| /* | 
 |  * Copyright (c) 2016, Alliance for Open Media. All rights reserved | 
 |  * | 
 |  * This source code is subject to the terms of the BSD 2 Clause License and | 
 |  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
 |  * was not distributed with this source code in the LICENSE file, you can | 
 |  * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
 |  * Media Patent License 1.0 was not distributed with this source code in the | 
 |  * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
 |  */ | 
 |  | 
 | #include <limits.h> | 
 | #include <math.h> | 
 | #include <stdio.h> | 
 |  | 
 | #include "./aom_dsp_rtcd.h" | 
 | #include "./aom_scale_rtcd.h" | 
 |  | 
 | #include "aom_dsp/aom_dsp_common.h" | 
 | #include "aom_mem/aom_mem.h" | 
 | #include "aom_ports/mem.h" | 
 | #include "aom_ports/system_state.h" | 
 | #include "aom_scale/aom_scale.h" | 
 | #include "aom_scale/yv12config.h" | 
 |  | 
 | #include "aom_dsp/variance.h" | 
 | #include "av1/common/entropymv.h" | 
 | #include "av1/common/quant_common.h" | 
 | #include "av1/common/reconinter.h"  // av1_setup_dst_planes() | 
 | #include "av1/encoder/aq_variance.h" | 
 | #include "av1/encoder/block.h" | 
 | #include "av1/encoder/encodeframe.h" | 
 | #include "av1/encoder/encodemb.h" | 
 | #include "av1/encoder/encodemv.h" | 
 | #include "av1/encoder/encoder.h" | 
 | #include "av1/encoder/extend.h" | 
 | #include "av1/encoder/firstpass.h" | 
 | #include "av1/encoder/mcomp.h" | 
 | #include "av1/encoder/quantize.h" | 
 | #include "av1/encoder/rd.h" | 
 |  | 
 | #define OUTPUT_FPF 0 | 
 | #define ARF_STATS_OUTPUT 0 | 
 |  | 
 | #define GROUP_ADAPTIVE_MAXQ 1 | 
 |  | 
 | #define BOOST_BREAKOUT 12.5 | 
 | #define BOOST_FACTOR 12.5 | 
 | #define ERR_DIVISOR 128.0 | 
 | #define FACTOR_PT_LOW 0.70 | 
 | #define FACTOR_PT_HIGH 0.90 | 
 | #define FIRST_PASS_Q 10.0 | 
 | #define GF_MAX_BOOST 96.0 | 
 | #define INTRA_MODE_PENALTY 1024 | 
 | #define KF_MAX_BOOST 128.0 | 
 | #define MIN_ARF_GF_BOOST 240 | 
 | #define MIN_DECAY_FACTOR 0.01 | 
 | #define MIN_KF_BOOST 300 | 
 | #define NEW_MV_MODE_PENALTY 32 | 
 | #define DARK_THRESH 64 | 
 | #define DEFAULT_GRP_WEIGHT 1.0 | 
 | #define RC_FACTOR_MIN 0.75 | 
 | #define RC_FACTOR_MAX 1.75 | 
 |  | 
 | #define NCOUNT_INTRA_THRESH 8192 | 
 | #define NCOUNT_INTRA_FACTOR 3 | 
 | #define NCOUNT_FRAME_II_THRESH 5.0 | 
 |  | 
 | #define DOUBLE_DIVIDE_CHECK(x) ((x) < 0 ? (x)-0.000001 : (x) + 0.000001) | 
 |  | 
 | #if ARF_STATS_OUTPUT | 
 | unsigned int arf_count = 0; | 
 | #endif | 
 |  | 
 | // Resets the first pass file to the given position using a relative seek from | 
 | // the current position. | 
 | static void reset_fpf_position(TWO_PASS *p, const FIRSTPASS_STATS *position) { | 
 |   p->stats_in = position; | 
 | } | 
 |  | 
 | // Read frame stats at an offset from the current position. | 
 | static const FIRSTPASS_STATS *read_frame_stats(const TWO_PASS *p, int offset) { | 
 |   if ((offset >= 0 && p->stats_in + offset >= p->stats_in_end) || | 
 |       (offset < 0 && p->stats_in + offset < p->stats_in_start)) { | 
 |     return NULL; | 
 |   } | 
 |  | 
 |   return &p->stats_in[offset]; | 
 | } | 
 |  | 
 | static int input_stats(TWO_PASS *p, FIRSTPASS_STATS *fps) { | 
 |   if (p->stats_in >= p->stats_in_end) return EOF; | 
 |  | 
 |   *fps = *p->stats_in; | 
 |   ++p->stats_in; | 
 |   return 1; | 
 | } | 
 |  | 
 | static void output_stats(FIRSTPASS_STATS *stats, | 
 |                          struct aom_codec_pkt_list *pktlist) { | 
 |   struct aom_codec_cx_pkt pkt; | 
 |   pkt.kind = AOM_CODEC_STATS_PKT; | 
 |   pkt.data.twopass_stats.buf = stats; | 
 |   pkt.data.twopass_stats.sz = sizeof(FIRSTPASS_STATS); | 
 |   aom_codec_pkt_list_add(pktlist, &pkt); | 
 |  | 
 | // TEMP debug code | 
 | #if OUTPUT_FPF | 
 |   { | 
 |     FILE *fpfile; | 
 |     fpfile = fopen("firstpass.stt", "a"); | 
 |  | 
 |     fprintf(fpfile, | 
 |             "%12.0lf %12.4lf %12.0lf %12.0lf %12.0lf %12.4lf %12.4lf" | 
 |             "%12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf" | 
 |             "%12.4lf %12.4lf %12.0lf %12.0lf %12.0lf %12.4lf\n", | 
 |             stats->frame, stats->weight, stats->intra_error, stats->coded_error, | 
 |             stats->sr_coded_error, stats->pcnt_inter, stats->pcnt_motion, | 
 |             stats->pcnt_second_ref, stats->pcnt_neutral, stats->intra_skip_pct, | 
 |             stats->inactive_zone_rows, stats->inactive_zone_cols, stats->MVr, | 
 |             stats->mvr_abs, stats->MVc, stats->mvc_abs, stats->MVrv, | 
 |             stats->MVcv, stats->mv_in_out_count, stats->new_mv_count, | 
 |             stats->count, stats->duration); | 
 |     fclose(fpfile); | 
 |   } | 
 | #endif | 
 | } | 
 |  | 
 | #if CONFIG_FP_MB_STATS | 
 | static void output_fpmb_stats(uint8_t *this_frame_mb_stats, int stats_size, | 
 |                               struct aom_codec_pkt_list *pktlist) { | 
 |   struct aom_codec_cx_pkt pkt; | 
 |   pkt.kind = AOM_CODEC_FPMB_STATS_PKT; | 
 |   pkt.data.firstpass_mb_stats.buf = this_frame_mb_stats; | 
 |   pkt.data.firstpass_mb_stats.sz = stats_size * sizeof(*this_frame_mb_stats); | 
 |   aom_codec_pkt_list_add(pktlist, &pkt); | 
 | } | 
 | #endif | 
 |  | 
 | static void zero_stats(FIRSTPASS_STATS *section) { | 
 |   section->frame = 0.0; | 
 |   section->weight = 0.0; | 
 |   section->intra_error = 0.0; | 
 |   section->coded_error = 0.0; | 
 |   section->sr_coded_error = 0.0; | 
 |   section->pcnt_inter = 0.0; | 
 |   section->pcnt_motion = 0.0; | 
 |   section->pcnt_second_ref = 0.0; | 
 |   section->pcnt_neutral = 0.0; | 
 |   section->intra_skip_pct = 0.0; | 
 |   section->inactive_zone_rows = 0.0; | 
 |   section->inactive_zone_cols = 0.0; | 
 |   section->MVr = 0.0; | 
 |   section->mvr_abs = 0.0; | 
 |   section->MVc = 0.0; | 
 |   section->mvc_abs = 0.0; | 
 |   section->MVrv = 0.0; | 
 |   section->MVcv = 0.0; | 
 |   section->mv_in_out_count = 0.0; | 
 |   section->new_mv_count = 0.0; | 
 |   section->count = 0.0; | 
 |   section->duration = 1.0; | 
 | } | 
 |  | 
 | static void accumulate_stats(FIRSTPASS_STATS *section, | 
 |                              const FIRSTPASS_STATS *frame) { | 
 |   section->frame += frame->frame; | 
 |   section->weight += frame->weight; | 
 |   section->intra_error += frame->intra_error; | 
 |   section->coded_error += frame->coded_error; | 
 |   section->sr_coded_error += frame->sr_coded_error; | 
 |   section->pcnt_inter += frame->pcnt_inter; | 
 |   section->pcnt_motion += frame->pcnt_motion; | 
 |   section->pcnt_second_ref += frame->pcnt_second_ref; | 
 |   section->pcnt_neutral += frame->pcnt_neutral; | 
 |   section->intra_skip_pct += frame->intra_skip_pct; | 
 |   section->inactive_zone_rows += frame->inactive_zone_rows; | 
 |   section->inactive_zone_cols += frame->inactive_zone_cols; | 
 |   section->MVr += frame->MVr; | 
 |   section->mvr_abs += frame->mvr_abs; | 
 |   section->MVc += frame->MVc; | 
 |   section->mvc_abs += frame->mvc_abs; | 
 |   section->MVrv += frame->MVrv; | 
 |   section->MVcv += frame->MVcv; | 
 |   section->mv_in_out_count += frame->mv_in_out_count; | 
 |   section->new_mv_count += frame->new_mv_count; | 
 |   section->count += frame->count; | 
 |   section->duration += frame->duration; | 
 | } | 
 |  | 
 | static void subtract_stats(FIRSTPASS_STATS *section, | 
 |                            const FIRSTPASS_STATS *frame) { | 
 |   section->frame -= frame->frame; | 
 |   section->weight -= frame->weight; | 
 |   section->intra_error -= frame->intra_error; | 
 |   section->coded_error -= frame->coded_error; | 
 |   section->sr_coded_error -= frame->sr_coded_error; | 
 |   section->pcnt_inter -= frame->pcnt_inter; | 
 |   section->pcnt_motion -= frame->pcnt_motion; | 
 |   section->pcnt_second_ref -= frame->pcnt_second_ref; | 
 |   section->pcnt_neutral -= frame->pcnt_neutral; | 
 |   section->intra_skip_pct -= frame->intra_skip_pct; | 
 |   section->inactive_zone_rows -= frame->inactive_zone_rows; | 
 |   section->inactive_zone_cols -= frame->inactive_zone_cols; | 
 |   section->MVr -= frame->MVr; | 
 |   section->mvr_abs -= frame->mvr_abs; | 
 |   section->MVc -= frame->MVc; | 
 |   section->mvc_abs -= frame->mvc_abs; | 
 |   section->MVrv -= frame->MVrv; | 
 |   section->MVcv -= frame->MVcv; | 
 |   section->mv_in_out_count -= frame->mv_in_out_count; | 
 |   section->new_mv_count -= frame->new_mv_count; | 
 |   section->count -= frame->count; | 
 |   section->duration -= frame->duration; | 
 | } | 
 |  | 
 | // Calculate an active area of the image that discounts formatting | 
 | // bars and partially discounts other 0 energy areas. | 
 | #define MIN_ACTIVE_AREA 0.5 | 
 | #define MAX_ACTIVE_AREA 1.0 | 
 | static double calculate_active_area(const AV1_COMP *cpi, | 
 |                                     const FIRSTPASS_STATS *this_frame) { | 
 |   double active_pct; | 
 |  | 
 |   active_pct = | 
 |       1.0 - | 
 |       ((this_frame->intra_skip_pct / 2) + | 
 |        ((this_frame->inactive_zone_rows * 2) / (double)cpi->common.mb_rows)); | 
 |   return fclamp(active_pct, MIN_ACTIVE_AREA, MAX_ACTIVE_AREA); | 
 | } | 
 |  | 
 | // Calculate a modified Error used in distributing bits between easier and | 
 | // harder frames. | 
 | #define ACT_AREA_CORRECTION 0.5 | 
 | static double calculate_modified_err(const AV1_COMP *cpi, | 
 |                                      const TWO_PASS *twopass, | 
 |                                      const AV1EncoderConfig *oxcf, | 
 |                                      const FIRSTPASS_STATS *this_frame) { | 
 |   const FIRSTPASS_STATS *const stats = &twopass->total_stats; | 
 |   const double av_weight = stats->weight / stats->count; | 
 |   const double av_err = (stats->coded_error * av_weight) / stats->count; | 
 |   double modified_error = | 
 |       av_err * pow(this_frame->coded_error * this_frame->weight / | 
 |                        DOUBLE_DIVIDE_CHECK(av_err), | 
 |                    oxcf->two_pass_vbrbias / 100.0); | 
 |  | 
 |   // Correction for active area. Frames with a reduced active area | 
 |   // (eg due to formatting bars) have a higher error per mb for the | 
 |   // remaining active MBs. The correction here assumes that coding | 
 |   // 0.5N blocks of complexity 2X is a little easier than coding N | 
 |   // blocks of complexity X. | 
 |   modified_error *= | 
 |       pow(calculate_active_area(cpi, this_frame), ACT_AREA_CORRECTION); | 
 |  | 
 |   return fclamp(modified_error, twopass->modified_error_min, | 
 |                 twopass->modified_error_max); | 
 | } | 
 |  | 
 | // This function returns the maximum target rate per frame. | 
 | static int frame_max_bits(const RATE_CONTROL *rc, | 
 |                           const AV1EncoderConfig *oxcf) { | 
 |   int64_t max_bits = ((int64_t)rc->avg_frame_bandwidth * | 
 |                       (int64_t)oxcf->two_pass_vbrmax_section) / | 
 |                      100; | 
 |   if (max_bits < 0) | 
 |     max_bits = 0; | 
 |   else if (max_bits > rc->max_frame_bandwidth) | 
 |     max_bits = rc->max_frame_bandwidth; | 
 |  | 
 |   return (int)max_bits; | 
 | } | 
 |  | 
 | void av1_init_first_pass(AV1_COMP *cpi) { | 
 |   zero_stats(&cpi->twopass.total_stats); | 
 | } | 
 |  | 
 | void av1_end_first_pass(AV1_COMP *cpi) { | 
 |   output_stats(&cpi->twopass.total_stats, cpi->output_pkt_list); | 
 | } | 
 |  | 
 | static aom_variance_fn_t get_block_variance_fn(BLOCK_SIZE bsize) { | 
 |   switch (bsize) { | 
 |     case BLOCK_8X8: return aom_mse8x8; | 
 |     case BLOCK_16X8: return aom_mse16x8; | 
 |     case BLOCK_8X16: return aom_mse8x16; | 
 |     default: return aom_mse16x16; | 
 |   } | 
 | } | 
 |  | 
 | static unsigned int get_prediction_error(BLOCK_SIZE bsize, | 
 |                                          const struct buf_2d *src, | 
 |                                          const struct buf_2d *ref) { | 
 |   unsigned int sse; | 
 |   const aom_variance_fn_t fn = get_block_variance_fn(bsize); | 
 |   fn(src->buf, src->stride, ref->buf, ref->stride, &sse); | 
 |   return sse; | 
 | } | 
 |  | 
 | #if CONFIG_AOM_HIGHBITDEPTH | 
 | static aom_variance_fn_t highbd_get_block_variance_fn(BLOCK_SIZE bsize, | 
 |                                                       int bd) { | 
 |   switch (bd) { | 
 |     default: | 
 |       switch (bsize) { | 
 |         case BLOCK_8X8: return aom_highbd_8_mse8x8; | 
 |         case BLOCK_16X8: return aom_highbd_8_mse16x8; | 
 |         case BLOCK_8X16: return aom_highbd_8_mse8x16; | 
 |         default: return aom_highbd_8_mse16x16; | 
 |       } | 
 |       break; | 
 |     case 10: | 
 |       switch (bsize) { | 
 |         case BLOCK_8X8: return aom_highbd_10_mse8x8; | 
 |         case BLOCK_16X8: return aom_highbd_10_mse16x8; | 
 |         case BLOCK_8X16: return aom_highbd_10_mse8x16; | 
 |         default: return aom_highbd_10_mse16x16; | 
 |       } | 
 |       break; | 
 |     case 12: | 
 |       switch (bsize) { | 
 |         case BLOCK_8X8: return aom_highbd_12_mse8x8; | 
 |         case BLOCK_16X8: return aom_highbd_12_mse16x8; | 
 |         case BLOCK_8X16: return aom_highbd_12_mse8x16; | 
 |         default: return aom_highbd_12_mse16x16; | 
 |       } | 
 |       break; | 
 |   } | 
 | } | 
 |  | 
 | static unsigned int highbd_get_prediction_error(BLOCK_SIZE bsize, | 
 |                                                 const struct buf_2d *src, | 
 |                                                 const struct buf_2d *ref, | 
 |                                                 int bd) { | 
 |   unsigned int sse; | 
 |   const aom_variance_fn_t fn = highbd_get_block_variance_fn(bsize, bd); | 
 |   fn(src->buf, src->stride, ref->buf, ref->stride, &sse); | 
 |   return sse; | 
 | } | 
 | #endif  // CONFIG_AOM_HIGHBITDEPTH | 
 |  | 
 | // Refine the motion search range according to the frame dimension | 
 | // for first pass test. | 
 | static int get_search_range(const AV1_COMP *cpi) { | 
 |   int sr = 0; | 
 |   const int dim = AOMMIN(cpi->initial_width, cpi->initial_height); | 
 |  | 
 |   while ((dim << sr) < MAX_FULL_PEL_VAL) ++sr; | 
 |   return sr; | 
 | } | 
 |  | 
 | static void first_pass_motion_search(AV1_COMP *cpi, MACROBLOCK *x, | 
 |                                      const MV *ref_mv, MV *best_mv, | 
 |                                      int *best_motion_err) { | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   MV tmp_mv = { 0, 0 }; | 
 |   MV ref_mv_full = { ref_mv->row >> 3, ref_mv->col >> 3 }; | 
 |   int num00, tmp_err, n; | 
 |   const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type; | 
 |   aom_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[bsize]; | 
 |   const int new_mv_mode_penalty = NEW_MV_MODE_PENALTY; | 
 |  | 
 |   int step_param = 3; | 
 |   int further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param; | 
 |   const int sr = get_search_range(cpi); | 
 |   step_param += sr; | 
 |   further_steps -= sr; | 
 |  | 
 |   // Override the default variance function to use MSE. | 
 |   v_fn_ptr.vf = get_block_variance_fn(bsize); | 
 | #if CONFIG_AOM_HIGHBITDEPTH | 
 |   if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { | 
 |     v_fn_ptr.vf = highbd_get_block_variance_fn(bsize, xd->bd); | 
 |   } | 
 | #endif  // CONFIG_AOM_HIGHBITDEPTH | 
 |  | 
 |   // Center the initial step/diamond search on best mv. | 
 |   tmp_err = cpi->diamond_search_sad(x, &cpi->ss_cfg, &ref_mv_full, &tmp_mv, | 
 |                                     step_param, x->sadperbit16, &num00, | 
 |                                     &v_fn_ptr, ref_mv); | 
 |   if (tmp_err < INT_MAX) | 
 |     tmp_err = av1_get_mvpred_var(x, &tmp_mv, ref_mv, &v_fn_ptr, 1); | 
 |   if (tmp_err < INT_MAX - new_mv_mode_penalty) tmp_err += new_mv_mode_penalty; | 
 |  | 
 |   if (tmp_err < *best_motion_err) { | 
 |     *best_motion_err = tmp_err; | 
 |     *best_mv = tmp_mv; | 
 |   } | 
 |  | 
 |   // Carry out further step/diamond searches as necessary. | 
 |   n = num00; | 
 |   num00 = 0; | 
 |  | 
 |   while (n < further_steps) { | 
 |     ++n; | 
 |  | 
 |     if (num00) { | 
 |       --num00; | 
 |     } else { | 
 |       tmp_err = cpi->diamond_search_sad(x, &cpi->ss_cfg, &ref_mv_full, &tmp_mv, | 
 |                                         step_param + n, x->sadperbit16, &num00, | 
 |                                         &v_fn_ptr, ref_mv); | 
 |       if (tmp_err < INT_MAX) | 
 |         tmp_err = av1_get_mvpred_var(x, &tmp_mv, ref_mv, &v_fn_ptr, 1); | 
 |       if (tmp_err < INT_MAX - new_mv_mode_penalty) | 
 |         tmp_err += new_mv_mode_penalty; | 
 |  | 
 |       if (tmp_err < *best_motion_err) { | 
 |         *best_motion_err = tmp_err; | 
 |         *best_mv = tmp_mv; | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static BLOCK_SIZE get_bsize(const AV1_COMMON *cm, int mb_row, int mb_col) { | 
 |   if (2 * mb_col + 1 < cm->mi_cols) { | 
 |     return 2 * mb_row + 1 < cm->mi_rows ? BLOCK_16X16 : BLOCK_16X8; | 
 |   } else { | 
 |     return 2 * mb_row + 1 < cm->mi_rows ? BLOCK_8X16 : BLOCK_8X8; | 
 |   } | 
 | } | 
 |  | 
 | static int find_fp_qindex(aom_bit_depth_t bit_depth) { | 
 |   int i; | 
 |  | 
 |   for (i = 0; i < QINDEX_RANGE; ++i) | 
 |     if (av1_convert_qindex_to_q(i, bit_depth) >= FIRST_PASS_Q) break; | 
 |  | 
 |   if (i == QINDEX_RANGE) i--; | 
 |  | 
 |   return i; | 
 | } | 
 |  | 
 | static void set_first_pass_params(AV1_COMP *cpi) { | 
 |   AV1_COMMON *const cm = &cpi->common; | 
 |   if (!cpi->refresh_alt_ref_frame && | 
 |       (cm->current_video_frame == 0 || (cpi->frame_flags & FRAMEFLAGS_KEY))) { | 
 |     cm->frame_type = KEY_FRAME; | 
 |   } else { | 
 |     cm->frame_type = INTER_FRAME; | 
 |   } | 
 |   // Do not use periodic key frames. | 
 |   cpi->rc.frames_to_key = INT_MAX; | 
 | } | 
 |  | 
 | #define UL_INTRA_THRESH 50 | 
 | #define INVALID_ROW -1 | 
 | void av1_first_pass(AV1_COMP *cpi, const struct lookahead_entry *source) { | 
 |   int mb_row, mb_col; | 
 |   MACROBLOCK *const x = &cpi->td.mb; | 
 |   AV1_COMMON *const cm = &cpi->common; | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   TileInfo tile; | 
 |   struct macroblock_plane *const p = x->plane; | 
 |   struct macroblockd_plane *const pd = xd->plane; | 
 |   const PICK_MODE_CONTEXT *ctx = &cpi->td.pc_root->none; | 
 |   int i; | 
 |  | 
 |   int recon_yoffset, recon_uvoffset; | 
 |   int64_t intra_error = 0; | 
 |   int64_t coded_error = 0; | 
 |   int64_t sr_coded_error = 0; | 
 |  | 
 |   int sum_mvr = 0, sum_mvc = 0; | 
 |   int sum_mvr_abs = 0, sum_mvc_abs = 0; | 
 |   int64_t sum_mvrs = 0, sum_mvcs = 0; | 
 |   int mvcount = 0; | 
 |   int intercount = 0; | 
 |   int second_ref_count = 0; | 
 |   const int intrapenalty = INTRA_MODE_PENALTY; | 
 |   double neutral_count; | 
 |   int intra_skip_count = 0; | 
 |   int image_data_start_row = INVALID_ROW; | 
 |   int new_mv_count = 0; | 
 |   int sum_in_vectors = 0; | 
 |   MV lastmv = { 0, 0 }; | 
 |   TWO_PASS *twopass = &cpi->twopass; | 
 |   const MV zero_mv = { 0, 0 }; | 
 |   int recon_y_stride, recon_uv_stride, uv_mb_height; | 
 |  | 
 |   YV12_BUFFER_CONFIG *const lst_yv12 = get_ref_frame_buffer(cpi, LAST_FRAME); | 
 |   YV12_BUFFER_CONFIG *gld_yv12 = get_ref_frame_buffer(cpi, GOLDEN_FRAME); | 
 |   YV12_BUFFER_CONFIG *const new_yv12 = get_frame_new_buffer(cm); | 
 |   const YV12_BUFFER_CONFIG *first_ref_buf = lst_yv12; | 
 |   double intra_factor; | 
 |   double brightness_factor; | 
 |   BufferPool *const pool = cm->buffer_pool; | 
 |  | 
 |   // First pass code requires valid last and new frame buffers. | 
 |   assert(new_yv12 != NULL); | 
 |   assert(frame_is_intra_only(cm) || (lst_yv12 != NULL)); | 
 |  | 
 | #if CONFIG_FP_MB_STATS | 
 |   if (cpi->use_fp_mb_stats) { | 
 |     av1_zero_array(cpi->twopass.frame_mb_stats_buf, cpi->initial_mbs); | 
 |   } | 
 | #endif | 
 |  | 
 |   aom_clear_system_state(); | 
 |  | 
 |   intra_factor = 0.0; | 
 |   brightness_factor = 0.0; | 
 |   neutral_count = 0.0; | 
 |  | 
 |   set_first_pass_params(cpi); | 
 |   av1_set_quantizer(cm, find_fp_qindex(cm->bit_depth)); | 
 |  | 
 |   av1_setup_block_planes(&x->e_mbd, cm->subsampling_x, cm->subsampling_y); | 
 |  | 
 |   av1_setup_src_planes(x, cpi->Source, 0, 0); | 
 |   av1_setup_dst_planes(xd->plane, new_yv12, 0, 0); | 
 |  | 
 |   if (!frame_is_intra_only(cm)) { | 
 |     av1_setup_pre_planes(xd, 0, first_ref_buf, 0, 0, NULL); | 
 |   } | 
 |  | 
 |   xd->mi = cm->mi_grid_visible; | 
 |   xd->mi[0] = cm->mi; | 
 |  | 
 |   av1_frame_init_quantizer(cpi); | 
 |  | 
 |   for (i = 0; i < MAX_MB_PLANE; ++i) { | 
 |     p[i].coeff = ctx->coeff[i]; | 
 |     p[i].qcoeff = ctx->qcoeff[i]; | 
 |     pd[i].dqcoeff = ctx->dqcoeff[i]; | 
 |     p[i].eobs = ctx->eobs[i]; | 
 |   } | 
 |  | 
 |   av1_init_mv_probs(cm); | 
 |   av1_initialize_rd_consts(cpi); | 
 |  | 
 |   // Tiling is ignored in the first pass. | 
 |   av1_tile_init(&tile, cm, 0, 0); | 
 |  | 
 |   recon_y_stride = new_yv12->y_stride; | 
 |   recon_uv_stride = new_yv12->uv_stride; | 
 |   uv_mb_height = 16 >> (new_yv12->y_height > new_yv12->uv_height); | 
 |  | 
 |   for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) { | 
 |     MV best_ref_mv = { 0, 0 }; | 
 |  | 
 |     // Reset above block coeffs. | 
 |     xd->up_available = (mb_row != 0); | 
 |     recon_yoffset = (mb_row * recon_y_stride * 16); | 
 |     recon_uvoffset = (mb_row * recon_uv_stride * uv_mb_height); | 
 |  | 
 |     // Set up limit values for motion vectors to prevent them extending | 
 |     // outside the UMV borders. | 
 |     x->mv_row_min = -((mb_row * 16) + BORDER_MV_PIXELS_B16); | 
 |     x->mv_row_max = ((cm->mb_rows - 1 - mb_row) * 16) + BORDER_MV_PIXELS_B16; | 
 |  | 
 |     for (mb_col = 0; mb_col < cm->mb_cols; ++mb_col) { | 
 |       int this_error; | 
 |       const int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row); | 
 |       const BLOCK_SIZE bsize = get_bsize(cm, mb_row, mb_col); | 
 |       double log_intra; | 
 |       int level_sample; | 
 |  | 
 | #if CONFIG_FP_MB_STATS | 
 |       const int mb_index = mb_row * cm->mb_cols + mb_col; | 
 | #endif | 
 |  | 
 |       aom_clear_system_state(); | 
 |  | 
 |       xd->plane[0].dst.buf = new_yv12->y_buffer + recon_yoffset; | 
 |       xd->plane[1].dst.buf = new_yv12->u_buffer + recon_uvoffset; | 
 |       xd->plane[2].dst.buf = new_yv12->v_buffer + recon_uvoffset; | 
 |       xd->left_available = (mb_col != 0); | 
 |       xd->mi[0]->mbmi.sb_type = bsize; | 
 |       xd->mi[0]->mbmi.ref_frame[0] = INTRA_FRAME; | 
 |       set_mi_row_col(xd, &tile, mb_row << 1, num_8x8_blocks_high_lookup[bsize], | 
 |                      mb_col << 1, num_8x8_blocks_wide_lookup[bsize], | 
 |                      cm->mi_rows, cm->mi_cols); | 
 |  | 
 |       // Do intra 16x16 prediction. | 
 |       xd->mi[0]->mbmi.segment_id = 0; | 
 |       xd->mi[0]->mbmi.mode = DC_PRED; | 
 |       xd->mi[0]->mbmi.tx_size = | 
 |           use_dc_pred ? (bsize >= BLOCK_16X16 ? TX_16X16 : TX_8X8) : TX_4X4; | 
 |       av1_encode_intra_block_plane(x, bsize, 0); | 
 |       this_error = aom_get_mb_ss(x->plane[0].src_diff); | 
 |  | 
 |       // Keep a record of blocks that have almost no intra error residual | 
 |       // (i.e. are in effect completely flat and untextured in the intra | 
 |       // domain). In natural videos this is uncommon, but it is much more | 
 |       // common in animations, graphics and screen content, so may be used | 
 |       // as a signal to detect these types of content. | 
 |       if (this_error < UL_INTRA_THRESH) { | 
 |         ++intra_skip_count; | 
 |       } else if ((mb_col > 0) && (image_data_start_row == INVALID_ROW)) { | 
 |         image_data_start_row = mb_row; | 
 |       } | 
 |  | 
 | #if CONFIG_AOM_HIGHBITDEPTH | 
 |       if (cm->use_highbitdepth) { | 
 |         switch (cm->bit_depth) { | 
 |           case AOM_BITS_8: break; | 
 |           case AOM_BITS_10: this_error >>= 4; break; | 
 |           case AOM_BITS_12: this_error >>= 8; break; | 
 |           default: | 
 |             assert(0 && | 
 |                    "cm->bit_depth should be AOM_BITS_8, " | 
 |                    "AOM_BITS_10 or AOM_BITS_12"); | 
 |             return; | 
 |         } | 
 |       } | 
 | #endif  // CONFIG_AOM_HIGHBITDEPTH | 
 |  | 
 |       aom_clear_system_state(); | 
 |       log_intra = log(this_error + 1.0); | 
 |       if (log_intra < 10.0) | 
 |         intra_factor += 1.0 + ((10.0 - log_intra) * 0.05); | 
 |       else | 
 |         intra_factor += 1.0; | 
 |  | 
 | #if CONFIG_AOM_HIGHBITDEPTH | 
 |       if (cm->use_highbitdepth) | 
 |         level_sample = CONVERT_TO_SHORTPTR(x->plane[0].src.buf)[0]; | 
 |       else | 
 |         level_sample = x->plane[0].src.buf[0]; | 
 | #else | 
 |       level_sample = x->plane[0].src.buf[0]; | 
 | #endif | 
 |       if ((level_sample < DARK_THRESH) && (log_intra < 9.0)) | 
 |         brightness_factor += 1.0 + (0.01 * (DARK_THRESH - level_sample)); | 
 |       else | 
 |         brightness_factor += 1.0; | 
 |  | 
 |       // Intrapenalty below deals with situations where the intra and inter | 
 |       // error scores are very low (e.g. a plain black frame). | 
 |       // We do not have special cases in first pass for 0,0 and nearest etc so | 
 |       // all inter modes carry an overhead cost estimate for the mv. | 
 |       // When the error score is very low this causes us to pick all or lots of | 
 |       // INTRA modes and throw lots of key frames. | 
 |       // This penalty adds a cost matching that of a 0,0 mv to the intra case. | 
 |       this_error += intrapenalty; | 
 |  | 
 |       // Accumulate the intra error. | 
 |       intra_error += (int64_t)this_error; | 
 |  | 
 | #if CONFIG_FP_MB_STATS | 
 |       if (cpi->use_fp_mb_stats) { | 
 |         // initialization | 
 |         cpi->twopass.frame_mb_stats_buf[mb_index] = 0; | 
 |       } | 
 | #endif | 
 |  | 
 |       // Set up limit values for motion vectors to prevent them extending | 
 |       // outside the UMV borders. | 
 |       x->mv_col_min = -((mb_col * 16) + BORDER_MV_PIXELS_B16); | 
 |       x->mv_col_max = ((cm->mb_cols - 1 - mb_col) * 16) + BORDER_MV_PIXELS_B16; | 
 |  | 
 |       // Other than for the first frame do a motion search. | 
 |       if (cm->current_video_frame > 0) { | 
 |         int tmp_err, motion_error, raw_motion_error; | 
 |         // Assume 0,0 motion with no mv overhead. | 
 |         MV mv = { 0, 0 }, tmp_mv = { 0, 0 }; | 
 |         struct buf_2d unscaled_last_source_buf_2d; | 
 |  | 
 |         xd->plane[0].pre[0].buf = first_ref_buf->y_buffer + recon_yoffset; | 
 | #if CONFIG_AOM_HIGHBITDEPTH | 
 |         if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { | 
 |           motion_error = highbd_get_prediction_error( | 
 |               bsize, &x->plane[0].src, &xd->plane[0].pre[0], xd->bd); | 
 |         } else { | 
 |           motion_error = get_prediction_error(bsize, &x->plane[0].src, | 
 |                                               &xd->plane[0].pre[0]); | 
 |         } | 
 | #else | 
 |         motion_error = | 
 |             get_prediction_error(bsize, &x->plane[0].src, &xd->plane[0].pre[0]); | 
 | #endif  // CONFIG_AOM_HIGHBITDEPTH | 
 |  | 
 |         // Compute the motion error of the 0,0 motion using the last source | 
 |         // frame as the reference. Skip the further motion search on | 
 |         // reconstructed frame if this error is small. | 
 |         unscaled_last_source_buf_2d.buf = | 
 |             cpi->unscaled_last_source->y_buffer + recon_yoffset; | 
 |         unscaled_last_source_buf_2d.stride = | 
 |             cpi->unscaled_last_source->y_stride; | 
 | #if CONFIG_AOM_HIGHBITDEPTH | 
 |         if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { | 
 |           raw_motion_error = highbd_get_prediction_error( | 
 |               bsize, &x->plane[0].src, &unscaled_last_source_buf_2d, xd->bd); | 
 |         } else { | 
 |           raw_motion_error = get_prediction_error(bsize, &x->plane[0].src, | 
 |                                                   &unscaled_last_source_buf_2d); | 
 |         } | 
 | #else | 
 |         raw_motion_error = get_prediction_error(bsize, &x->plane[0].src, | 
 |                                                 &unscaled_last_source_buf_2d); | 
 | #endif  // CONFIG_AOM_HIGHBITDEPTH | 
 |  | 
 |         // TODO(pengchong): Replace the hard-coded threshold | 
 |         if (raw_motion_error > 25) { | 
 |           // Test last reference frame using the previous best mv as the | 
 |           // starting point (best reference) for the search. | 
 |           first_pass_motion_search(cpi, x, &best_ref_mv, &mv, &motion_error); | 
 |  | 
 |           // If the current best reference mv is not centered on 0,0 then do a | 
 |           // 0,0 based search as well. | 
 |           if (!is_zero_mv(&best_ref_mv)) { | 
 |             tmp_err = INT_MAX; | 
 |             first_pass_motion_search(cpi, x, &zero_mv, &tmp_mv, &tmp_err); | 
 |  | 
 |             if (tmp_err < motion_error) { | 
 |               motion_error = tmp_err; | 
 |               mv = tmp_mv; | 
 |             } | 
 |           } | 
 |  | 
 |           // Search in an older reference frame. | 
 |           if ((cm->current_video_frame > 1) && gld_yv12 != NULL) { | 
 |             // Assume 0,0 motion with no mv overhead. | 
 |             int gf_motion_error; | 
 |  | 
 |             xd->plane[0].pre[0].buf = gld_yv12->y_buffer + recon_yoffset; | 
 | #if CONFIG_AOM_HIGHBITDEPTH | 
 |             if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { | 
 |               gf_motion_error = highbd_get_prediction_error( | 
 |                   bsize, &x->plane[0].src, &xd->plane[0].pre[0], xd->bd); | 
 |             } else { | 
 |               gf_motion_error = get_prediction_error(bsize, &x->plane[0].src, | 
 |                                                      &xd->plane[0].pre[0]); | 
 |             } | 
 | #else | 
 |             gf_motion_error = get_prediction_error(bsize, &x->plane[0].src, | 
 |                                                    &xd->plane[0].pre[0]); | 
 | #endif  // CONFIG_AOM_HIGHBITDEPTH | 
 |  | 
 |             first_pass_motion_search(cpi, x, &zero_mv, &tmp_mv, | 
 |                                      &gf_motion_error); | 
 |  | 
 |             if (gf_motion_error < motion_error && gf_motion_error < this_error) | 
 |               ++second_ref_count; | 
 |  | 
 |             // Reset to last frame as reference buffer. | 
 |             xd->plane[0].pre[0].buf = first_ref_buf->y_buffer + recon_yoffset; | 
 |             xd->plane[1].pre[0].buf = first_ref_buf->u_buffer + recon_uvoffset; | 
 |             xd->plane[2].pre[0].buf = first_ref_buf->v_buffer + recon_uvoffset; | 
 |  | 
 |             // In accumulating a score for the older reference frame take the | 
 |             // best of the motion predicted score and the intra coded error | 
 |             // (just as will be done for) accumulation of "coded_error" for | 
 |             // the last frame. | 
 |             if (gf_motion_error < this_error) | 
 |               sr_coded_error += gf_motion_error; | 
 |             else | 
 |               sr_coded_error += this_error; | 
 |           } else { | 
 |             sr_coded_error += motion_error; | 
 |           } | 
 |         } else { | 
 |           sr_coded_error += motion_error; | 
 |         } | 
 |  | 
 |         // Start by assuming that intra mode is best. | 
 |         best_ref_mv.row = 0; | 
 |         best_ref_mv.col = 0; | 
 |  | 
 | #if CONFIG_FP_MB_STATS | 
 |         if (cpi->use_fp_mb_stats) { | 
 |           // intra predication statistics | 
 |           cpi->twopass.frame_mb_stats_buf[mb_index] = 0; | 
 |           cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_DCINTRA_MASK; | 
 |           cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_MOTION_ZERO_MASK; | 
 |           if (this_error > FPMB_ERROR_LARGE_TH) { | 
 |             cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_ERROR_LARGE_MASK; | 
 |           } else if (this_error < FPMB_ERROR_SMALL_TH) { | 
 |             cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_ERROR_SMALL_MASK; | 
 |           } | 
 |         } | 
 | #endif | 
 |  | 
 |         if (motion_error <= this_error) { | 
 |           aom_clear_system_state(); | 
 |  | 
 |           // Keep a count of cases where the inter and intra were very close | 
 |           // and very low. This helps with scene cut detection for example in | 
 |           // cropped clips with black bars at the sides or top and bottom. | 
 |           if (((this_error - intrapenalty) * 9 <= motion_error * 10) && | 
 |               (this_error < (2 * intrapenalty))) { | 
 |             neutral_count += 1.0; | 
 |             // Also track cases where the intra is not much worse than the inter | 
 |             // and use this in limiting the GF/arf group length. | 
 |           } else if ((this_error > NCOUNT_INTRA_THRESH) && | 
 |                      (this_error < (NCOUNT_INTRA_FACTOR * motion_error))) { | 
 |             neutral_count += | 
 |                 (double)motion_error / DOUBLE_DIVIDE_CHECK((double)this_error); | 
 |           } | 
 |  | 
 |           mv.row *= 8; | 
 |           mv.col *= 8; | 
 |           this_error = motion_error; | 
 |           xd->mi[0]->mbmi.mode = NEWMV; | 
 |           xd->mi[0]->mbmi.mv[0].as_mv = mv; | 
 |           xd->mi[0]->mbmi.tx_size = TX_4X4; | 
 |           xd->mi[0]->mbmi.ref_frame[0] = LAST_FRAME; | 
 |           xd->mi[0]->mbmi.ref_frame[1] = NONE; | 
 |           av1_build_inter_predictors_sby(xd, mb_row << 1, mb_col << 1, bsize); | 
 |           av1_encode_sby_pass1(x, bsize); | 
 |           sum_mvr += mv.row; | 
 |           sum_mvr_abs += abs(mv.row); | 
 |           sum_mvc += mv.col; | 
 |           sum_mvc_abs += abs(mv.col); | 
 |           sum_mvrs += mv.row * mv.row; | 
 |           sum_mvcs += mv.col * mv.col; | 
 |           ++intercount; | 
 |  | 
 |           best_ref_mv = mv; | 
 |  | 
 | #if CONFIG_FP_MB_STATS | 
 |           if (cpi->use_fp_mb_stats) { | 
 |             // inter predication statistics | 
 |             cpi->twopass.frame_mb_stats_buf[mb_index] = 0; | 
 |             cpi->twopass.frame_mb_stats_buf[mb_index] &= ~FPMB_DCINTRA_MASK; | 
 |             cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_MOTION_ZERO_MASK; | 
 |             if (this_error > FPMB_ERROR_LARGE_TH) { | 
 |               cpi->twopass.frame_mb_stats_buf[mb_index] |= | 
 |                   FPMB_ERROR_LARGE_MASK; | 
 |             } else if (this_error < FPMB_ERROR_SMALL_TH) { | 
 |               cpi->twopass.frame_mb_stats_buf[mb_index] |= | 
 |                   FPMB_ERROR_SMALL_MASK; | 
 |             } | 
 |           } | 
 | #endif | 
 |  | 
 |           if (!is_zero_mv(&mv)) { | 
 |             ++mvcount; | 
 |  | 
 | #if CONFIG_FP_MB_STATS | 
 |             if (cpi->use_fp_mb_stats) { | 
 |               cpi->twopass.frame_mb_stats_buf[mb_index] &= | 
 |                   ~FPMB_MOTION_ZERO_MASK; | 
 |               // check estimated motion direction | 
 |               if (mv.col > 0 && mv.col >= abs(mv.row)) { | 
 |                 // right direction | 
 |                 cpi->twopass.frame_mb_stats_buf[mb_index] |= | 
 |                     FPMB_MOTION_RIGHT_MASK; | 
 |               } else if (mv.row < 0 && abs(mv.row) >= abs(mv.col)) { | 
 |                 // up direction | 
 |                 cpi->twopass.frame_mb_stats_buf[mb_index] |= | 
 |                     FPMB_MOTION_UP_MASK; | 
 |               } else if (mv.col < 0 && abs(mv.col) >= abs(mv.row)) { | 
 |                 // left direction | 
 |                 cpi->twopass.frame_mb_stats_buf[mb_index] |= | 
 |                     FPMB_MOTION_LEFT_MASK; | 
 |               } else { | 
 |                 // down direction | 
 |                 cpi->twopass.frame_mb_stats_buf[mb_index] |= | 
 |                     FPMB_MOTION_DOWN_MASK; | 
 |               } | 
 |             } | 
 | #endif | 
 |  | 
 |             // Non-zero vector, was it different from the last non zero vector? | 
 |             if (!is_equal_mv(&mv, &lastmv)) ++new_mv_count; | 
 |             lastmv = mv; | 
 |  | 
 |             // Does the row vector point inwards or outwards? | 
 |             if (mb_row < cm->mb_rows / 2) { | 
 |               if (mv.row > 0) | 
 |                 --sum_in_vectors; | 
 |               else if (mv.row < 0) | 
 |                 ++sum_in_vectors; | 
 |             } else if (mb_row > cm->mb_rows / 2) { | 
 |               if (mv.row > 0) | 
 |                 ++sum_in_vectors; | 
 |               else if (mv.row < 0) | 
 |                 --sum_in_vectors; | 
 |             } | 
 |  | 
 |             // Does the col vector point inwards or outwards? | 
 |             if (mb_col < cm->mb_cols / 2) { | 
 |               if (mv.col > 0) | 
 |                 --sum_in_vectors; | 
 |               else if (mv.col < 0) | 
 |                 ++sum_in_vectors; | 
 |             } else if (mb_col > cm->mb_cols / 2) { | 
 |               if (mv.col > 0) | 
 |                 ++sum_in_vectors; | 
 |               else if (mv.col < 0) | 
 |                 --sum_in_vectors; | 
 |             } | 
 |           } | 
 |         } | 
 |       } else { | 
 |         sr_coded_error += (int64_t)this_error; | 
 |       } | 
 |       coded_error += (int64_t)this_error; | 
 |  | 
 |       // Adjust to the next column of MBs. | 
 |       x->plane[0].src.buf += 16; | 
 |       x->plane[1].src.buf += uv_mb_height; | 
 |       x->plane[2].src.buf += uv_mb_height; | 
 |  | 
 |       recon_yoffset += 16; | 
 |       recon_uvoffset += uv_mb_height; | 
 |     } | 
 |  | 
 |     // Adjust to the next row of MBs. | 
 |     x->plane[0].src.buf += 16 * x->plane[0].src.stride - 16 * cm->mb_cols; | 
 |     x->plane[1].src.buf += | 
 |         uv_mb_height * x->plane[1].src.stride - uv_mb_height * cm->mb_cols; | 
 |     x->plane[2].src.buf += | 
 |         uv_mb_height * x->plane[1].src.stride - uv_mb_height * cm->mb_cols; | 
 |  | 
 |     aom_clear_system_state(); | 
 |   } | 
 |  | 
 |   // Clamp the image start to rows/2. This number of rows is discarded top | 
 |   // and bottom as dead data so rows / 2 means the frame is blank. | 
 |   if ((image_data_start_row > cm->mb_rows / 2) || | 
 |       (image_data_start_row == INVALID_ROW)) { | 
 |     image_data_start_row = cm->mb_rows / 2; | 
 |   } | 
 |   // Exclude any image dead zone | 
 |   if (image_data_start_row > 0) { | 
 |     intra_skip_count = | 
 |         AOMMAX(0, intra_skip_count - (image_data_start_row * cm->mb_cols * 2)); | 
 |   } | 
 |  | 
 |   { | 
 |     FIRSTPASS_STATS fps; | 
 |     // The minimum error here insures some bit allocation to frames even | 
 |     // in static regions. The allocation per MB declines for larger formats | 
 |     // where the typical "real" energy per MB also falls. | 
 |     // Initial estimate here uses sqrt(mbs) to define the min_err, where the | 
 |     // number of mbs is proportional to the image area. | 
 |     const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE) | 
 |                             ? cpi->initial_mbs | 
 |                             : cpi->common.MBs; | 
 |     const double min_err = 200 * sqrt(num_mbs); | 
 |  | 
 |     intra_factor = intra_factor / (double)num_mbs; | 
 |     brightness_factor = brightness_factor / (double)num_mbs; | 
 |     fps.weight = intra_factor * brightness_factor; | 
 |  | 
 |     fps.frame = cm->current_video_frame; | 
 |     fps.coded_error = (double)(coded_error >> 8) + min_err; | 
 |     fps.sr_coded_error = (double)(sr_coded_error >> 8) + min_err; | 
 |     fps.intra_error = (double)(intra_error >> 8) + min_err; | 
 |     fps.count = 1.0; | 
 |     fps.pcnt_inter = (double)intercount / num_mbs; | 
 |     fps.pcnt_second_ref = (double)second_ref_count / num_mbs; | 
 |     fps.pcnt_neutral = (double)neutral_count / num_mbs; | 
 |     fps.intra_skip_pct = (double)intra_skip_count / num_mbs; | 
 |     fps.inactive_zone_rows = (double)image_data_start_row; | 
 |     fps.inactive_zone_cols = (double)0;  // TODO(paulwilkins): fix | 
 |  | 
 |     if (mvcount > 0) { | 
 |       fps.MVr = (double)sum_mvr / mvcount; | 
 |       fps.mvr_abs = (double)sum_mvr_abs / mvcount; | 
 |       fps.MVc = (double)sum_mvc / mvcount; | 
 |       fps.mvc_abs = (double)sum_mvc_abs / mvcount; | 
 |       fps.MVrv = | 
 |           ((double)sum_mvrs - ((double)sum_mvr * sum_mvr / mvcount)) / mvcount; | 
 |       fps.MVcv = | 
 |           ((double)sum_mvcs - ((double)sum_mvc * sum_mvc / mvcount)) / mvcount; | 
 |       fps.mv_in_out_count = (double)sum_in_vectors / (mvcount * 2); | 
 |       fps.new_mv_count = new_mv_count; | 
 |       fps.pcnt_motion = (double)mvcount / num_mbs; | 
 |     } else { | 
 |       fps.MVr = 0.0; | 
 |       fps.mvr_abs = 0.0; | 
 |       fps.MVc = 0.0; | 
 |       fps.mvc_abs = 0.0; | 
 |       fps.MVrv = 0.0; | 
 |       fps.MVcv = 0.0; | 
 |       fps.mv_in_out_count = 0.0; | 
 |       fps.new_mv_count = 0.0; | 
 |       fps.pcnt_motion = 0.0; | 
 |     } | 
 |  | 
 |     // TODO(paulwilkins):  Handle the case when duration is set to 0, or | 
 |     // something less than the full time between subsequent values of | 
 |     // cpi->source_time_stamp. | 
 |     fps.duration = (double)(source->ts_end - source->ts_start); | 
 |  | 
 |     // Don't want to do output stats with a stack variable! | 
 |     twopass->this_frame_stats = fps; | 
 |     output_stats(&twopass->this_frame_stats, cpi->output_pkt_list); | 
 |     accumulate_stats(&twopass->total_stats, &fps); | 
 |  | 
 | #if CONFIG_FP_MB_STATS | 
 |     if (cpi->use_fp_mb_stats) { | 
 |       output_fpmb_stats(twopass->frame_mb_stats_buf, cpi->initial_mbs, | 
 |                         cpi->output_pkt_list); | 
 |     } | 
 | #endif | 
 |   } | 
 |  | 
 |   // Copy the previous Last Frame back into gf and and arf buffers if | 
 |   // the prediction is good enough... but also don't allow it to lag too far. | 
 |   if ((twopass->sr_update_lag > 3) || | 
 |       ((cm->current_video_frame > 0) && | 
 |        (twopass->this_frame_stats.pcnt_inter > 0.20) && | 
 |        ((twopass->this_frame_stats.intra_error / | 
 |          DOUBLE_DIVIDE_CHECK(twopass->this_frame_stats.coded_error)) > 2.0))) { | 
 |     if (gld_yv12 != NULL) { | 
 | #if CONFIG_EXT_REFS | 
 |       ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->gld_fb_idx], | 
 |                  cm->ref_frame_map[cpi->lst_fb_idxes[LAST_FRAME - LAST_FRAME]]); | 
 | #else | 
 |       ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->gld_fb_idx], | 
 |                  cm->ref_frame_map[cpi->lst_fb_idx]); | 
 | #endif  // CONFIG_EXT_REFS | 
 |     } | 
 |     twopass->sr_update_lag = 1; | 
 |   } else { | 
 |     ++twopass->sr_update_lag; | 
 |   } | 
 |  | 
 |   aom_extend_frame_borders(new_yv12); | 
 |  | 
 | // The frame we just compressed now becomes the last frame. | 
 | #if CONFIG_EXT_REFS | 
 |   ref_cnt_fb(pool->frame_bufs, | 
 |              &cm->ref_frame_map[cpi->lst_fb_idxes[LAST_FRAME - LAST_FRAME]], | 
 |              cm->new_fb_idx); | 
 | #else | 
 |   ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->lst_fb_idx], | 
 |              cm->new_fb_idx); | 
 | #endif  // CONFIG_EXT_REFS | 
 |  | 
 |   // Special case for the first frame. Copy into the GF buffer as a second | 
 |   // reference. | 
 |   if (cm->current_video_frame == 0 && cpi->gld_fb_idx != INVALID_IDX) { | 
 | #if CONFIG_EXT_REFS | 
 |     ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->gld_fb_idx], | 
 |                cm->ref_frame_map[cpi->lst_fb_idxes[LAST_FRAME - LAST_FRAME]]); | 
 | #else | 
 |     ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->gld_fb_idx], | 
 |                cm->ref_frame_map[cpi->lst_fb_idx]); | 
 | #endif  // CONFIG_EXT_REFS | 
 |   } | 
 |  | 
 |   // Use this to see what the first pass reconstruction looks like. | 
 |   if (0) { | 
 |     char filename[512]; | 
 |     FILE *recon_file; | 
 |     snprintf(filename, sizeof(filename), "enc%04d.yuv", | 
 |              (int)cm->current_video_frame); | 
 |  | 
 |     if (cm->current_video_frame == 0) | 
 |       recon_file = fopen(filename, "wb"); | 
 |     else | 
 |       recon_file = fopen(filename, "ab"); | 
 |  | 
 |     (void)fwrite(lst_yv12->buffer_alloc, lst_yv12->frame_size, 1, recon_file); | 
 |     fclose(recon_file); | 
 |   } | 
 |  | 
 |   ++cm->current_video_frame; | 
 | } | 
 |  | 
 | static double calc_correction_factor(double err_per_mb, double err_divisor, | 
 |                                      double pt_low, double pt_high, int q, | 
 |                                      aom_bit_depth_t bit_depth) { | 
 |   const double error_term = err_per_mb / err_divisor; | 
 |  | 
 |   // Adjustment based on actual quantizer to power term. | 
 |   const double power_term = | 
 |       AOMMIN(av1_convert_qindex_to_q(q, bit_depth) * 0.01 + pt_low, pt_high); | 
 |  | 
 |   // Calculate correction factor. | 
 |   if (power_term < 1.0) assert(error_term >= 0.0); | 
 |  | 
 |   return fclamp(pow(error_term, power_term), 0.05, 5.0); | 
 | } | 
 |  | 
 | // Larger image formats are expected to be a little harder to code relatively | 
 | // given the same prediction error score. This in part at least relates to the | 
 | // increased size and hence coding cost of motion vectors. | 
 | #define EDIV_SIZE_FACTOR 800 | 
 |  | 
 | static int get_twopass_worst_quality(const AV1_COMP *cpi, | 
 |                                      const double section_err, | 
 |                                      double inactive_zone, | 
 |                                      int section_target_bandwidth, | 
 |                                      double group_weight_factor) { | 
 |   const RATE_CONTROL *const rc = &cpi->rc; | 
 |   const AV1EncoderConfig *const oxcf = &cpi->oxcf; | 
 |  | 
 |   inactive_zone = fclamp(inactive_zone, 0.0, 1.0); | 
 |  | 
 |   if (section_target_bandwidth <= 0) { | 
 |     return rc->worst_quality;  // Highest value allowed | 
 |   } else { | 
 |     const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE) | 
 |                             ? cpi->initial_mbs | 
 |                             : cpi->common.MBs; | 
 |     const int active_mbs = AOMMAX(1, num_mbs - (int)(num_mbs * inactive_zone)); | 
 |     const double av_err_per_mb = section_err / active_mbs; | 
 |     const double speed_term = 1.0 + 0.04 * oxcf->speed; | 
 |     const double ediv_size_correction = (double)num_mbs / EDIV_SIZE_FACTOR; | 
 |     const int target_norm_bits_per_mb = | 
 |         ((uint64_t)section_target_bandwidth << BPER_MB_NORMBITS) / active_mbs; | 
 |  | 
 |     int q; | 
 |  | 
 |     // Try and pick a max Q that will be high enough to encode the | 
 |     // content at the given rate. | 
 |     for (q = rc->best_quality; q < rc->worst_quality; ++q) { | 
 |       const double factor = calc_correction_factor( | 
 |           av_err_per_mb, ERR_DIVISOR - ediv_size_correction, FACTOR_PT_LOW, | 
 |           FACTOR_PT_HIGH, q, cpi->common.bit_depth); | 
 |       const int bits_per_mb = av1_rc_bits_per_mb( | 
 |           INTER_FRAME, q, factor * speed_term * group_weight_factor, | 
 |           cpi->common.bit_depth); | 
 |       if (bits_per_mb <= target_norm_bits_per_mb) break; | 
 |     } | 
 |  | 
 |     // Restriction on active max q for constrained quality mode. | 
 |     if (cpi->oxcf.rc_mode == AOM_CQ) q = AOMMAX(q, oxcf->cq_level); | 
 |     return q; | 
 |   } | 
 | } | 
 |  | 
 | static void setup_rf_level_maxq(AV1_COMP *cpi) { | 
 |   int i; | 
 |   RATE_CONTROL *const rc = &cpi->rc; | 
 |   for (i = INTER_NORMAL; i < RATE_FACTOR_LEVELS; ++i) { | 
 |     int qdelta = av1_frame_type_qdelta(cpi, i, rc->worst_quality); | 
 |     rc->rf_level_maxq[i] = AOMMAX(rc->worst_quality + qdelta, rc->best_quality); | 
 |   } | 
 | } | 
 |  | 
 | void av1_init_subsampling(AV1_COMP *cpi) { | 
 |   const AV1_COMMON *const cm = &cpi->common; | 
 |   RATE_CONTROL *const rc = &cpi->rc; | 
 |   const int w = cm->width; | 
 |   const int h = cm->height; | 
 |   int i; | 
 |  | 
 |   for (i = 0; i < FRAME_SCALE_STEPS; ++i) { | 
 |     // Note: Frames with odd-sized dimensions may result from this scaling. | 
 |     rc->frame_width[i] = (w * 16) / frame_scale_factor[i]; | 
 |     rc->frame_height[i] = (h * 16) / frame_scale_factor[i]; | 
 |   } | 
 |  | 
 |   setup_rf_level_maxq(cpi); | 
 | } | 
 |  | 
 | void av1_calculate_coded_size(AV1_COMP *cpi, int *scaled_frame_width, | 
 |                               int *scaled_frame_height) { | 
 |   RATE_CONTROL *const rc = &cpi->rc; | 
 |   *scaled_frame_width = rc->frame_width[rc->frame_size_selector]; | 
 |   *scaled_frame_height = rc->frame_height[rc->frame_size_selector]; | 
 | } | 
 |  | 
 | void av1_init_second_pass(AV1_COMP *cpi) { | 
 |   const AV1EncoderConfig *const oxcf = &cpi->oxcf; | 
 |   TWO_PASS *const twopass = &cpi->twopass; | 
 |   double frame_rate; | 
 |   FIRSTPASS_STATS *stats; | 
 |  | 
 |   zero_stats(&twopass->total_stats); | 
 |   zero_stats(&twopass->total_left_stats); | 
 |  | 
 |   if (!twopass->stats_in_end) return; | 
 |  | 
 |   stats = &twopass->total_stats; | 
 |  | 
 |   *stats = *twopass->stats_in_end; | 
 |   twopass->total_left_stats = *stats; | 
 |  | 
 |   frame_rate = 10000000.0 * stats->count / stats->duration; | 
 |   // Each frame can have a different duration, as the frame rate in the source | 
 |   // isn't guaranteed to be constant. The frame rate prior to the first frame | 
 |   // encoded in the second pass is a guess. However, the sum duration is not. | 
 |   // It is calculated based on the actual durations of all frames from the | 
 |   // first pass. | 
 |   av1_new_framerate(cpi, frame_rate); | 
 |   twopass->bits_left = | 
 |       (int64_t)(stats->duration * oxcf->target_bandwidth / 10000000.0); | 
 |  | 
 |   // This variable monitors how far behind the second ref update is lagging. | 
 |   twopass->sr_update_lag = 1; | 
 |  | 
 |   // Scan the first pass file and calculate a modified total error based upon | 
 |   // the bias/power function used to allocate bits. | 
 |   { | 
 |     const double avg_error = | 
 |         stats->coded_error / DOUBLE_DIVIDE_CHECK(stats->count); | 
 |     const FIRSTPASS_STATS *s = twopass->stats_in; | 
 |     double modified_error_total = 0.0; | 
 |     twopass->modified_error_min = | 
 |         (avg_error * oxcf->two_pass_vbrmin_section) / 100; | 
 |     twopass->modified_error_max = | 
 |         (avg_error * oxcf->two_pass_vbrmax_section) / 100; | 
 |     while (s < twopass->stats_in_end) { | 
 |       modified_error_total += calculate_modified_err(cpi, twopass, oxcf, s); | 
 |       ++s; | 
 |     } | 
 |     twopass->modified_error_left = modified_error_total; | 
 |   } | 
 |  | 
 |   // Reset the vbr bits off target counters | 
 |   cpi->rc.vbr_bits_off_target = 0; | 
 |   cpi->rc.vbr_bits_off_target_fast = 0; | 
 |  | 
 |   cpi->rc.rate_error_estimate = 0; | 
 |  | 
 |   // Static sequence monitor variables. | 
 |   twopass->kf_zeromotion_pct = 100; | 
 |   twopass->last_kfgroup_zeromotion_pct = 100; | 
 |  | 
 |   if (oxcf->resize_mode != RESIZE_NONE) { | 
 |     av1_init_subsampling(cpi); | 
 |   } | 
 | } | 
 |  | 
 | #define SR_DIFF_PART 0.0015 | 
 | #define MOTION_AMP_PART 0.003 | 
 | #define INTRA_PART 0.005 | 
 | #define DEFAULT_DECAY_LIMIT 0.75 | 
 | #define LOW_SR_DIFF_TRHESH 0.1 | 
 | #define SR_DIFF_MAX 128.0 | 
 |  | 
 | static double get_sr_decay_rate(const AV1_COMP *cpi, | 
 |                                 const FIRSTPASS_STATS *frame) { | 
 |   const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE) ? cpi->initial_mbs | 
 |                                                              : cpi->common.MBs; | 
 |   double sr_diff = (frame->sr_coded_error - frame->coded_error) / num_mbs; | 
 |   double sr_decay = 1.0; | 
 |   double modified_pct_inter; | 
 |   double modified_pcnt_intra; | 
 |   const double motion_amplitude_factor = | 
 |       frame->pcnt_motion * ((frame->mvc_abs + frame->mvr_abs) / 2); | 
 |  | 
 |   modified_pct_inter = frame->pcnt_inter; | 
 |   if ((frame->intra_error / DOUBLE_DIVIDE_CHECK(frame->coded_error)) < | 
 |       (double)NCOUNT_FRAME_II_THRESH) { | 
 |     modified_pct_inter = frame->pcnt_inter - frame->pcnt_neutral; | 
 |   } | 
 |   modified_pcnt_intra = 100 * (1.0 - modified_pct_inter); | 
 |  | 
 |   if ((sr_diff > LOW_SR_DIFF_TRHESH)) { | 
 |     sr_diff = AOMMIN(sr_diff, SR_DIFF_MAX); | 
 |     sr_decay = 1.0 - (SR_DIFF_PART * sr_diff) - | 
 |                (MOTION_AMP_PART * motion_amplitude_factor) - | 
 |                (INTRA_PART * modified_pcnt_intra); | 
 |   } | 
 |   return AOMMAX(sr_decay, AOMMIN(DEFAULT_DECAY_LIMIT, modified_pct_inter)); | 
 | } | 
 |  | 
 | // This function gives an estimate of how badly we believe the prediction | 
 | // quality is decaying from frame to frame. | 
 | static double get_zero_motion_factor(const AV1_COMP *cpi, | 
 |                                      const FIRSTPASS_STATS *frame) { | 
 |   const double zero_motion_pct = frame->pcnt_inter - frame->pcnt_motion; | 
 |   double sr_decay = get_sr_decay_rate(cpi, frame); | 
 |   return AOMMIN(sr_decay, zero_motion_pct); | 
 | } | 
 |  | 
 | #define ZM_POWER_FACTOR 0.75 | 
 |  | 
 | static double get_prediction_decay_rate(const AV1_COMP *cpi, | 
 |                                         const FIRSTPASS_STATS *next_frame) { | 
 |   const double sr_decay_rate = get_sr_decay_rate(cpi, next_frame); | 
 |   const double zero_motion_factor = | 
 |       (0.95 * pow((next_frame->pcnt_inter - next_frame->pcnt_motion), | 
 |                   ZM_POWER_FACTOR)); | 
 |  | 
 |   return AOMMAX(zero_motion_factor, | 
 |                 (sr_decay_rate + ((1.0 - sr_decay_rate) * zero_motion_factor))); | 
 | } | 
 |  | 
 | // Function to test for a condition where a complex transition is followed | 
 | // by a static section. For example in slide shows where there is a fade | 
 | // between slides. This is to help with more optimal kf and gf positioning. | 
 | static int detect_transition_to_still(AV1_COMP *cpi, int frame_interval, | 
 |                                       int still_interval, | 
 |                                       double loop_decay_rate, | 
 |                                       double last_decay_rate) { | 
 |   TWO_PASS *const twopass = &cpi->twopass; | 
 |   RATE_CONTROL *const rc = &cpi->rc; | 
 |  | 
 |   // Break clause to detect very still sections after motion | 
 |   // For example a static image after a fade or other transition | 
 |   // instead of a clean scene cut. | 
 |   if (frame_interval > rc->min_gf_interval && loop_decay_rate >= 0.999 && | 
 |       last_decay_rate < 0.9) { | 
 |     int j; | 
 |  | 
 |     // Look ahead a few frames to see if static condition persists... | 
 |     for (j = 0; j < still_interval; ++j) { | 
 |       const FIRSTPASS_STATS *stats = &twopass->stats_in[j]; | 
 |       if (stats >= twopass->stats_in_end) break; | 
 |  | 
 |       if (stats->pcnt_inter - stats->pcnt_motion < 0.999) break; | 
 |     } | 
 |  | 
 |     // Only if it does do we signal a transition to still. | 
 |     return j == still_interval; | 
 |   } | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 | // This function detects a flash through the high relative pcnt_second_ref | 
 | // score in the frame following a flash frame. The offset passed in should | 
 | // reflect this. | 
 | static int detect_flash(const TWO_PASS *twopass, int offset) { | 
 |   const FIRSTPASS_STATS *const next_frame = read_frame_stats(twopass, offset); | 
 |  | 
 |   // What we are looking for here is a situation where there is a | 
 |   // brief break in prediction (such as a flash) but subsequent frames | 
 |   // are reasonably well predicted by an earlier (pre flash) frame. | 
 |   // The recovery after a flash is indicated by a high pcnt_second_ref | 
 |   // compared to pcnt_inter. | 
 |   return next_frame != NULL && | 
 |          next_frame->pcnt_second_ref > next_frame->pcnt_inter && | 
 |          next_frame->pcnt_second_ref >= 0.5; | 
 | } | 
 |  | 
 | // Update the motion related elements to the GF arf boost calculation. | 
 | static void accumulate_frame_motion_stats(const FIRSTPASS_STATS *stats, | 
 |                                           double *mv_in_out, | 
 |                                           double *mv_in_out_accumulator, | 
 |                                           double *abs_mv_in_out_accumulator, | 
 |                                           double *mv_ratio_accumulator) { | 
 |   const double pct = stats->pcnt_motion; | 
 |  | 
 |   // Accumulate Motion In/Out of frame stats. | 
 |   *mv_in_out = stats->mv_in_out_count * pct; | 
 |   *mv_in_out_accumulator += *mv_in_out; | 
 |   *abs_mv_in_out_accumulator += fabs(*mv_in_out); | 
 |  | 
 |   // Accumulate a measure of how uniform (or conversely how random) the motion | 
 |   // field is (a ratio of abs(mv) / mv). | 
 |   if (pct > 0.05) { | 
 |     const double mvr_ratio = | 
 |         fabs(stats->mvr_abs) / DOUBLE_DIVIDE_CHECK(fabs(stats->MVr)); | 
 |     const double mvc_ratio = | 
 |         fabs(stats->mvc_abs) / DOUBLE_DIVIDE_CHECK(fabs(stats->MVc)); | 
 |  | 
 |     *mv_ratio_accumulator += | 
 |         pct * (mvr_ratio < stats->mvr_abs ? mvr_ratio : stats->mvr_abs); | 
 |     *mv_ratio_accumulator += | 
 |         pct * (mvc_ratio < stats->mvc_abs ? mvc_ratio : stats->mvc_abs); | 
 |   } | 
 | } | 
 |  | 
 | #define BASELINE_ERR_PER_MB 1000.0 | 
 | static double calc_frame_boost(AV1_COMP *cpi, const FIRSTPASS_STATS *this_frame, | 
 |                                double this_frame_mv_in_out, double max_boost) { | 
 |   double frame_boost; | 
 |   const double lq = av1_convert_qindex_to_q( | 
 |       cpi->rc.avg_frame_qindex[INTER_FRAME], cpi->common.bit_depth); | 
 |   const double boost_q_correction = AOMMIN((0.5 + (lq * 0.015)), 1.5); | 
 |   int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE) ? cpi->initial_mbs | 
 |                                                        : cpi->common.MBs; | 
 |  | 
 |   // Correct for any inactive region in the image | 
 |   num_mbs = (int)AOMMAX(1, num_mbs * calculate_active_area(cpi, this_frame)); | 
 |  | 
 |   // Underlying boost factor is based on inter error ratio. | 
 |   frame_boost = (BASELINE_ERR_PER_MB * num_mbs) / | 
 |                 DOUBLE_DIVIDE_CHECK(this_frame->coded_error); | 
 |   frame_boost = frame_boost * BOOST_FACTOR * boost_q_correction; | 
 |  | 
 |   // Increase boost for frames where new data coming into frame (e.g. zoom out). | 
 |   // Slightly reduce boost if there is a net balance of motion out of the frame | 
 |   // (zoom in). The range for this_frame_mv_in_out is -1.0 to +1.0. | 
 |   if (this_frame_mv_in_out > 0.0) | 
 |     frame_boost += frame_boost * (this_frame_mv_in_out * 2.0); | 
 |   // In the extreme case the boost is halved. | 
 |   else | 
 |     frame_boost += frame_boost * (this_frame_mv_in_out / 2.0); | 
 |  | 
 |   return AOMMIN(frame_boost, max_boost * boost_q_correction); | 
 | } | 
 |  | 
 | static int calc_arf_boost(AV1_COMP *cpi, int offset, int f_frames, int b_frames, | 
 |                           int *f_boost, int *b_boost) { | 
 |   TWO_PASS *const twopass = &cpi->twopass; | 
 |   int i; | 
 |   double boost_score = 0.0; | 
 |   double mv_ratio_accumulator = 0.0; | 
 |   double decay_accumulator = 1.0; | 
 |   double this_frame_mv_in_out = 0.0; | 
 |   double mv_in_out_accumulator = 0.0; | 
 |   double abs_mv_in_out_accumulator = 0.0; | 
 |   int arf_boost; | 
 |   int flash_detected = 0; | 
 |  | 
 |   // Search forward from the proposed arf/next gf position. | 
 |   for (i = 0; i < f_frames; ++i) { | 
 |     const FIRSTPASS_STATS *this_frame = read_frame_stats(twopass, i + offset); | 
 |     if (this_frame == NULL) break; | 
 |  | 
 |     // Update the motion related elements to the boost calculation. | 
 |     accumulate_frame_motion_stats( | 
 |         this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator, | 
 |         &abs_mv_in_out_accumulator, &mv_ratio_accumulator); | 
 |  | 
 |     // We want to discount the flash frame itself and the recovery | 
 |     // frame that follows as both will have poor scores. | 
 |     flash_detected = detect_flash(twopass, i + offset) || | 
 |                      detect_flash(twopass, i + offset + 1); | 
 |  | 
 |     // Accumulate the effect of prediction quality decay. | 
 |     if (!flash_detected) { | 
 |       decay_accumulator *= get_prediction_decay_rate(cpi, this_frame); | 
 |       decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR | 
 |                               ? MIN_DECAY_FACTOR | 
 |                               : decay_accumulator; | 
 |     } | 
 |  | 
 |     boost_score += | 
 |         decay_accumulator * | 
 |         calc_frame_boost(cpi, this_frame, this_frame_mv_in_out, GF_MAX_BOOST); | 
 |   } | 
 |  | 
 |   *f_boost = (int)boost_score; | 
 |  | 
 |   // Reset for backward looking loop. | 
 |   boost_score = 0.0; | 
 |   mv_ratio_accumulator = 0.0; | 
 |   decay_accumulator = 1.0; | 
 |   this_frame_mv_in_out = 0.0; | 
 |   mv_in_out_accumulator = 0.0; | 
 |   abs_mv_in_out_accumulator = 0.0; | 
 |  | 
 |   // Search backward towards last gf position. | 
 |   for (i = -1; i >= -b_frames; --i) { | 
 |     const FIRSTPASS_STATS *this_frame = read_frame_stats(twopass, i + offset); | 
 |     if (this_frame == NULL) break; | 
 |  | 
 |     // Update the motion related elements to the boost calculation. | 
 |     accumulate_frame_motion_stats( | 
 |         this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator, | 
 |         &abs_mv_in_out_accumulator, &mv_ratio_accumulator); | 
 |  | 
 |     // We want to discount the the flash frame itself and the recovery | 
 |     // frame that follows as both will have poor scores. | 
 |     flash_detected = detect_flash(twopass, i + offset) || | 
 |                      detect_flash(twopass, i + offset + 1); | 
 |  | 
 |     // Cumulative effect of prediction quality decay. | 
 |     if (!flash_detected) { | 
 |       decay_accumulator *= get_prediction_decay_rate(cpi, this_frame); | 
 |       decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR | 
 |                               ? MIN_DECAY_FACTOR | 
 |                               : decay_accumulator; | 
 |     } | 
 |  | 
 |     boost_score += | 
 |         decay_accumulator * | 
 |         calc_frame_boost(cpi, this_frame, this_frame_mv_in_out, GF_MAX_BOOST); | 
 |   } | 
 |   *b_boost = (int)boost_score; | 
 |  | 
 |   arf_boost = (*f_boost + *b_boost); | 
 |   if (arf_boost < ((b_frames + f_frames) * 20)) | 
 |     arf_boost = ((b_frames + f_frames) * 20); | 
 |   arf_boost = AOMMAX(arf_boost, MIN_ARF_GF_BOOST); | 
 |  | 
 |   return arf_boost; | 
 | } | 
 |  | 
 | // Calculate a section intra ratio used in setting max loop filter. | 
 | static int calculate_section_intra_ratio(const FIRSTPASS_STATS *begin, | 
 |                                          const FIRSTPASS_STATS *end, | 
 |                                          int section_length) { | 
 |   const FIRSTPASS_STATS *s = begin; | 
 |   double intra_error = 0.0; | 
 |   double coded_error = 0.0; | 
 |   int i = 0; | 
 |  | 
 |   while (s < end && i < section_length) { | 
 |     intra_error += s->intra_error; | 
 |     coded_error += s->coded_error; | 
 |     ++s; | 
 |     ++i; | 
 |   } | 
 |  | 
 |   return (int)(intra_error / DOUBLE_DIVIDE_CHECK(coded_error)); | 
 | } | 
 |  | 
 | // Calculate the total bits to allocate in this GF/ARF group. | 
 | static int64_t calculate_total_gf_group_bits(AV1_COMP *cpi, | 
 |                                              double gf_group_err) { | 
 |   const RATE_CONTROL *const rc = &cpi->rc; | 
 |   const TWO_PASS *const twopass = &cpi->twopass; | 
 |   const int max_bits = frame_max_bits(rc, &cpi->oxcf); | 
 |   int64_t total_group_bits; | 
 |  | 
 |   // Calculate the bits to be allocated to the group as a whole. | 
 |   if ((twopass->kf_group_bits > 0) && (twopass->kf_group_error_left > 0)) { | 
 |     total_group_bits = (int64_t)(twopass->kf_group_bits * | 
 |                                  (gf_group_err / twopass->kf_group_error_left)); | 
 |   } else { | 
 |     total_group_bits = 0; | 
 |   } | 
 |  | 
 |   // Clamp odd edge cases. | 
 |   total_group_bits = | 
 |       (total_group_bits < 0) ? 0 : (total_group_bits > twopass->kf_group_bits) | 
 |                                        ? twopass->kf_group_bits | 
 |                                        : total_group_bits; | 
 |  | 
 |   // Clip based on user supplied data rate variability limit. | 
 |   if (total_group_bits > (int64_t)max_bits * rc->baseline_gf_interval) | 
 |     total_group_bits = (int64_t)max_bits * rc->baseline_gf_interval; | 
 |  | 
 |   return total_group_bits; | 
 | } | 
 |  | 
 | // Calculate the number bits extra to assign to boosted frames in a group. | 
 | static int calculate_boost_bits(int frame_count, int boost, | 
 |                                 int64_t total_group_bits) { | 
 |   int allocation_chunks; | 
 |  | 
 |   // return 0 for invalid inputs (could arise e.g. through rounding errors) | 
 |   if (!boost || (total_group_bits <= 0) || (frame_count <= 0)) return 0; | 
 |  | 
 |   allocation_chunks = (frame_count * 100) + boost; | 
 |  | 
 |   // Prevent overflow. | 
 |   if (boost > 1023) { | 
 |     int divisor = boost >> 10; | 
 |     boost /= divisor; | 
 |     allocation_chunks /= divisor; | 
 |   } | 
 |  | 
 |   // Calculate the number of extra bits for use in the boosted frame or frames. | 
 |   return AOMMAX((int)(((int64_t)boost * total_group_bits) / allocation_chunks), | 
 |                 0); | 
 | } | 
 |  | 
 | // Current limit on maximum number of active arfs in a GF/ARF group. | 
 | #define MAX_ACTIVE_ARFS 2 | 
 | #define ARF_SLOT1 2 | 
 | #define ARF_SLOT2 3 | 
 | // This function indirects the choice of buffers for arfs. | 
 | // At the moment the values are fixed but this may change as part of | 
 | // the integration process with other codec features that swap buffers around. | 
 | static void get_arf_buffer_indices(unsigned char *arf_buffer_indices) { | 
 |   arf_buffer_indices[0] = ARF_SLOT1; | 
 |   arf_buffer_indices[1] = ARF_SLOT2; | 
 | } | 
 |  | 
 | static void allocate_gf_group_bits(AV1_COMP *cpi, int64_t gf_group_bits, | 
 |                                    double group_error, int gf_arf_bits) { | 
 |   RATE_CONTROL *const rc = &cpi->rc; | 
 |   const AV1EncoderConfig *const oxcf = &cpi->oxcf; | 
 |   TWO_PASS *const twopass = &cpi->twopass; | 
 |   GF_GROUP *const gf_group = &twopass->gf_group; | 
 |   FIRSTPASS_STATS frame_stats; | 
 |   int i; | 
 |   int frame_index = 0; | 
 |   int target_frame_size; | 
 |   int key_frame; | 
 |   const int max_bits = frame_max_bits(&cpi->rc, &cpi->oxcf); | 
 |   int64_t total_group_bits = gf_group_bits; | 
 |   double modified_err = 0.0; | 
 |   double err_fraction; | 
 |   int mid_boost_bits = 0; | 
 |   int mid_frame_idx; | 
 |   unsigned char arf_buffer_indices[MAX_ACTIVE_ARFS]; | 
 |  | 
 | #if CONFIG_EXT_REFS | 
 |   // The use of bi-predictive frames are only enabled when following 3 | 
 |   // conditions are met: | 
 |   // (1) Alt-ref is enabled; | 
 |   // (2) The bi-predictive group interval is at least 2; and | 
 |   // (3) The bi-predictive group interval is strictly smaller than the | 
 |   //     golden group interval. | 
 |   const int is_bipred_enabled = | 
 |       rc->source_alt_ref_pending && rc->bipred_group_interval && | 
 |       rc->bipred_group_interval <= | 
 |           (rc->baseline_gf_interval - rc->source_alt_ref_pending); | 
 |   int bipred_group_end = 0; | 
 |   int bipred_frame_index = 0; | 
 | #endif  // CONFIG_EXT_REFS | 
 |  | 
 |   key_frame = cpi->common.frame_type == KEY_FRAME; | 
 |  | 
 |   get_arf_buffer_indices(arf_buffer_indices); | 
 |  | 
 |   // For key frames the frame target rate is already set and it | 
 |   // is also the golden frame. | 
 |   if (!key_frame) { | 
 |     if (rc->source_alt_ref_active) { | 
 |       gf_group->update_type[frame_index] = OVERLAY_UPDATE; | 
 |       gf_group->rf_level[frame_index] = INTER_NORMAL; | 
 |       gf_group->bit_allocation[frame_index] = 0; | 
 |     } else { | 
 |       gf_group->update_type[frame_index] = GF_UPDATE; | 
 |       gf_group->rf_level[frame_index] = GF_ARF_STD; | 
 |       gf_group->bit_allocation[frame_index] = gf_arf_bits; | 
 |     } | 
 |     gf_group->arf_update_idx[frame_index] = arf_buffer_indices[0]; | 
 |     gf_group->arf_ref_idx[frame_index] = arf_buffer_indices[0]; | 
 |  | 
 |     // Step over the golden frame / overlay frame | 
 |     if (EOF == input_stats(twopass, &frame_stats)) return; | 
 |   } | 
 |  | 
 | #if CONFIG_EXT_REFS | 
 |   gf_group->brf_src_offset[frame_index] = 0; | 
 |   gf_group->brf_pred_enabled[frame_index] = 0; | 
 | #endif  // CONFIG_EXT_REFS | 
 |  | 
 |   // Deduct the boost bits for arf (or gf if it is not a key frame) | 
 |   // from the group total. | 
 |   if (rc->source_alt_ref_pending || !key_frame) total_group_bits -= gf_arf_bits; | 
 |  | 
 |   frame_index++; | 
 | #if CONFIG_EXT_REFS | 
 |   bipred_frame_index++; | 
 | #endif  // CONFIG_EXT_REFS | 
 |  | 
 |   // Store the bits to spend on the ARF if there is one. | 
 |   if (rc->source_alt_ref_pending) { | 
 |     gf_group->update_type[frame_index] = ARF_UPDATE; | 
 |     gf_group->rf_level[frame_index] = GF_ARF_STD; | 
 |     gf_group->bit_allocation[frame_index] = gf_arf_bits; | 
 |  | 
 |     gf_group->arf_src_offset[frame_index] = | 
 |         (unsigned char)(rc->baseline_gf_interval - 1); | 
 |  | 
 |     gf_group->arf_update_idx[frame_index] = arf_buffer_indices[0]; | 
 |     gf_group->arf_ref_idx[frame_index] = | 
 |         arf_buffer_indices[cpi->multi_arf_last_grp_enabled && | 
 |                            rc->source_alt_ref_active]; | 
 | #if CONFIG_EXT_REFS | 
 |     gf_group->brf_src_offset[frame_index] = 0; | 
 |     gf_group->brf_pred_enabled[frame_index] = 0; | 
 | // NOTE: "bipred_frame_index" stays unchanged for ARF_UPDATE frames. | 
 | #endif  // CONFIG_EXT_REFS | 
 |  | 
 |     ++frame_index; | 
 |  | 
 |     if (cpi->multi_arf_enabled) { | 
 |       // Set aside a slot for a level 1 arf. | 
 |       gf_group->update_type[frame_index] = ARF_UPDATE; | 
 |       gf_group->rf_level[frame_index] = GF_ARF_LOW; | 
 |       gf_group->arf_src_offset[frame_index] = | 
 |           (unsigned char)((rc->baseline_gf_interval >> 1) - 1); | 
 |       gf_group->arf_update_idx[frame_index] = arf_buffer_indices[1]; | 
 |       gf_group->arf_ref_idx[frame_index] = arf_buffer_indices[0]; | 
 |       ++frame_index; | 
 |     } | 
 |   } | 
 |  | 
 |   // Define middle frame | 
 |   mid_frame_idx = frame_index + (rc->baseline_gf_interval >> 1) - 1; | 
 |  | 
 |   // Allocate bits to the other frames in the group. | 
 |   for (i = 0; i < rc->baseline_gf_interval - rc->source_alt_ref_pending; ++i) { | 
 |     int arf_idx = 0; | 
 |     if (EOF == input_stats(twopass, &frame_stats)) break; | 
 |  | 
 |     modified_err = calculate_modified_err(cpi, twopass, oxcf, &frame_stats); | 
 |  | 
 |     if (group_error > 0) | 
 |       err_fraction = modified_err / DOUBLE_DIVIDE_CHECK(group_error); | 
 |     else | 
 |       err_fraction = 0.0; | 
 |  | 
 |     target_frame_size = (int)((double)total_group_bits * err_fraction); | 
 |  | 
 |     if (rc->source_alt_ref_pending && cpi->multi_arf_enabled) { | 
 |       mid_boost_bits += (target_frame_size >> 4); | 
 |       target_frame_size -= (target_frame_size >> 4); | 
 |  | 
 |       if (frame_index <= mid_frame_idx) arf_idx = 1; | 
 |     } | 
 |     gf_group->arf_update_idx[frame_index] = arf_buffer_indices[arf_idx]; | 
 |     gf_group->arf_ref_idx[frame_index] = arf_buffer_indices[arf_idx]; | 
 |  | 
 |     target_frame_size = | 
 |         clamp(target_frame_size, 0, AOMMIN(max_bits, (int)total_group_bits)); | 
 |  | 
 | #if CONFIG_EXT_REFS | 
 |     // NOTE: Bi-predictive frames are only enabled when the length of the | 
 |     //       bi-predictive frame group interval is strictly smaller than that | 
 |     //       of the golden frame group interval. | 
 |     // TODO(zoeliu): Currently bi-prediction is only enabled when alt-ref is on. | 
 |     if (is_bipred_enabled && !bipred_group_end) { | 
 |       const int cur_brf_src_offset = rc->bipred_group_interval - 1; | 
 |  | 
 |       // --- BRF_UPDATE --- | 
 |       if (bipred_frame_index == 1) { | 
 |         gf_group->update_type[frame_index] = BRF_UPDATE; | 
 |         gf_group->brf_src_offset[frame_index] = cur_brf_src_offset; | 
 |         gf_group->brf_pred_enabled[frame_index] = 1; | 
 |         // --- LAST_BIPRED_UPDATE --- | 
 |       } else if (bipred_frame_index == rc->bipred_group_interval) { | 
 |         gf_group->update_type[frame_index] = LAST_BIPRED_UPDATE; | 
 |         gf_group->brf_src_offset[frame_index] = 0; | 
 |         gf_group->brf_pred_enabled[frame_index] = 1; | 
 |         // Reset the bi-predictive frame index. | 
 |         bipred_frame_index = 0; | 
 |         // --- BIPRED_UPDATE --- | 
 |       } else { | 
 |         gf_group->update_type[frame_index] = BIPRED_UPDATE; | 
 |         gf_group->brf_src_offset[frame_index] = 0; | 
 |         gf_group->brf_pred_enabled[frame_index] = 1; | 
 |       } | 
 |  | 
 |       bipred_frame_index++; | 
 |       // Check whether the next bi-predictive frame group would entirely be | 
 |       // included within the current golden frame group. | 
 |       if (bipred_frame_index == 1 && | 
 |           (i + 1 + cur_brf_src_offset) >= | 
 |               (rc->baseline_gf_interval - rc->source_alt_ref_pending)) | 
 |         bipred_group_end = 1; | 
 |     } else { | 
 | #endif  // CONFIG_EXT_REFS | 
 |       gf_group->update_type[frame_index] = LF_UPDATE; | 
 | #if CONFIG_EXT_REFS | 
 |       gf_group->brf_src_offset[frame_index] = 0; | 
 |       gf_group->brf_pred_enabled[frame_index] = 0; | 
 |     } | 
 | #endif  // CONFIG_EXT_REFS | 
 |  | 
 | #if CONFIG_EXT_REFS | 
 |     if (gf_group->update_type[frame_index] == BRF_UPDATE) { | 
 |       // Boost up the allocated bits on BWDREF_FRAME | 
 |       gf_group->rf_level[frame_index] = INTER_HIGH; | 
 |       gf_group->bit_allocation[frame_index] = | 
 |           target_frame_size + (target_frame_size >> 2); | 
 |     } else if (gf_group->update_type[frame_index] == LAST_BIPRED_UPDATE) { | 
 |       // Press down the allocated bits on LAST_BIPRED_UPDATE frames | 
 |       gf_group->rf_level[frame_index] = INTER_LOW; | 
 |       gf_group->bit_allocation[frame_index] = | 
 |           target_frame_size - (target_frame_size >> 1); | 
 |     } else if (gf_group->update_type[frame_index] == BIPRED_UPDATE) { | 
 |       // TODO(zoeliu): To investigate whether the allocated bits on | 
 |       // BIPRED_UPDATE frames need to be further adjusted. | 
 |       gf_group->rf_level[frame_index] = INTER_NORMAL; | 
 |       gf_group->bit_allocation[frame_index] = target_frame_size; | 
 |     } else { | 
 | #endif  // CONFIG_EXT_REFS | 
 |       gf_group->rf_level[frame_index] = INTER_NORMAL; | 
 |       gf_group->bit_allocation[frame_index] = target_frame_size; | 
 | #if CONFIG_EXT_REFS | 
 |     } | 
 | #endif  // CONFIG_EXT_REFS | 
 |  | 
 |     ++frame_index; | 
 |   } | 
 |  | 
 |   // Note: | 
 |   // We need to configure the frame at the end of the sequence + 1 that will be | 
 |   // the start frame for the next group. Otherwise prior to the call to | 
 |   // av1_rc_get_second_pass_params() the data will be undefined. | 
 |   gf_group->arf_update_idx[frame_index] = arf_buffer_indices[0]; | 
 |   gf_group->arf_ref_idx[frame_index] = arf_buffer_indices[0]; | 
 |  | 
 |   if (rc->source_alt_ref_pending) { | 
 |     gf_group->update_type[frame_index] = OVERLAY_UPDATE; | 
 |     gf_group->rf_level[frame_index] = INTER_NORMAL; | 
 |  | 
 |     // Final setup for second arf and its overlay. | 
 |     if (cpi->multi_arf_enabled) { | 
 |       gf_group->bit_allocation[2] = | 
 |           gf_group->bit_allocation[mid_frame_idx] + mid_boost_bits; | 
 |       gf_group->update_type[mid_frame_idx] = OVERLAY_UPDATE; | 
 |       gf_group->bit_allocation[mid_frame_idx] = 0; | 
 |     } | 
 |   } else { | 
 |     gf_group->update_type[frame_index] = GF_UPDATE; | 
 |     gf_group->rf_level[frame_index] = GF_ARF_STD; | 
 |   } | 
 | #if CONFIG_EXT_REFS | 
 |   gf_group->brf_src_offset[frame_index] = 0; | 
 |   gf_group->brf_pred_enabled[frame_index] = 0; | 
 | #endif  // CONFIG_EXT_REFS | 
 |  | 
 |   // Note whether multi-arf was enabled this group for next time. | 
 |   cpi->multi_arf_last_grp_enabled = cpi->multi_arf_enabled; | 
 | } | 
 |  | 
 | // Analyse and define a gf/arf group. | 
 | static void define_gf_group(AV1_COMP *cpi, FIRSTPASS_STATS *this_frame) { | 
 |   AV1_COMMON *const cm = &cpi->common; | 
 |   RATE_CONTROL *const rc = &cpi->rc; | 
 |   AV1EncoderConfig *const oxcf = &cpi->oxcf; | 
 |   TWO_PASS *const twopass = &cpi->twopass; | 
 |   FIRSTPASS_STATS next_frame; | 
 |   const FIRSTPASS_STATS *const start_pos = twopass->stats_in; | 
 |   int i; | 
 |  | 
 |   double boost_score = 0.0; | 
 |   double old_boost_score = 0.0; | 
 |   double gf_group_err = 0.0; | 
 | #if GROUP_ADAPTIVE_MAXQ | 
 |   double gf_group_raw_error = 0.0; | 
 | #endif | 
 |   double gf_group_skip_pct = 0.0; | 
 |   double gf_group_inactive_zone_rows = 0.0; | 
 |   double gf_first_frame_err = 0.0; | 
 |   double mod_frame_err = 0.0; | 
 |  | 
 |   double mv_ratio_accumulator = 0.0; | 
 |   double decay_accumulator = 1.0; | 
 |   double zero_motion_accumulator = 1.0; | 
 |  | 
 |   double loop_decay_rate = 1.00; | 
 |   double last_loop_decay_rate = 1.00; | 
 |  | 
 |   double this_frame_mv_in_out = 0.0; | 
 |   double mv_in_out_accumulator = 0.0; | 
 |   double abs_mv_in_out_accumulator = 0.0; | 
 |   double mv_ratio_accumulator_thresh; | 
 |   unsigned int allow_alt_ref = is_altref_enabled(cpi); | 
 |  | 
 |   int f_boost = 0; | 
 |   int b_boost = 0; | 
 |   int flash_detected; | 
 |   int active_max_gf_interval; | 
 |   int active_min_gf_interval; | 
 |   int64_t gf_group_bits; | 
 |   double gf_group_error_left; | 
 |   int gf_arf_bits; | 
 |   const int is_key_frame = frame_is_intra_only(cm); | 
 |   const int arf_active_or_kf = is_key_frame || rc->source_alt_ref_active; | 
 |  | 
 |   // Reset the GF group data structures unless this is a key | 
 |   // frame in which case it will already have been done. | 
 |   if (is_key_frame == 0) { | 
 |     av1_zero(twopass->gf_group); | 
 |   } | 
 |  | 
 |   aom_clear_system_state(); | 
 |   av1_zero(next_frame); | 
 |  | 
 |   // Load stats for the current frame. | 
 |   mod_frame_err = calculate_modified_err(cpi, twopass, oxcf, this_frame); | 
 |  | 
 |   // Note the error of the frame at the start of the group. This will be | 
 |   // the GF frame error if we code a normal gf. | 
 |   gf_first_frame_err = mod_frame_err; | 
 |  | 
 |   // If this is a key frame or the overlay from a previous arf then | 
 |   // the error score / cost of this frame has already been accounted for. | 
 |   if (arf_active_or_kf) { | 
 |     gf_group_err -= gf_first_frame_err; | 
 | #if GROUP_ADAPTIVE_MAXQ | 
 |     gf_group_raw_error -= this_frame->coded_error; | 
 | #endif | 
 |     gf_group_skip_pct -= this_frame->intra_skip_pct; | 
 |     gf_group_inactive_zone_rows -= this_frame->inactive_zone_rows; | 
 |   } | 
 |  | 
 |   // Motion breakout threshold for loop below depends on image size. | 
 |   mv_ratio_accumulator_thresh = | 
 |       (cpi->initial_height + cpi->initial_width) / 4.0; | 
 |  | 
 |   // Set a maximum and minimum interval for the GF group. | 
 |   // If the image appears almost completely static we can extend beyond this. | 
 |   { | 
 |     int int_max_q = (int)(av1_convert_qindex_to_q(twopass->active_worst_quality, | 
 |                                                   cpi->common.bit_depth)); | 
 |     int int_lbq = (int)(av1_convert_qindex_to_q(rc->last_boosted_qindex, | 
 |                                                 cpi->common.bit_depth)); | 
 |     active_min_gf_interval = rc->min_gf_interval + AOMMIN(2, int_max_q / 200); | 
 |     if (active_min_gf_interval > rc->max_gf_interval) | 
 |       active_min_gf_interval = rc->max_gf_interval; | 
 |  | 
 |     if (cpi->multi_arf_allowed) { | 
 |       active_max_gf_interval = rc->max_gf_interval; | 
 |     } else { | 
 |       // The value chosen depends on the active Q range. At low Q we have | 
 |       // bits to spare and are better with a smaller interval and smaller boost. | 
 |       // At high Q when there are few bits to spare we are better with a longer | 
 |       // interval to spread the cost of the GF. | 
 |       active_max_gf_interval = 12 + AOMMIN(4, (int_lbq / 6)); | 
 |       if (active_max_gf_interval < active_min_gf_interval) | 
 |         active_max_gf_interval = active_min_gf_interval; | 
 |  | 
 |       if (active_max_gf_interval > rc->max_gf_interval) | 
 |         active_max_gf_interval = rc->max_gf_interval; | 
 |       if (active_max_gf_interval < active_min_gf_interval) | 
 |         active_max_gf_interval = active_min_gf_interval; | 
 |     } | 
 |   } | 
 |  | 
 |   i = 0; | 
 |   while (i < rc->static_scene_max_gf_interval && i < rc->frames_to_key) { | 
 |     ++i; | 
 |  | 
 |     // Accumulate error score of frames in this gf group. | 
 |     mod_frame_err = calculate_modified_err(cpi, twopass, oxcf, this_frame); | 
 |     gf_group_err += mod_frame_err; | 
 | #if GROUP_ADAPTIVE_MAXQ | 
 |     gf_group_raw_error += this_frame->coded_error; | 
 | #endif | 
 |     gf_group_skip_pct += this_frame->intra_skip_pct; | 
 |     gf_group_inactive_zone_rows += this_frame->inactive_zone_rows; | 
 |  | 
 |     if (EOF == input_stats(twopass, &next_frame)) break; | 
 |  | 
 |     // Test for the case where there is a brief flash but the prediction | 
 |     // quality back to an earlier frame is then restored. | 
 |     flash_detected = detect_flash(twopass, 0); | 
 |  | 
 |     // Update the motion related elements to the boost calculation. | 
 |     accumulate_frame_motion_stats( | 
 |         &next_frame, &this_frame_mv_in_out, &mv_in_out_accumulator, | 
 |         &abs_mv_in_out_accumulator, &mv_ratio_accumulator); | 
 |  | 
 |     // Accumulate the effect of prediction quality decay. | 
 |     if (!flash_detected) { | 
 |       last_loop_decay_rate = loop_decay_rate; | 
 |       loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame); | 
 |  | 
 |       decay_accumulator = decay_accumulator * loop_decay_rate; | 
 |  | 
 |       // Monitor for static sections. | 
 |       zero_motion_accumulator = AOMMIN( | 
 |           zero_motion_accumulator, get_zero_motion_factor(cpi, &next_frame)); | 
 |  | 
 |       // Break clause to detect very still sections after motion. For example, | 
 |       // a static image after a fade or other transition. | 
 |       if (detect_transition_to_still(cpi, i, 5, loop_decay_rate, | 
 |                                      last_loop_decay_rate)) { | 
 |         allow_alt_ref = 0; | 
 |         break; | 
 |       } | 
 |     } | 
 |  | 
 |     // Calculate a boost number for this frame. | 
 |     boost_score += | 
 |         decay_accumulator * | 
 |         calc_frame_boost(cpi, &next_frame, this_frame_mv_in_out, GF_MAX_BOOST); | 
 |  | 
 |     // Break out conditions. | 
 |     if ( | 
 |         // Break at active_max_gf_interval unless almost totally static. | 
 |         (i >= (active_max_gf_interval + arf_active_or_kf) && | 
 |          zero_motion_accumulator < 0.995) || | 
 |         ( | 
 |             // Don't break out with a very short interval. | 
 |             (i >= active_min_gf_interval + arf_active_or_kf) && | 
 |             (!flash_detected) && | 
 |             ((mv_ratio_accumulator > mv_ratio_accumulator_thresh) || | 
 |              (abs_mv_in_out_accumulator > 3.0) || | 
 |              (mv_in_out_accumulator < -2.0) || | 
 |              ((boost_score - old_boost_score) < BOOST_BREAKOUT)))) { | 
 |       boost_score = old_boost_score; | 
 |       break; | 
 |     } | 
 |  | 
 |     *this_frame = next_frame; | 
 |     old_boost_score = boost_score; | 
 |   } | 
 |  | 
 |   twopass->gf_zeromotion_pct = (int)(zero_motion_accumulator * 1000.0); | 
 |  | 
 |   // Was the group length constrained by the requirement for a new KF? | 
 |   rc->constrained_gf_group = (i >= rc->frames_to_key) ? 1 : 0; | 
 |  | 
 |   // Should we use the alternate reference frame. | 
 |   if (allow_alt_ref && (i < cpi->oxcf.lag_in_frames) && | 
 |       (i >= rc->min_gf_interval)) { | 
 |     // Calculate the boost for alt ref. | 
 |     rc->gfu_boost = | 
 |         calc_arf_boost(cpi, 0, (i - 1), (i - 1), &f_boost, &b_boost); | 
 |     rc->source_alt_ref_pending = 1; | 
 |  | 
 |     // Test to see if multi arf is appropriate. | 
 |     cpi->multi_arf_enabled = | 
 |         (cpi->multi_arf_allowed && (rc->baseline_gf_interval >= 6) && | 
 |          (zero_motion_accumulator < 0.995)) | 
 |             ? 1 | 
 |             : 0; | 
 |   } else { | 
 |     rc->gfu_boost = AOMMAX((int)boost_score, MIN_ARF_GF_BOOST); | 
 |     rc->source_alt_ref_pending = 0; | 
 |   } | 
 |  | 
 |   // Set the interval until the next gf. | 
 |   rc->baseline_gf_interval = i - (is_key_frame || rc->source_alt_ref_pending); | 
 |  | 
 |   rc->frames_till_gf_update_due = rc->baseline_gf_interval; | 
 |  | 
 | #if CONFIG_EXT_REFS | 
 |   rc->bipred_group_interval = BFG_INTERVAL; | 
 |   // The minimum bi-predictive frame group interval is 2. | 
 |   if (rc->bipred_group_interval < MIN_BFG_INTERVAL) | 
 |     rc->bipred_group_interval = 0; | 
 | #endif  // CONFIG_EXT_REFS | 
 |  | 
 |   // Reset the file position. | 
 |   reset_fpf_position(twopass, start_pos); | 
 |  | 
 |   // Calculate the bits to be allocated to the gf/arf group as a whole | 
 |   gf_group_bits = calculate_total_gf_group_bits(cpi, gf_group_err); | 
 |  | 
 | #if GROUP_ADAPTIVE_MAXQ | 
 |   // Calculate an estimate of the maxq needed for the group. | 
 |   // We are more agressive about correcting for sections | 
 |   // where there could be significant overshoot than for easier | 
 |   // sections where we do not wish to risk creating an overshoot | 
 |   // of the allocated bit budget. | 
 |   if ((cpi->oxcf.rc_mode != AOM_Q) && (rc->baseline_gf_interval > 1)) { | 
 |     const int vbr_group_bits_per_frame = | 
 |         (int)(gf_group_bits / rc->baseline_gf_interval); | 
 |     const double group_av_err = gf_group_raw_error / rc->baseline_gf_interval; | 
 |     const double group_av_skip_pct = | 
 |         gf_group_skip_pct / rc->baseline_gf_interval; | 
 |     const double group_av_inactive_zone = | 
 |         ((gf_group_inactive_zone_rows * 2) / | 
 |          (rc->baseline_gf_interval * (double)cm->mb_rows)); | 
 |  | 
 |     int tmp_q; | 
 |     // rc factor is a weight factor that corrects for local rate control drift. | 
 |     double rc_factor = 1.0; | 
 |     if (rc->rate_error_estimate > 0) { | 
 |       rc_factor = AOMMAX(RC_FACTOR_MIN, | 
 |                          (double)(100 - rc->rate_error_estimate) / 100.0); | 
 |     } else { | 
 |       rc_factor = AOMMIN(RC_FACTOR_MAX, | 
 |                          (double)(100 - rc->rate_error_estimate) / 100.0); | 
 |     } | 
 |     tmp_q = get_twopass_worst_quality( | 
 |         cpi, group_av_err, (group_av_skip_pct + group_av_inactive_zone), | 
 |         vbr_group_bits_per_frame, twopass->kfgroup_inter_fraction * rc_factor); | 
 |     twopass->active_worst_quality = | 
 |         AOMMAX(tmp_q, twopass->active_worst_quality >> 1); | 
 |   } | 
 | #endif | 
 |  | 
 |   // Calculate the extra bits to be used for boosted frame(s) | 
 |   gf_arf_bits = calculate_boost_bits(rc->baseline_gf_interval, rc->gfu_boost, | 
 |                                      gf_group_bits); | 
 |  | 
 |   // Adjust KF group bits and error remaining. | 
 |   twopass->kf_group_error_left -= (int64_t)gf_group_err; | 
 |  | 
 |   // If this is an arf update we want to remove the score for the overlay | 
 |   // frame at the end which will usually be very cheap to code. | 
 |   // The overlay frame has already, in effect, been coded so we want to spread | 
 |   // the remaining bits among the other frames. | 
 |   // For normal GFs remove the score for the GF itself unless this is | 
 |   // also a key frame in which case it has already been accounted for. | 
 |   if (rc->source_alt_ref_pending) { | 
 |     gf_group_error_left = gf_group_err - mod_frame_err; | 
 |   } else if (is_key_frame == 0) { | 
 |     gf_group_error_left = gf_group_err - gf_first_frame_err; | 
 |   } else { | 
 |     gf_group_error_left = gf_group_err; | 
 |   } | 
 |  | 
 |   // Allocate bits to each of the frames in the GF group. | 
 |   allocate_gf_group_bits(cpi, gf_group_bits, gf_group_error_left, gf_arf_bits); | 
 |  | 
 |   // Reset the file position. | 
 |   reset_fpf_position(twopass, start_pos); | 
 |  | 
 |   // Calculate a section intra ratio used in setting max loop filter. | 
 |   if (cpi->common.frame_type != KEY_FRAME) { | 
 |     twopass->section_intra_rating = calculate_section_intra_ratio( | 
 |         start_pos, twopass->stats_in_end, rc->baseline_gf_interval); | 
 |   } | 
 |  | 
 |   if (oxcf->resize_mode == RESIZE_DYNAMIC) { | 
 |     // Default to starting GF groups at normal frame size. | 
 |     cpi->rc.next_frame_size_selector = UNSCALED; | 
 |   } | 
 | } | 
 |  | 
 | // Threshold for use of the lagging second reference frame. High second ref | 
 | // usage may point to a transient event like a flash or occlusion rather than | 
 | // a real scene cut. | 
 | #define SECOND_REF_USEAGE_THRESH 0.1 | 
 | // Minimum % intra coding observed in first pass (1.0 = 100%) | 
 | #define MIN_INTRA_LEVEL 0.25 | 
 | // Minimum ratio between the % of intra coding and inter coding in the first | 
 | // pass after discounting neutral blocks (discounting neutral blocks in this | 
 | // way helps catch scene cuts in clips with very flat areas or letter box | 
 | // format clips with image padding. | 
 | #define INTRA_VS_INTER_THRESH 2.0 | 
 | // Hard threshold where the first pass chooses intra for almost all blocks. | 
 | // In such a case even if the frame is not a scene cut coding a key frame | 
 | // may be a good option. | 
 | #define VERY_LOW_INTER_THRESH 0.05 | 
 | // Maximum threshold for the relative ratio of intra error score vs best | 
 | // inter error score. | 
 | #define KF_II_ERR_THRESHOLD 2.5 | 
 | // In real scene cuts there is almost always a sharp change in the intra | 
 | // or inter error score. | 
 | #define ERR_CHANGE_THRESHOLD 0.4 | 
 | // For real scene cuts we expect an improvment in the intra inter error | 
 | // ratio in the next frame. | 
 | #define II_IMPROVEMENT_THRESHOLD 3.5 | 
 | #define KF_II_MAX 128.0 | 
 |  | 
 | static int test_candidate_kf(TWO_PASS *twopass, | 
 |                              const FIRSTPASS_STATS *last_frame, | 
 |                              const FIRSTPASS_STATS *this_frame, | 
 |                              const FIRSTPASS_STATS *next_frame) { | 
 |   int is_viable_kf = 0; | 
 |   double pcnt_intra = 1.0 - this_frame->pcnt_inter; | 
 |   double modified_pcnt_inter = | 
 |       this_frame->pcnt_inter - this_frame->pcnt_neutral; | 
 |  | 
 |   // Does the frame satisfy the primary criteria of a key frame? | 
 |   // See above for an explanation of the test criteria. | 
 |   // If so, then examine how well it predicts subsequent frames. | 
 |   if ((this_frame->pcnt_second_ref < SECOND_REF_USEAGE_THRESH) && | 
 |       (next_frame->pcnt_second_ref < SECOND_REF_USEAGE_THRESH) && | 
 |       ((this_frame->pcnt_inter < VERY_LOW_INTER_THRESH) || | 
 |        ((pcnt_intra > MIN_INTRA_LEVEL) && | 
 |         (pcnt_intra > (INTRA_VS_INTER_THRESH * modified_pcnt_inter)) && | 
 |         ((this_frame->intra_error / | 
 |           DOUBLE_DIVIDE_CHECK(this_frame->coded_error)) < | 
 |          KF_II_ERR_THRESHOLD) && | 
 |         ((fabs(last_frame->coded_error - this_frame->coded_error) / | 
 |               DOUBLE_DIVIDE_CHECK(this_frame->coded_error) > | 
 |           ERR_CHANGE_THRESHOLD) || | 
 |          (fabs(last_frame->intra_error - this_frame->intra_error) / | 
 |               DOUBLE_DIVIDE_CHECK(this_frame->intra_error) > | 
 |           ERR_CHANGE_THRESHOLD) || | 
 |          ((next_frame->intra_error / | 
 |            DOUBLE_DIVIDE_CHECK(next_frame->coded_error)) > | 
 |           II_IMPROVEMENT_THRESHOLD))))) { | 
 |     int i; | 
 |     const FIRSTPASS_STATS *start_pos = twopass->stats_in; | 
 |     FIRSTPASS_STATS local_next_frame = *next_frame; | 
 |     double boost_score = 0.0; | 
 |     double old_boost_score = 0.0; | 
 |     double decay_accumulator = 1.0; | 
 |  | 
 |     // Examine how well the key frame predicts subsequent frames. | 
 |     for (i = 0; i < 16; ++i) { | 
 |       double next_iiratio = (BOOST_FACTOR * local_next_frame.intra_error / | 
 |                              DOUBLE_DIVIDE_CHECK(local_next_frame.coded_error)); | 
 |  | 
 |       if (next_iiratio > KF_II_MAX) next_iiratio = KF_II_MAX; | 
 |  | 
 |       // Cumulative effect of decay in prediction quality. | 
 |       if (local_next_frame.pcnt_inter > 0.85) | 
 |         decay_accumulator *= local_next_frame.pcnt_inter; | 
 |       else | 
 |         decay_accumulator *= (0.85 + local_next_frame.pcnt_inter) / 2.0; | 
 |  | 
 |       // Keep a running total. | 
 |       boost_score += (decay_accumulator * next_iiratio); | 
 |  | 
 |       // Test various breakout clauses. | 
 |       if ((local_next_frame.pcnt_inter < 0.05) || (next_iiratio < 1.5) || | 
 |           (((local_next_frame.pcnt_inter - local_next_frame.pcnt_neutral) < | 
 |             0.20) && | 
 |            (next_iiratio < 3.0)) || | 
 |           ((boost_score - old_boost_score) < 3.0) || | 
 |           (local_next_frame.intra_error < 200)) { | 
 |         break; | 
 |       } | 
 |  | 
 |       old_boost_score = boost_score; | 
 |  | 
 |       // Get the next frame details | 
 |       if (EOF == input_stats(twopass, &local_next_frame)) break; | 
 |     } | 
 |  | 
 |     // If there is tolerable prediction for at least the next 3 frames then | 
 |     // break out else discard this potential key frame and move on | 
 |     if (boost_score > 30.0 && (i > 3)) { | 
 |       is_viable_kf = 1; | 
 |     } else { | 
 |       // Reset the file position | 
 |       reset_fpf_position(twopass, start_pos); | 
 |  | 
 |       is_viable_kf = 0; | 
 |     } | 
 |   } | 
 |  | 
 |   return is_viable_kf; | 
 | } | 
 |  | 
 | static void find_next_key_frame(AV1_COMP *cpi, FIRSTPASS_STATS *this_frame) { | 
 |   int i, j; | 
 |   RATE_CONTROL *const rc = &cpi->rc; | 
 |   TWO_PASS *const twopass = &cpi->twopass; | 
 |   GF_GROUP *const gf_group = &twopass->gf_group; | 
 |   const AV1EncoderConfig *const oxcf = &cpi->oxcf; | 
 |   const FIRSTPASS_STATS first_frame = *this_frame; | 
 |   const FIRSTPASS_STATS *const start_position = twopass->stats_in; | 
 |   FIRSTPASS_STATS next_frame; | 
 |   FIRSTPASS_STATS last_frame; | 
 |   int kf_bits = 0; | 
 |   int loop_decay_counter = 0; | 
 |   double decay_accumulator = 1.0; | 
 |   double av_decay_accumulator = 0.0; | 
 |   double zero_motion_accumulator = 1.0; | 
 |   double boost_score = 0.0; | 
 |   double kf_mod_err = 0.0; | 
 |   double kf_group_err = 0.0; | 
 |   double recent_loop_decay[8] = { 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 }; | 
 |  | 
 |   av1_zero(next_frame); | 
 |  | 
 |   cpi->common.frame_type = KEY_FRAME; | 
 |  | 
 |   // Reset the GF group data structures. | 
 |   av1_zero(*gf_group); | 
 |  | 
 |   // Is this a forced key frame by interval. | 
 |   rc->this_key_frame_forced = rc->next_key_frame_forced; | 
 |  | 
 |   // Clear the alt ref active flag and last group multi arf flags as they | 
 |   // can never be set for a key frame. | 
 |   rc->source_alt_ref_active = 0; | 
 |   cpi->multi_arf_last_grp_enabled = 0; | 
 |  | 
 |   // KF is always a GF so clear frames till next gf counter. | 
 |   rc->frames_till_gf_update_due = 0; | 
 |  | 
 |   rc->frames_to_key = 1; | 
 |  | 
 |   twopass->kf_group_bits = 0;        // Total bits available to kf group | 
 |   twopass->kf_group_error_left = 0;  // Group modified error score. | 
 |  | 
 |   kf_mod_err = calculate_modified_err(cpi, twopass, oxcf, this_frame); | 
 |  | 
 |   // Find the next keyframe. | 
 |   i = 0; | 
 |   while (twopass->stats_in < twopass->stats_in_end && | 
 |          rc->frames_to_key < cpi->oxcf.key_freq) { | 
 |     // Accumulate kf group error. | 
 |     kf_group_err += calculate_modified_err(cpi, twopass, oxcf, this_frame); | 
 |  | 
 |     // Load the next frame's stats. | 
 |     last_frame = *this_frame; | 
 |     input_stats(twopass, this_frame); | 
 |  | 
 |     // Provided that we are not at the end of the file... | 
 |     if (cpi->oxcf.auto_key && twopass->stats_in < twopass->stats_in_end) { | 
 |       double loop_decay_rate; | 
 |  | 
 |       // Check for a scene cut. | 
 |       if (test_candidate_kf(twopass, &last_frame, this_frame, | 
 |                             twopass->stats_in)) | 
 |         break; | 
 |  | 
 |       // How fast is the prediction quality decaying? | 
 |       loop_decay_rate = get_prediction_decay_rate(cpi, twopass->stats_in); | 
 |  | 
 |       // We want to know something about the recent past... rather than | 
 |       // as used elsewhere where we are concerned with decay in prediction | 
 |       // quality since the last GF or KF. | 
 |       recent_loop_decay[i % 8] = loop_decay_rate; | 
 |       decay_accumulator = 1.0; | 
 |       for (j = 0; j < 8; ++j) decay_accumulator *= recent_loop_decay[j]; | 
 |  | 
 |       // Special check for transition or high motion followed by a | 
 |       // static scene. | 
 |       if (detect_transition_to_still(cpi, i, cpi->oxcf.key_freq - i, | 
 |                                      loop_decay_rate, decay_accumulator)) | 
 |         break; | 
 |  | 
 |       // Step on to the next frame. | 
 |       ++rc->frames_to_key; | 
 |  | 
 |       // If we don't have a real key frame within the next two | 
 |       // key_freq intervals then break out of the loop. | 
 |       if (rc->frames_to_key >= 2 * cpi->oxcf.key_freq) break; | 
 |     } else { | 
 |       ++rc->frames_to_key; | 
 |     } | 
 |     ++i; | 
 |   } | 
 |  | 
 |   // If there is a max kf interval set by the user we must obey it. | 
 |   // We already breakout of the loop above at 2x max. | 
 |   // This code centers the extra kf if the actual natural interval | 
 |   // is between 1x and 2x. | 
 |   if (cpi->oxcf.auto_key && rc->frames_to_key > cpi->oxcf.key_freq) { | 
 |     FIRSTPASS_STATS tmp_frame = first_frame; | 
 |  | 
 |     rc->frames_to_key /= 2; | 
 |  | 
 |     // Reset to the start of the group. | 
 |     reset_fpf_position(twopass, start_position); | 
 |  | 
 |     kf_group_err = 0.0; | 
 |  | 
 |     // Rescan to get the correct error data for the forced kf group. | 
 |     for (i = 0; i < rc->frames_to_key; ++i) { | 
 |       kf_group_err += calculate_modified_err(cpi, twopass, oxcf, &tmp_frame); | 
 |       input_stats(twopass, &tmp_frame); | 
 |     } | 
 |     rc->next_key_frame_forced = 1; | 
 |   } else if (twopass->stats_in == twopass->stats_in_end || | 
 |              rc->frames_to_key >= cpi->oxcf.key_freq) { | 
 |     rc->next_key_frame_forced = 1; | 
 |   } else { | 
 |     rc->next_key_frame_forced = 0; | 
 |   } | 
 |  | 
 |   // Special case for the last key frame of the file. | 
 |   if (twopass->stats_in >= twopass->stats_in_end) { | 
 |     // Accumulate kf group error. | 
 |     kf_group_err += calculate_modified_err(cpi, twopass, oxcf, this_frame); | 
 |   } | 
 |  | 
 |   // Calculate the number of bits that should be assigned to the kf group. | 
 |   if (twopass->bits_left > 0 && twopass->modified_error_left > 0.0) { | 
 |     // Maximum number of bits for a single normal frame (not key frame). | 
 |     const int max_bits = frame_max_bits(rc, &cpi->oxcf); | 
 |  | 
 |     // Maximum number of bits allocated to the key frame group. | 
 |     int64_t max_grp_bits; | 
 |  | 
 |     // Default allocation based on bits left and relative | 
 |     // complexity of the section. | 
 |     twopass->kf_group_bits = (int64_t)( | 
 |         twopass->bits_left * (kf_group_err / twopass->modified_error_left)); | 
 |  | 
 |     // Clip based on maximum per frame rate defined by the user. | 
 |     max_grp_bits = (int64_t)max_bits * (int64_t)rc->frames_to_key; | 
 |     if (twopass->kf_group_bits > max_grp_bits) | 
 |       twopass->kf_group_bits = max_grp_bits; | 
 |   } else { | 
 |     twopass->kf_group_bits = 0; | 
 |   } | 
 |   twopass->kf_group_bits = AOMMAX(0, twopass->kf_group_bits); | 
 |  | 
 |   // Reset the first pass file position. | 
 |   reset_fpf_position(twopass, start_position); | 
 |  | 
 |   // Scan through the kf group collating various stats used to determine | 
 |   // how many bits to spend on it. | 
 |   decay_accumulator = 1.0; | 
 |   boost_score = 0.0; | 
 |   for (i = 0; i < (rc->frames_to_key - 1); ++i) { | 
 |     if (EOF == input_stats(twopass, &next_frame)) break; | 
 |  | 
 |     // Monitor for static sections. | 
 |     zero_motion_accumulator = AOMMIN(zero_motion_accumulator, | 
 |                                      get_zero_motion_factor(cpi, &next_frame)); | 
 |  | 
 |     // Not all frames in the group are necessarily used in calculating boost. | 
 |     if ((i <= rc->max_gf_interval) || | 
 |         ((i <= (rc->max_gf_interval * 4)) && (decay_accumulator > 0.5))) { | 
 |       const double frame_boost = | 
 |           calc_frame_boost(cpi, this_frame, 0, KF_MAX_BOOST); | 
 |  | 
 |       // How fast is prediction quality decaying. | 
 |       if (!detect_flash(twopass, 0)) { | 
 |         const double loop_decay_rate = | 
 |             get_prediction_decay_rate(cpi, &next_frame); | 
 |         decay_accumulator *= loop_decay_rate; | 
 |         decay_accumulator = AOMMAX(decay_accumulator, MIN_DECAY_FACTOR); | 
 |         av_decay_accumulator += decay_accumulator; | 
 |         ++loop_decay_counter; | 
 |       } | 
 |       boost_score += (decay_accumulator * frame_boost); | 
 |     } | 
 |   } | 
 |   av_decay_accumulator /= (double)loop_decay_counter; | 
 |  | 
 |   reset_fpf_position(twopass, start_position); | 
 |  | 
 |   // Store the zero motion percentage | 
 |   twopass->kf_zeromotion_pct = (int)(zero_motion_accumulator * 100.0); | 
 |  | 
 |   // Calculate a section intra ratio used in setting max loop filter. | 
 |   twopass->section_intra_rating = calculate_section_intra_ratio( | 
 |       start_position, twopass->stats_in_end, rc->frames_to_key); | 
 |  | 
 |   // Apply various clamps for min and max boost | 
 |   rc->kf_boost = (int)(av_decay_accumulator * boost_score); | 
 |   rc->kf_boost = AOMMAX(rc->kf_boost, (rc->frames_to_key * 3)); | 
 |   rc->kf_boost = AOMMAX(rc->kf_boost, MIN_KF_BOOST); | 
 |  | 
 |   // Work out how many bits to allocate for the key frame itself. | 
 |   kf_bits = calculate_boost_bits((rc->frames_to_key - 1), rc->kf_boost, | 
 |                                  twopass->kf_group_bits); | 
 |  | 
 |   // Work out the fraction of the kf group bits reserved for the inter frames | 
 |   // within the group after discounting the bits for the kf itself. | 
 |   if (twopass->kf_group_bits) { | 
 |     twopass->kfgroup_inter_fraction = | 
 |         (double)(twopass->kf_group_bits - kf_bits) / | 
 |         (double)twopass->kf_group_bits; | 
 |   } else { | 
 |     twopass->kfgroup_inter_fraction = 1.0; | 
 |   } | 
 |  | 
 |   twopass->kf_group_bits -= kf_bits; | 
 |  | 
 |   // Save the bits to spend on the key frame. | 
 |   gf_group->bit_allocation[0] = kf_bits; | 
 |   gf_group->update_type[0] = KF_UPDATE; | 
 |   gf_group->rf_level[0] = KF_STD; | 
 |  | 
 |   // Note the total error score of the kf group minus the key frame itself. | 
 |   twopass->kf_group_error_left = (int)(kf_group_err - kf_mod_err); | 
 |  | 
 |   // Adjust the count of total modified error left. | 
 |   // The count of bits left is adjusted elsewhere based on real coded frame | 
 |   // sizes. | 
 |   twopass->modified_error_left -= kf_group_err; | 
 |  | 
 |   if (oxcf->resize_mode == RESIZE_DYNAMIC) { | 
 |     // Default to normal-sized frame on keyframes. | 
 |     cpi->rc.next_frame_size_selector = UNSCALED; | 
 |   } | 
 | } | 
 |  | 
 | // Define the reference buffers that will be updated post encode. | 
 | static void configure_buffer_updates(AV1_COMP *cpi) { | 
 |   TWO_PASS *const twopass = &cpi->twopass; | 
 |  | 
 |   cpi->rc.is_src_frame_alt_ref = 0; | 
 | #if CONFIG_EXT_REFS | 
 |   cpi->rc.is_bwd_ref_frame = 0; | 
 |   cpi->rc.is_last_bipred_frame = 0; | 
 |   cpi->rc.is_bipred_frame = 0; | 
 | #endif  // CONFIG_EXT_REFS | 
 |  | 
 |   switch (twopass->gf_group.update_type[twopass->gf_group.index]) { | 
 |     case KF_UPDATE: cpi->refresh_last_frame = 1; cpi->refresh_golden_frame = 1; | 
 | #if CONFIG_EXT_REFS | 
 |       cpi->refresh_bwd_ref_frame = 1; | 
 | #endif  // CONFIG_EXT_REFS | 
 |       cpi->refresh_alt_ref_frame = 1; | 
 |       break; | 
 |     case LF_UPDATE: cpi->refresh_last_frame = 1; cpi->refresh_golden_frame = 0; | 
 | #if CONFIG_EXT_REFS | 
 |       cpi->refresh_bwd_ref_frame = 0; | 
 | #endif  // CONFIG_EXT_REFS | 
 |       cpi->refresh_alt_ref_frame = 0; | 
 |       break; | 
 |     case GF_UPDATE: cpi->refresh_last_frame = 1; cpi->refresh_golden_frame = 1; | 
 | #if CONFIG_EXT_REFS | 
 |       cpi->refresh_bwd_ref_frame = 0; | 
 | #endif  // CONFIG_EXT_REFS | 
 |       cpi->refresh_alt_ref_frame = 0; | 
 |       break; | 
 |     case OVERLAY_UPDATE: | 
 |       cpi->refresh_last_frame = 0; | 
 |       cpi->refresh_golden_frame = 1; | 
 | #if CONFIG_EXT_REFS | 
 |       cpi->refresh_bwd_ref_frame = 0; | 
 | #endif  // CONFIG_EXT_REFS | 
 |       cpi->refresh_alt_ref_frame = 0; | 
 |       cpi->rc.is_src_frame_alt_ref = 1; | 
 |       break; | 
 |     case ARF_UPDATE: cpi->refresh_last_frame = 0; cpi->refresh_golden_frame = 0; | 
 | #if CONFIG_EXT_REFS | 
 |       cpi->refresh_bwd_ref_frame = 0; | 
 | #endif  // CONFIG_EXT_REFS | 
 |       cpi->refresh_alt_ref_frame = 1; | 
 |       break; | 
 | #if CONFIG_EXT_REFS | 
 |     case BRF_UPDATE: | 
 |       cpi->refresh_last_frame = 0; | 
 |       cpi->refresh_golden_frame = 0; | 
 |       cpi->refresh_bwd_ref_frame = 1; | 
 |       cpi->refresh_alt_ref_frame = 0; | 
 |       cpi->rc.is_bwd_ref_frame = 1; | 
 |       break; | 
 |     case LAST_BIPRED_UPDATE: | 
 |       cpi->refresh_last_frame = 0; | 
 |       cpi->refresh_golden_frame = 0; | 
 |       cpi->refresh_bwd_ref_frame = 0; | 
 |       cpi->refresh_alt_ref_frame = 0; | 
 |       cpi->rc.is_last_bipred_frame = 1; | 
 |       break; | 
 |     case BIPRED_UPDATE: | 
 |       cpi->refresh_last_frame = 1; | 
 |       cpi->refresh_golden_frame = 0; | 
 |       cpi->refresh_bwd_ref_frame = 0; | 
 |       cpi->refresh_alt_ref_frame = 0; | 
 |       cpi->rc.is_bipred_frame = 1; | 
 |       break; | 
 | #endif  // CONFIG_EXT_REFS | 
 |     default: assert(0); break; | 
 |   } | 
 | } | 
 |  | 
 | static int is_skippable_frame(const AV1_COMP *cpi) { | 
 |   // If the current frame does not have non-zero motion vector detected in the | 
 |   // first  pass, and so do its previous and forward frames, then this frame | 
 |   // can be skipped for partition check, and the partition size is assigned | 
 |   // according to the variance | 
 |   const TWO_PASS *const twopass = &cpi->twopass; | 
 |  | 
 |   return (!frame_is_intra_only(&cpi->common) && | 
 |           twopass->stats_in - 2 > twopass->stats_in_start && | 
 |           twopass->stats_in < twopass->stats_in_end && | 
 |           (twopass->stats_in - 1)->pcnt_inter - | 
 |                   (twopass->stats_in - 1)->pcnt_motion == | 
 |               1 && | 
 |           (twopass->stats_in - 2)->pcnt_inter - | 
 |                   (twopass->stats_in - 2)->pcnt_motion == | 
 |               1 && | 
 |           twopass->stats_in->pcnt_inter - twopass->stats_in->pcnt_motion == 1); | 
 | } | 
 |  | 
 | void av1_rc_get_second_pass_params(AV1_COMP *cpi) { | 
 |   AV1_COMMON *const cm = &cpi->common; | 
 |   RATE_CONTROL *const rc = &cpi->rc; | 
 |   TWO_PASS *const twopass = &cpi->twopass; | 
 |   GF_GROUP *const gf_group = &twopass->gf_group; | 
 |   int frames_left; | 
 |   FIRSTPASS_STATS this_frame; | 
 |  | 
 |   int target_rate; | 
 |  | 
 |   frames_left = (int)(twopass->total_stats.count - cm->current_video_frame); | 
 |  | 
 |   if (!twopass->stats_in) return; | 
 |  | 
 |   // If this is an arf frame then we dont want to read the stats file or | 
 |   // advance the input pointer as we already have what we need. | 
 |   if (gf_group->update_type[gf_group->index] == ARF_UPDATE) { | 
 |     configure_buffer_updates(cpi); | 
 |     target_rate = gf_group->bit_allocation[gf_group->index]; | 
 |     target_rate = av1_rc_clamp_pframe_target_size(cpi, target_rate); | 
 |     rc->base_frame_target = target_rate; | 
 |  | 
 |     cm->frame_type = INTER_FRAME; | 
 |  | 
 |     // Do the firstpass stats indicate that this frame is skippable for the | 
 |     // partition search? | 
 |     if (cpi->sf.allow_partition_search_skip && cpi->oxcf.pass == 2) { | 
 |       cpi->partition_search_skippable_frame = is_skippable_frame(cpi); | 
 |     } | 
 |  | 
 |     return; | 
 |   } | 
 |  | 
 |   aom_clear_system_state(); | 
 |  | 
 |   if (cpi->oxcf.rc_mode == AOM_Q) { | 
 |     twopass->active_worst_quality = cpi->oxcf.cq_level; | 
 |   } else if (cm->current_video_frame == 0) { | 
 |     // Special case code for first frame. | 
 |     const int section_target_bandwidth = | 
 |         (int)(twopass->bits_left / frames_left); | 
 |     const double section_length = twopass->total_left_stats.count; | 
 |     const double section_error = | 
 |         twopass->total_left_stats.coded_error / section_length; | 
 |     const double section_intra_skip = | 
 |         twopass->total_left_stats.intra_skip_pct / section_length; | 
 |     const double section_inactive_zone = | 
 |         (twopass->total_left_stats.inactive_zone_rows * 2) / | 
 |         ((double)cm->mb_rows * section_length); | 
 |     const int tmp_q = get_twopass_worst_quality( | 
 |         cpi, section_error, section_intra_skip + section_inactive_zone, | 
 |         section_target_bandwidth, DEFAULT_GRP_WEIGHT); | 
 |  | 
 |     twopass->active_worst_quality = tmp_q; | 
 |     twopass->baseline_active_worst_quality = tmp_q; | 
 |     rc->ni_av_qi = tmp_q; | 
 |     rc->last_q[INTER_FRAME] = tmp_q; | 
 |     rc->avg_q = av1_convert_qindex_to_q(tmp_q, cm->bit_depth); | 
 |     rc->avg_frame_qindex[INTER_FRAME] = tmp_q; | 
 |     rc->last_q[KEY_FRAME] = (tmp_q + cpi->oxcf.best_allowed_q) / 2; | 
 |     rc->avg_frame_qindex[KEY_FRAME] = rc->last_q[KEY_FRAME]; | 
 |   } | 
 |   av1_zero(this_frame); | 
 |   if (EOF == input_stats(twopass, &this_frame)) return; | 
 |  | 
 |   // Set the frame content type flag. | 
 |   if (this_frame.intra_skip_pct >= FC_ANIMATION_THRESH) | 
 |     twopass->fr_content_type = FC_GRAPHICS_ANIMATION; | 
 |   else | 
 |     twopass->fr_content_type = FC_NORMAL; | 
 |  | 
 |   // Keyframe and section processing. | 
 |   if (rc->frames_to_key == 0 || (cpi->frame_flags & FRAMEFLAGS_KEY)) { | 
 |     FIRSTPASS_STATS this_frame_copy; | 
 |     this_frame_copy = this_frame; | 
 |     // Define next KF group and assign bits to it. | 
 |     find_next_key_frame(cpi, &this_frame); | 
 |     this_frame = this_frame_copy; | 
 |   } else { | 
 |     cm->frame_type = INTER_FRAME; | 
 |   } | 
 |  | 
 |   // Define a new GF/ARF group. (Should always enter here for key frames). | 
 |   if (rc->frames_till_gf_update_due == 0) { | 
 |     define_gf_group(cpi, &this_frame); | 
 |  | 
 |     rc->frames_till_gf_update_due = rc->baseline_gf_interval; | 
 |  | 
 | #if ARF_STATS_OUTPUT | 
 |     { | 
 |       FILE *fpfile; | 
 |       fpfile = fopen("arf.stt", "a"); | 
 |       ++arf_count; | 
 |       fprintf(fpfile, "%10d %10ld %10d %10d %10ld\n", cm->current_video_frame, | 
 |               rc->frames_till_gf_update_due, rc->kf_boost, arf_count, | 
 |               rc->gfu_boost); | 
 |  | 
 |       fclose(fpfile); | 
 |     } | 
 | #endif | 
 |   } | 
 |  | 
 |   configure_buffer_updates(cpi); | 
 |  | 
 |   // Do the firstpass stats indicate that this frame is skippable for the | 
 |   // partition search? | 
 |   if (cpi->sf.allow_partition_search_skip && cpi->oxcf.pass == 2) { | 
 |     cpi->partition_search_skippable_frame = is_skippable_frame(cpi); | 
 |   } | 
 |  | 
 |   target_rate = gf_group->bit_allocation[gf_group->index]; | 
 |   if (cpi->common.frame_type == KEY_FRAME) | 
 |     target_rate = av1_rc_clamp_iframe_target_size(cpi, target_rate); | 
 |   else | 
 |     target_rate = av1_rc_clamp_pframe_target_size(cpi, target_rate); | 
 |  | 
 |   rc->base_frame_target = target_rate; | 
 |  | 
 |   { | 
 |     const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE) | 
 |                             ? cpi->initial_mbs | 
 |                             : cpi->common.MBs; | 
 |     // The multiplication by 256 reverses a scaling factor of (>> 8) | 
 |     // applied when combining MB error values for the frame. | 
 |     twopass->mb_av_energy = | 
 |         log(((this_frame.intra_error * 256.0) / num_mbs) + 1.0); | 
 |   } | 
 |  | 
 |   // Update the total stats remaining structure. | 
 |   subtract_stats(&twopass->total_left_stats, &this_frame); | 
 | } | 
 |  | 
 | #define MINQ_ADJ_LIMIT 48 | 
 | #define MINQ_ADJ_LIMIT_CQ 20 | 
 | #define HIGH_UNDERSHOOT_RATIO 2 | 
 | void av1_twopass_postencode_update(AV1_COMP *cpi) { | 
 |   TWO_PASS *const twopass = &cpi->twopass; | 
 |   RATE_CONTROL *const rc = &cpi->rc; | 
 |   const int bits_used = rc->base_frame_target; | 
 |  | 
 |   // VBR correction is done through rc->vbr_bits_off_target. Based on the | 
 |   // sign of this value, a limited % adjustment is made to the target rate | 
 |   // of subsequent frames, to try and push it back towards 0. This method | 
 |   // is designed to prevent extreme behaviour at the end of a clip | 
 |   // or group of frames. | 
 |   rc->vbr_bits_off_target += rc->base_frame_target - rc->projected_frame_size; | 
 |   twopass->bits_left = AOMMAX(twopass->bits_left - bits_used, 0); | 
 |  | 
 |   // Calculate the pct rc error. | 
 |   if (rc->total_actual_bits) { | 
 |     rc->rate_error_estimate = | 
 |         (int)((rc->vbr_bits_off_target * 100) / rc->total_actual_bits); | 
 |     rc->rate_error_estimate = clamp(rc->rate_error_estimate, -100, 100); | 
 |   } else { | 
 |     rc->rate_error_estimate = 0; | 
 |   } | 
 |  | 
 |   if (cpi->common.frame_type != KEY_FRAME) { | 
 |     twopass->kf_group_bits -= bits_used; | 
 |     twopass->last_kfgroup_zeromotion_pct = twopass->kf_zeromotion_pct; | 
 |   } | 
 |   twopass->kf_group_bits = AOMMAX(twopass->kf_group_bits, 0); | 
 |  | 
 |   // Increment the gf group index ready for the next frame. | 
 |   ++twopass->gf_group.index; | 
 |  | 
 |   // If the rate control is drifting consider adjustment to min or maxq. | 
 |   if ((cpi->oxcf.rc_mode != AOM_Q) && | 
 |       (cpi->twopass.gf_zeromotion_pct < VLOW_MOTION_THRESHOLD) && | 
 |       !cpi->rc.is_src_frame_alt_ref) { | 
 |     const int maxq_adj_limit = | 
 |         rc->worst_quality - twopass->active_worst_quality; | 
 |     const int minq_adj_limit = | 
 |         (cpi->oxcf.rc_mode == AOM_CQ ? MINQ_ADJ_LIMIT_CQ : MINQ_ADJ_LIMIT); | 
 |  | 
 |     // Undershoot. | 
 |     if (rc->rate_error_estimate > cpi->oxcf.under_shoot_pct) { | 
 |       --twopass->extend_maxq; | 
 |       if (rc->rolling_target_bits >= rc->rolling_actual_bits) | 
 |         ++twopass->extend_minq; | 
 |       // Overshoot. | 
 |     } else if (rc->rate_error_estimate < -cpi->oxcf.over_shoot_pct) { | 
 |       --twopass->extend_minq; | 
 |       if (rc->rolling_target_bits < rc->rolling_actual_bits) | 
 |         ++twopass->extend_maxq; | 
 |     } else { | 
 |       // Adjustment for extreme local overshoot. | 
 |       if (rc->projected_frame_size > (2 * rc->base_frame_target) && | 
 |           rc->projected_frame_size > (2 * rc->avg_frame_bandwidth)) | 
 |         ++twopass->extend_maxq; | 
 |  | 
 |       // Unwind undershoot or overshoot adjustment. | 
 |       if (rc->rolling_target_bits < rc->rolling_actual_bits) | 
 |         --twopass->extend_minq; | 
 |       else if (rc->rolling_target_bits > rc->rolling_actual_bits) | 
 |         --twopass->extend_maxq; | 
 |     } | 
 |  | 
 |     twopass->extend_minq = clamp(twopass->extend_minq, 0, minq_adj_limit); | 
 |     twopass->extend_maxq = clamp(twopass->extend_maxq, 0, maxq_adj_limit); | 
 |  | 
 |     // If there is a big and undexpected undershoot then feed the extra | 
 |     // bits back in quickly. One situation where this may happen is if a | 
 |     // frame is unexpectedly almost perfectly predicted by the ARF or GF | 
 |     // but not very well predcited by the previous frame. | 
 |     if (!frame_is_kf_gf_arf(cpi) && !cpi->rc.is_src_frame_alt_ref) { | 
 |       int fast_extra_thresh = rc->base_frame_target / HIGH_UNDERSHOOT_RATIO; | 
 |       if (rc->projected_frame_size < fast_extra_thresh) { | 
 |         rc->vbr_bits_off_target_fast += | 
 |             fast_extra_thresh - rc->projected_frame_size; | 
 |         rc->vbr_bits_off_target_fast = | 
 |             AOMMIN(rc->vbr_bits_off_target_fast, (4 * rc->avg_frame_bandwidth)); | 
 |  | 
 |         // Fast adaptation of minQ if necessary to use up the extra bits. | 
 |         if (rc->avg_frame_bandwidth) { | 
 |           twopass->extend_minq_fast = | 
 |               (int)(rc->vbr_bits_off_target_fast * 8 / rc->avg_frame_bandwidth); | 
 |         } | 
 |         twopass->extend_minq_fast = AOMMIN( | 
 |             twopass->extend_minq_fast, minq_adj_limit - twopass->extend_minq); | 
 |       } else if (rc->vbr_bits_off_target_fast) { | 
 |         twopass->extend_minq_fast = AOMMIN( | 
 |             twopass->extend_minq_fast, minq_adj_limit - twopass->extend_minq); | 
 |       } else { | 
 |         twopass->extend_minq_fast = 0; | 
 |       } | 
 |     } | 
 |   } | 
 | } |