| /* | 
 |  * Copyright (c) 2016, Alliance for Open Media. All rights reserved | 
 |  * | 
 |  * This source code is subject to the terms of the BSD 2 Clause License and | 
 |  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
 |  * was not distributed with this source code in the LICENSE file, you can | 
 |  * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
 |  * Media Patent License 1.0 was not distributed with this source code in the | 
 |  * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
 |  */ | 
 |  | 
 | #include "./aom_dsp_rtcd.h" | 
 | #include "av1/common/filter.h" | 
 | #include "av1/common/scale.h" | 
 | #include "aom_dsp/aom_filter.h" | 
 |  | 
 | static INLINE int scaled_x(int val, const struct scale_factors *sf) { | 
 |   return (int)((int64_t)val * sf->x_scale_fp >> REF_SCALE_SHIFT); | 
 | } | 
 |  | 
 | static INLINE int scaled_y(int val, const struct scale_factors *sf) { | 
 |   return (int)((int64_t)val * sf->y_scale_fp >> REF_SCALE_SHIFT); | 
 | } | 
 |  | 
 | static int unscaled_value(int val, const struct scale_factors *sf) { | 
 |   (void)sf; | 
 |   return val; | 
 | } | 
 |  | 
 | static int get_fixed_point_scale_factor(int other_size, int this_size) { | 
 |   // Calculate scaling factor once for each reference frame | 
 |   // and use fixed point scaling factors in decoding and encoding routines. | 
 |   // Hardware implementations can calculate scale factor in device driver | 
 |   // and use multiplication and shifting on hardware instead of division. | 
 |   return (other_size << REF_SCALE_SHIFT) / this_size; | 
 | } | 
 |  | 
 | MV32 av1_scale_mv(const MV *mv, int x, int y, const struct scale_factors *sf) { | 
 |   const int x_off_q4 = scaled_x(x << SUBPEL_BITS, sf) & SUBPEL_MASK; | 
 |   const int y_off_q4 = scaled_y(y << SUBPEL_BITS, sf) & SUBPEL_MASK; | 
 |   const MV32 res = { scaled_y(mv->row, sf) + y_off_q4, | 
 |                      scaled_x(mv->col, sf) + x_off_q4 }; | 
 |   return res; | 
 | } | 
 |  | 
 | #if CONFIG_AOM_HIGHBITDEPTH | 
 | void av1_setup_scale_factors_for_frame(struct scale_factors *sf, int other_w, | 
 |                                        int other_h, int this_w, int this_h, | 
 |                                        int use_highbd) { | 
 | #else | 
 | void av1_setup_scale_factors_for_frame(struct scale_factors *sf, int other_w, | 
 |                                        int other_h, int this_w, int this_h) { | 
 | #endif | 
 |   if (!valid_ref_frame_size(other_w, other_h, this_w, this_h)) { | 
 |     sf->x_scale_fp = REF_INVALID_SCALE; | 
 |     sf->y_scale_fp = REF_INVALID_SCALE; | 
 |     return; | 
 |   } | 
 |  | 
 |   sf->x_scale_fp = get_fixed_point_scale_factor(other_w, this_w); | 
 |   sf->y_scale_fp = get_fixed_point_scale_factor(other_h, this_h); | 
 |   sf->x_step_q4 = scaled_x(16, sf); | 
 |   sf->y_step_q4 = scaled_y(16, sf); | 
 |  | 
 |   if (av1_is_scaled(sf)) { | 
 |     sf->scale_value_x = scaled_x; | 
 |     sf->scale_value_y = scaled_y; | 
 |   } else { | 
 |     sf->scale_value_x = unscaled_value; | 
 |     sf->scale_value_y = unscaled_value; | 
 |   } | 
 |  | 
 |   // TODO(agrange): Investigate the best choice of functions to use here | 
 |   // for EIGHTTAP_SMOOTH. Since it is not interpolating, need to choose what | 
 |   // to do at full-pel offsets. The current selection, where the filter is | 
 |   // applied in one direction only, and not at all for 0,0, seems to give the | 
 |   // best quality, but it may be worth trying an additional mode that does | 
 |   // do the filtering on full-pel. | 
 |   if (sf->x_step_q4 == 16) { | 
 |     if (sf->y_step_q4 == 16) { | 
 |       // No scaling in either direction. | 
 |       sf->predict[0][0][0] = aom_convolve_copy; | 
 |       sf->predict[0][0][1] = aom_convolve_avg; | 
 |       sf->predict[0][1][0] = aom_convolve8_vert; | 
 |       sf->predict[0][1][1] = aom_convolve8_avg_vert; | 
 |       sf->predict[1][0][0] = aom_convolve8_horiz; | 
 |       sf->predict[1][0][1] = aom_convolve8_avg_horiz; | 
 |     } else { | 
 |       // No scaling in x direction. Must always scale in the y direction. | 
 |       sf->predict[0][0][0] = aom_convolve8_vert; | 
 |       sf->predict[0][0][1] = aom_convolve8_avg_vert; | 
 |       sf->predict[0][1][0] = aom_convolve8_vert; | 
 |       sf->predict[0][1][1] = aom_convolve8_avg_vert; | 
 |       sf->predict[1][0][0] = aom_convolve8; | 
 |       sf->predict[1][0][1] = aom_convolve8_avg; | 
 |     } | 
 |   } else { | 
 |     if (sf->y_step_q4 == 16) { | 
 |       // No scaling in the y direction. Must always scale in the x direction. | 
 |       sf->predict[0][0][0] = aom_convolve8_horiz; | 
 |       sf->predict[0][0][1] = aom_convolve8_avg_horiz; | 
 |       sf->predict[0][1][0] = aom_convolve8; | 
 |       sf->predict[0][1][1] = aom_convolve8_avg; | 
 |       sf->predict[1][0][0] = aom_convolve8_horiz; | 
 |       sf->predict[1][0][1] = aom_convolve8_avg_horiz; | 
 |     } else { | 
 |       // Must always scale in both directions. | 
 |       sf->predict[0][0][0] = aom_convolve8; | 
 |       sf->predict[0][0][1] = aom_convolve8_avg; | 
 |       sf->predict[0][1][0] = aom_convolve8; | 
 |       sf->predict[0][1][1] = aom_convolve8_avg; | 
 |       sf->predict[1][0][0] = aom_convolve8; | 
 |       sf->predict[1][0][1] = aom_convolve8_avg; | 
 |     } | 
 |   } | 
 |   // 2D subpel motion always gets filtered in both directions | 
 |   sf->predict[1][1][0] = aom_convolve8; | 
 |   sf->predict[1][1][1] = aom_convolve8_avg; | 
 | #if CONFIG_AOM_HIGHBITDEPTH | 
 |   if (use_highbd) { | 
 |     if (sf->x_step_q4 == 16) { | 
 |       if (sf->y_step_q4 == 16) { | 
 |         // No scaling in either direction. | 
 |         sf->highbd_predict[0][0][0] = aom_highbd_convolve_copy; | 
 |         sf->highbd_predict[0][0][1] = aom_highbd_convolve_avg; | 
 |         sf->highbd_predict[0][1][0] = aom_highbd_convolve8_vert; | 
 |         sf->highbd_predict[0][1][1] = aom_highbd_convolve8_avg_vert; | 
 |         sf->highbd_predict[1][0][0] = aom_highbd_convolve8_horiz; | 
 |         sf->highbd_predict[1][0][1] = aom_highbd_convolve8_avg_horiz; | 
 |       } else { | 
 |         // No scaling in x direction. Must always scale in the y direction. | 
 |         sf->highbd_predict[0][0][0] = aom_highbd_convolve8_vert; | 
 |         sf->highbd_predict[0][0][1] = aom_highbd_convolve8_avg_vert; | 
 |         sf->highbd_predict[0][1][0] = aom_highbd_convolve8_vert; | 
 |         sf->highbd_predict[0][1][1] = aom_highbd_convolve8_avg_vert; | 
 |         sf->highbd_predict[1][0][0] = aom_highbd_convolve8; | 
 |         sf->highbd_predict[1][0][1] = aom_highbd_convolve8_avg; | 
 |       } | 
 |     } else { | 
 |       if (sf->y_step_q4 == 16) { | 
 |         // No scaling in the y direction. Must always scale in the x direction. | 
 |         sf->highbd_predict[0][0][0] = aom_highbd_convolve8_horiz; | 
 |         sf->highbd_predict[0][0][1] = aom_highbd_convolve8_avg_horiz; | 
 |         sf->highbd_predict[0][1][0] = aom_highbd_convolve8; | 
 |         sf->highbd_predict[0][1][1] = aom_highbd_convolve8_avg; | 
 |         sf->highbd_predict[1][0][0] = aom_highbd_convolve8_horiz; | 
 |         sf->highbd_predict[1][0][1] = aom_highbd_convolve8_avg_horiz; | 
 |       } else { | 
 |         // Must always scale in both directions. | 
 |         sf->highbd_predict[0][0][0] = aom_highbd_convolve8; | 
 |         sf->highbd_predict[0][0][1] = aom_highbd_convolve8_avg; | 
 |         sf->highbd_predict[0][1][0] = aom_highbd_convolve8; | 
 |         sf->highbd_predict[0][1][1] = aom_highbd_convolve8_avg; | 
 |         sf->highbd_predict[1][0][0] = aom_highbd_convolve8; | 
 |         sf->highbd_predict[1][0][1] = aom_highbd_convolve8_avg; | 
 |       } | 
 |     } | 
 |     // 2D subpel motion always gets filtered in both directions. | 
 |     sf->highbd_predict[1][1][0] = aom_highbd_convolve8; | 
 |     sf->highbd_predict[1][1][1] = aom_highbd_convolve8_avg; | 
 |   } | 
 | #endif | 
 | } |