|  | /* | 
|  | * Copyright (c) 2016, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  |  | 
|  | #include <assert.h> | 
|  | #include "av1/common/av1_fwd_txfm.h" | 
|  |  | 
|  | void av1_fdct4x4_c(const int16_t *input, tran_low_t *output, int stride) { | 
|  | // The 2D transform is done with two passes which are actually pretty | 
|  | // similar. In the first one, we transform the columns and transpose | 
|  | // the results. In the second one, we transform the rows. To achieve that, | 
|  | // as the first pass results are transposed, we transpose the columns (that | 
|  | // is the transposed rows) and transpose the results (so that it goes back | 
|  | // in normal/row positions). | 
|  | int pass; | 
|  | // We need an intermediate buffer between passes. | 
|  | tran_low_t intermediate[4 * 4]; | 
|  | const tran_low_t *in_low = NULL; | 
|  | tran_low_t *out = intermediate; | 
|  | // Do the two transform/transpose passes | 
|  | for (pass = 0; pass < 2; ++pass) { | 
|  | tran_high_t in_high[4];    // canbe16 | 
|  | tran_high_t step[4];       // canbe16 | 
|  | tran_high_t temp1, temp2;  // needs32 | 
|  | int i; | 
|  | for (i = 0; i < 4; ++i) { | 
|  | // Load inputs. | 
|  | if (0 == pass) { | 
|  | in_high[0] = input[0 * stride] * 16; | 
|  | in_high[1] = input[1 * stride] * 16; | 
|  | in_high[2] = input[2 * stride] * 16; | 
|  | in_high[3] = input[3 * stride] * 16; | 
|  | if (i == 0 && in_high[0]) { | 
|  | in_high[0] += 1; | 
|  | } | 
|  | } else { | 
|  | assert(in_low != NULL); | 
|  | in_high[0] = in_low[0 * 4]; | 
|  | in_high[1] = in_low[1 * 4]; | 
|  | in_high[2] = in_low[2 * 4]; | 
|  | in_high[3] = in_low[3 * 4]; | 
|  | in_low++; | 
|  | } | 
|  | // Transform. | 
|  | step[0] = in_high[0] + in_high[3]; | 
|  | step[1] = in_high[1] + in_high[2]; | 
|  | step[2] = in_high[1] - in_high[2]; | 
|  | step[3] = in_high[0] - in_high[3]; | 
|  | temp1 = (step[0] + step[1]) * cospi_16_64; | 
|  | temp2 = (step[0] - step[1]) * cospi_16_64; | 
|  | out[0] = (tran_low_t)fdct_round_shift(temp1); | 
|  | out[2] = (tran_low_t)fdct_round_shift(temp2); | 
|  | temp1 = step[2] * cospi_24_64 + step[3] * cospi_8_64; | 
|  | temp2 = -step[2] * cospi_8_64 + step[3] * cospi_24_64; | 
|  | out[1] = (tran_low_t)fdct_round_shift(temp1); | 
|  | out[3] = (tran_low_t)fdct_round_shift(temp2); | 
|  | // Do next column (which is a transposed row in second/horizontal pass) | 
|  | input++; | 
|  | out += 4; | 
|  | } | 
|  | // Setup in_low/out for next pass. | 
|  | in_low = intermediate; | 
|  | out = output; | 
|  | } | 
|  |  | 
|  | { | 
|  | int i, j; | 
|  | for (i = 0; i < 4; ++i) { | 
|  | for (j = 0; j < 4; ++j) output[j + i * 4] = (output[j + i * 4] + 1) >> 2; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_fdct4x4_1_c(const int16_t *input, tran_low_t *output, int stride) { | 
|  | int r, c; | 
|  | tran_low_t sum = 0; | 
|  | for (r = 0; r < 4; ++r) | 
|  | for (c = 0; c < 4; ++c) sum += input[r * stride + c]; | 
|  |  | 
|  | output[0] = sum << 1; | 
|  | output[1] = 0; | 
|  | } | 
|  |  | 
|  | void av1_fdct8x8_c(const int16_t *input, tran_low_t *final_output, int stride) { | 
|  | int i, j; | 
|  | tran_low_t intermediate[64]; | 
|  | int pass; | 
|  | tran_low_t *output = intermediate; | 
|  | const tran_low_t *in = NULL; | 
|  |  | 
|  | // Transform columns | 
|  | for (pass = 0; pass < 2; ++pass) { | 
|  | tran_high_t s0, s1, s2, s3, s4, s5, s6, s7;  // canbe16 | 
|  | tran_high_t t0, t1, t2, t3;                  // needs32 | 
|  | tran_high_t x0, x1, x2, x3;                  // canbe16 | 
|  |  | 
|  | for (i = 0; i < 8; i++) { | 
|  | // stage 1 | 
|  | if (pass == 0) { | 
|  | s0 = (input[0 * stride] + input[7 * stride]) * 4; | 
|  | s1 = (input[1 * stride] + input[6 * stride]) * 4; | 
|  | s2 = (input[2 * stride] + input[5 * stride]) * 4; | 
|  | s3 = (input[3 * stride] + input[4 * stride]) * 4; | 
|  | s4 = (input[3 * stride] - input[4 * stride]) * 4; | 
|  | s5 = (input[2 * stride] - input[5 * stride]) * 4; | 
|  | s6 = (input[1 * stride] - input[6 * stride]) * 4; | 
|  | s7 = (input[0 * stride] - input[7 * stride]) * 4; | 
|  | ++input; | 
|  | } else { | 
|  | s0 = in[0 * 8] + in[7 * 8]; | 
|  | s1 = in[1 * 8] + in[6 * 8]; | 
|  | s2 = in[2 * 8] + in[5 * 8]; | 
|  | s3 = in[3 * 8] + in[4 * 8]; | 
|  | s4 = in[3 * 8] - in[4 * 8]; | 
|  | s5 = in[2 * 8] - in[5 * 8]; | 
|  | s6 = in[1 * 8] - in[6 * 8]; | 
|  | s7 = in[0 * 8] - in[7 * 8]; | 
|  | ++in; | 
|  | } | 
|  |  | 
|  | // fdct4(step, step); | 
|  | x0 = s0 + s3; | 
|  | x1 = s1 + s2; | 
|  | x2 = s1 - s2; | 
|  | x3 = s0 - s3; | 
|  | t0 = (x0 + x1) * cospi_16_64; | 
|  | t1 = (x0 - x1) * cospi_16_64; | 
|  | t2 = x2 * cospi_24_64 + x3 * cospi_8_64; | 
|  | t3 = -x2 * cospi_8_64 + x3 * cospi_24_64; | 
|  | output[0] = (tran_low_t)fdct_round_shift(t0); | 
|  | output[2] = (tran_low_t)fdct_round_shift(t2); | 
|  | output[4] = (tran_low_t)fdct_round_shift(t1); | 
|  | output[6] = (tran_low_t)fdct_round_shift(t3); | 
|  |  | 
|  | // Stage 2 | 
|  | t0 = (s6 - s5) * cospi_16_64; | 
|  | t1 = (s6 + s5) * cospi_16_64; | 
|  | t2 = fdct_round_shift(t0); | 
|  | t3 = fdct_round_shift(t1); | 
|  |  | 
|  | // Stage 3 | 
|  | x0 = s4 + t2; | 
|  | x1 = s4 - t2; | 
|  | x2 = s7 - t3; | 
|  | x3 = s7 + t3; | 
|  |  | 
|  | // Stage 4 | 
|  | t0 = x0 * cospi_28_64 + x3 * cospi_4_64; | 
|  | t1 = x1 * cospi_12_64 + x2 * cospi_20_64; | 
|  | t2 = x2 * cospi_12_64 + x1 * -cospi_20_64; | 
|  | t3 = x3 * cospi_28_64 + x0 * -cospi_4_64; | 
|  | output[1] = (tran_low_t)fdct_round_shift(t0); | 
|  | output[3] = (tran_low_t)fdct_round_shift(t2); | 
|  | output[5] = (tran_low_t)fdct_round_shift(t1); | 
|  | output[7] = (tran_low_t)fdct_round_shift(t3); | 
|  | output += 8; | 
|  | } | 
|  | in = intermediate; | 
|  | output = final_output; | 
|  | } | 
|  |  | 
|  | // Rows | 
|  | for (i = 0; i < 8; ++i) { | 
|  | for (j = 0; j < 8; ++j) final_output[j + i * 8] /= 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_fdct8x8_1_c(const int16_t *input, tran_low_t *output, int stride) { | 
|  | int r, c; | 
|  | tran_low_t sum = 0; | 
|  | for (r = 0; r < 8; ++r) | 
|  | for (c = 0; c < 8; ++c) sum += input[r * stride + c]; | 
|  |  | 
|  | output[0] = sum; | 
|  | output[1] = 0; | 
|  | } | 
|  |  | 
|  | void av1_fdct16x16_c(const int16_t *input, tran_low_t *output, int stride) { | 
|  | // The 2D transform is done with two passes which are actually pretty | 
|  | // similar. In the first one, we transform the columns and transpose | 
|  | // the results. In the second one, we transform the rows. To achieve that, | 
|  | // as the first pass results are transposed, we transpose the columns (that | 
|  | // is the transposed rows) and transpose the results (so that it goes back | 
|  | // in normal/row positions). | 
|  | int pass; | 
|  | // We need an intermediate buffer between passes. | 
|  | tran_low_t intermediate[256]; | 
|  | const tran_low_t *in_low = NULL; | 
|  | tran_low_t *out = intermediate; | 
|  | // Do the two transform/transpose passes | 
|  | for (pass = 0; pass < 2; ++pass) { | 
|  | tran_high_t step1[8];      // canbe16 | 
|  | tran_high_t step2[8];      // canbe16 | 
|  | tran_high_t step3[8];      // canbe16 | 
|  | tran_high_t in_high[8];    // canbe16 | 
|  | tran_high_t temp1, temp2;  // needs32 | 
|  | int i; | 
|  | for (i = 0; i < 16; i++) { | 
|  | if (0 == pass) { | 
|  | // Calculate input for the first 8 results. | 
|  | in_high[0] = (input[0 * stride] + input[15 * stride]) * 4; | 
|  | in_high[1] = (input[1 * stride] + input[14 * stride]) * 4; | 
|  | in_high[2] = (input[2 * stride] + input[13 * stride]) * 4; | 
|  | in_high[3] = (input[3 * stride] + input[12 * stride]) * 4; | 
|  | in_high[4] = (input[4 * stride] + input[11 * stride]) * 4; | 
|  | in_high[5] = (input[5 * stride] + input[10 * stride]) * 4; | 
|  | in_high[6] = (input[6 * stride] + input[9 * stride]) * 4; | 
|  | in_high[7] = (input[7 * stride] + input[8 * stride]) * 4; | 
|  | // Calculate input for the next 8 results. | 
|  | step1[0] = (input[7 * stride] - input[8 * stride]) * 4; | 
|  | step1[1] = (input[6 * stride] - input[9 * stride]) * 4; | 
|  | step1[2] = (input[5 * stride] - input[10 * stride]) * 4; | 
|  | step1[3] = (input[4 * stride] - input[11 * stride]) * 4; | 
|  | step1[4] = (input[3 * stride] - input[12 * stride]) * 4; | 
|  | step1[5] = (input[2 * stride] - input[13 * stride]) * 4; | 
|  | step1[6] = (input[1 * stride] - input[14 * stride]) * 4; | 
|  | step1[7] = (input[0 * stride] - input[15 * stride]) * 4; | 
|  | } else { | 
|  | // Calculate input for the first 8 results. | 
|  | assert(in_low != NULL); | 
|  | in_high[0] = ((in_low[0 * 16] + 1) >> 2) + ((in_low[15 * 16] + 1) >> 2); | 
|  | in_high[1] = ((in_low[1 * 16] + 1) >> 2) + ((in_low[14 * 16] + 1) >> 2); | 
|  | in_high[2] = ((in_low[2 * 16] + 1) >> 2) + ((in_low[13 * 16] + 1) >> 2); | 
|  | in_high[3] = ((in_low[3 * 16] + 1) >> 2) + ((in_low[12 * 16] + 1) >> 2); | 
|  | in_high[4] = ((in_low[4 * 16] + 1) >> 2) + ((in_low[11 * 16] + 1) >> 2); | 
|  | in_high[5] = ((in_low[5 * 16] + 1) >> 2) + ((in_low[10 * 16] + 1) >> 2); | 
|  | in_high[6] = ((in_low[6 * 16] + 1) >> 2) + ((in_low[9 * 16] + 1) >> 2); | 
|  | in_high[7] = ((in_low[7 * 16] + 1) >> 2) + ((in_low[8 * 16] + 1) >> 2); | 
|  | // Calculate input for the next 8 results. | 
|  | step1[0] = ((in_low[7 * 16] + 1) >> 2) - ((in_low[8 * 16] + 1) >> 2); | 
|  | step1[1] = ((in_low[6 * 16] + 1) >> 2) - ((in_low[9 * 16] + 1) >> 2); | 
|  | step1[2] = ((in_low[5 * 16] + 1) >> 2) - ((in_low[10 * 16] + 1) >> 2); | 
|  | step1[3] = ((in_low[4 * 16] + 1) >> 2) - ((in_low[11 * 16] + 1) >> 2); | 
|  | step1[4] = ((in_low[3 * 16] + 1) >> 2) - ((in_low[12 * 16] + 1) >> 2); | 
|  | step1[5] = ((in_low[2 * 16] + 1) >> 2) - ((in_low[13 * 16] + 1) >> 2); | 
|  | step1[6] = ((in_low[1 * 16] + 1) >> 2) - ((in_low[14 * 16] + 1) >> 2); | 
|  | step1[7] = ((in_low[0 * 16] + 1) >> 2) - ((in_low[15 * 16] + 1) >> 2); | 
|  | in_low++; | 
|  | } | 
|  | // Work on the first eight values; fdct8(input, even_results); | 
|  | { | 
|  | tran_high_t s0, s1, s2, s3, s4, s5, s6, s7;  // canbe16 | 
|  | tran_high_t t0, t1, t2, t3;                  // needs32 | 
|  | tran_high_t x0, x1, x2, x3;                  // canbe16 | 
|  |  | 
|  | // stage 1 | 
|  | s0 = in_high[0] + in_high[7]; | 
|  | s1 = in_high[1] + in_high[6]; | 
|  | s2 = in_high[2] + in_high[5]; | 
|  | s3 = in_high[3] + in_high[4]; | 
|  | s4 = in_high[3] - in_high[4]; | 
|  | s5 = in_high[2] - in_high[5]; | 
|  | s6 = in_high[1] - in_high[6]; | 
|  | s7 = in_high[0] - in_high[7]; | 
|  |  | 
|  | // fdct4(step, step); | 
|  | x0 = s0 + s3; | 
|  | x1 = s1 + s2; | 
|  | x2 = s1 - s2; | 
|  | x3 = s0 - s3; | 
|  | t0 = (x0 + x1) * cospi_16_64; | 
|  | t1 = (x0 - x1) * cospi_16_64; | 
|  | t2 = x3 * cospi_8_64 + x2 * cospi_24_64; | 
|  | t3 = x3 * cospi_24_64 - x2 * cospi_8_64; | 
|  | out[0] = (tran_low_t)fdct_round_shift(t0); | 
|  | out[4] = (tran_low_t)fdct_round_shift(t2); | 
|  | out[8] = (tran_low_t)fdct_round_shift(t1); | 
|  | out[12] = (tran_low_t)fdct_round_shift(t3); | 
|  |  | 
|  | // Stage 2 | 
|  | t0 = (s6 - s5) * cospi_16_64; | 
|  | t1 = (s6 + s5) * cospi_16_64; | 
|  | t2 = fdct_round_shift(t0); | 
|  | t3 = fdct_round_shift(t1); | 
|  |  | 
|  | // Stage 3 | 
|  | x0 = s4 + t2; | 
|  | x1 = s4 - t2; | 
|  | x2 = s7 - t3; | 
|  | x3 = s7 + t3; | 
|  |  | 
|  | // Stage 4 | 
|  | t0 = x0 * cospi_28_64 + x3 * cospi_4_64; | 
|  | t1 = x1 * cospi_12_64 + x2 * cospi_20_64; | 
|  | t2 = x2 * cospi_12_64 + x1 * -cospi_20_64; | 
|  | t3 = x3 * cospi_28_64 + x0 * -cospi_4_64; | 
|  | out[2] = (tran_low_t)fdct_round_shift(t0); | 
|  | out[6] = (tran_low_t)fdct_round_shift(t2); | 
|  | out[10] = (tran_low_t)fdct_round_shift(t1); | 
|  | out[14] = (tran_low_t)fdct_round_shift(t3); | 
|  | } | 
|  | // Work on the next eight values; step1 -> odd_results | 
|  | { | 
|  | // step 2 | 
|  | temp1 = (step1[5] - step1[2]) * cospi_16_64; | 
|  | temp2 = (step1[4] - step1[3]) * cospi_16_64; | 
|  | step2[2] = fdct_round_shift(temp1); | 
|  | step2[3] = fdct_round_shift(temp2); | 
|  | temp1 = (step1[4] + step1[3]) * cospi_16_64; | 
|  | temp2 = (step1[5] + step1[2]) * cospi_16_64; | 
|  | step2[4] = fdct_round_shift(temp1); | 
|  | step2[5] = fdct_round_shift(temp2); | 
|  | // step 3 | 
|  | step3[0] = step1[0] + step2[3]; | 
|  | step3[1] = step1[1] + step2[2]; | 
|  | step3[2] = step1[1] - step2[2]; | 
|  | step3[3] = step1[0] - step2[3]; | 
|  | step3[4] = step1[7] - step2[4]; | 
|  | step3[5] = step1[6] - step2[5]; | 
|  | step3[6] = step1[6] + step2[5]; | 
|  | step3[7] = step1[7] + step2[4]; | 
|  | // step 4 | 
|  | temp1 = step3[1] * -cospi_8_64 + step3[6] * cospi_24_64; | 
|  | temp2 = step3[2] * cospi_24_64 + step3[5] * cospi_8_64; | 
|  | step2[1] = fdct_round_shift(temp1); | 
|  | step2[2] = fdct_round_shift(temp2); | 
|  | temp1 = step3[2] * cospi_8_64 - step3[5] * cospi_24_64; | 
|  | temp2 = step3[1] * cospi_24_64 + step3[6] * cospi_8_64; | 
|  | step2[5] = fdct_round_shift(temp1); | 
|  | step2[6] = fdct_round_shift(temp2); | 
|  | // step 5 | 
|  | step1[0] = step3[0] + step2[1]; | 
|  | step1[1] = step3[0] - step2[1]; | 
|  | step1[2] = step3[3] + step2[2]; | 
|  | step1[3] = step3[3] - step2[2]; | 
|  | step1[4] = step3[4] - step2[5]; | 
|  | step1[5] = step3[4] + step2[5]; | 
|  | step1[6] = step3[7] - step2[6]; | 
|  | step1[7] = step3[7] + step2[6]; | 
|  | // step 6 | 
|  | temp1 = step1[0] * cospi_30_64 + step1[7] * cospi_2_64; | 
|  | temp2 = step1[1] * cospi_14_64 + step1[6] * cospi_18_64; | 
|  | out[1] = (tran_low_t)fdct_round_shift(temp1); | 
|  | out[9] = (tran_low_t)fdct_round_shift(temp2); | 
|  | temp1 = step1[2] * cospi_22_64 + step1[5] * cospi_10_64; | 
|  | temp2 = step1[3] * cospi_6_64 + step1[4] * cospi_26_64; | 
|  | out[5] = (tran_low_t)fdct_round_shift(temp1); | 
|  | out[13] = (tran_low_t)fdct_round_shift(temp2); | 
|  | temp1 = step1[3] * -cospi_26_64 + step1[4] * cospi_6_64; | 
|  | temp2 = step1[2] * -cospi_10_64 + step1[5] * cospi_22_64; | 
|  | out[3] = (tran_low_t)fdct_round_shift(temp1); | 
|  | out[11] = (tran_low_t)fdct_round_shift(temp2); | 
|  | temp1 = step1[1] * -cospi_18_64 + step1[6] * cospi_14_64; | 
|  | temp2 = step1[0] * -cospi_2_64 + step1[7] * cospi_30_64; | 
|  | out[7] = (tran_low_t)fdct_round_shift(temp1); | 
|  | out[15] = (tran_low_t)fdct_round_shift(temp2); | 
|  | } | 
|  | // Do next column (which is a transposed row in second/horizontal pass) | 
|  | input++; | 
|  | out += 16; | 
|  | } | 
|  | // Setup in/out for next pass. | 
|  | in_low = intermediate; | 
|  | out = output; | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_fdct16x16_1_c(const int16_t *input, tran_low_t *output, int stride) { | 
|  | int r, c; | 
|  | tran_low_t sum = 0; | 
|  | for (r = 0; r < 16; ++r) | 
|  | for (c = 0; c < 16; ++c) sum += input[r * stride + c]; | 
|  |  | 
|  | output[0] = sum >> 1; | 
|  | output[1] = 0; | 
|  | } | 
|  |  | 
|  | static INLINE tran_high_t dct_32_round(tran_high_t input) { | 
|  | tran_high_t rv = ROUND_POWER_OF_TWO(input, DCT_CONST_BITS); | 
|  | // TODO(debargha, peter.derivaz): Find new bounds for this assert, | 
|  | // and make the bounds consts. | 
|  | // assert(-131072 <= rv && rv <= 131071); | 
|  | return rv; | 
|  | } | 
|  |  | 
|  | static INLINE tran_high_t half_round_shift(tran_high_t input) { | 
|  | tran_high_t rv = (input + 1 + (input < 0)) >> 2; | 
|  | return rv; | 
|  | } | 
|  |  | 
|  | void av1_fdct32(const tran_high_t *input, tran_high_t *output, int round) { | 
|  | tran_high_t step[32]; | 
|  | // Stage 1 | 
|  | step[0] = input[0] + input[(32 - 1)]; | 
|  | step[1] = input[1] + input[(32 - 2)]; | 
|  | step[2] = input[2] + input[(32 - 3)]; | 
|  | step[3] = input[3] + input[(32 - 4)]; | 
|  | step[4] = input[4] + input[(32 - 5)]; | 
|  | step[5] = input[5] + input[(32 - 6)]; | 
|  | step[6] = input[6] + input[(32 - 7)]; | 
|  | step[7] = input[7] + input[(32 - 8)]; | 
|  | step[8] = input[8] + input[(32 - 9)]; | 
|  | step[9] = input[9] + input[(32 - 10)]; | 
|  | step[10] = input[10] + input[(32 - 11)]; | 
|  | step[11] = input[11] + input[(32 - 12)]; | 
|  | step[12] = input[12] + input[(32 - 13)]; | 
|  | step[13] = input[13] + input[(32 - 14)]; | 
|  | step[14] = input[14] + input[(32 - 15)]; | 
|  | step[15] = input[15] + input[(32 - 16)]; | 
|  | step[16] = -input[16] + input[(32 - 17)]; | 
|  | step[17] = -input[17] + input[(32 - 18)]; | 
|  | step[18] = -input[18] + input[(32 - 19)]; | 
|  | step[19] = -input[19] + input[(32 - 20)]; | 
|  | step[20] = -input[20] + input[(32 - 21)]; | 
|  | step[21] = -input[21] + input[(32 - 22)]; | 
|  | step[22] = -input[22] + input[(32 - 23)]; | 
|  | step[23] = -input[23] + input[(32 - 24)]; | 
|  | step[24] = -input[24] + input[(32 - 25)]; | 
|  | step[25] = -input[25] + input[(32 - 26)]; | 
|  | step[26] = -input[26] + input[(32 - 27)]; | 
|  | step[27] = -input[27] + input[(32 - 28)]; | 
|  | step[28] = -input[28] + input[(32 - 29)]; | 
|  | step[29] = -input[29] + input[(32 - 30)]; | 
|  | step[30] = -input[30] + input[(32 - 31)]; | 
|  | step[31] = -input[31] + input[(32 - 32)]; | 
|  |  | 
|  | // Stage 2 | 
|  | output[0] = step[0] + step[16 - 1]; | 
|  | output[1] = step[1] + step[16 - 2]; | 
|  | output[2] = step[2] + step[16 - 3]; | 
|  | output[3] = step[3] + step[16 - 4]; | 
|  | output[4] = step[4] + step[16 - 5]; | 
|  | output[5] = step[5] + step[16 - 6]; | 
|  | output[6] = step[6] + step[16 - 7]; | 
|  | output[7] = step[7] + step[16 - 8]; | 
|  | output[8] = -step[8] + step[16 - 9]; | 
|  | output[9] = -step[9] + step[16 - 10]; | 
|  | output[10] = -step[10] + step[16 - 11]; | 
|  | output[11] = -step[11] + step[16 - 12]; | 
|  | output[12] = -step[12] + step[16 - 13]; | 
|  | output[13] = -step[13] + step[16 - 14]; | 
|  | output[14] = -step[14] + step[16 - 15]; | 
|  | output[15] = -step[15] + step[16 - 16]; | 
|  |  | 
|  | output[16] = step[16]; | 
|  | output[17] = step[17]; | 
|  | output[18] = step[18]; | 
|  | output[19] = step[19]; | 
|  |  | 
|  | output[20] = dct_32_round((-step[20] + step[27]) * cospi_16_64); | 
|  | output[21] = dct_32_round((-step[21] + step[26]) * cospi_16_64); | 
|  | output[22] = dct_32_round((-step[22] + step[25]) * cospi_16_64); | 
|  | output[23] = dct_32_round((-step[23] + step[24]) * cospi_16_64); | 
|  |  | 
|  | output[24] = dct_32_round((step[24] + step[23]) * cospi_16_64); | 
|  | output[25] = dct_32_round((step[25] + step[22]) * cospi_16_64); | 
|  | output[26] = dct_32_round((step[26] + step[21]) * cospi_16_64); | 
|  | output[27] = dct_32_round((step[27] + step[20]) * cospi_16_64); | 
|  |  | 
|  | output[28] = step[28]; | 
|  | output[29] = step[29]; | 
|  | output[30] = step[30]; | 
|  | output[31] = step[31]; | 
|  |  | 
|  | // dump the magnitude by 4, hence the intermediate values are within | 
|  | // the range of 16 bits. | 
|  | if (round) { | 
|  | output[0] = half_round_shift(output[0]); | 
|  | output[1] = half_round_shift(output[1]); | 
|  | output[2] = half_round_shift(output[2]); | 
|  | output[3] = half_round_shift(output[3]); | 
|  | output[4] = half_round_shift(output[4]); | 
|  | output[5] = half_round_shift(output[5]); | 
|  | output[6] = half_round_shift(output[6]); | 
|  | output[7] = half_round_shift(output[7]); | 
|  | output[8] = half_round_shift(output[8]); | 
|  | output[9] = half_round_shift(output[9]); | 
|  | output[10] = half_round_shift(output[10]); | 
|  | output[11] = half_round_shift(output[11]); | 
|  | output[12] = half_round_shift(output[12]); | 
|  | output[13] = half_round_shift(output[13]); | 
|  | output[14] = half_round_shift(output[14]); | 
|  | output[15] = half_round_shift(output[15]); | 
|  |  | 
|  | output[16] = half_round_shift(output[16]); | 
|  | output[17] = half_round_shift(output[17]); | 
|  | output[18] = half_round_shift(output[18]); | 
|  | output[19] = half_round_shift(output[19]); | 
|  | output[20] = half_round_shift(output[20]); | 
|  | output[21] = half_round_shift(output[21]); | 
|  | output[22] = half_round_shift(output[22]); | 
|  | output[23] = half_round_shift(output[23]); | 
|  | output[24] = half_round_shift(output[24]); | 
|  | output[25] = half_round_shift(output[25]); | 
|  | output[26] = half_round_shift(output[26]); | 
|  | output[27] = half_round_shift(output[27]); | 
|  | output[28] = half_round_shift(output[28]); | 
|  | output[29] = half_round_shift(output[29]); | 
|  | output[30] = half_round_shift(output[30]); | 
|  | output[31] = half_round_shift(output[31]); | 
|  | } | 
|  |  | 
|  | // Stage 3 | 
|  | step[0] = output[0] + output[(8 - 1)]; | 
|  | step[1] = output[1] + output[(8 - 2)]; | 
|  | step[2] = output[2] + output[(8 - 3)]; | 
|  | step[3] = output[3] + output[(8 - 4)]; | 
|  | step[4] = -output[4] + output[(8 - 5)]; | 
|  | step[5] = -output[5] + output[(8 - 6)]; | 
|  | step[6] = -output[6] + output[(8 - 7)]; | 
|  | step[7] = -output[7] + output[(8 - 8)]; | 
|  | step[8] = output[8]; | 
|  | step[9] = output[9]; | 
|  | step[10] = dct_32_round((-output[10] + output[13]) * cospi_16_64); | 
|  | step[11] = dct_32_round((-output[11] + output[12]) * cospi_16_64); | 
|  | step[12] = dct_32_round((output[12] + output[11]) * cospi_16_64); | 
|  | step[13] = dct_32_round((output[13] + output[10]) * cospi_16_64); | 
|  | step[14] = output[14]; | 
|  | step[15] = output[15]; | 
|  |  | 
|  | step[16] = output[16] + output[23]; | 
|  | step[17] = output[17] + output[22]; | 
|  | step[18] = output[18] + output[21]; | 
|  | step[19] = output[19] + output[20]; | 
|  | step[20] = -output[20] + output[19]; | 
|  | step[21] = -output[21] + output[18]; | 
|  | step[22] = -output[22] + output[17]; | 
|  | step[23] = -output[23] + output[16]; | 
|  | step[24] = -output[24] + output[31]; | 
|  | step[25] = -output[25] + output[30]; | 
|  | step[26] = -output[26] + output[29]; | 
|  | step[27] = -output[27] + output[28]; | 
|  | step[28] = output[28] + output[27]; | 
|  | step[29] = output[29] + output[26]; | 
|  | step[30] = output[30] + output[25]; | 
|  | step[31] = output[31] + output[24]; | 
|  |  | 
|  | // Stage 4 | 
|  | output[0] = step[0] + step[3]; | 
|  | output[1] = step[1] + step[2]; | 
|  | output[2] = -step[2] + step[1]; | 
|  | output[3] = -step[3] + step[0]; | 
|  | output[4] = step[4]; | 
|  | output[5] = dct_32_round((-step[5] + step[6]) * cospi_16_64); | 
|  | output[6] = dct_32_round((step[6] + step[5]) * cospi_16_64); | 
|  | output[7] = step[7]; | 
|  | output[8] = step[8] + step[11]; | 
|  | output[9] = step[9] + step[10]; | 
|  | output[10] = -step[10] + step[9]; | 
|  | output[11] = -step[11] + step[8]; | 
|  | output[12] = -step[12] + step[15]; | 
|  | output[13] = -step[13] + step[14]; | 
|  | output[14] = step[14] + step[13]; | 
|  | output[15] = step[15] + step[12]; | 
|  |  | 
|  | output[16] = step[16]; | 
|  | output[17] = step[17]; | 
|  | output[18] = dct_32_round(step[18] * -cospi_8_64 + step[29] * cospi_24_64); | 
|  | output[19] = dct_32_round(step[19] * -cospi_8_64 + step[28] * cospi_24_64); | 
|  | output[20] = dct_32_round(step[20] * -cospi_24_64 + step[27] * -cospi_8_64); | 
|  | output[21] = dct_32_round(step[21] * -cospi_24_64 + step[26] * -cospi_8_64); | 
|  | output[22] = step[22]; | 
|  | output[23] = step[23]; | 
|  | output[24] = step[24]; | 
|  | output[25] = step[25]; | 
|  | output[26] = dct_32_round(step[26] * cospi_24_64 + step[21] * -cospi_8_64); | 
|  | output[27] = dct_32_round(step[27] * cospi_24_64 + step[20] * -cospi_8_64); | 
|  | output[28] = dct_32_round(step[28] * cospi_8_64 + step[19] * cospi_24_64); | 
|  | output[29] = dct_32_round(step[29] * cospi_8_64 + step[18] * cospi_24_64); | 
|  | output[30] = step[30]; | 
|  | output[31] = step[31]; | 
|  |  | 
|  | // Stage 5 | 
|  | step[0] = dct_32_round((output[0] + output[1]) * cospi_16_64); | 
|  | step[1] = dct_32_round((-output[1] + output[0]) * cospi_16_64); | 
|  | step[2] = dct_32_round(output[2] * cospi_24_64 + output[3] * cospi_8_64); | 
|  | step[3] = dct_32_round(output[3] * cospi_24_64 - output[2] * cospi_8_64); | 
|  | step[4] = output[4] + output[5]; | 
|  | step[5] = -output[5] + output[4]; | 
|  | step[6] = -output[6] + output[7]; | 
|  | step[7] = output[7] + output[6]; | 
|  | step[8] = output[8]; | 
|  | step[9] = dct_32_round(output[9] * -cospi_8_64 + output[14] * cospi_24_64); | 
|  | step[10] = dct_32_round(output[10] * -cospi_24_64 + output[13] * -cospi_8_64); | 
|  | step[11] = output[11]; | 
|  | step[12] = output[12]; | 
|  | step[13] = dct_32_round(output[13] * cospi_24_64 + output[10] * -cospi_8_64); | 
|  | step[14] = dct_32_round(output[14] * cospi_8_64 + output[9] * cospi_24_64); | 
|  | step[15] = output[15]; | 
|  |  | 
|  | step[16] = output[16] + output[19]; | 
|  | step[17] = output[17] + output[18]; | 
|  | step[18] = -output[18] + output[17]; | 
|  | step[19] = -output[19] + output[16]; | 
|  | step[20] = -output[20] + output[23]; | 
|  | step[21] = -output[21] + output[22]; | 
|  | step[22] = output[22] + output[21]; | 
|  | step[23] = output[23] + output[20]; | 
|  | step[24] = output[24] + output[27]; | 
|  | step[25] = output[25] + output[26]; | 
|  | step[26] = -output[26] + output[25]; | 
|  | step[27] = -output[27] + output[24]; | 
|  | step[28] = -output[28] + output[31]; | 
|  | step[29] = -output[29] + output[30]; | 
|  | step[30] = output[30] + output[29]; | 
|  | step[31] = output[31] + output[28]; | 
|  |  | 
|  | // Stage 6 | 
|  | output[0] = step[0]; | 
|  | output[1] = step[1]; | 
|  | output[2] = step[2]; | 
|  | output[3] = step[3]; | 
|  | output[4] = dct_32_round(step[4] * cospi_28_64 + step[7] * cospi_4_64); | 
|  | output[5] = dct_32_round(step[5] * cospi_12_64 + step[6] * cospi_20_64); | 
|  | output[6] = dct_32_round(step[6] * cospi_12_64 + step[5] * -cospi_20_64); | 
|  | output[7] = dct_32_round(step[7] * cospi_28_64 + step[4] * -cospi_4_64); | 
|  | output[8] = step[8] + step[9]; | 
|  | output[9] = -step[9] + step[8]; | 
|  | output[10] = -step[10] + step[11]; | 
|  | output[11] = step[11] + step[10]; | 
|  | output[12] = step[12] + step[13]; | 
|  | output[13] = -step[13] + step[12]; | 
|  | output[14] = -step[14] + step[15]; | 
|  | output[15] = step[15] + step[14]; | 
|  |  | 
|  | output[16] = step[16]; | 
|  | output[17] = dct_32_round(step[17] * -cospi_4_64 + step[30] * cospi_28_64); | 
|  | output[18] = dct_32_round(step[18] * -cospi_28_64 + step[29] * -cospi_4_64); | 
|  | output[19] = step[19]; | 
|  | output[20] = step[20]; | 
|  | output[21] = dct_32_round(step[21] * -cospi_20_64 + step[26] * cospi_12_64); | 
|  | output[22] = dct_32_round(step[22] * -cospi_12_64 + step[25] * -cospi_20_64); | 
|  | output[23] = step[23]; | 
|  | output[24] = step[24]; | 
|  | output[25] = dct_32_round(step[25] * cospi_12_64 + step[22] * -cospi_20_64); | 
|  | output[26] = dct_32_round(step[26] * cospi_20_64 + step[21] * cospi_12_64); | 
|  | output[27] = step[27]; | 
|  | output[28] = step[28]; | 
|  | output[29] = dct_32_round(step[29] * cospi_28_64 + step[18] * -cospi_4_64); | 
|  | output[30] = dct_32_round(step[30] * cospi_4_64 + step[17] * cospi_28_64); | 
|  | output[31] = step[31]; | 
|  |  | 
|  | // Stage 7 | 
|  | step[0] = output[0]; | 
|  | step[1] = output[1]; | 
|  | step[2] = output[2]; | 
|  | step[3] = output[3]; | 
|  | step[4] = output[4]; | 
|  | step[5] = output[5]; | 
|  | step[6] = output[6]; | 
|  | step[7] = output[7]; | 
|  | step[8] = dct_32_round(output[8] * cospi_30_64 + output[15] * cospi_2_64); | 
|  | step[9] = dct_32_round(output[9] * cospi_14_64 + output[14] * cospi_18_64); | 
|  | step[10] = dct_32_round(output[10] * cospi_22_64 + output[13] * cospi_10_64); | 
|  | step[11] = dct_32_round(output[11] * cospi_6_64 + output[12] * cospi_26_64); | 
|  | step[12] = dct_32_round(output[12] * cospi_6_64 + output[11] * -cospi_26_64); | 
|  | step[13] = dct_32_round(output[13] * cospi_22_64 + output[10] * -cospi_10_64); | 
|  | step[14] = dct_32_round(output[14] * cospi_14_64 + output[9] * -cospi_18_64); | 
|  | step[15] = dct_32_round(output[15] * cospi_30_64 + output[8] * -cospi_2_64); | 
|  |  | 
|  | step[16] = output[16] + output[17]; | 
|  | step[17] = -output[17] + output[16]; | 
|  | step[18] = -output[18] + output[19]; | 
|  | step[19] = output[19] + output[18]; | 
|  | step[20] = output[20] + output[21]; | 
|  | step[21] = -output[21] + output[20]; | 
|  | step[22] = -output[22] + output[23]; | 
|  | step[23] = output[23] + output[22]; | 
|  | step[24] = output[24] + output[25]; | 
|  | step[25] = -output[25] + output[24]; | 
|  | step[26] = -output[26] + output[27]; | 
|  | step[27] = output[27] + output[26]; | 
|  | step[28] = output[28] + output[29]; | 
|  | step[29] = -output[29] + output[28]; | 
|  | step[30] = -output[30] + output[31]; | 
|  | step[31] = output[31] + output[30]; | 
|  |  | 
|  | // Final stage --- outputs indices are bit-reversed. | 
|  | output[0] = step[0]; | 
|  | output[16] = step[1]; | 
|  | output[8] = step[2]; | 
|  | output[24] = step[3]; | 
|  | output[4] = step[4]; | 
|  | output[20] = step[5]; | 
|  | output[12] = step[6]; | 
|  | output[28] = step[7]; | 
|  | output[2] = step[8]; | 
|  | output[18] = step[9]; | 
|  | output[10] = step[10]; | 
|  | output[26] = step[11]; | 
|  | output[6] = step[12]; | 
|  | output[22] = step[13]; | 
|  | output[14] = step[14]; | 
|  | output[30] = step[15]; | 
|  |  | 
|  | output[1] = dct_32_round(step[16] * cospi_31_64 + step[31] * cospi_1_64); | 
|  | output[17] = dct_32_round(step[17] * cospi_15_64 + step[30] * cospi_17_64); | 
|  | output[9] = dct_32_round(step[18] * cospi_23_64 + step[29] * cospi_9_64); | 
|  | output[25] = dct_32_round(step[19] * cospi_7_64 + step[28] * cospi_25_64); | 
|  | output[5] = dct_32_round(step[20] * cospi_27_64 + step[27] * cospi_5_64); | 
|  | output[21] = dct_32_round(step[21] * cospi_11_64 + step[26] * cospi_21_64); | 
|  | output[13] = dct_32_round(step[22] * cospi_19_64 + step[25] * cospi_13_64); | 
|  | output[29] = dct_32_round(step[23] * cospi_3_64 + step[24] * cospi_29_64); | 
|  | output[3] = dct_32_round(step[24] * cospi_3_64 + step[23] * -cospi_29_64); | 
|  | output[19] = dct_32_round(step[25] * cospi_19_64 + step[22] * -cospi_13_64); | 
|  | output[11] = dct_32_round(step[26] * cospi_11_64 + step[21] * -cospi_21_64); | 
|  | output[27] = dct_32_round(step[27] * cospi_27_64 + step[20] * -cospi_5_64); | 
|  | output[7] = dct_32_round(step[28] * cospi_7_64 + step[19] * -cospi_25_64); | 
|  | output[23] = dct_32_round(step[29] * cospi_23_64 + step[18] * -cospi_9_64); | 
|  | output[15] = dct_32_round(step[30] * cospi_15_64 + step[17] * -cospi_17_64); | 
|  | output[31] = dct_32_round(step[31] * cospi_31_64 + step[16] * -cospi_1_64); | 
|  | } | 
|  |  | 
|  | void av1_fdct32x32_c(const int16_t *input, tran_low_t *out, int stride) { | 
|  | int i, j; | 
|  | tran_high_t output[32 * 32]; | 
|  |  | 
|  | // Columns | 
|  | for (i = 0; i < 32; ++i) { | 
|  | tran_high_t temp_in[32], temp_out[32]; | 
|  | for (j = 0; j < 32; ++j) temp_in[j] = input[j * stride + i] * 4; | 
|  | av1_fdct32(temp_in, temp_out, 0); | 
|  | for (j = 0; j < 32; ++j) | 
|  | output[j * 32 + i] = (temp_out[j] + 1 + (temp_out[j] > 0)) >> 2; | 
|  | } | 
|  |  | 
|  | // Rows | 
|  | for (i = 0; i < 32; ++i) { | 
|  | tran_high_t temp_in[32], temp_out[32]; | 
|  | for (j = 0; j < 32; ++j) temp_in[j] = output[j + i * 32]; | 
|  | av1_fdct32(temp_in, temp_out, 0); | 
|  | for (j = 0; j < 32; ++j) | 
|  | out[j + i * 32] = | 
|  | (tran_low_t)((temp_out[j] + 1 + (temp_out[j] < 0)) >> 2); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Note that although we use dct_32_round in dct32 computation flow, | 
|  | // this 2d fdct32x32 for rate-distortion optimization loop is operating | 
|  | // within 16 bits precision. | 
|  | void av1_fdct32x32_rd_c(const int16_t *input, tran_low_t *out, int stride) { | 
|  | int i, j; | 
|  | tran_high_t output[32 * 32]; | 
|  |  | 
|  | // Columns | 
|  | for (i = 0; i < 32; ++i) { | 
|  | tran_high_t temp_in[32], temp_out[32]; | 
|  | for (j = 0; j < 32; ++j) temp_in[j] = input[j * stride + i] * 4; | 
|  | av1_fdct32(temp_in, temp_out, 0); | 
|  | for (j = 0; j < 32; ++j) | 
|  | // TODO(cd): see quality impact of only doing | 
|  | //           output[j * 32 + i] = (temp_out[j] + 1) >> 2; | 
|  | //           PS: also change code in av1_dsp/x86/av1_dct_sse2.c | 
|  | output[j * 32 + i] = (temp_out[j] + 1 + (temp_out[j] > 0)) >> 2; | 
|  | } | 
|  |  | 
|  | // Rows | 
|  | for (i = 0; i < 32; ++i) { | 
|  | tran_high_t temp_in[32], temp_out[32]; | 
|  | for (j = 0; j < 32; ++j) temp_in[j] = output[j + i * 32]; | 
|  | av1_fdct32(temp_in, temp_out, 1); | 
|  | for (j = 0; j < 32; ++j) out[j + i * 32] = (tran_low_t)temp_out[j]; | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_fdct32x32_1_c(const int16_t *input, tran_low_t *output, int stride) { | 
|  | int r, c; | 
|  | tran_low_t sum = 0; | 
|  | for (r = 0; r < 32; ++r) | 
|  | for (c = 0; c < 32; ++c) sum += input[r * stride + c]; | 
|  |  | 
|  | output[0] = sum >> 3; | 
|  | output[1] = 0; | 
|  | } | 
|  |  | 
|  | #if CONFIG_AOM_HIGHBITDEPTH | 
|  | void av1_highbd_fdct4x4_c(const int16_t *input, tran_low_t *output, | 
|  | int stride) { | 
|  | av1_fdct4x4_c(input, output, stride); | 
|  | } | 
|  |  | 
|  | void av1_highbd_fdct8x8_c(const int16_t *input, tran_low_t *final_output, | 
|  | int stride) { | 
|  | av1_fdct8x8_c(input, final_output, stride); | 
|  | } | 
|  |  | 
|  | void av1_highbd_fdct8x8_1_c(const int16_t *input, tran_low_t *final_output, | 
|  | int stride) { | 
|  | av1_fdct8x8_1_c(input, final_output, stride); | 
|  | } | 
|  |  | 
|  | void av1_highbd_fdct16x16_c(const int16_t *input, tran_low_t *output, | 
|  | int stride) { | 
|  | av1_fdct16x16_c(input, output, stride); | 
|  | } | 
|  |  | 
|  | void av1_highbd_fdct16x16_1_c(const int16_t *input, tran_low_t *output, | 
|  | int stride) { | 
|  | av1_fdct16x16_1_c(input, output, stride); | 
|  | } | 
|  |  | 
|  | void av1_highbd_fdct32x32_c(const int16_t *input, tran_low_t *out, int stride) { | 
|  | av1_fdct32x32_c(input, out, stride); | 
|  | } | 
|  |  | 
|  | void av1_highbd_fdct32x32_rd_c(const int16_t *input, tran_low_t *out, | 
|  | int stride) { | 
|  | av1_fdct32x32_rd_c(input, out, stride); | 
|  | } | 
|  |  | 
|  | void av1_highbd_fdct32x32_1_c(const int16_t *input, tran_low_t *out, | 
|  | int stride) { | 
|  | av1_fdct32x32_1_c(input, out, stride); | 
|  | } | 
|  | #endif  // CONFIG_AOM_HIGHBITDEPTH |