blob: 2c1d00abd50aca64bab8b0b91140b6ddbae5f9c1 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "./aom_dsp_rtcd.h"
#include "./av1_rtcd.h"
#include "aom_dsp/inv_txfm.h"
#include "av1/common/enums.h"
#include "av1/common/av1_txfm.h"
#include "av1/common/av1_inv_txfm1d.h"
#include "av1/common/av1_inv_txfm1d_cfg.h"
#define NO_INV_TRANSPOSE 1
static INLINE void clamp_buf(int32_t *buf, int32_t size, int8_t bit) {
const int64_t max_value = (1LL << (bit - 1)) - 1;
const int64_t min_value = -(1LL << (bit - 1));
for (int i = 0; i < size; ++i)
buf[i] = (int32_t)clamp64(buf[i], min_value, max_value);
}
static INLINE TxfmFunc inv_txfm_type_to_func(TXFM_TYPE txfm_type) {
switch (txfm_type) {
case TXFM_TYPE_DCT4: return av1_idct4_new;
case TXFM_TYPE_DCT8: return av1_idct8_new;
case TXFM_TYPE_DCT16: return av1_idct16_new;
case TXFM_TYPE_DCT32: return av1_idct32_new;
#if CONFIG_TX64X64
case TXFM_TYPE_DCT64: return av1_idct64_new;
#endif // CONFIG_TX64X64
case TXFM_TYPE_ADST4: return av1_iadst4_new;
case TXFM_TYPE_ADST8: return av1_iadst8_new;
case TXFM_TYPE_ADST16: return av1_iadst16_new;
case TXFM_TYPE_ADST32: return av1_iadst32_new;
case TXFM_TYPE_IDENTITY4: return av1_iidentity4_c;
case TXFM_TYPE_IDENTITY8: return av1_iidentity8_c;
case TXFM_TYPE_IDENTITY16: return av1_iidentity16_c;
case TXFM_TYPE_IDENTITY32: return av1_iidentity32_c;
#if CONFIG_TX64X64
case TXFM_TYPE_IDENTITY64: return av1_iidentity64_c;
#endif // CONFIG_TX64X64
default: assert(0); return NULL;
}
}
static const int8_t inv_shift_4x4[2] = { 0, -4 };
static const int8_t inv_shift_8x8[2] = { -1, -4 };
static const int8_t inv_shift_16x16[2] = { -2, -4 };
static const int8_t inv_shift_32x32[2] = { -2, -4 };
#if CONFIG_TX64X64
static const int8_t inv_shift_64x64[2] = { -2, -4 };
#endif
static const int8_t inv_shift_4x8[2] = { 0, -4 };
static const int8_t inv_shift_8x4[2] = { 0, -4 };
static const int8_t inv_shift_8x16[2] = { -1, -4 };
static const int8_t inv_shift_16x8[2] = { -1, -4 };
static const int8_t inv_shift_16x32[2] = { -1, -4 };
static const int8_t inv_shift_32x16[2] = { -1, -4 };
#if CONFIG_TX64X64
static const int8_t inv_shift_32x64[2] = { -1, -4 };
static const int8_t inv_shift_64x32[2] = { -1, -4 };
#endif
static const int8_t inv_shift_4x16[2] = { -1, -4 };
static const int8_t inv_shift_16x4[2] = { -1, -4 };
static const int8_t inv_shift_8x32[2] = { -2, -4 };
static const int8_t inv_shift_32x8[2] = { -2, -4 };
#if CONFIG_TX64X64
static const int8_t inv_shift_16x64[2] = { -2, -4 };
static const int8_t inv_shift_64x16[2] = { -2, -4 };
#endif // CONFIG_TX64X64
const int8_t *inv_txfm_shift_ls[TX_SIZES_ALL] = {
inv_shift_4x4, inv_shift_8x8, inv_shift_16x16, inv_shift_32x32,
#if CONFIG_TX64X64
inv_shift_64x64,
#endif // CONFIG_TX64X64
inv_shift_4x8, inv_shift_8x4, inv_shift_8x16, inv_shift_16x8,
inv_shift_16x32, inv_shift_32x16,
#if CONFIG_TX64X64
inv_shift_32x64, inv_shift_64x32,
#endif // CONFIG_TX64X64
inv_shift_4x16, inv_shift_16x4, inv_shift_8x32, inv_shift_32x8,
#if CONFIG_TX64X64
inv_shift_16x64, inv_shift_64x16,
#endif // CONFIG_TX64X64
};
const int8_t inv_cos_bit_col[MAX_TXWH_IDX /*txw_idx*/]
[MAX_TXWH_IDX /*txh_idx*/] = {
{ 13, 13, 13, 0, 0 },
{ 13, 13, 13, 13, 0 },
{ 13, 13, 13, 13, 13 },
{ 0, 13, 13, 13, 13 },
{ 0, 0, 13, 13, 13 }
};
const int8_t inv_cos_bit_row[MAX_TXWH_IDX /*txw_idx*/]
[MAX_TXWH_IDX /*txh_idx*/] = {
{ 13, 13, 12, 0, 0 },
{ 13, 13, 12, 12, 0 },
{ 12, 12, 12, 12, 12 },
{ 0, 12, 12, 12, 12 },
{ 0, 0, 12, 12, 12 }
};
const int8_t iadst4_range[7] = { 0, 1, 0, 0, 0, 0, 0 };
void av1_get_inv_txfm_cfg(TX_TYPE tx_type, TX_SIZE tx_size,
TXFM_2D_FLIP_CFG *cfg) {
assert(cfg != NULL);
cfg->tx_size = tx_size;
set_flip_cfg(tx_type, cfg);
av1_zero(cfg->stage_range_col);
av1_zero(cfg->stage_range_row);
set_flip_cfg(tx_type, cfg);
const TX_TYPE_1D tx_type_1d_col = vtx_tab[tx_type];
const TX_TYPE_1D tx_type_1d_row = htx_tab[tx_type];
cfg->shift = inv_txfm_shift_ls[tx_size];
const int txw_idx = get_txw_idx(tx_size);
const int txh_idx = get_txh_idx(tx_size);
cfg->cos_bit_col = inv_cos_bit_col[txw_idx][txh_idx];
cfg->cos_bit_row = inv_cos_bit_row[txw_idx][txh_idx];
cfg->txfm_type_col = av1_txfm_type_ls[txh_idx][tx_type_1d_col];
if (cfg->txfm_type_col == TXFM_TYPE_ADST4) {
memcpy(cfg->stage_range_col, iadst4_range, sizeof(iadst4_range));
}
cfg->txfm_type_row = av1_txfm_type_ls[txw_idx][tx_type_1d_row];
if (cfg->txfm_type_row == TXFM_TYPE_ADST4) {
memcpy(cfg->stage_range_row, iadst4_range, sizeof(iadst4_range));
}
cfg->stage_num_col = av1_txfm_stage_num_list[cfg->txfm_type_col];
cfg->stage_num_row = av1_txfm_stage_num_list[cfg->txfm_type_row];
}
void av1_gen_inv_stage_range(int8_t *stage_range_col, int8_t *stage_range_row,
const TXFM_2D_FLIP_CFG *cfg, TX_SIZE tx_size,
int bd) {
const int fwd_shift = inv_start_range[tx_size];
const int8_t *shift = cfg->shift;
// i < MAX_TXFM_STAGE_NUM will mute above array bounds warning
for (int i = 0; i < cfg->stage_num_row && i < MAX_TXFM_STAGE_NUM; ++i) {
stage_range_row[i] = cfg->stage_range_row[i] + fwd_shift + bd + 1;
}
// i < MAX_TXFM_STAGE_NUM will mute above array bounds warning
for (int i = 0; i < cfg->stage_num_col && i < MAX_TXFM_STAGE_NUM; ++i) {
stage_range_col[i] =
cfg->stage_range_col[i] + fwd_shift + shift[0] + bd + 1;
}
}
static INLINE void inv_txfm2d_add_c(const int32_t *input, uint16_t *output,
int stride, TXFM_2D_FLIP_CFG *cfg,
int32_t *txfm_buf, TX_SIZE tx_size,
int bd) {
// Note when assigning txfm_size_col, we use the txfm_size from the
// row configuration and vice versa. This is intentionally done to
// accurately perform rectangular transforms. When the transform is
// rectangular, the number of columns will be the same as the
// txfm_size stored in the row cfg struct. It will make no difference
// for square transforms.
const int txfm_size_col = tx_size_wide[cfg->tx_size];
const int txfm_size_row = tx_size_high[cfg->tx_size];
// Take the shift from the larger dimension in the rectangular case.
const int8_t *shift = cfg->shift;
const int rect_type = get_rect_tx_log_ratio(txfm_size_col, txfm_size_row);
int8_t stage_range_row[MAX_TXFM_STAGE_NUM];
int8_t stage_range_col[MAX_TXFM_STAGE_NUM];
assert(cfg->stage_num_row <= MAX_TXFM_STAGE_NUM);
assert(cfg->stage_num_col <= MAX_TXFM_STAGE_NUM);
av1_gen_inv_stage_range(stage_range_col, stage_range_row, cfg, tx_size, bd);
const int8_t cos_bit_col = cfg->cos_bit_col;
const int8_t cos_bit_row = cfg->cos_bit_row;
const TxfmFunc txfm_func_col = inv_txfm_type_to_func(cfg->txfm_type_col);
const TxfmFunc txfm_func_row = inv_txfm_type_to_func(cfg->txfm_type_row);
// txfm_buf's length is txfm_size_row * txfm_size_col + 2 *
// AOMMAX(txfm_size_row, txfm_size_col)
// it is used for intermediate data buffering
const int buf_offset = AOMMAX(txfm_size_row, txfm_size_col);
int32_t *temp_in = txfm_buf;
int32_t *temp_out = temp_in + buf_offset;
int32_t *buf = temp_out + buf_offset;
int32_t *buf_ptr = buf;
int c, r;
// Rows
for (r = 0; r < txfm_size_row; ++r) {
if (abs(rect_type) == 1) {
for (c = 0; c < txfm_size_col; ++c) {
temp_in[c] = round_shift(input[c] * NewInvSqrt2, NewSqrt2Bits);
}
txfm_func_row(temp_in, buf_ptr, cos_bit_row, stage_range_row);
} else {
txfm_func_row(input, buf_ptr, cos_bit_row, stage_range_row);
}
av1_round_shift_array(buf_ptr, txfm_size_col, -shift[0]);
clamp_buf(buf_ptr, txfm_size_col, AOMMAX(bd + 6, 16));
input += txfm_size_col;
buf_ptr += txfm_size_col;
}
// Columns
for (c = 0; c < txfm_size_col; ++c) {
if (cfg->lr_flip == 0) {
for (r = 0; r < txfm_size_row; ++r)
temp_in[r] = buf[r * txfm_size_col + c];
} else {
// flip left right
for (r = 0; r < txfm_size_row; ++r)
temp_in[r] = buf[r * txfm_size_col + (txfm_size_col - c - 1)];
}
txfm_func_col(temp_in, temp_out, cos_bit_col, stage_range_col);
av1_round_shift_array(temp_out, txfm_size_row, -shift[1]);
clamp_buf(temp_out, txfm_size_row, bd + 1);
if (cfg->ud_flip == 0) {
for (r = 0; r < txfm_size_row; ++r) {
output[r * stride + c] =
highbd_clip_pixel_add(output[r * stride + c], temp_out[r], bd);
}
} else {
// flip upside down
for (r = 0; r < txfm_size_row; ++r) {
output[r * stride + c] = highbd_clip_pixel_add(
output[r * stride + c], temp_out[txfm_size_row - r - 1], bd);
}
}
}
}
static INLINE void inv_txfm2d_add_facade(const int32_t *input, uint16_t *output,
int stride, int32_t *txfm_buf,
TX_TYPE tx_type, TX_SIZE tx_size,
int bd) {
TXFM_2D_FLIP_CFG cfg;
av1_get_inv_txfm_cfg(tx_type, tx_size, &cfg);
// Forward shift sum uses larger square size, to be consistent with what
// av1_gen_inv_stage_range() does for inverse shifts.
inv_txfm2d_add_c(input, output, stride, &cfg, txfm_buf, tx_size, bd);
}
void av1_inv_txfm2d_add_4x8_c(const int32_t *input, uint16_t *output,
int stride, TX_TYPE tx_type, int bd) {
DECLARE_ALIGNED(32, int, txfm_buf[4 * 8 + 8 + 8]);
inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_4X8, bd);
}
void av1_inv_txfm2d_add_8x4_c(const int32_t *input, uint16_t *output,
int stride, TX_TYPE tx_type, int bd) {
DECLARE_ALIGNED(32, int, txfm_buf[8 * 4 + 8 + 8]);
#if NO_INV_TRANSPOSE
inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_8X4, bd);
#else
int32_t rinput[8 * 4];
uint16_t routput[8 * 4];
TX_SIZE tx_size = TX_8X4;
TX_SIZE rtx_size = av1_rotate_tx_size(tx_size);
TX_TYPE rtx_type = av1_rotate_tx_type(tx_type);
int w = tx_size_wide[tx_size];
int h = tx_size_high[tx_size];
int rw = h;
int rh = w;
transpose_int32(rinput, rw, input, w, w, h);
transpose_uint16(routput, rw, output, stride, w, h);
inv_txfm2d_add_facade(rinput, routput, rw, txfm_buf, rtx_type, rtx_size, bd);
transpose_uint16(output, stride, routput, rw, rw, rh);
#endif // NO_INV_TRANSPOSE
}
void av1_inv_txfm2d_add_8x16_c(const int32_t *input, uint16_t *output,
int stride, TX_TYPE tx_type, int bd) {
DECLARE_ALIGNED(32, int, txfm_buf[8 * 16 + 16 + 16]);
inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_8X16, bd);
}
void av1_inv_txfm2d_add_16x8_c(const int32_t *input, uint16_t *output,
int stride, TX_TYPE tx_type, int bd) {
DECLARE_ALIGNED(32, int, txfm_buf[16 * 8 + 16 + 16]);
#if NO_INV_TRANSPOSE
inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_16X8, bd);
#else
int32_t rinput[16 * 8];
uint16_t routput[16 * 8];
TX_SIZE tx_size = TX_16X8;
TX_SIZE rtx_size = av1_rotate_tx_size(tx_size);
TX_TYPE rtx_type = av1_rotate_tx_type(tx_type);
int w = tx_size_wide[tx_size];
int h = tx_size_high[tx_size];
int rw = h;
int rh = w;
transpose_int32(rinput, rw, input, w, w, h);
transpose_uint16(routput, rw, output, stride, w, h);
inv_txfm2d_add_facade(rinput, routput, rw, txfm_buf, rtx_type, rtx_size, bd);
transpose_uint16(output, stride, routput, rw, rw, rh);
#endif // NO_INV_TRANSPOSE
}
void av1_inv_txfm2d_add_16x32_c(const int32_t *input, uint16_t *output,
int stride, TX_TYPE tx_type, int bd) {
DECLARE_ALIGNED(32, int, txfm_buf[16 * 32 + 32 + 32]);
inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_16X32, bd);
}
void av1_inv_txfm2d_add_32x16_c(const int32_t *input, uint16_t *output,
int stride, TX_TYPE tx_type, int bd) {
DECLARE_ALIGNED(32, int, txfm_buf[32 * 16 + 32 + 32]);
#if NO_INV_TRANSPOSE
inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_32X16, bd);
#else
int32_t rinput[32 * 16];
uint16_t routput[32 * 16];
TX_SIZE tx_size = TX_32X16;
TX_SIZE rtx_size = av1_rotate_tx_size(tx_size);
TX_TYPE rtx_type = av1_rotate_tx_type(tx_type);
int w = tx_size_wide[tx_size];
int h = tx_size_high[tx_size];
int rw = h;
int rh = w;
transpose_int32(rinput, rw, input, w, w, h);
transpose_uint16(routput, rw, output, stride, w, h);
inv_txfm2d_add_facade(rinput, routput, rw, txfm_buf, rtx_type, rtx_size, bd);
transpose_uint16(output, stride, routput, rw, rw, rh);
#endif // NO_INV_TRANSPOSE
}
void av1_inv_txfm2d_add_4x4_c(const int32_t *input, uint16_t *output,
int stride, TX_TYPE tx_type, int bd) {
DECLARE_ALIGNED(32, int, txfm_buf[4 * 4 + 4 + 4]);
inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_4X4, bd);
}
void av1_inv_txfm2d_add_8x8_c(const int32_t *input, uint16_t *output,
int stride, TX_TYPE tx_type, int bd) {
DECLARE_ALIGNED(32, int, txfm_buf[8 * 8 + 8 + 8]);
inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_8X8, bd);
}
void av1_inv_txfm2d_add_16x16_c(const int32_t *input, uint16_t *output,
int stride, TX_TYPE tx_type, int bd) {
DECLARE_ALIGNED(32, int, txfm_buf[16 * 16 + 16 + 16]);
inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_16X16, bd);
}
void av1_inv_txfm2d_add_32x32_c(const int32_t *input, uint16_t *output,
int stride, TX_TYPE tx_type, int bd) {
DECLARE_ALIGNED(32, int, txfm_buf[32 * 32 + 32 + 32]);
inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_32X32, bd);
}
#if CONFIG_TX64X64
void av1_inv_txfm2d_add_64x64_c(const int32_t *input, uint16_t *output,
int stride, TX_TYPE tx_type, int bd) {
// TODO(urvang): Can the same array be reused, instead of using a new array?
// Remap 32x32 input into a modified 64x64 by:
// - Copying over these values in top-left 32x32 locations.
// - Setting the rest of the locations to 0.
int32_t mod_input[64 * 64];
for (int row = 0; row < 32; ++row) {
memcpy(mod_input + row * 64, input + row * 32, 32 * sizeof(*mod_input));
memset(mod_input + row * 64 + 32, 0, 32 * sizeof(*mod_input));
}
memset(mod_input + 32 * 64, 0, 32 * 64 * sizeof(*mod_input));
DECLARE_ALIGNED(32, int, txfm_buf[64 * 64 + 64 + 64]);
inv_txfm2d_add_facade(mod_input, output, stride, txfm_buf, tx_type, TX_64X64,
bd);
}
void av1_inv_txfm2d_add_64x32_c(const int32_t *input, uint16_t *output,
int stride, TX_TYPE tx_type, int bd) {
// Remap 32x32 input into a modified 64x32 by:
// - Copying over these values in top-left 32x32 locations.
// - Setting the rest of the locations to 0.
int32_t mod_input[64 * 32];
for (int row = 0; row < 32; ++row) {
memcpy(mod_input + row * 64, input + row * 32, 32 * sizeof(*mod_input));
memset(mod_input + row * 64 + 32, 0, 32 * sizeof(*mod_input));
}
DECLARE_ALIGNED(32, int, txfm_buf[64 * 32 + 64 + 64]);
#if NO_INV_TRANSPOSE
inv_txfm2d_add_facade(mod_input, output, stride, txfm_buf, tx_type, TX_64X32,
bd);
#else
int32_t rinput[64 * 32];
uint16_t routput[64 * 32];
TX_SIZE tx_size = TX_64X32;
TX_SIZE rtx_size = av1_rotate_tx_size(tx_size);
TX_TYPE rtx_type = av1_rotate_tx_type(tx_type);
int w = tx_size_wide[tx_size];
int h = tx_size_high[tx_size];
int rw = h;
int rh = w;
transpose_int32(rinput, rw, mod_input, w, w, h);
transpose_uint16(routput, rw, output, stride, w, h);
inv_txfm2d_add_facade(rinput, routput, rw, txfm_buf, rtx_type, rtx_size, bd);
transpose_uint16(output, stride, routput, rw, rw, rh);
#endif // NO_INV_TRANSPOSE
}
void av1_inv_txfm2d_add_32x64_c(const int32_t *input, uint16_t *output,
int stride, TX_TYPE tx_type, int bd) {
// Remap 32x32 input into a modified 32x64 input by:
// - Copying over these values in top-left 32x32 locations.
// - Setting the rest of the locations to 0.
int32_t mod_input[32 * 64];
memcpy(mod_input, input, 32 * 32 * sizeof(*mod_input));
memset(mod_input + 32 * 32, 0, 32 * 32 * sizeof(*mod_input));
DECLARE_ALIGNED(32, int, txfm_buf[64 * 32 + 64 + 64]);
inv_txfm2d_add_facade(mod_input, output, stride, txfm_buf, tx_type, TX_32X64,
bd);
}
void av1_inv_txfm2d_add_16x64_c(const int32_t *input, uint16_t *output,
int stride, TX_TYPE tx_type, int bd) {
// Remap 16x32 input into a modified 16x64 input by:
// - Copying over these values in top-left 16x32 locations.
// - Setting the rest of the locations to 0.
int32_t mod_input[16 * 64];
memcpy(mod_input, input, 16 * 32 * sizeof(*mod_input));
memset(mod_input + 16 * 32, 0, 16 * 32 * sizeof(*mod_input));
DECLARE_ALIGNED(32, int, txfm_buf[16 * 64 + 64 + 64]);
inv_txfm2d_add_facade(mod_input, output, stride, txfm_buf, tx_type, TX_16X64,
bd);
}
void av1_inv_txfm2d_add_64x16_c(const int32_t *input, uint16_t *output,
int stride, TX_TYPE tx_type, int bd) {
// Remap 32x16 input into a modified 64x16 by:
// - Copying over these values in top-left 32x16 locations.
// - Setting the rest of the locations to 0.
int32_t mod_input[64 * 16];
for (int row = 0; row < 16; ++row) {
memcpy(mod_input + row * 64, input + row * 32, 32 * sizeof(*mod_input));
memset(mod_input + row * 64 + 32, 0, 32 * sizeof(*mod_input));
}
DECLARE_ALIGNED(32, int, txfm_buf[16 * 64 + 64 + 64]);
#if NO_INV_TRANSPOSE
inv_txfm2d_add_facade(mod_input, output, stride, txfm_buf, tx_type, TX_64X16,
bd);
#else
int32_t rinput[16 * 64];
uint16_t routput[16 * 64];
TX_SIZE tx_size = TX_64X16;
TX_SIZE rtx_size = av1_rotate_tx_size(tx_size);
TX_TYPE rtx_type = av1_rotate_tx_type(tx_type);
int w = tx_size_wide[tx_size];
int h = tx_size_high[tx_size];
int rw = h;
int rh = w;
transpose_int32(rinput, rw, mod_input, w, w, h);
transpose_uint16(routput, rw, output, stride, w, h);
inv_txfm2d_add_facade(rinput, routput, rw, txfm_buf, rtx_type, rtx_size, bd);
transpose_uint16(output, stride, routput, rw, rw, rh);
#endif // NO_INV_TRANSPOSE
}
#endif // CONFIG_TX64X64
void av1_inv_txfm2d_add_4x16_c(const int32_t *input, uint16_t *output,
int stride, TX_TYPE tx_type, int bd) {
DECLARE_ALIGNED(32, int, txfm_buf[4 * 16 + 16 + 16]);
inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_4X16, bd);
}
void av1_inv_txfm2d_add_16x4_c(const int32_t *input, uint16_t *output,
int stride, TX_TYPE tx_type, int bd) {
DECLARE_ALIGNED(32, int, txfm_buf[4 * 16 + 16 + 16]);
#if NO_INV_TRANSPOSE
inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_16X4, bd);
#else
int32_t rinput[4 * 16];
uint16_t routput[4 * 16];
TX_SIZE tx_size = TX_16X4;
TX_SIZE rtx_size = av1_rotate_tx_size(tx_size);
TX_TYPE rtx_type = av1_rotate_tx_type(tx_type);
int w = tx_size_wide[tx_size];
int h = tx_size_high[tx_size];
int rw = h;
int rh = w;
transpose_int32(rinput, rw, input, w, w, h);
transpose_uint16(routput, rw, output, stride, w, h);
inv_txfm2d_add_facade(rinput, routput, rw, txfm_buf, rtx_type, rtx_size, bd);
transpose_uint16(output, stride, routput, rw, rw, rh);
#endif // NO_INV_TRANSPOSE
}
void av1_inv_txfm2d_add_8x32_c(const int32_t *input, uint16_t *output,
int stride, TX_TYPE tx_type, int bd) {
DECLARE_ALIGNED(32, int, txfm_buf[8 * 32 + 32 + 32]);
inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_8X32, bd);
}
void av1_inv_txfm2d_add_32x8_c(const int32_t *input, uint16_t *output,
int stride, TX_TYPE tx_type, int bd) {
DECLARE_ALIGNED(32, int, txfm_buf[8 * 32 + 32 + 32]);
#if NO_INV_TRANSPOSE
inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_32X8, bd);
#else
int32_t rinput[8 * 32];
uint16_t routput[8 * 32];
TX_SIZE tx_size = TX_32X8;
TX_SIZE rtx_size = av1_rotate_tx_size(tx_size);
TX_TYPE rtx_type = av1_rotate_tx_type(tx_type);
int w = tx_size_wide[tx_size];
int h = tx_size_high[tx_size];
int rw = h;
int rh = w;
transpose_int32(rinput, rw, input, w, w, h);
transpose_uint16(routput, rw, output, stride, w, h);
inv_txfm2d_add_facade(rinput, routput, rw, txfm_buf, rtx_type, rtx_size, bd);
transpose_uint16(output, stride, routput, rw, rw, rh);
#endif // NO_INV_TRANSPOSE
}