bits_present) { |
| AV1_COMMON *const cm = &pbi->common; |
| const int num_planes = av1_num_planes(cm); |
| MACROBLOCKD *const xd = &pbi->dcb.xd; |
| |
| #if CONFIG_BITSTREAM_DEBUG |
| if (cm->seq_params->order_hint_info.enable_order_hint) { |
| aom_bitstream_queue_set_frame_read(cm->current_frame.order_hint * 2 + |
| cm->show_frame); |
| } else { |
| // This is currently used in RTC encoding. cm->show_frame is always 1. |
| assert(cm->show_frame); |
| aom_bitstream_queue_set_frame_read(cm->current_frame.frame_number); |
| } |
| #endif |
| #if CONFIG_MISMATCH_DEBUG |
| mismatch_move_frame_idx_r(); |
| #endif |
| |
| for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i) { |
| cm->global_motion[i] = default_warp_params; |
| cm->cur_frame->global_motion[i] = default_warp_params; |
| } |
| xd->global_motion = cm->global_motion; |
| |
| read_uncompressed_header(pbi, rb); |
| |
| if (trailing_bits_present) av1_check_trailing_bits(pbi, rb); |
| |
| if (!cm->tiles.single_tile_decoding && |
| (pbi->dec_tile_row >= 0 || pbi->dec_tile_col >= 0)) { |
| pbi->dec_tile_row = -1; |
| pbi->dec_tile_col = -1; |
| } |
| |
| const uint32_t uncomp_hdr_size = |
| (uint32_t)aom_rb_bytes_read(rb); // Size of the uncompressed header |
| YV12_BUFFER_CONFIG *new_fb = &cm->cur_frame->buf; |
| xd->cur_buf = new_fb; |
| if (av1_allow_intrabc(cm)) { |
| av1_setup_scale_factors_for_frame( |
| &cm->sf_identity, xd->cur_buf->y_crop_width, xd->cur_buf->y_crop_height, |
| xd->cur_buf->y_crop_width, xd->cur_buf->y_crop_height); |
| } |
| |
| // Showing a frame directly. |
| if (cm->show_existing_frame) { |
| if (pbi->reset_decoder_state) { |
| // Use the default frame context values. |
| *cm->fc = *cm->default_frame_context; |
| if (!cm->fc->initialized) |
| aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, |
| "Uninitialized entropy context."); |
| } |
| return uncomp_hdr_size; |
| } |
| |
| cm->mi_params.setup_mi(&cm->mi_params); |
| |
| av1_calculate_ref_frame_side(cm); |
| if (cm->features.allow_ref_frame_mvs) av1_setup_motion_field(cm); |
| |
| av1_setup_block_planes(xd, cm->seq_params->subsampling_x, |
| cm->seq_params->subsampling_y, num_planes); |
| if (cm->features.primary_ref_frame == PRIMARY_REF_NONE) { |
| // use the default frame context values |
| *cm->fc = *cm->default_frame_context; |
| } else { |
| *cm->fc = get_primary_ref_frame_buf(cm)->frame_context; |
| } |
| if (!cm->fc->initialized) |
| aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, |
| "Uninitialized entropy context."); |
| |
| pbi->dcb.corrupted = 0; |
| return uncomp_hdr_size; |
| } |
| |
| // Once-per-frame initialization |
| static inline void setup_frame_info(AV1Decoder *pbi) { |
| AV1_COMMON *const cm = &pbi->common; |
| |
| if (cm->rst_info[0].frame_restoration_type != RESTORE_NONE || |
| cm->rst_info[1].frame_restoration_type != RESTORE_NONE || |
| cm->rst_info[2].frame_restoration_type != RESTORE_NONE) { |
| av1_alloc_restoration_buffers(cm, /*is_sgr_enabled =*/true); |
| for (int p = 0; p < av1_num_planes(cm); p++) { |
| av1_alloc_restoration_struct(cm, &cm->rst_info[p], p > 0); |
| } |
| } |
| |
| const int use_highbd = cm->seq_params->use_highbitdepth; |
| const int buf_size = MC_TEMP_BUF_PELS << use_highbd; |
| if (pbi->td.mc_buf_size != buf_size) { |
| av1_free_mc_tmp_buf(&pbi->td); |
| allocate_mc_tmp_buf(cm, &pbi->td, buf_size, use_highbd); |
| } |
| } |
| |
| void av1_decode_tg_tiles_and_wrapup(AV1Decoder *pbi, const uint8_t *data, |
| const uint8_t *data_end, |
| const uint8_t **p_data_end, int start_tile, |
| int end_tile, int initialize_flag) { |
| AV1_COMMON *const cm = &pbi->common; |
| CommonTileParams *const tiles = &cm->tiles; |
| MACROBLOCKD *const xd = &pbi->dcb.xd; |
| const int tile_count_tg = end_tile - start_tile + 1; |
| |
| xd->error_info = cm->error; |
| if (initialize_flag) setup_frame_info(pbi); |
| const int num_planes = av1_num_planes(cm); |
| |
| if (pbi->max_threads > 1 && !(tiles->large_scale && !pbi->ext_tile_debug) && |
| pbi->row_mt) |
| *p_data_end = |
| decode_tiles_row_mt(pbi, data, data_end, start_tile, end_tile); |
| else if (pbi->max_threads > 1 && tile_count_tg > 1 && |
| !(tiles->large_scale && !pbi->ext_tile_debug)) |
| *p_data_end = decode_tiles_mt(pbi, data, data_end, start_tile, end_tile); |
| else |
| *p_data_end = decode_tiles(pbi, data, data_end, start_tile, end_tile); |
| |
| // If the bit stream is monochrome, set the U and V buffers to a constant. |
| if (num_planes < 3) { |
| set_planes_to_neutral_grey(cm->seq_params, xd->cur_buf, 1); |
| } |
| |
| if (end_tile != tiles->rows * tiles->cols - 1) { |
| return; |
| } |
| |
| av1_alloc_cdef_buffers(cm, &pbi->cdef_worker, &pbi->cdef_sync, |
| pbi->num_workers, 1); |
| av1_alloc_cdef_sync(cm, &pbi->cdef_sync, pbi->num_workers); |
| |
| if (!cm->features.allow_intrabc && !tiles->single_tile_decoding) { |
| if (cm->lf.filter_level[0] || cm->lf.filter_level[1]) { |
| av1_loop_filter_frame_mt(&cm->cur_frame->buf, cm, &pbi->dcb.xd, 0, |
| num_planes, 0, pbi->tile_workers, |
| pbi->num_workers, &pbi->lf_row_sync, 0); |
| } |
| |
| const int do_cdef = |
| !pbi->skip_loop_filter && !cm->features.coded_lossless && |
| (cm->cdef_info.cdef_bits || cm->cdef_info.cdef_strengths[0] || |
| cm->cdef_info.cdef_uv_strengths[0]); |
| const int do_superres = av1_superres_scaled(cm); |
| const int optimized_loop_restoration = !do_cdef && !do_superres; |
| const int do_loop_restoration = |
| cm->rst_info[0].frame_restoration_type != RESTORE_NONE || |
| cm->rst_info[1].frame_restoration_type != RESTORE_NONE || |
| cm->rst_info[2].frame_restoration_type != RESTORE_NONE; |
| // Frame border extension is not required in the decoder |
| // as it happens in extend_mc_border(). |
| int do_extend_border_mt = 0; |
| if (!optimized_loop_restoration) { |
| if (do_loop_restoration) |
| av1_loop_restoration_save_boundary_lines(&pbi->common.cur_frame->buf, |
| cm, 0); |
| |
| if (do_cdef) { |
| if (pbi->num_workers > 1) { |
| av1_cdef_frame_mt(cm, &pbi->dcb.xd, pbi->cdef_worker, |
| pbi->tile_workers, &pbi->cdef_sync, |
| pbi->num_workers, av1_cdef_init_fb_row_mt, |
| do_extend_border_mt); |
| } else { |
| av1_cdef_frame(&pbi->common.cur_frame->buf, cm, &pbi->dcb.xd, |
| av1_cdef_init_fb_row); |
| } |
| } |
| |
| superres_post_decode(pbi); |
| |
| if (do_loop_restoration) { |
| av1_loop_restoration_save_boundary_lines(&pbi->common.cur_frame->buf, |
| cm, 1); |
| if (pbi->num_workers > 1) { |
| av1_loop_restoration_filter_frame_mt( |
| (YV12_BUFFER_CONFIG *)xd->cur_buf, cm, optimized_loop_restoration, |
| pbi->tile_workers, pbi->num_workers, &pbi->lr_row_sync, |
| &pbi->lr_ctxt, do_extend_border_mt); |
| } else { |
| av1_loop_restoration_filter_frame((YV12_BUFFER_CONFIG *)xd->cur_buf, |
| cm, optimized_loop_restoration, |
| &pbi->lr_ctxt); |
| } |
| } |
| } else { |
| // In no cdef and no superres case. Provide an optimized version of |
| // loop_restoration_filter. |
| if (do_loop_restoration) { |
| if (pbi->num_workers > 1) { |
| av1_loop_restoration_filter_frame_mt( |
| (YV12_BUFFER_CONFIG *)xd->cur_buf, cm, optimized_loop_restoration, |
| pbi->tile_workers, pbi->num_workers, &pbi->lr_row_sync, |
| &pbi->lr_ctxt, do_extend_border_mt); |
| } else { |
| av1_loop_restoration_filter_frame((YV12_BUFFER_CONFIG *)xd->cur_buf, |
| cm, optimized_loop_restoration, |
| &pbi->lr_ctxt); |
| } |
| } |
| } |
| } |
| |
| if (!pbi->dcb.corrupted) { |
| if (cm->features.refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) { |
| assert(pbi->context_update_tile_id < pbi->allocated_tiles); |
| *cm->fc = pbi->tile_data[pbi->context_update_tile_id].tctx; |
| av1_reset_cdf_symbol_counters(cm->fc); |
| } |
| } else { |
| aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME, |
| "Decode failed. Frame data is corrupted."); |
| } |
| |
| #if CONFIG_INSPECTION |
| if (pbi->inspect_cb != NULL) { |
| (*pbi->inspect_cb)(pbi, pbi->inspect_ctx); |
| } |
| #endif |
| |
| // Non frame parallel update frame context here. |
| if (!tiles->large_scale) { |
| cm->cur_frame->frame_context = *cm->fc; |
| } |
| |
| if (cm->show_frame && !cm->seq_params->order_hint_info.enable_order_hint) { |
| ++cm->current_frame.frame_number; |
| } |
| } |