| /* |
| * Copyright (c) 2019, Alliance for Open Media. All rights reserved. |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <stdint.h> |
| |
| #include "av1/common/blockd.h" |
| #include "config/aom_config.h" |
| #include "config/aom_scale_rtcd.h" |
| |
| #include "aom/aom_codec.h" |
| #include "aom/aom_encoder.h" |
| |
| #if CONFIG_MISMATCH_DEBUG |
| #include "aom_util/debug_util.h" |
| #endif // CONFIG_MISMATCH_DEBUG |
| |
| #include "av1/common/av1_common_int.h" |
| #include "av1/common/reconinter.h" |
| |
| #include "av1/encoder/encoder.h" |
| #include "av1/encoder/encode_strategy.h" |
| #include "av1/encoder/encodeframe.h" |
| #include "av1/encoder/encoder_alloc.h" |
| #include "av1/encoder/firstpass.h" |
| #include "av1/encoder/gop_structure.h" |
| #include "av1/encoder/pass2_strategy.h" |
| #include "av1/encoder/temporal_filter.h" |
| #if CONFIG_THREE_PASS |
| #include "av1/encoder/thirdpass.h" |
| #endif // CONFIG_THREE_PASS |
| #include "av1/encoder/tpl_model.h" |
| |
| #if CONFIG_TUNE_VMAF |
| #include "av1/encoder/tune_vmaf.h" |
| #endif |
| |
| #define TEMPORAL_FILTER_KEY_FRAME (CONFIG_REALTIME_ONLY ? 0 : 1) |
| |
| static inline void set_refresh_frame_flags( |
| RefreshFrameInfo *const refresh_frame, bool refresh_gf, bool refresh_bwdref, |
| bool refresh_arf) { |
| refresh_frame->golden_frame = refresh_gf; |
| refresh_frame->bwd_ref_frame = refresh_bwdref; |
| refresh_frame->alt_ref_frame = refresh_arf; |
| } |
| |
| void av1_configure_buffer_updates(AV1_COMP *const cpi, |
| RefreshFrameInfo *const refresh_frame, |
| const FRAME_UPDATE_TYPE type, |
| const REFBUF_STATE refbuf_state, |
| int force_refresh_all) { |
| // NOTE(weitinglin): Should we define another function to take care of |
| // cpi->rc.is_$Source_Type to make this function as it is in the comment? |
| const ExtRefreshFrameFlagsInfo *const ext_refresh_frame_flags = |
| &cpi->ext_flags.refresh_frame; |
| cpi->rc.is_src_frame_alt_ref = 0; |
| |
| switch (type) { |
| case KF_UPDATE: |
| set_refresh_frame_flags(refresh_frame, true, true, true); |
| break; |
| |
| case LF_UPDATE: |
| set_refresh_frame_flags(refresh_frame, false, false, false); |
| break; |
| |
| case GF_UPDATE: |
| set_refresh_frame_flags(refresh_frame, true, false, false); |
| break; |
| |
| case OVERLAY_UPDATE: |
| if (refbuf_state == REFBUF_RESET) |
| set_refresh_frame_flags(refresh_frame, true, true, true); |
| else |
| set_refresh_frame_flags(refresh_frame, true, false, false); |
| |
| cpi->rc.is_src_frame_alt_ref = 1; |
| break; |
| |
| case ARF_UPDATE: |
| // NOTE: BWDREF does not get updated along with ALTREF_FRAME. |
| if (refbuf_state == REFBUF_RESET) |
| set_refresh_frame_flags(refresh_frame, true, true, true); |
| else |
| set_refresh_frame_flags(refresh_frame, false, false, true); |
| |
| break; |
| |
| case INTNL_OVERLAY_UPDATE: |
| set_refresh_frame_flags(refresh_frame, false, false, false); |
| cpi->rc.is_src_frame_alt_ref = 1; |
| break; |
| |
| case INTNL_ARF_UPDATE: |
| set_refresh_frame_flags(refresh_frame, false, true, false); |
| break; |
| |
| default: assert(0); break; |
| } |
| |
| if (ext_refresh_frame_flags->update_pending && |
| (!is_stat_generation_stage(cpi))) { |
| set_refresh_frame_flags(refresh_frame, |
| ext_refresh_frame_flags->golden_frame, |
| ext_refresh_frame_flags->bwd_ref_frame, |
| ext_refresh_frame_flags->alt_ref_frame); |
| GF_GROUP *gf_group = &cpi->ppi->gf_group; |
| if (ext_refresh_frame_flags->golden_frame) |
| gf_group->update_type[cpi->gf_frame_index] = GF_UPDATE; |
| if (ext_refresh_frame_flags->alt_ref_frame) |
| gf_group->update_type[cpi->gf_frame_index] = ARF_UPDATE; |
| if (ext_refresh_frame_flags->bwd_ref_frame) |
| gf_group->update_type[cpi->gf_frame_index] = INTNL_ARF_UPDATE; |
| } |
| |
| if (force_refresh_all) |
| set_refresh_frame_flags(refresh_frame, true, true, true); |
| } |
| |
| static void set_additional_frame_flags(const AV1_COMMON *const cm, |
| unsigned int *const frame_flags) { |
| if (frame_is_intra_only(cm)) { |
| *frame_flags |= FRAMEFLAGS_INTRAONLY; |
| } |
| if (frame_is_sframe(cm)) { |
| *frame_flags |= FRAMEFLAGS_SWITCH; |
| } |
| if (cm->features.error_resilient_mode) { |
| *frame_flags |= FRAMEFLAGS_ERROR_RESILIENT; |
| } |
| } |
| |
| static void set_ext_overrides(AV1_COMMON *const cm, |
| EncodeFrameParams *const frame_params, |
| ExternalFlags *const ext_flags) { |
| // Overrides the defaults with the externally supplied values with |
| // av1_update_reference() and av1_update_entropy() calls |
| // Note: The overrides are valid only for the next frame passed |
| // to av1_encode_lowlevel() |
| |
| if (ext_flags->use_s_frame) { |
| frame_params->frame_type = S_FRAME; |
| } |
| |
| if (ext_flags->refresh_frame_context_pending) { |
| cm->features.refresh_frame_context = ext_flags->refresh_frame_context; |
| ext_flags->refresh_frame_context_pending = 0; |
| } |
| cm->features.allow_ref_frame_mvs = ext_flags->use_ref_frame_mvs; |
| |
| frame_params->error_resilient_mode = ext_flags->use_error_resilient; |
| // A keyframe is already error resilient and keyframes with |
| // error_resilient_mode interferes with the use of show_existing_frame |
| // when forward reference keyframes are enabled. |
| frame_params->error_resilient_mode &= frame_params->frame_type != KEY_FRAME; |
| // For bitstream conformance, s-frames must be error-resilient |
| frame_params->error_resilient_mode |= frame_params->frame_type == S_FRAME; |
| } |
| |
| static int choose_primary_ref_frame( |
| AV1_COMP *const cpi, const EncodeFrameParams *const frame_params) { |
| const AV1_COMMON *const cm = &cpi->common; |
| |
| const int intra_only = frame_params->frame_type == KEY_FRAME || |
| frame_params->frame_type == INTRA_ONLY_FRAME; |
| if (intra_only || frame_params->error_resilient_mode || |
| cpi->ext_flags.use_primary_ref_none) { |
| return PRIMARY_REF_NONE; |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| if (cpi->use_ducky_encode) { |
| int wanted_fb = cpi->ppi->gf_group.primary_ref_idx[cpi->gf_frame_index]; |
| for (int ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ref_frame++) { |
| if (get_ref_frame_map_idx(cm, ref_frame) == wanted_fb) |
| return ref_frame - LAST_FRAME; |
| } |
| |
| return PRIMARY_REF_NONE; |
| } |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| // In large scale case, always use Last frame's frame contexts. |
| // Note(yunqing): In other cases, primary_ref_frame is chosen based on |
| // cpi->ppi->gf_group.layer_depth[cpi->gf_frame_index], which also controls |
| // frame bit allocation. |
| if (cm->tiles.large_scale) return (LAST_FRAME - LAST_FRAME); |
| |
| if (cpi->ppi->use_svc || cpi->ppi->rtc_ref.set_ref_frame_config) |
| return av1_svc_primary_ref_frame(cpi); |
| |
| // Find the most recent reference frame with the same reference type as the |
| // current frame |
| const int current_ref_type = get_current_frame_ref_type(cpi); |
| int wanted_fb = cpi->ppi->fb_of_context_type[current_ref_type]; |
| #if CONFIG_FPMT_TEST |
| if (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) { |
| GF_GROUP *const gf_group = &cpi->ppi->gf_group; |
| if (gf_group->update_type[cpi->gf_frame_index] == INTNL_ARF_UPDATE) { |
| int frame_level = gf_group->frame_parallel_level[cpi->gf_frame_index]; |
| // Book keep wanted_fb of frame_parallel_level 1 frame in an FP2 set. |
| if (frame_level == 1) { |
| cpi->wanted_fb = wanted_fb; |
| } |
| // Use the wanted_fb of level 1 frame in an FP2 for a level 2 frame in the |
| // set. |
| if (frame_level == 2 && |
| gf_group->update_type[cpi->gf_frame_index - 1] == INTNL_ARF_UPDATE) { |
| assert(gf_group->frame_parallel_level[cpi->gf_frame_index - 1] == 1); |
| wanted_fb = cpi->wanted_fb; |
| } |
| } |
| } |
| #endif // CONFIG_FPMT_TEST |
| int primary_ref_frame = PRIMARY_REF_NONE; |
| for (int ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ref_frame++) { |
| if (get_ref_frame_map_idx(cm, ref_frame) == wanted_fb) { |
| primary_ref_frame = ref_frame - LAST_FRAME; |
| } |
| } |
| |
| return primary_ref_frame; |
| } |
| |
| static void adjust_frame_rate(AV1_COMP *cpi, int64_t ts_start, int64_t ts_end) { |
| TimeStamps *time_stamps = &cpi->time_stamps; |
| int64_t this_duration; |
| int step = 0; |
| |
| // Clear down mmx registers |
| |
| if (cpi->ppi->use_svc && cpi->ppi->rtc_ref.set_ref_frame_config && |
| cpi->svc.number_spatial_layers > 1) { |
| // ts_start is the timestamp for the current frame and ts_end is the |
| // expected next timestamp given the duration passed into codec_encode(). |
| // See the setting in encoder_encode() in av1_cx_iface.c: |
| // ts_start = timebase_units_to_ticks(cpi_data.timestamp_ratio, ptsvol), |
| // ts_end = timebase_units_to_ticks(cpi_data.timestamp_ratio, ptsvol + |
| // duration). So the difference ts_end - ts_start is the duration passed |
| // in by the user. For spatial layers SVC set the framerate based directly |
| // on the duration, and bypass the adjustments below. |
| this_duration = ts_end - ts_start; |
| if (this_duration > 0) { |
| cpi->new_framerate = 10000000.0 / this_duration; |
| av1_new_framerate(cpi, cpi->new_framerate); |
| time_stamps->prev_ts_start = ts_start; |
| time_stamps->prev_ts_end = ts_end; |
| return; |
| } |
| } |
| |
| if (ts_start == time_stamps->first_ts_start) { |
| this_duration = ts_end - ts_start; |
| step = 1; |
| } else { |
| int64_t last_duration = |
| time_stamps->prev_ts_end - time_stamps->prev_ts_start; |
| |
| this_duration = ts_end - time_stamps->prev_ts_end; |
| |
| // do a step update if the duration changes by 10% |
| if (last_duration) |
| step = (int)((this_duration - last_duration) * 10 / last_duration); |
| } |
| |
| if (this_duration) { |
| if (step) { |
| cpi->new_framerate = 10000000.0 / this_duration; |
| av1_new_framerate(cpi, cpi->new_framerate); |
| } else { |
| // Average this frame's rate into the last second's average |
| // frame rate. If we haven't seen 1 second yet, then average |
| // over the whole interval seen. |
| const double interval = |
| AOMMIN((double)(ts_end - time_stamps->first_ts_start), 10000000.0); |
| double avg_duration = 10000000.0 / cpi->framerate; |
| avg_duration *= (interval - avg_duration + this_duration); |
| avg_duration /= interval; |
| cpi->new_framerate = (10000000.0 / avg_duration); |
| // For parallel frames update cpi->framerate with new_framerate |
| // during av1_post_encode_updates() |
| double framerate = |
| (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) |
| ? cpi->framerate |
| : cpi->new_framerate; |
| av1_new_framerate(cpi, framerate); |
| } |
| } |
| |
| time_stamps->prev_ts_start = ts_start; |
| time_stamps->prev_ts_end = ts_end; |
| } |
| |
| // Determine whether there is a forced keyframe pending in the lookahead buffer |
| int is_forced_keyframe_pending(struct lookahead_ctx *lookahead, |
| const int up_to_index, |
| const COMPRESSOR_STAGE compressor_stage) { |
| for (int i = 0; i <= up_to_index; i++) { |
| const struct lookahead_entry *e = |
| av1_lookahead_peek(lookahead, i, compressor_stage); |
| if (e == NULL) { |
| // We have reached the end of the lookahead buffer and not early-returned |
| // so there isn't a forced key-frame pending. |
| return -1; |
| } else if (e->flags == AOM_EFLAG_FORCE_KF) { |
| return i; |
| } else { |
| continue; |
| } |
| } |
| return -1; // Never reached |
| } |
| |
| // Check if we should encode an ARF or internal ARF. If not, try a LAST |
| // Do some setup associated with the chosen source |
| // temporal_filtered, flush, and frame_update_type are outputs. |
| // Return the frame source, or NULL if we couldn't find one |
| static struct lookahead_entry *choose_frame_source( |
| AV1_COMP *const cpi, int *const flush, int *pop_lookahead, |
| struct lookahead_entry **last_source, int *const show_frame) { |
| AV1_COMMON *const cm = &cpi->common; |
| const GF_GROUP *const gf_group = &cpi->ppi->gf_group; |
| struct lookahead_entry *source = NULL; |
| |
| // Source index in lookahead buffer. |
| int src_index = gf_group->arf_src_offset[cpi->gf_frame_index]; |
| |
| // TODO(Aasaipriya): Forced key frames need to be fixed when rc_mode != AOM_Q |
| if (src_index && |
| (is_forced_keyframe_pending(cpi->ppi->lookahead, src_index, |
| cpi->compressor_stage) != -1) && |
| cpi->oxcf.rc_cfg.mode != AOM_Q && !is_stat_generation_stage(cpi)) { |
| src_index = 0; |
| *flush = 1; |
| } |
| |
| // If the current frame is arf, then we should not pop from the lookahead |
| // buffer. If the current frame is not arf, then pop it. This assumes the |
| // first frame in the GF group is not arf. May need to change if it is not |
| // true. |
| *pop_lookahead = (src_index == 0); |
| // If this is a key frame and keyframe filtering is enabled with overlay, |
| // then do not pop. |
| if (*pop_lookahead && cpi->oxcf.kf_cfg.enable_keyframe_filtering > 1 && |
| gf_group->update_type[cpi->gf_frame_index] == ARF_UPDATE && |
| !is_stat_generation_stage(cpi) && cpi->ppi->lookahead) { |
| if (cpi->ppi->lookahead->read_ctxs[cpi->compressor_stage].sz && |
| (*flush || |
| cpi->ppi->lookahead->read_ctxs[cpi->compressor_stage].sz == |
| cpi->ppi->lookahead->read_ctxs[cpi->compressor_stage].pop_sz)) { |
| *pop_lookahead = 0; |
| } |
| } |
| |
| // LAP stage does not have ARFs or forward key-frames, |
| // hence, always pop_lookahead here. |
| if (is_stat_generation_stage(cpi)) { |
| *pop_lookahead = 1; |
| src_index = 0; |
| } |
| |
| *show_frame = *pop_lookahead; |
| |
| #if CONFIG_FPMT_TEST |
| if (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_ENCODE) { |
| #else |
| { |
| #endif // CONFIG_FPMT_TEST |
| // Future frame in parallel encode set |
| if (gf_group->src_offset[cpi->gf_frame_index] != 0 && |
| !is_stat_generation_stage(cpi)) |
| src_index = gf_group->src_offset[cpi->gf_frame_index]; |
| } |
| if (*show_frame) { |
| // show frame, pop from buffer |
| // Get last frame source. |
| if (cm->current_frame.frame_number > 0) { |
| *last_source = av1_lookahead_peek(cpi->ppi->lookahead, src_index - 1, |
| cpi->compressor_stage); |
| } |
| // Read in the source frame. |
| source = av1_lookahead_peek(cpi->ppi->lookahead, src_index, |
| cpi->compressor_stage); |
| } else { |
| // no show frames are arf frames |
| source = av1_lookahead_peek(cpi->ppi->lookahead, src_index, |
| cpi->compressor_stage); |
| if (source != NULL) { |
| cm->showable_frame = 1; |
| } |
| } |
| return source; |
| } |
| |
| // Don't allow a show_existing_frame to coincide with an error resilient or |
| // S-Frame. An exception can be made in the case of a keyframe, since it does |
| // not depend on any previous frames. |
| static int allow_show_existing(const AV1_COMP *const cpi, |
| unsigned int frame_flags) { |
| if (cpi->common.current_frame.frame_number == 0) return 0; |
| |
| const struct lookahead_entry *lookahead_src = |
| av1_lookahead_peek(cpi->ppi->lookahead, 0, cpi->compressor_stage); |
| if (lookahead_src == NULL) return 1; |
| |
| const int is_error_resilient = |
| cpi->oxcf.tool_cfg.error_resilient_mode || |
| (lookahead_src->flags & AOM_EFLAG_ERROR_RESILIENT); |
| const int is_s_frame = cpi->oxcf.kf_cfg.enable_sframe || |
| (lookahead_src->flags & AOM_EFLAG_SET_S_FRAME); |
| const int is_key_frame = |
| (cpi->rc.frames_to_key == 0) || (frame_flags & FRAMEFLAGS_KEY); |
| return !(is_error_resilient || is_s_frame) || is_key_frame; |
| } |
| |
| // Update frame_flags to tell the encoder's caller what sort of frame was |
| // encoded. |
| static void update_frame_flags(const AV1_COMMON *const cm, |
| const RefreshFrameInfo *const refresh_frame, |
| unsigned int *frame_flags) { |
| if (encode_show_existing_frame(cm)) { |
| *frame_flags &= ~(uint32_t)FRAMEFLAGS_GOLDEN; |
| *frame_flags &= ~(uint32_t)FRAMEFLAGS_BWDREF; |
| *frame_flags &= ~(uint32_t)FRAMEFLAGS_ALTREF; |
| *frame_flags &= ~(uint32_t)FRAMEFLAGS_KEY; |
| return; |
| } |
| |
| if (refresh_frame->golden_frame) { |
| *frame_flags |= FRAMEFLAGS_GOLDEN; |
| } else { |
| *frame_flags &= ~(uint32_t)FRAMEFLAGS_GOLDEN; |
| } |
| |
| if (refresh_frame->alt_ref_frame) { |
| *frame_flags |= FRAMEFLAGS_ALTREF; |
| } else { |
| *frame_flags &= ~(uint32_t)FRAMEFLAGS_ALTREF; |
| } |
| |
| if (refresh_frame->bwd_ref_frame) { |
| *frame_flags |= FRAMEFLAGS_BWDREF; |
| } else { |
| *frame_flags &= ~(uint32_t)FRAMEFLAGS_BWDREF; |
| } |
| |
| if (cm->current_frame.frame_type == KEY_FRAME) { |
| *frame_flags |= FRAMEFLAGS_KEY; |
| } else { |
| *frame_flags &= ~(uint32_t)FRAMEFLAGS_KEY; |
| } |
| } |
| |
| #define DUMP_REF_FRAME_IMAGES 0 |
| |
| #if DUMP_REF_FRAME_IMAGES == 1 |
| static int dump_one_image(AV1_COMMON *cm, |
| const YV12_BUFFER_CONFIG *const ref_buf, |
| char *file_name) { |
| int h; |
| FILE *f_ref = NULL; |
| |
| if (ref_buf == NULL) { |
| printf("Frame data buffer is NULL.\n"); |
| return AOM_CODEC_MEM_ERROR; |
| } |
| |
| if ((f_ref = fopen(file_name, "wb")) == NULL) { |
| printf("Unable to open file %s to write.\n", file_name); |
| return AOM_CODEC_MEM_ERROR; |
| } |
| |
| // --- Y --- |
| for (h = 0; h < cm->height; ++h) { |
| fwrite(&ref_buf->y_buffer[h * ref_buf->y_stride], 1, cm->width, f_ref); |
| } |
| // --- U --- |
| for (h = 0; h < (cm->height >> 1); ++h) { |
| fwrite(&ref_buf->u_buffer[h * ref_buf->uv_stride], 1, (cm->width >> 1), |
| f_ref); |
| } |
| // --- V --- |
| for (h = 0; h < (cm->height >> 1); ++h) { |
| fwrite(&ref_buf->v_buffer[h * ref_buf->uv_stride], 1, (cm->width >> 1), |
| f_ref); |
| } |
| |
| fclose(f_ref); |
| |
| return AOM_CODEC_OK; |
| } |
| |
| static void dump_ref_frame_images(AV1_COMP *cpi) { |
| AV1_COMMON *const cm = &cpi->common; |
| MV_REFERENCE_FRAME ref_frame; |
| |
| for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { |
| char file_name[256] = ""; |
| snprintf(file_name, sizeof(file_name), "/tmp/enc_F%d_ref_%d.yuv", |
| cm->current_frame.frame_number, ref_frame); |
| dump_one_image(cm, get_ref_frame_yv12_buf(cpi, ref_frame), file_name); |
| } |
| } |
| #endif // DUMP_REF_FRAME_IMAGES == 1 |
| |
| int av1_get_refresh_ref_frame_map(int refresh_frame_flags) { |
| int ref_map_index; |
| |
| for (ref_map_index = 0; ref_map_index < REF_FRAMES; ++ref_map_index) |
| if ((refresh_frame_flags >> ref_map_index) & 1) break; |
| |
| if (ref_map_index == REF_FRAMES) ref_map_index = INVALID_IDX; |
| return ref_map_index; |
| } |
| |
| static int get_free_ref_map_index(RefFrameMapPair ref_map_pairs[REF_FRAMES]) { |
| for (int idx = 0; idx < REF_FRAMES; ++idx) |
| if (ref_map_pairs[idx].disp_order == -1) return idx; |
| return INVALID_IDX; |
| } |
| |
| static int get_refresh_idx(RefFrameMapPair ref_frame_map_pairs[REF_FRAMES], |
| int update_arf, GF_GROUP *gf_group, int gf_index, |
| int enable_refresh_skip, int cur_frame_disp) { |
| int arf_count = 0; |
| int oldest_arf_order = INT32_MAX; |
| int oldest_arf_idx = -1; |
| |
| int oldest_frame_order = INT32_MAX; |
| int oldest_idx = -1; |
| |
| for (int map_idx = 0; map_idx < REF_FRAMES; map_idx++) { |
| RefFrameMapPair ref_pair = ref_frame_map_pairs[map_idx]; |
| if (ref_pair.disp_order == -1) continue; |
| const int frame_order = ref_pair.disp_order; |
| const int reference_frame_level = ref_pair.pyr_level; |
| // Keep future frames and three closest previous frames in output order. |
| if (frame_order > cur_frame_disp - 3) continue; |
| |
| if (enable_refresh_skip) { |
| int skip_frame = 0; |
| // Prevent refreshing a frame in gf_group->skip_frame_refresh. |
| for (int i = 0; i < REF_FRAMES; i++) { |
| int frame_to_skip = gf_group->skip_frame_refresh[gf_index][i]; |
| if (frame_to_skip == INVALID_IDX) break; |
| if (frame_order == frame_to_skip) { |
| skip_frame = 1; |
| break; |
| } |
| } |
| if (skip_frame) continue; |
| } |
| |
| // Keep track of the oldest level 1 frame if the current frame is also level |
| // 1. |
| if (reference_frame_level == 1) { |
| // If there are more than 2 level 1 frames in the reference list, |
| // discard the oldest. |
| if (frame_order < oldest_arf_order) { |
| oldest_arf_order = frame_order; |
| oldest_arf_idx = map_idx; |
| } |
| arf_count++; |
| continue; |
| } |
| |
| // Update the overall oldest reference frame. |
| if (frame_order < oldest_frame_order) { |
| oldest_frame_order = frame_order; |
| oldest_idx = map_idx; |
| } |
| } |
| if (update_arf && arf_count > 2) return oldest_arf_idx; |
| if (oldest_idx >= 0) return oldest_idx; |
| if (oldest_arf_idx >= 0) return oldest_arf_idx; |
| if (oldest_idx == -1) { |
| assert(arf_count > 2 && enable_refresh_skip); |
| return oldest_arf_idx; |
| } |
| assert(0 && "No valid refresh index found"); |
| return -1; |
| } |
| |
| // Computes the reference refresh index for INTNL_ARF_UPDATE frame. |
| int av1_calc_refresh_idx_for_intnl_arf( |
| AV1_COMP *cpi, RefFrameMapPair ref_frame_map_pairs[REF_FRAMES], |
| int gf_index) { |
| GF_GROUP *const gf_group = &cpi->ppi->gf_group; |
| |
| // Search for the open slot to store the current frame. |
| int free_fb_index = get_free_ref_map_index(ref_frame_map_pairs); |
| |
| // Use a free slot if available. |
| if (free_fb_index != INVALID_IDX) { |
| return free_fb_index; |
| } else { |
| int enable_refresh_skip = !is_one_pass_rt_params(cpi); |
| int refresh_idx = |
| get_refresh_idx(ref_frame_map_pairs, 0, gf_group, gf_index, |
| enable_refresh_skip, gf_group->display_idx[gf_index]); |
| return refresh_idx; |
| } |
| } |
| |
| int av1_get_refresh_frame_flags( |
| const AV1_COMP *const cpi, const EncodeFrameParams *const frame_params, |
| FRAME_UPDATE_TYPE frame_update_type, int gf_index, int cur_disp_order, |
| RefFrameMapPair ref_frame_map_pairs[REF_FRAMES]) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const ExtRefreshFrameFlagsInfo *const ext_refresh_frame_flags = |
| &cpi->ext_flags.refresh_frame; |
| |
| GF_GROUP *gf_group = &cpi->ppi->gf_group; |
| if (gf_group->refbuf_state[gf_index] == REFBUF_RESET) |
| return SELECT_ALL_BUF_SLOTS; |
| |
| // TODO(jingning): Deprecate the following operations. |
| // Switch frames and shown key-frames overwrite all reference slots |
| if (frame_params->frame_type == S_FRAME) return SELECT_ALL_BUF_SLOTS; |
| |
| // show_existing_frames don't actually send refresh_frame_flags so set the |
| // flags to 0 to keep things consistent. |
| if (frame_params->show_existing_frame) return 0; |
| |
| const RTC_REF *const rtc_ref = &cpi->ppi->rtc_ref; |
| if (is_frame_droppable(rtc_ref, ext_refresh_frame_flags)) return 0; |
| |
| #if !CONFIG_REALTIME_ONLY |
| if (cpi->use_ducky_encode && |
| cpi->ducky_encode_info.frame_info.gop_mode == DUCKY_ENCODE_GOP_MODE_RCL) { |
| int new_fb_map_idx = cpi->ppi->gf_group.update_ref_idx[gf_index]; |
| if (new_fb_map_idx == INVALID_IDX) return 0; |
| return 1 << new_fb_map_idx; |
| } |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| int refresh_mask = 0; |
| if (ext_refresh_frame_flags->update_pending) { |
| if (rtc_ref->set_ref_frame_config || |
| use_rtc_reference_structure_one_layer(cpi)) { |
| for (unsigned int i = 0; i < INTER_REFS_PER_FRAME; i++) { |
| int ref_frame_map_idx = rtc_ref->ref_idx[i]; |
| refresh_mask |= rtc_ref->refresh[ref_frame_map_idx] |
| << ref_frame_map_idx; |
| } |
| return refresh_mask; |
| } |
| // Unfortunately the encoder interface reflects the old refresh_*_frame |
| // flags so we have to replicate the old refresh_frame_flags logic here in |
| // order to preserve the behaviour of the flag overrides. |
| int ref_frame_map_idx = get_ref_frame_map_idx(cm, LAST_FRAME); |
| if (ref_frame_map_idx != INVALID_IDX) |
| refresh_mask |= ext_refresh_frame_flags->last_frame << ref_frame_map_idx; |
| |
| ref_frame_map_idx = get_ref_frame_map_idx(cm, EXTREF_FRAME); |
| if (ref_frame_map_idx != INVALID_IDX) |
| refresh_mask |= ext_refresh_frame_flags->bwd_ref_frame |
| << ref_frame_map_idx; |
| |
| ref_frame_map_idx = get_ref_frame_map_idx(cm, ALTREF2_FRAME); |
| if (ref_frame_map_idx != INVALID_IDX) |
| refresh_mask |= ext_refresh_frame_flags->alt2_ref_frame |
| << ref_frame_map_idx; |
| |
| if (frame_update_type == OVERLAY_UPDATE) { |
| ref_frame_map_idx = get_ref_frame_map_idx(cm, ALTREF_FRAME); |
| if (ref_frame_map_idx != INVALID_IDX) |
| refresh_mask |= ext_refresh_frame_flags->golden_frame |
| << ref_frame_map_idx; |
| } else { |
| ref_frame_map_idx = get_ref_frame_map_idx(cm, GOLDEN_FRAME); |
| if (ref_frame_map_idx != INVALID_IDX) |
| refresh_mask |= ext_refresh_frame_flags->golden_frame |
| << ref_frame_map_idx; |
| |
| ref_frame_map_idx = get_ref_frame_map_idx(cm, ALTREF_FRAME); |
| if (ref_frame_map_idx != INVALID_IDX) |
| refresh_mask |= ext_refresh_frame_flags->alt_ref_frame |
| << ref_frame_map_idx; |
| } |
| return refresh_mask; |
| } |
| |
| // Search for the open slot to store the current frame. |
| int free_fb_index = get_free_ref_map_index(ref_frame_map_pairs); |
| |
| // No refresh necessary for these frame types. |
| if (frame_update_type == OVERLAY_UPDATE || |
| frame_update_type == INTNL_OVERLAY_UPDATE) |
| return refresh_mask; |
| |
| // If there is an open slot, refresh that one instead of replacing a |
| // reference. |
| if (free_fb_index != INVALID_IDX) { |
| refresh_mask = 1 << free_fb_index; |
| return refresh_mask; |
| } |
| const int enable_refresh_skip = !is_one_pass_rt_params(cpi); |
| const int update_arf = frame_update_type == ARF_UPDATE; |
| const int refresh_idx = |
| get_refresh_idx(ref_frame_map_pairs, update_arf, &cpi->ppi->gf_group, |
| gf_index, enable_refresh_skip, cur_disp_order); |
| return 1 << refresh_idx; |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| // Apply temporal filtering to source frames and encode the filtered frame. |
| // If the current frame does not require filtering, this function is identical |
| // to av1_encode() except that tpl is not performed. |
| static int denoise_and_encode(AV1_COMP *const cpi, uint8_t *const dest, |
| size_t dest_size, |
| EncodeFrameInput *const frame_input, |
| const EncodeFrameParams *const frame_params, |
| EncodeFrameResults *const frame_results) { |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| if (cpi->oxcf.pass == 2) start_timing(cpi, denoise_and_encode_time); |
| #endif |
| const AV1EncoderConfig *const oxcf = &cpi->oxcf; |
| AV1_COMMON *const cm = &cpi->common; |
| |
| GF_GROUP *const gf_group = &cpi->ppi->gf_group; |
| FRAME_UPDATE_TYPE update_type = |
| get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index); |
| const int is_second_arf = |
| av1_gop_is_second_arf(gf_group, cpi->gf_frame_index); |
| |
| // Decide whether to apply temporal filtering to the source frame. |
| int apply_filtering = |
| av1_is_temporal_filter_on(oxcf) && !is_stat_generation_stage(cpi); |
| if (update_type != KF_UPDATE && update_type != ARF_UPDATE && !is_second_arf) { |
| apply_filtering = 0; |
| } |
| if (apply_filtering) { |
| if (frame_params->frame_type == KEY_FRAME) { |
| // TODO(angiebird): Move the noise level check to av1_tf_info_filtering. |
| // Decide whether it is allowed to perform key frame filtering |
| int allow_kf_filtering = oxcf->kf_cfg.enable_keyframe_filtering && |
| !frame_params->show_existing_frame && |
| !is_lossless_requested(&oxcf->rc_cfg); |
| if (allow_kf_filtering) { |
| double y_noise_level = 0.0; |
| av1_estimate_noise_level( |
| frame_input->source, &y_noise_level, AOM_PLANE_Y, AOM_PLANE_Y, |
| cm->seq_params->bit_depth, NOISE_ESTIMATION_EDGE_THRESHOLD); |
| apply_filtering = y_noise_level > 0; |
| } else { |
| apply_filtering = 0; |
| } |
| // If we are doing kf filtering, set up a few things. |
| if (apply_filtering) { |
| av1_setup_past_independence(cm); |
| } |
| } else if (is_second_arf) { |
| apply_filtering = cpi->sf.hl_sf.second_alt_ref_filtering; |
| } |
| } |
| |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| if (cpi->oxcf.pass == 2) start_timing(cpi, apply_filtering_time); |
| #endif |
| // Save the pointer to the original source image. |
| YV12_BUFFER_CONFIG *source_buffer = frame_input->source; |
| // apply filtering to frame |
| if (apply_filtering) { |
| int show_existing_alt_ref = 0; |
| FRAME_DIFF frame_diff; |
| int top_index = 0; |
| int bottom_index = 0; |
| const int q_index = av1_rc_pick_q_and_bounds( |
| cpi, cpi->oxcf.frm_dim_cfg.width, cpi->oxcf.frm_dim_cfg.height, |
| cpi->gf_frame_index, &bottom_index, &top_index); |
| |
| // TODO(bohanli): figure out why we need frame_type in cm here. |
| cm->current_frame.frame_type = frame_params->frame_type; |
| if (update_type == KF_UPDATE || update_type == ARF_UPDATE) { |
| YV12_BUFFER_CONFIG *tf_buf = av1_tf_info_get_filtered_buf( |
| &cpi->ppi->tf_info, cpi->gf_frame_index, &frame_diff); |
| if (tf_buf != NULL) { |
| frame_input->source = tf_buf; |
| show_existing_alt_ref = av1_check_show_filtered_frame( |
| tf_buf, &frame_diff, q_index, cm->seq_params->bit_depth); |
| if (show_existing_alt_ref) { |
| cpi->common.showable_frame |= 1; |
| } else { |
| cpi->common.showable_frame = 0; |
| } |
| } |
| if (gf_group->frame_type[cpi->gf_frame_index] != KEY_FRAME) { |
| cpi->ppi->show_existing_alt_ref = show_existing_alt_ref; |
| } |
| } |
| |
| if (is_second_arf) { |
| // Allocate the memory for tf_buf_second_arf buffer, only when it is |
| // required. |
| int ret = aom_realloc_frame_buffer( |
| &cpi->ppi->tf_info.tf_buf_second_arf, oxcf->frm_dim_cfg.width, |
| oxcf->frm_dim_cfg.height, cm->seq_params->subsampling_x, |
| cm->seq_params->subsampling_y, cm->seq_params->use_highbitdepth, |
| cpi->oxcf.border_in_pixels, cm->features.byte_alignment, NULL, NULL, |
| NULL, cpi->alloc_pyramid, 0); |
| if (ret) |
| aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate tf_buf_second_arf"); |
| |
| YV12_BUFFER_CONFIG *tf_buf_second_arf = |
| &cpi->ppi->tf_info.tf_buf_second_arf; |
| // We didn't apply temporal filtering for second arf ahead in |
| // av1_tf_info_filtering(). |
| const int arf_src_index = gf_group->arf_src_offset[cpi->gf_frame_index]; |
| // Right now, we are still using tf_buf_second_arf due to |
| // implementation complexity. |
| // TODO(angiebird): Reuse tf_info->tf_buf here. |
| av1_temporal_filter(cpi, arf_src_index, cpi->gf_frame_index, &frame_diff, |
| tf_buf_second_arf); |
| show_existing_alt_ref = av1_check_show_filtered_frame( |
| tf_buf_second_arf, &frame_diff, q_index, cm->seq_params->bit_depth); |
| if (show_existing_alt_ref) { |
| aom_extend_frame_borders(tf_buf_second_arf, av1_num_planes(cm)); |
| frame_input->source = tf_buf_second_arf; |
| } |
| // Currently INTNL_ARF_UPDATE only do show_existing. |
| cpi->common.showable_frame |= 1; |
| } |
| |
| // Copy source metadata to the temporal filtered frame |
| if (source_buffer->metadata && |
| aom_copy_metadata_to_frame_buffer(frame_input->source, |
| source_buffer->metadata)) { |
| aom_internal_error( |
| cm->error, AOM_CODEC_MEM_ERROR, |
| "Failed to copy source metadata to the temporal filtered frame"); |
| } |
| } |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| if (cpi->oxcf.pass == 2) end_timing(cpi, apply_filtering_time); |
| #endif |
| |
| int set_mv_params = frame_params->frame_type == KEY_FRAME || |
| update_type == ARF_UPDATE || update_type == GF_UPDATE; |
| cm->show_frame = frame_params->show_frame; |
| cm->current_frame.frame_type = frame_params->frame_type; |
| // TODO(bohanli): Why is this? what part of it is necessary? |
| av1_set_frame_size(cpi, cm->width, cm->height); |
| if (set_mv_params) av1_set_mv_search_params(cpi); |
| |
| #if CONFIG_RD_COMMAND |
| if (frame_params->frame_type == KEY_FRAME) { |
| char filepath[] = "rd_command.txt"; |
| av1_read_rd_command(filepath, &cpi->rd_command); |
| } |
| #endif // CONFIG_RD_COMMAND |
| if (cpi->gf_frame_index == 0 && !is_stat_generation_stage(cpi)) { |
| // perform tpl after filtering |
| int allow_tpl = |
| oxcf->gf_cfg.lag_in_frames > 1 && oxcf->algo_cfg.enable_tpl_model; |
| if (gf_group->size > MAX_LENGTH_TPL_FRAME_STATS) { |
| allow_tpl = 0; |
| } |
| if (frame_params->frame_type != KEY_FRAME) { |
| // In rare case, it's possible to have non ARF/GF update_type here. |
| // We should set allow_tpl to zero in the situation |
| allow_tpl = |
| allow_tpl && (update_type == ARF_UPDATE || update_type == GF_UPDATE || |
| (cpi->use_ducky_encode && |
| cpi->ducky_encode_info.frame_info.gop_mode == |
| DUCKY_ENCODE_GOP_MODE_RCL)); |
| } |
| |
| if (allow_tpl) { |
| if (!cpi->skip_tpl_setup_stats) { |
| av1_tpl_preload_rc_estimate(cpi, frame_params); |
| av1_tpl_setup_stats(cpi, 0, frame_params); |
| #if CONFIG_BITRATE_ACCURACY && !CONFIG_THREE_PASS |
| assert(cpi->gf_frame_index == 0); |
| av1_vbr_rc_update_q_index_list(&cpi->vbr_rc_info, &cpi->ppi->tpl_data, |
| gf_group, cm->seq_params->bit_depth); |
| #endif |
| } |
| } else { |
| av1_init_tpl_stats(&cpi->ppi->tpl_data); |
| } |
| #if CONFIG_BITRATE_ACCURACY && CONFIG_THREE_PASS |
| if (cpi->oxcf.pass == AOM_RC_SECOND_PASS && |
| cpi->second_pass_log_stream != NULL) { |
| TPL_INFO *tpl_info; |
| AOM_CHECK_MEM_ERROR(cm->error, tpl_info, aom_malloc(sizeof(*tpl_info))); |
| av1_pack_tpl_info(tpl_info, gf_group, &cpi->ppi->tpl_data); |
| av1_write_tpl_info(tpl_info, cpi->second_pass_log_stream, |
| cpi->common.error); |
| aom_free(tpl_info); |
| } |
| #endif // CONFIG_BITRATE_ACCURACY && CONFIG_THREE_PASS |
| } |
| |
| if (av1_encode(cpi, dest, dest_size, frame_input, frame_params, |
| frame_results) != AOM_CODEC_OK) { |
| return AOM_CODEC_ERROR; |
| } |
| |
| // Set frame_input source to true source for psnr calculation. |
| if (apply_filtering && is_psnr_calc_enabled(cpi)) { |
| cpi->source = av1_realloc_and_scale_if_required( |
| cm, source_buffer, &cpi->scaled_source, cm->features.interp_filter, 0, |
| false, true, cpi->oxcf.border_in_pixels, cpi->alloc_pyramid); |
| cpi->unscaled_source = source_buffer; |
| } |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| if (cpi->oxcf.pass == 2) end_timing(cpi, denoise_and_encode_time); |
| #endif |
| return AOM_CODEC_OK; |
| } |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| /*!\cond */ |
| // Struct to keep track of relevant reference frame data. |
| typedef struct { |
| int map_idx; |
| int disp_order; |
| int pyr_level; |
| int used; |
| } RefBufMapData; |
| /*!\endcond */ |
| |
| // Comparison function to sort reference frames in ascending display order. |
| static int compare_map_idx_pair_asc(const void *a, const void *b) { |
| if (((RefBufMapData *)a)->disp_order == ((RefBufMapData *)b)->disp_order) { |
| return 0; |
| } else if (((const RefBufMapData *)a)->disp_order > |
| ((const RefBufMapData *)b)->disp_order) { |
| return 1; |
| } else { |
| return -1; |
| } |
| } |
| |
| // Checks to see if a particular reference frame is already in the reference |
| // frame map. |
| static int is_in_ref_map(RefBufMapData *map, int disp_order, int n_frames) { |
| for (int i = 0; i < n_frames; i++) { |
| if (disp_order == map[i].disp_order) return 1; |
| } |
| return 0; |
| } |
| |
| // Add a reference buffer index to a named reference slot. |
| static void add_ref_to_slot(RefBufMapData *ref, int *const remapped_ref_idx, |
| int frame) { |
| remapped_ref_idx[frame - LAST_FRAME] = ref->map_idx; |
| ref->used = 1; |
| } |
| |
| // Threshold dictating when we are allowed to start considering |
| // leaving lowest level frames unmapped. |
| #define LOW_LEVEL_FRAMES_TR 5 |
| |
| // Find which reference buffer should be left out of the named mapping. |
| // This is because there are 8 reference buffers and only 7 named slots. |
| static void set_unmapped_ref(RefBufMapData *buffer_map, int n_bufs, |
| int n_min_level_refs, int min_level, |
| int cur_frame_disp) { |
| int max_dist = 0; |
| int unmapped_idx = -1; |
| if (n_bufs <= ALTREF_FRAME) return; |
| for (int i = 0; i < n_bufs; i++) { |
| if (buffer_map[i].used) continue; |
| if (buffer_map[i].pyr_level != min_level || |
| n_min_level_refs >= LOW_LEVEL_FRAMES_TR) { |
| int dist = abs(cur_frame_disp - buffer_map[i].disp_order); |
| if (dist > max_dist) { |
| max_dist = dist; |
| unmapped_idx = i; |
| } |
| } |
| } |
| assert(unmapped_idx >= 0 && "Unmapped reference not found"); |
| buffer_map[unmapped_idx].used = 1; |
| } |
| |
| void av1_get_ref_frames(RefFrameMapPair ref_frame_map_pairs[REF_FRAMES], |
| int cur_frame_disp, const AV1_COMP *cpi, int gf_index, |
| int is_parallel_encode, |
| int remapped_ref_idx[REF_FRAMES]) { |
| int buf_map_idx = 0; |
| |
| // Initialize reference frame mappings. |
| for (int i = 0; i < REF_FRAMES; ++i) remapped_ref_idx[i] = INVALID_IDX; |
| |
| #if !CONFIG_REALTIME_ONLY |
| if (cpi->use_ducky_encode && |
| cpi->ducky_encode_info.frame_info.gop_mode == DUCKY_ENCODE_GOP_MODE_RCL) { |
| for (int rf = LAST_FRAME; rf < REF_FRAMES; ++rf) { |
| if (cpi->ppi->gf_group.ref_frame_list[gf_index][rf] != INVALID_IDX) { |
| remapped_ref_idx[rf - LAST_FRAME] = |
| cpi->ppi->gf_group.ref_frame_list[gf_index][rf]; |
| } |
| } |
| |
| int valid_rf_idx = 0; |
| static const int ref_frame_type_order[REF_FRAMES - LAST_FRAME] = { |
| GOLDEN_FRAME, ALTREF_FRAME, LAST_FRAME, BWDREF_FRAME, |
| ALTREF2_FRAME, LAST2_FRAME, LAST3_FRAME |
| }; |
| for (int i = 0; i < REF_FRAMES - LAST_FRAME; i++) { |
| int rf = ref_frame_type_order[i]; |
| if (remapped_ref_idx[rf - LAST_FRAME] != INVALID_IDX) { |
| valid_rf_idx = remapped_ref_idx[rf - LAST_FRAME]; |
| break; |
| } |
| } |
| |
| for (int i = 0; i < REF_FRAMES; ++i) { |
| if (remapped_ref_idx[i] == INVALID_IDX) { |
| remapped_ref_idx[i] = valid_rf_idx; |
| } |
| } |
| |
| return; |
| } |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| RefBufMapData buffer_map[REF_FRAMES]; |
| int n_bufs = 0; |
| memset(buffer_map, 0, REF_FRAMES * sizeof(buffer_map[0])); |
| int min_level = MAX_ARF_LAYERS; |
| int max_level = 0; |
| GF_GROUP *gf_group = &cpi->ppi->gf_group; |
| int skip_ref_unmapping = 0; |
| int is_one_pass_rt = is_one_pass_rt_params(cpi); |
| |
| // Go through current reference buffers and store display order, pyr level, |
| // and map index. |
| for (int map_idx = 0; map_idx < REF_FRAMES; map_idx++) { |
| // Get reference frame buffer. |
| RefFrameMapPair ref_pair = ref_frame_map_pairs[map_idx]; |
| if (ref_pair.disp_order == -1) continue; |
| const int frame_order = ref_pair.disp_order; |
| // Avoid duplicates. |
| if (is_in_ref_map(buffer_map, frame_order, n_bufs)) continue; |
| const int reference_frame_level = ref_pair.pyr_level; |
| |
| // Keep track of the lowest and highest levels that currently exist. |
| if (reference_frame_level < min_level) min_level = reference_frame_level; |
| if (reference_frame_level > max_level) max_level = reference_frame_level; |
| |
| buffer_map[n_bufs].map_idx = map_idx; |
| buffer_map[n_bufs].disp_order = frame_order; |
| buffer_map[n_bufs].pyr_level = reference_frame_level; |
| buffer_map[n_bufs].used = 0; |
| n_bufs++; |
| } |
| |
| // Sort frames in ascending display order. |
| qsort(buffer_map, n_bufs, sizeof(buffer_map[0]), compare_map_idx_pair_asc); |
| |
| int n_min_level_refs = 0; |
| int closest_past_ref = -1; |
| int golden_idx = -1; |
| int altref_idx = -1; |
| |
| // Find the GOLDEN_FRAME and BWDREF_FRAME. |
| // Also collect various stats about the reference frames for the remaining |
| // mappings. |
| for (int i = n_bufs - 1; i >= 0; i--) { |
| if (buffer_map[i].pyr_level == min_level) { |
| // Keep track of the number of lowest level frames. |
| n_min_level_refs++; |
| if (buffer_map[i].disp_order < cur_frame_disp && golden_idx == -1 && |
| remapped_ref_idx[GOLDEN_FRAME - LAST_FRAME] == INVALID_IDX) { |
| // Save index for GOLDEN. |
| golden_idx = i; |
| } else if (buffer_map[i].disp_order > cur_frame_disp && |
| altref_idx == -1 && |
| remapped_ref_idx[ALTREF_FRAME - LAST_FRAME] == INVALID_IDX) { |
| // Save index for ALTREF. |
| altref_idx = i; |
| } |
| } else if (buffer_map[i].disp_order == cur_frame_disp) { |
| // Map the BWDREF_FRAME if this is the show_existing_frame. |
| add_ref_to_slot(&buffer_map[i], remapped_ref_idx, BWDREF_FRAME); |
| } |
| |
| // During parallel encodes of lower layer frames, exclude the first frame |
| // (frame_parallel_level 1) from being used for the reference assignment of |
| // the second frame (frame_parallel_level 2). |
| if (!is_one_pass_rt && gf_group->frame_parallel_level[gf_index] == 2 && |
| gf_group->frame_parallel_level[gf_index - 1] == 1 && |
| gf_group->update_type[gf_index - 1] == INTNL_ARF_UPDATE) { |
| assert(gf_group->update_type[gf_index] == INTNL_ARF_UPDATE); |
| #if CONFIG_FPMT_TEST |
| is_parallel_encode = (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_ENCODE) |
| ? is_parallel_encode |
| : 0; |
| #endif // CONFIG_FPMT_TEST |
| // If parallel cpis are active, use ref_idx_to_skip, else, use display |
| // index. |
| assert(IMPLIES(is_parallel_encode, cpi->ref_idx_to_skip != INVALID_IDX)); |
| assert(IMPLIES(!is_parallel_encode, |
| gf_group->skip_frame_as_ref[gf_index] != INVALID_IDX)); |
| buffer_map[i].used = is_parallel_encode |
| ? (buffer_map[i].map_idx == cpi->ref_idx_to_skip) |
| : (buffer_map[i].disp_order == |
| gf_group->skip_frame_as_ref[gf_index]); |
| // In case a ref frame is excluded from being used during assignment, |
| // skip the call to set_unmapped_ref(). Applicable in steady state. |
| if (buffer_map[i].used) skip_ref_unmapping = 1; |
| } |
| |
| // Keep track of where the frames change from being past frames to future |
| // frames. |
| if (buffer_map[i].disp_order < cur_frame_disp && closest_past_ref < 0) |
| closest_past_ref = i; |
| } |
| |
| // Do not map GOLDEN and ALTREF based on their pyramid level if all reference |
| // frames have the same level. |
| if (n_min_level_refs <= n_bufs) { |
| // Map the GOLDEN_FRAME. |
| if (golden_idx > -1) |
| add_ref_to_slot(&buffer_map[golden_idx], remapped_ref_idx, GOLDEN_FRAME); |
| // Map the ALTREF_FRAME. |
| if (altref_idx > -1) |
| add_ref_to_slot(&buffer_map[altref_idx], remapped_ref_idx, ALTREF_FRAME); |
| } |
| |
| // Find the buffer to be excluded from the mapping. |
| if (!skip_ref_unmapping) |
| set_unmapped_ref(buffer_map, n_bufs, n_min_level_refs, min_level, |
| cur_frame_disp); |
| |
| // Place past frames in LAST_FRAME, LAST2_FRAME, and LAST3_FRAME. |
| for (int frame = LAST_FRAME; frame < GOLDEN_FRAME; frame++) { |
| // Continue if the current ref slot is already full. |
| if (remapped_ref_idx[frame - LAST_FRAME] != INVALID_IDX) continue; |
| // Find the next unmapped reference buffer |
| // in decreasing ouptut order relative to current picture. |
| int next_buf_max = 0; |
| int next_disp_order = INT_MIN; |
| for (buf_map_idx = n_bufs - 1; buf_map_idx >= 0; buf_map_idx--) { |
| if (!buffer_map[buf_map_idx].used && |
| buffer_map[buf_map_idx].disp_order < cur_frame_disp && |
| buffer_map[buf_map_idx].disp_order > next_disp_order) { |
| next_disp_order = buffer_map[buf_map_idx].disp_order; |
| next_buf_max = buf_map_idx; |
| } |
| } |
| buf_map_idx = next_buf_max; |
| if (buf_map_idx < 0) break; |
| if (buffer_map[buf_map_idx].used) break; |
| add_ref_to_slot(&buffer_map[buf_map_idx], remapped_ref_idx, frame); |
| } |
| |
| // Place future frames (if there are any) in BWDREF_FRAME and ALTREF2_FRAME. |
| for (int frame = BWDREF_FRAME; frame < REF_FRAMES; frame++) { |
| // Continue if the current ref slot is already full. |
| if (remapped_ref_idx[frame - LAST_FRAME] != INVALID_IDX) continue; |
| // Find the next unmapped reference buffer |
| // in increasing ouptut order relative to current picture. |
| int next_buf_max = 0; |
| int next_disp_order = INT_MAX; |
| for (buf_map_idx = n_bufs - 1; buf_map_idx >= 0; buf_map_idx--) { |
| if (!buffer_map[buf_map_idx].used && |
| buffer_map[buf_map_idx].disp_order > cur_frame_disp && |
| buffer_map[buf_map_idx].disp_order < next_disp_order) { |
| next_disp_order = buffer_map[buf_map_idx].disp_order; |
| next_buf_max = buf_map_idx; |
| } |
| } |
| buf_map_idx = next_buf_max; |
| if (buf_map_idx < 0) break; |
| if (buffer_map[buf_map_idx].used) break; |
| add_ref_to_slot(&buffer_map[buf_map_idx], remapped_ref_idx, frame); |
| } |
| |
| // Place remaining past frames. |
| buf_map_idx = closest_past_ref; |
| for (int frame = LAST_FRAME; frame < REF_FRAMES; frame++) { |
| // Continue if the current ref slot is already full. |
| if (remapped_ref_idx[frame - LAST_FRAME] != INVALID_IDX) continue; |
| // Find the next unmapped reference buffer. |
| for (; buf_map_idx >= 0; buf_map_idx--) { |
| if (!buffer_map[buf_map_idx].used) break; |
| } |
| if (buf_map_idx < 0) break; |
| if (buffer_map[buf_map_idx].used) break; |
| add_ref_to_slot(&buffer_map[buf_map_idx], remapped_ref_idx, frame); |
| } |
| |
| // Place remaining future frames. |
| buf_map_idx = n_bufs - 1; |
| for (int frame = ALTREF_FRAME; frame >= LAST_FRAME; frame--) { |
| // Continue if the current ref slot is already full. |
| if (remapped_ref_idx[frame - LAST_FRAME] != INVALID_IDX) continue; |
| // Find the next unmapped reference buffer. |
| for (; buf_map_idx > closest_past_ref; buf_map_idx--) { |
| if (!buffer_map[buf_map_idx].used) break; |
| } |
| if (buf_map_idx < 0) break; |
| if (buffer_map[buf_map_idx].used) break; |
| add_ref_to_slot(&buffer_map[buf_map_idx], remapped_ref_idx, frame); |
| } |
| |
| // Fill any slots that are empty (should only happen for the first 7 frames). |
| for (int i = 0; i < REF_FRAMES; ++i) |
| if (remapped_ref_idx[i] == INVALID_IDX) remapped_ref_idx[i] = 0; |
| } |
| |
| int av1_encode_strategy(AV1_COMP *const cpi, size_t *const size, |
| uint8_t *const dest, size_t dest_size, |
| unsigned int *frame_flags, int64_t *const time_stamp, |
| int64_t *const time_end, |
| const aom_rational64_t *const timestamp_ratio, |
| int *const pop_lookahead, int flush) { |
| AV1EncoderConfig *const oxcf = &cpi->oxcf; |
| AV1_COMMON *const cm = &cpi->common; |
| GF_GROUP *gf_group = &cpi->ppi->gf_group; |
| ExternalFlags *const ext_flags = &cpi->ext_flags; |
| GFConfig *const gf_cfg = &oxcf->gf_cfg; |
| |
| EncodeFrameInput frame_input; |
| EncodeFrameParams frame_params; |
| EncodeFrameResults frame_results; |
| memset(&frame_input, 0, sizeof(frame_input)); |
| memset(&frame_params, 0, sizeof(frame_params)); |
| memset(&frame_results, 0, sizeof(frame_results)); |
| |
| #if CONFIG_BITRATE_ACCURACY && CONFIG_THREE_PASS |
| VBR_RATECTRL_INFO *vbr_rc_info = &cpi->vbr_rc_info; |
| if (oxcf->pass == AOM_RC_THIRD_PASS && vbr_rc_info->ready == 0) { |
| THIRD_PASS_FRAME_INFO frame_info[MAX_THIRD_PASS_BUF]; |
| av1_open_second_pass_log(cpi, 1); |
| FILE *second_pass_log_stream = cpi->second_pass_log_stream; |
| fseek(second_pass_log_stream, 0, SEEK_END); |
| size_t file_size = ftell(second_pass_log_stream); |
| rewind(second_pass_log_stream); |
| size_t read_size = 0; |
| while (read_size < file_size) { |
| THIRD_PASS_GOP_INFO gop_info; |
| struct aom_internal_error_info *error = cpi->common.error; |
| // Read in GOP information from the second pass file. |
| av1_read_second_pass_gop_info(second_pass_log_stream, &gop_info, error); |
| TPL_INFO *tpl_info; |
| AOM_CHECK_MEM_ERROR(cm->error, tpl_info, aom_malloc(sizeof(*tpl_info))); |
| av1_read_tpl_info(tpl_info, second_pass_log_stream, error); |
| // Read in per-frame info from second-pass encoding |
| av1_read_second_pass_per_frame_info(second_pass_log_stream, frame_info, |
| gop_info.num_frames, error); |
| av1_vbr_rc_append_tpl_info(vbr_rc_info, tpl_info); |
| read_size = ftell(second_pass_log_stream); |
| aom_free(tpl_info); |
| } |
| av1_close_second_pass_log(cpi); |
| if (cpi->oxcf.rc_cfg.mode == AOM_Q) { |
| vbr_rc_info->base_q_index = cpi->oxcf.rc_cfg.cq_level; |
| av1_vbr_rc_compute_q_indices( |
| vbr_rc_info->base_q_index, vbr_rc_info->total_frame_count, |
| vbr_rc_info->qstep_ratio_list, cm->seq_params->bit_depth, |
| vbr_rc_info->q_index_list); |
| } else { |
| vbr_rc_info->base_q_index = av1_vbr_rc_info_estimate_base_q( |
| vbr_rc_info->total_bit_budget, cm->seq_params->bit_depth, |
| vbr_rc_info->scale_factors, vbr_rc_info->total_frame_count, |
| vbr_rc_info->update_type_list, vbr_rc_info->qstep_ratio_list, |
| vbr_rc_info->txfm_stats_list, vbr_rc_info->q_index_list, NULL); |
| } |
| vbr_rc_info->ready = 1; |
| #if CONFIG_RATECTRL_LOG |
| rc_log_record_chunk_info(&cpi->rc_log, vbr_rc_info->base_q_index, |
| vbr_rc_info->total_frame_count); |
| #endif // CONFIG_RATECTRL_LOG |
| } |
| #endif // CONFIG_BITRATE_ACCURACY && CONFIG_THREE_PASS |
| |
| // Check if we need to stuff more src frames |
| if (flush == 0) { |
| int srcbuf_size = |
| av1_lookahead_depth(cpi->ppi->lookahead, cpi->compressor_stage); |
| int pop_size = |
| av1_lookahead_pop_sz(cpi->ppi->lookahead, cpi->compressor_stage); |
| |
| // Continue buffering look ahead buffer. |
| if (srcbuf_size < pop_size) return -1; |
| } |
| |
| if (!av1_lookahead_peek(cpi->ppi->lookahead, 0, cpi->compressor_stage)) { |
| #if !CONFIG_REALTIME_ONLY |
| if (flush && oxcf->pass == AOM_RC_FIRST_PASS && |
| !cpi->ppi->twopass.first_pass_done) { |
| av1_end_first_pass(cpi); /* get last stats packet */ |
| cpi->ppi->twopass.first_pass_done = 1; |
| } |
| #endif |
| return -1; |
| } |
| |
| // TODO(sarahparker) finish bit allocation for one pass pyramid |
| if (has_no_stats_stage(cpi)) { |
| gf_cfg->gf_max_pyr_height = |
| AOMMIN(gf_cfg->gf_max_pyr_height, USE_ALTREF_FOR_ONE_PASS); |
| gf_cfg->gf_min_pyr_height = |
| AOMMIN(gf_cfg->gf_min_pyr_height, gf_cfg->gf_max_pyr_height); |
| } |
| |
| // Allocation of mi buffers. |
| alloc_mb_mode_info_buffers(cpi); |
| |
| cpi->skip_tpl_setup_stats = 0; |
| #if !CONFIG_REALTIME_ONLY |
| if (oxcf->pass != AOM_RC_FIRST_PASS) { |
| TplParams *const tpl_data = &cpi->ppi->tpl_data; |
| if (tpl_data->tpl_stats_pool[0] == NULL) { |
| av1_setup_tpl_buffers(cpi->ppi, &cm->mi_params, oxcf->frm_dim_cfg.width, |
| oxcf->frm_dim_cfg.height, 0, |
| oxcf->gf_cfg.lag_in_frames); |
| } |
| } |
| cpi->twopass_frame.this_frame = NULL; |
| const int use_one_pass_rt_params = is_one_pass_rt_params(cpi); |
| if (!use_one_pass_rt_params && !is_stat_generation_stage(cpi)) { |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| start_timing(cpi, av1_get_second_pass_params_time); |
| #endif |
| |
| // Initialise frame_level_rate_correction_factors with value previous |
| // to the parallel frames. |
| if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) { |
| for (int i = 0; i < RATE_FACTOR_LEVELS; i++) { |
| cpi->rc.frame_level_rate_correction_factors[i] = |
| #if CONFIG_FPMT_TEST |
| (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) |
| ? cpi->ppi->p_rc.temp_rate_correction_factors[i] |
| : |
| #endif // CONFIG_FPMT_TEST |
| cpi->ppi->p_rc.rate_correction_factors[i]; |
| } |
| } |
| |
| // copy mv_stats from ppi to frame_level cpi. |
| cpi->mv_stats = cpi->ppi->mv_stats; |
| av1_get_second_pass_params(cpi, &frame_params, *frame_flags); |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| end_timing(cpi, av1_get_second_pass_params_time); |
| #endif |
| } |
| #endif |
| |
| if (!is_stat_generation_stage(cpi)) { |
| // TODO(jingning): fwd key frame always uses show existing frame? |
| if (gf_group->update_type[cpi->gf_frame_index] == OVERLAY_UPDATE && |
| gf_group->refbuf_state[cpi->gf_frame_index] == REFBUF_RESET) { |
| frame_params.show_existing_frame = 1; |
| } else { |
| frame_params.show_existing_frame = |
| (cpi->ppi->show_existing_alt_ref && |
| gf_group->update_type[cpi->gf_frame_index] == OVERLAY_UPDATE) || |
| gf_group->update_type[cpi->gf_frame_index] == INTNL_OVERLAY_UPDATE; |
| } |
| frame_params.show_existing_frame &= allow_show_existing(cpi, *frame_flags); |
| |
| // Special handling to reset 'show_existing_frame' in case of dropped |
| // frames. |
| if (oxcf->rc_cfg.drop_frames_water_mark && |
| (gf_group->update_type[cpi->gf_frame_index] == OVERLAY_UPDATE || |
| gf_group->update_type[cpi->gf_frame_index] == INTNL_OVERLAY_UPDATE)) { |
| // During the encode of an OVERLAY_UPDATE/INTNL_OVERLAY_UPDATE frame, loop |
| // over the gf group to check if the corresponding |
| // ARF_UPDATE/INTNL_ARF_UPDATE frame was dropped. |
| int cur_disp_idx = gf_group->display_idx[cpi->gf_frame_index]; |
| for (int idx = 0; idx < cpi->gf_frame_index; idx++) { |
| if (cur_disp_idx == gf_group->display_idx[idx]) { |
| assert(IMPLIES( |
| gf_group->update_type[cpi->gf_frame_index] == OVERLAY_UPDATE, |
| gf_group->update_type[idx] == ARF_UPDATE)); |
| assert(IMPLIES(gf_group->update_type[cpi->gf_frame_index] == |
| INTNL_OVERLAY_UPDATE, |
| gf_group->update_type[idx] == INTNL_ARF_UPDATE)); |
| // Reset show_existing_frame and set cpi->is_dropped_frame to true if |
| // the frame was dropped during its first encode. |
| if (gf_group->is_frame_dropped[idx]) { |
| frame_params.show_existing_frame = 0; |
| assert(!cpi->is_dropped_frame); |
| cpi->is_dropped_frame = true; |
| } |
| break; |
| } |
| } |
| } |
| |
| // Reset show_existing_alt_ref decision to 0 after it is used. |
| if (gf_group->update_type[cpi->gf_frame_index] == OVERLAY_UPDATE) { |
| cpi->ppi->show_existing_alt_ref = 0; |
| } |
| } else { |
| frame_params.show_existing_frame = 0; |
| } |
| |
| struct lookahead_entry *source = NULL; |
| struct lookahead_entry *last_source = NULL; |
| if (frame_params.show_existing_frame) { |
| source = av1_lookahead_peek(cpi->ppi->lookahead, 0, cpi->compressor_stage); |
| *pop_lookahead = 1; |
| frame_params.show_frame = 1; |
| } else { |
| source = choose_frame_source(cpi, &flush, pop_lookahead, &last_source, |
| &frame_params.show_frame); |
| } |
| |
| if (source == NULL) { // If no source was found, we can't encode a frame. |
| #if !CONFIG_REALTIME_ONLY |
| if (flush && oxcf->pass == AOM_RC_FIRST_PASS && |
| !cpi->ppi->twopass.first_pass_done) { |
| av1_end_first_pass(cpi); /* get last stats packet */ |
| cpi->ppi->twopass.first_pass_done = 1; |
| } |
| #endif |
| return -1; |
| } |
| |
| // reset src_offset to allow actual encode call for this frame to get its |
| // source. |
| gf_group->src_offset[cpi->gf_frame_index] = 0; |
| |
| // Source may be changed if temporal filtered later. |
| frame_input.source = &source->img; |
| if ((cpi->ppi->use_svc || cpi->rc.prev_frame_is_dropped) && |
| last_source != NULL) |
| av1_svc_set_last_source(cpi, &frame_input, &last_source->img); |
| else |
| frame_input.last_source = last_source != NULL ? &last_source->img : NULL; |
| frame_input.ts_duration = source->ts_end - source->ts_start; |
| // Save unfiltered source. It is used in av1_get_second_pass_params(). |
| cpi->unfiltered_source = frame_input.source; |
| |
| *time_stamp = source->ts_start; |
| *time_end = source->ts_end; |
| if (source->ts_start < cpi->time_stamps.first_ts_start) { |
| cpi->time_stamps.first_ts_start = source->ts_start; |
| cpi->time_stamps.prev_ts_end = source->ts_start; |
| } |
| |
| av1_apply_encoding_flags(cpi, source->flags); |
| *frame_flags = (source->flags & AOM_EFLAG_FORCE_KF) ? FRAMEFLAGS_KEY : 0; |
| |
| #if CONFIG_FPMT_TEST |
| if (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) { |
| if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) { |
| cpi->framerate = cpi->temp_framerate; |
| } |
| } |
| #endif // CONFIG_FPMT_TEST |
| |
| // Shown frames and arf-overlay frames need frame-rate considering |
| if (frame_params.show_frame) |
| adjust_frame_rate(cpi, source->ts_start, source->ts_end); |
| |
| if (!frame_params.show_existing_frame) { |
| if (cpi->film_grain_table) { |
| cm->cur_frame->film_grain_params_present = aom_film_grain_table_lookup( |
| cpi->film_grain_table, *time_stamp, *time_end, 0 /* =erase */, |
| &cm->film_grain_params); |
| } else { |
| cm->cur_frame->film_grain_params_present = |
| cm->seq_params->film_grain_params_present; |
| } |
| // only one operating point supported now |
| const int64_t pts64 = ticks_to_timebase_units(timestamp_ratio, *time_stamp); |
| if (pts64 < 0 || pts64 > UINT32_MAX) return AOM_CODEC_ERROR; |
| |
| cm->frame_presentation_time = (uint32_t)pts64; |
| } |
| |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| start_timing(cpi, av1_get_one_pass_rt_params_time); |
| #endif |
| #if CONFIG_REALTIME_ONLY |
| av1_get_one_pass_rt_params(cpi, &frame_params.frame_type, &frame_input, |
| *frame_flags); |
| if (use_rtc_reference_structure_one_layer(cpi)) |
| av1_set_rtc_reference_structure_one_layer(cpi, cpi->gf_frame_index == 0); |
| #else |
| if (use_one_pass_rt_params) { |
| av1_get_one_pass_rt_params(cpi, &frame_params.frame_type, &frame_input, |
| *frame_flags); |
| if (use_rtc_reference_structure_one_layer(cpi)) |
| av1_set_rtc_reference_structure_one_layer(cpi, cpi->gf_frame_index == 0); |
| } |
| #endif |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| end_timing(cpi, av1_get_one_pass_rt_params_time); |
| #endif |
| |
| FRAME_UPDATE_TYPE frame_update_type = |
| get_frame_update_type(gf_group, cpi->gf_frame_index); |
| |
| if (frame_params.show_existing_frame && |
| frame_params.frame_type != KEY_FRAME) { |
| // Force show-existing frames to be INTER, except forward keyframes |
| frame_params.frame_type = INTER_FRAME; |
| } |
| |
| // Per-frame encode speed. In theory this can vary, but things may have |
| // been written assuming speed-level will not change within a sequence, so |
| // this parameter should be used with caution. |
| frame_params.speed = oxcf->speed; |
| |
| #if !CONFIG_REALTIME_ONLY |
| // Set forced key frames when necessary. For two-pass encoding / lap mode, |
| // this is already handled by av1_get_second_pass_params. However when no |
| // stats are available, we still need to check if the new frame is a keyframe. |
| // For one pass rt, this is already checked in av1_get_one_pass_rt_params. |
| if (!use_one_pass_rt_params && |
| (is_stat_generation_stage(cpi) || has_no_stats_stage(cpi))) { |
| // Current frame is coded as a key-frame for any of the following cases: |
| // 1) First frame of a video |
| // 2) For all-intra frame encoding |
| // 3) When a key-frame is forced |
| const int kf_requested = |
| (cm->current_frame.frame_number == 0 || |
| oxcf->kf_cfg.key_freq_max == 0 || (*frame_flags & FRAMEFLAGS_KEY)); |
| if (kf_requested && frame_update_type != OVERLAY_UPDATE && |
| frame_update_type != INTNL_OVERLAY_UPDATE) { |
| frame_params.frame_type = KEY_FRAME; |
| } else if (is_stat_generation_stage(cpi)) { |
| // For stats generation, set the frame type to inter here. |
| frame_params.frame_type = INTER_FRAME; |
| } |
| } |
| #endif |
| |
| // Work out some encoding parameters specific to the pass: |
| if (has_no_stats_stage(cpi) && oxcf->q_cfg.aq_mode == CYCLIC_REFRESH_AQ) { |
| av1_cyclic_refresh_update_parameters(cpi); |
| } else if (is_stat_generation_stage(cpi)) { |
| cpi->td.mb.e_mbd.lossless[0] = is_lossless_requested(&oxcf->rc_cfg); |
| } else if (is_stat_consumption_stage(cpi)) { |
| #if CONFIG_MISMATCH_DEBUG |
| mismatch_move_frame_idx_w(); |
| #endif |
| #if TXCOEFF_COST_TIMER |
| cm->txcoeff_cost_timer = 0; |
| cm->txcoeff_cost_count = 0; |
| #endif |
| } |
| |
| if (!is_stat_generation_stage(cpi)) |
| set_ext_overrides(cm, &frame_params, ext_flags); |
| |
| // Shown keyframes and S frames refresh all reference buffers |
| const int force_refresh_all = |
| ((frame_params.frame_type == KEY_FRAME && frame_params.show_frame) || |
| frame_params.frame_type == S_FRAME) && |
| !frame_params.show_existing_frame; |
| |
| av1_configure_buffer_updates( |
| cpi, &frame_params.refresh_frame, frame_update_type, |
| gf_group->refbuf_state[cpi->gf_frame_index], force_refresh_all); |
| |
| if (!is_stat_generation_stage(cpi)) { |
| const YV12_BUFFER_CONFIG *ref_frame_buf[INTER_REFS_PER_FRAME]; |
| |
| RefFrameMapPair ref_frame_map_pairs[REF_FRAMES]; |
| init_ref_map_pair(cpi, ref_frame_map_pairs); |
| const int order_offset = gf_group->arf_src_offset[cpi->gf_frame_index]; |
| const int cur_frame_disp = |
| cpi->common.current_frame.frame_number + order_offset; |
| |
| int get_ref_frames = 0; |
| #if CONFIG_FPMT_TEST |
| get_ref_frames = |
| (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) ? 1 : 0; |
| #endif // CONFIG_FPMT_TEST |
| if (get_ref_frames || |
| gf_group->frame_parallel_level[cpi->gf_frame_index] == 0) { |
| if (!ext_flags->refresh_frame.update_pending) { |
| av1_get_ref_frames(ref_frame_map_pairs, cur_frame_disp, cpi, |
| cpi->gf_frame_index, 1, cm->remapped_ref_idx); |
| } else if (cpi->ppi->rtc_ref.set_ref_frame_config || |
| use_rtc_reference_structure_one_layer(cpi)) { |
| for (unsigned int i = 0; i < INTER_REFS_PER_FRAME; i++) |
| cm->remapped_ref_idx[i] = cpi->ppi->rtc_ref.ref_idx[i]; |
| } |
| } |
| |
| // Get the reference frames |
| bool has_ref_frames = false; |
| for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) { |
| const RefCntBuffer *ref_frame = |
| get_ref_frame_buf(cm, ref_frame_priority_order[i]); |
| ref_frame_buf[i] = ref_frame != NULL ? &ref_frame->buf : NULL; |
| if (ref_frame != NULL) has_ref_frames = true; |
| } |
| if (!has_ref_frames && (frame_params.frame_type == INTER_FRAME || |
| frame_params.frame_type == S_FRAME)) { |
| return AOM_CODEC_ERROR; |
| } |
| |
| // Work out which reference frame slots may be used. |
| frame_params.ref_frame_flags = |
| get_ref_frame_flags(&cpi->sf, is_one_pass_rt_params(cpi), ref_frame_buf, |
| ext_flags->ref_frame_flags); |
| |
| // Set primary_ref_frame of non-reference frames as PRIMARY_REF_NONE. |
| if (cpi->ppi->gf_group.is_frame_non_ref[cpi->gf_frame_index]) { |
| frame_params.primary_ref_frame = PRIMARY_REF_NONE; |
| } else { |
| frame_params.primary_ref_frame = |
| choose_primary_ref_frame(cpi, &frame_params); |
| } |
| |
| frame_params.order_offset = gf_group->arf_src_offset[cpi->gf_frame_index]; |
| |
| // Call av1_get_refresh_frame_flags() if refresh index not available. |
| if (!cpi->refresh_idx_available) { |
| frame_params.refresh_frame_flags = av1_get_refresh_frame_flags( |
| cpi, &frame_params, frame_update_type, cpi->gf_frame_index, |
| cur_frame_disp, ref_frame_map_pairs); |
| } else { |
| assert(cpi->ref_refresh_index != INVALID_IDX); |
| frame_params.refresh_frame_flags = (1 << cpi->ref_refresh_index); |
| } |
| |
| // Make the frames marked as is_frame_non_ref to non-reference frames. |
| if (gf_group->is_frame_non_ref[cpi->gf_frame_index]) |
| frame_params.refresh_frame_flags = 0; |
| |
| frame_params.existing_fb_idx_to_show = INVALID_IDX; |
| // Find the frame buffer to show based on display order. |
| if (frame_params.show_existing_frame) { |
| for (int frame = 0; frame < REF_FRAMES; frame++) { |
| const RefCntBuffer *const buf = cm->ref_frame_map[frame]; |
| if (buf == NULL) continue; |
| const int frame_order = (int)buf->display_order_hint; |
| if (frame_order == cur_frame_disp) |
| frame_params.existing_fb_idx_to_show = frame; |
| } |
| } |
| } |
| |
| // The way frame_params->remapped_ref_idx is setup is a placeholder. |
| // Currently, reference buffer assignment is done by update_ref_frame_map() |
| // which is called by high-level strategy AFTER encoding a frame. It |
| // modifies cm->remapped_ref_idx. If you want to use an alternative method |
| // to determine reference buffer assignment, just put your assignments into |
| // frame_params->remapped_ref_idx here and they will be used when encoding |
| // this frame. If frame_params->remapped_ref_idx is setup independently of |
| // cm->remapped_ref_idx then update_ref_frame_map() will have no effect. |
| memcpy(frame_params.remapped_ref_idx, cm->remapped_ref_idx, |
| REF_FRAMES * sizeof(*cm->remapped_ref_idx)); |
| |
| cpi->td.mb.rdmult_delta_qindex = cpi->td.mb.delta_qindex = 0; |
| |
| if (!frame_params.show_existing_frame) { |
| cm->quant_params.using_qmatrix = oxcf->q_cfg.using_qm; |
| } |
| |
| const int is_intra_frame = frame_params.frame_type == KEY_FRAME || |
| frame_params.frame_type == INTRA_ONLY_FRAME; |
| FeatureFlags *const features = &cm->features; |
| if (!is_stat_generation_stage(cpi) && |
| (oxcf->pass == AOM_RC_ONE_PASS || oxcf->pass >= AOM_RC_SECOND_PASS) && |
| is_intra_frame) { |
| av1_set_screen_content_options(cpi, features); |
| } |
| |
| #if CONFIG_REALTIME_ONLY |
| if (av1_encode(cpi, dest, dest_size, &frame_input, &frame_params, |
| &frame_results) != AOM_CODEC_OK) { |
| return AOM_CODEC_ERROR; |
| } |
| #else |
| if (has_no_stats_stage(cpi) && oxcf->mode == REALTIME && |
| gf_cfg->lag_in_frames == 0) { |
| if (av1_encode(cpi, dest, dest_size, &frame_input, &frame_params, |
| &frame_results) != AOM_CODEC_OK) { |
| return AOM_CODEC_ERROR; |
| } |
| } else if (denoise_and_encode(cpi, dest, dest_size, &frame_input, |
| &frame_params, |
| &frame_results) != AOM_CODEC_OK) { |
| return AOM_CODEC_ERROR; |
| } |
| #endif // CONFIG_REALTIME_ONLY |
| |
| // This is used in rtc temporal filter case. Use true source in the PSNR |
| // calculation. |
| if (is_psnr_calc_enabled(cpi) && cpi->sf.rt_sf.use_rtc_tf) { |
| assert(cpi->orig_source.buffer_alloc_sz > 0); |
| cpi->source = &cpi->orig_source; |
| } |
| |
| if (!is_stat_generation_stage(cpi)) { |
| // First pass doesn't modify reference buffer assignment or produce frame |
| // flags |
| update_frame_flags(&cpi->common, &cpi->refresh_frame, frame_flags); |
| set_additional_frame_flags(cm, frame_flags); |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| #if TXCOEFF_COST_TIMER |
| if (!is_stat_generation_stage(cpi)) { |
| cm->cum_txcoeff_cost_timer += cm->txcoeff_cost_timer; |
| fprintf(stderr, |
| "\ntxb coeff cost block number: %ld, frame time: %ld, cum time %ld " |
| "in us\n", |
| cm->txcoeff_cost_count, cm->txcoeff_cost_timer, |
| cm->cum_txcoeff_cost_timer); |
| } |
| #endif |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| #if CONFIG_TUNE_VMAF |
| if (!is_stat_generation_stage(cpi) && |
| (oxcf->tune_cfg.tuning >= AOM_TUNE_VMAF_WITH_PREPROCESSING && |
| oxcf->tune_cfg.tuning <= AOM_TUNE_VMAF_NEG_MAX_GAIN)) { |
| av1_update_vmaf_curve(cpi); |
| } |
| #endif |
| |
| // Unpack frame_results: |
| *size = frame_results.size; |
| |
| // Leave a signal for a higher level caller about if this frame is droppable |
| if (*size > 0) { |
| cpi->droppable = |
| is_frame_droppable(&cpi->ppi->rtc_ref, &ext_flags->refresh_frame); |
| } |
| |
| // For SVC, or when frame-dropper is enabled: |
| // keep track of the (unscaled) source corresponding to the refresh of LAST |
| // reference (base temporal layer - TL0). Copy only for the |
| // top spatial enhancement layer so all spatial layers of the next |
| // superframe have last_source to be aligned with previous TL0 superframe. |
| // Avoid cases where resolution changes for unscaled source (top spatial |
| // layer). Only needs to be done for frame that are encoded (size > 0). |
| if (*size > 0 && |
| (cpi->ppi->use_svc || cpi->oxcf.rc_cfg.drop_frames_water_mark > 0) && |
| cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1 && |
| cpi->svc.temporal_layer_id == 0 && |
| cpi->unscaled_source->y_width == cpi->svc.source_last_TL0.y_width && |
| cpi->unscaled_source->y_height == cpi->svc.source_last_TL0.y_height) { |
| aom_yv12_copy_y(cpi->unscaled_source, &cpi->svc.source_last_TL0, 1); |
| aom_yv12_copy_u(cpi->unscaled_source, &cpi->svc.source_last_TL0, 1); |
| aom_yv12_copy_v(cpi->unscaled_source, &cpi->svc.source_last_TL0, 1); |
| } |
| |
| return AOM_CODEC_OK; |
| } |