blob: 9d4e4b3295ada693e9521e222dff8ab9e19e8186 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <math.h>
#include "./aom_dsp_rtcd.h"
#include "./av1_rtcd.h"
#include "aom_dsp/inv_txfm.h"
#include "aom_ports/mem.h"
#include "av1/common/av1_inv_txfm1d_cfg.h"
#include "av1/common/blockd.h"
#include "av1/common/enums.h"
#include "av1/common/idct.h"
int av1_get_tx_scale(const TX_SIZE tx_size) {
if (txsize_sqr_up_map[tx_size] == TX_32X32) return 1;
#if CONFIG_TX64X64
else if (txsize_sqr_up_map[tx_size] == TX_64X64)
return 2;
#endif // CONFIG_TX64X64
else
return 0;
}
// NOTE: The implementation of all inverses need to be aware of the fact
// that input and output could be the same buffer.
#if CONFIG_EXT_TX
static void iidtx4_c(const tran_low_t *input, tran_low_t *output) {
int i;
for (i = 0; i < 4; ++i) {
#if CONFIG_DAALA_DCT4
output[i] = input[i];
#else
output[i] = (tran_low_t)dct_const_round_shift(input[i] * Sqrt2);
#endif
}
}
static void iidtx8_c(const tran_low_t *input, tran_low_t *output) {
int i;
for (i = 0; i < 8; ++i) output[i] = input[i] * 2;
}
static void iidtx16_c(const tran_low_t *input, tran_low_t *output) {
int i;
for (i = 0; i < 16; ++i)
output[i] = (tran_low_t)dct_const_round_shift(input[i] * 2 * Sqrt2);
}
static void iidtx32_c(const tran_low_t *input, tran_low_t *output) {
int i;
for (i = 0; i < 32; ++i) output[i] = input[i] * 4;
}
#if CONFIG_TX64X64
static void iidtx64_c(const tran_low_t *input, tran_low_t *output) {
int i;
for (i = 0; i < 64; ++i)
output[i] = (tran_low_t)dct_const_round_shift(input[i] * 4 * Sqrt2);
}
#endif // CONFIG_TX64X64
#endif // CONFIG_EXT_TX
// For use in lieu of ADST
static void ihalfright32_c(const tran_low_t *input, tran_low_t *output) {
int i;
tran_low_t inputhalf[16];
// Multiply input by sqrt(2)
for (i = 0; i < 16; ++i) {
inputhalf[i] = (tran_low_t)dct_const_round_shift(input[i] * Sqrt2);
}
for (i = 0; i < 16; ++i) {
output[i] = input[16 + i] * 4;
}
aom_idct16_c(inputhalf, output + 16);
// Note overall scaling factor is 4 times orthogonal
}
#if CONFIG_TX64X64
static void idct64_col_c(const tran_low_t *input, tran_low_t *output) {
int32_t in[64], out[64];
int i;
for (i = 0; i < 64; ++i) in[i] = (int32_t)input[i];
av1_idct64_new(in, out, inv_cos_bit_col_dct_64, inv_stage_range_col_dct_64);
for (i = 0; i < 64; ++i) output[i] = (tran_low_t)out[i];
}
static void idct64_row_c(const tran_low_t *input, tran_low_t *output) {
int32_t in[64], out[64];
int i;
for (i = 0; i < 64; ++i) in[i] = (int32_t)input[i];
av1_idct64_new(in, out, inv_cos_bit_row_dct_64, inv_stage_range_row_dct_64);
for (i = 0; i < 64; ++i) output[i] = (tran_low_t)out[i];
}
// For use in lieu of ADST
static void ihalfright64_c(const tran_low_t *input, tran_low_t *output) {
int i;
tran_low_t inputhalf[32];
// Multiply input by sqrt(2)
for (i = 0; i < 32; ++i) {
inputhalf[i] = (tran_low_t)dct_const_round_shift(input[i] * Sqrt2);
}
for (i = 0; i < 32; ++i) {
output[i] = (tran_low_t)dct_const_round_shift(input[32 + i] * 4 * Sqrt2);
}
aom_idct32_c(inputhalf, output + 32);
// Note overall scaling factor is 4 * sqrt(2) times orthogonal
}
#endif // CONFIG_TX64X64
// Inverse identity transform and add.
#if CONFIG_EXT_TX
static void inv_idtx_add_c(const tran_low_t *input, uint8_t *dest, int stride,
int bs, int tx_type) {
int r, c;
const int shift = bs < 32 ? 3 : (bs < 64 ? 2 : 1);
if (tx_type == IDTX) {
for (r = 0; r < bs; ++r) {
for (c = 0; c < bs; ++c)
dest[c] = clip_pixel_add(dest[c], input[c] >> shift);
dest += stride;
input += bs;
}
}
}
#endif // CONFIG_EXT_TX
#define FLIPUD_PTR(dest, stride, size) \
do { \
(dest) = (dest) + ((size)-1) * (stride); \
(stride) = -(stride); \
} while (0)
#if CONFIG_EXT_TX
static void maybe_flip_strides(uint8_t **dst, int *dstride, tran_low_t **src,
int *sstride, int tx_type, int sizey,
int sizex) {
// Note that the transpose of src will be added to dst. In order to LR
// flip the addends (in dst coordinates), we UD flip the src. To UD flip
// the addends, we UD flip the dst.
switch (tx_type) {
case DCT_DCT:
case ADST_DCT:
case DCT_ADST:
case ADST_ADST:
case IDTX:
case V_DCT:
case H_DCT:
case V_ADST:
case H_ADST: break;
case FLIPADST_DCT:
case FLIPADST_ADST:
case V_FLIPADST:
// flip UD
FLIPUD_PTR(*dst, *dstride, sizey);
break;
case DCT_FLIPADST:
case ADST_FLIPADST:
case H_FLIPADST:
// flip LR
FLIPUD_PTR(*src, *sstride, sizex);
break;
case FLIPADST_FLIPADST:
// flip UD
FLIPUD_PTR(*dst, *dstride, sizey);
// flip LR
FLIPUD_PTR(*src, *sstride, sizex);
break;
default: assert(0); break;
}
}
#endif // CONFIG_EXT_TX
#if CONFIG_HIGHBITDEPTH
#if CONFIG_EXT_TX && CONFIG_TX64X64
static void highbd_inv_idtx_add_c(const tran_low_t *input, uint8_t *dest8,
int stride, int bs, int tx_type, int bd) {
int r, c;
const int shift = bs < 32 ? 3 : 2;
uint16_t *dest = CONVERT_TO_SHORTPTR(dest8);
if (tx_type == IDTX) {
for (r = 0; r < bs; ++r) {
for (c = 0; c < bs; ++c)
dest[c] = highbd_clip_pixel_add(dest[c], input[c] >> shift, bd);
dest += stride;
input += bs;
}
}
}
#endif // CONFIG_EXT_TX && CONFIG_TX64X64
#endif // CONFIG_HIGHBITDEPTH
#if CONFIG_LGT
void ilgt4(const tran_low_t *input, tran_low_t *output,
const tran_high_t *lgtmtx) {
if (!(input[0] | input[1] | input[2] | input[3])) {
output[0] = output[1] = output[2] = output[3] = 0;
return;
}
// evaluate s[j] = sum of all lgtmtx[i][j]*input[i] over i=1,...,4
tran_high_t s[4] = { 0 };
for (int i = 0; i < 4; ++i)
for (int j = 0; j < 4; ++j) s[j] += lgtmtx[i * 4 + j] * input[i];
for (int i = 0; i < 4; ++i) output[i] = WRAPLOW(dct_const_round_shift(s[i]));
}
void ilgt8(const tran_low_t *input, tran_low_t *output,
const tran_high_t *lgtmtx) {
// evaluate s[j] = sum of all lgtmtx[i][j]*input[i] over i=1,...,8
tran_high_t s[8] = { 0 };
for (int i = 0; i < 8; ++i)
for (int j = 0; j < 8; ++j) s[j] += lgtmtx[i * 8 + j] * input[i];
for (int i = 0; i < 8; ++i) output[i] = WRAPLOW(dct_const_round_shift(s[i]));
}
// The get_inv_lgt functions return 1 if LGT is chosen to apply, and 0 otherwise
int get_inv_lgt4(transform_1d tx_orig, const TxfmParam *txfm_param,
const tran_high_t *lgtmtx[], int ntx) {
// inter/intra split
if (tx_orig == &aom_iadst4_c) {
for (int i = 0; i < ntx; ++i)
lgtmtx[i] = txfm_param->is_inter ? &lgt4_170[0][0] : &lgt4_140[0][0];
return 1;
}
return 0;
}
int get_inv_lgt8(transform_1d tx_orig, const TxfmParam *txfm_param,
const tran_high_t *lgtmtx[], int ntx) {
// inter/intra split
if (tx_orig == &aom_iadst8_c) {
for (int i = 0; i < ntx; ++i)
lgtmtx[i] = txfm_param->is_inter ? &lgt8_170[0][0] : &lgt8_150[0][0];
return 1;
}
return 0;
}
#endif // CONFIG_LGT
void av1_iht4x4_16_add_c(const tran_low_t *input, uint8_t *dest, int stride,
const TxfmParam *txfm_param) {
int tx_type = txfm_param->tx_type;
#if CONFIG_MRC_TX
assert(tx_type != MRC_DCT && "Invalid tx type for tx size");
#endif // CONFIG_MRC_TX
#if !CONFIG_DAALA_DCT4
if (tx_type == DCT_DCT) {
aom_idct4x4_16_add(input, dest, stride);
return;
}
#endif
static const transform_2d IHT_4[] = {
{ aom_idct4_c, aom_idct4_c }, // DCT_DCT = 0
{ aom_iadst4_c, aom_idct4_c }, // ADST_DCT = 1
{ aom_idct4_c, aom_iadst4_c }, // DCT_ADST = 2
{ aom_iadst4_c, aom_iadst4_c }, // ADST_ADST = 3
#if CONFIG_EXT_TX
{ aom_iadst4_c, aom_idct4_c }, // FLIPADST_DCT
{ aom_idct4_c, aom_iadst4_c }, // DCT_FLIPADST
{ aom_iadst4_c, aom_iadst4_c }, // FLIPADST_FLIPADST
{ aom_iadst4_c, aom_iadst4_c }, // ADST_FLIPADST
{ aom_iadst4_c, aom_iadst4_c }, // FLIPADST_ADST
{ iidtx4_c, iidtx4_c }, // IDTX
{ aom_idct4_c, iidtx4_c }, // V_DCT
{ iidtx4_c, aom_idct4_c }, // H_DCT
{ aom_iadst4_c, iidtx4_c }, // V_ADST
{ iidtx4_c, aom_iadst4_c }, // H_ADST
{ aom_iadst4_c, iidtx4_c }, // V_FLIPADST
{ iidtx4_c, aom_iadst4_c }, // H_FLIPADST
#endif
};
int i, j;
tran_low_t tmp[4][4];
tran_low_t out[4][4];
tran_low_t *outp = &out[0][0];
int outstride = 4;
#if CONFIG_DCT_ONLY
assert(tx_type == DCT_DCT);
#endif
#if CONFIG_LGT
const tran_high_t *lgtmtx_col[4];
const tran_high_t *lgtmtx_row[4];
int use_lgt_col =
get_inv_lgt4(IHT_4[tx_type].cols, txfm_param, lgtmtx_col, 4);
int use_lgt_row =
get_inv_lgt4(IHT_4[tx_type].rows, txfm_param, lgtmtx_row, 4);
#endif
// inverse transform row vectors
for (i = 0; i < 4; ++i) {
#if CONFIG_DAALA_DCT4
tran_low_t temp_in[4];
for (j = 0; j < 4; j++) temp_in[j] = input[j] << 1;
IHT_4[tx_type].rows(temp_in, out[i]);
#else
#if CONFIG_LGT
if (use_lgt_row)
ilgt4(input, out[i], lgtmtx_row[i]);
else
#endif
IHT_4[tx_type].rows(input, out[i]);
#endif
input += 4;
}
// transpose
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) {
tmp[j][i] = out[i][j];
}
}
// inverse transform column vectors
for (i = 0; i < 4; ++i) {
#if CONFIG_LGT
if (use_lgt_col)
ilgt4(tmp[i], out[i], lgtmtx_col[i]);
else
#endif
IHT_4[tx_type].cols(tmp[i], out[i]);
}
#if CONFIG_EXT_TX
maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, 4, 4);
#endif
// Sum with the destination
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j) {
int d = i * stride + j;
int s = j * outstride + i;
#if CONFIG_DAALA_DCT4
dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 4));
#else
dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 4));
#endif
}
}
}
void av1_iht4x8_32_add_c(const tran_low_t *input, uint8_t *dest, int stride,
const TxfmParam *txfm_param) {
int tx_type = txfm_param->tx_type;
#if CONFIG_MRC_TX
assert(tx_type != MRC_DCT && "Invalid tx type for tx size");
#endif // CONFIG_MRC_TX
#if CONFIG_DCT_ONLY
assert(tx_type == DCT_DCT);
#endif
static const transform_2d IHT_4x8[] = {
{ aom_idct8_c, aom_idct4_c }, // DCT_DCT
{ aom_iadst8_c, aom_idct4_c }, // ADST_DCT
{ aom_idct8_c, aom_iadst4_c }, // DCT_ADST
{ aom_iadst8_c, aom_iadst4_c }, // ADST_ADST
#if CONFIG_EXT_TX
{ aom_iadst8_c, aom_idct4_c }, // FLIPADST_DCT
{ aom_idct8_c, aom_iadst4_c }, // DCT_FLIPADST
{ aom_iadst8_c, aom_iadst4_c }, // FLIPADST_FLIPADST
{ aom_iadst8_c, aom_iadst4_c }, // ADST_FLIPADST
{ aom_iadst8_c, aom_iadst4_c }, // FLIPADST_ADST
{ iidtx8_c, iidtx4_c }, // IDTX
{ aom_idct8_c, iidtx4_c }, // V_DCT
{ iidtx8_c, aom_idct4_c }, // H_DCT
{ aom_iadst8_c, iidtx4_c }, // V_ADST
{ iidtx8_c, aom_iadst4_c }, // H_ADST
{ aom_iadst8_c, iidtx4_c }, // V_FLIPADST
{ iidtx8_c, aom_iadst4_c }, // H_FLIPADST
#endif
};
const int n = 4;
const int n2 = 8;
int i, j;
tran_low_t out[4][8], tmp[4][8], outtmp[4];
tran_low_t *outp = &out[0][0];
int outstride = n2;
#if CONFIG_LGT
const tran_high_t *lgtmtx_col[4];
const tran_high_t *lgtmtx_row[8];
int use_lgt_col =
get_inv_lgt8(IHT_4x8[tx_type].cols, txfm_param, lgtmtx_col, 4);
int use_lgt_row =
get_inv_lgt4(IHT_4x8[tx_type].rows, txfm_param, lgtmtx_row, 8);
#endif
// inverse transform row vectors and transpose
for (i = 0; i < n2; ++i) {
#if CONFIG_LGT
if (use_lgt_row)
ilgt4(input, outtmp, lgtmtx_row[i]);
else
#endif
IHT_4x8[tx_type].rows(input, outtmp);
for (j = 0; j < n; ++j)
tmp[j][i] = (tran_low_t)dct_const_round_shift(outtmp[j] * Sqrt2);
input += n;
}
// inverse transform column vectors
for (i = 0; i < n; ++i) {
#if CONFIG_LGT
if (use_lgt_col)
ilgt8(tmp[i], out[i], lgtmtx_col[i]);
else
#endif
IHT_4x8[tx_type].cols(tmp[i], out[i]);
}
#if CONFIG_EXT_TX
maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, n2, n);
#endif
// Sum with the destination
for (i = 0; i < n2; ++i) {
for (j = 0; j < n; ++j) {
int d = i * stride + j;
int s = j * outstride + i;
dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 5));
}
}
}
void av1_iht8x4_32_add_c(const tran_low_t *input, uint8_t *dest, int stride,
const TxfmParam *txfm_param) {
int tx_type = txfm_param->tx_type;
#if CONFIG_MRC_TX
assert(tx_type != MRC_DCT && "Invalid tx type for tx size");
#endif // CONFIG_MRC_TX
#if CONFIG_DCT_ONLY
assert(tx_type == DCT_DCT);
#endif
static const transform_2d IHT_8x4[] = {
{ aom_idct4_c, aom_idct8_c }, // DCT_DCT
{ aom_iadst4_c, aom_idct8_c }, // ADST_DCT
{ aom_idct4_c, aom_iadst8_c }, // DCT_ADST
{ aom_iadst4_c, aom_iadst8_c }, // ADST_ADST
#if CONFIG_EXT_TX
{ aom_iadst4_c, aom_idct8_c }, // FLIPADST_DCT
{ aom_idct4_c, aom_iadst8_c }, // DCT_FLIPADST
{ aom_iadst4_c, aom_iadst8_c }, // FLIPADST_FLIPADST
{ aom_iadst4_c, aom_iadst8_c }, // ADST_FLIPADST
{ aom_iadst4_c, aom_iadst8_c }, // FLIPADST_ADST
{ iidtx4_c, iidtx8_c }, // IDTX
{ aom_idct4_c, iidtx8_c }, // V_DCT
{ iidtx4_c, aom_idct8_c }, // H_DCT
{ aom_iadst4_c, iidtx8_c }, // V_ADST
{ iidtx4_c, aom_iadst8_c }, // H_ADST
{ aom_iadst4_c, iidtx8_c }, // V_FLIPADST
{ iidtx4_c, aom_iadst8_c }, // H_FLIPADST
#endif
};
const int n = 4;
const int n2 = 8;
int i, j;
tran_low_t out[8][4], tmp[8][4], outtmp[8];
tran_low_t *outp = &out[0][0];
int outstride = n;
#if CONFIG_LGT
const tran_high_t *lgtmtx_col[8];
const tran_high_t *lgtmtx_row[4];
int use_lgt_col =
get_inv_lgt4(IHT_8x4[tx_type].cols, txfm_param, lgtmtx_col, 8);
int use_lgt_row =
get_inv_lgt8(IHT_8x4[tx_type].rows, txfm_param, lgtmtx_row, 4);
#endif
// inverse transform row vectors and transpose
for (i = 0; i < n; ++i) {
#if CONFIG_LGT
if (use_lgt_row)
ilgt8(input, outtmp, lgtmtx_row[i]);
else
#endif
IHT_8x4[tx_type].rows(input, outtmp);
for (j = 0; j < n2; ++j)
tmp[j][i] = (tran_low_t)dct_const_round_shift(outtmp[j] * Sqrt2);
input += n2;
}
// inverse transform column vectors
for (i = 0; i < n2; ++i) {
#if CONFIG_LGT
if (use_lgt_col)
ilgt4(tmp[i], out[i], lgtmtx_col[i]);
else
#endif
IHT_8x4[tx_type].cols(tmp[i], out[i]);
}
#if CONFIG_EXT_TX
maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, n, n2);
#endif
// Sum with the destination
for (i = 0; i < n; ++i) {
for (j = 0; j < n2; ++j) {
int d = i * stride + j;
int s = j * outstride + i;
dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 5));
}
}
}
void av1_iht4x16_64_add_c(const tran_low_t *input, uint8_t *dest, int stride,
const TxfmParam *txfm_param) {
int tx_type = txfm_param->tx_type;
#if CONFIG_MRC_TX
assert(tx_type != MRC_DCT && "Invalid tx type for tx size");
#endif // CONFIG_MRC_TX
#if CONFIG_DCT_ONLY
assert(tx_type == DCT_DCT);
#endif
static const transform_2d IHT_4x16[] = {
{ aom_idct16_c, aom_idct4_c }, // DCT_DCT
{ aom_iadst16_c, aom_idct4_c }, // ADST_DCT
{ aom_idct16_c, aom_iadst4_c }, // DCT_ADST
{ aom_iadst16_c, aom_iadst4_c }, // ADST_ADST
#if CONFIG_EXT_TX
{ aom_iadst16_c, aom_idct4_c }, // FLIPADST_DCT
{ aom_idct16_c, aom_iadst4_c }, // DCT_FLIPADST
{ aom_iadst16_c, aom_iadst4_c }, // FLIPADST_FLIPADST
{ aom_iadst16_c, aom_iadst4_c }, // ADST_FLIPADST
{ aom_iadst16_c, aom_iadst4_c }, // FLIPADST_ADST
{ iidtx16_c, iidtx4_c }, // IDTX
{ aom_idct16_c, iidtx4_c }, // V_DCT
{ iidtx16_c, aom_idct4_c }, // H_DCT
{ aom_iadst16_c, iidtx4_c }, // V_ADST
{ iidtx16_c, aom_iadst4_c }, // H_ADST
{ aom_iadst16_c, iidtx4_c }, // V_FLIPADST
{ iidtx16_c, aom_iadst4_c }, // H_FLIPADST
#endif
};
const int n = 4;
const int n4 = 16;
int i, j;
tran_low_t out[4][16], tmp[4][16], outtmp[4];
tran_low_t *outp = &out[0][0];
int outstride = n4;
#if CONFIG_LGT
const tran_high_t *lgtmtx_row[16];
int use_lgt_row =
get_inv_lgt4(IHT_4x16[tx_type].rows, txfm_param, lgtmtx_row, 16);
#endif
// inverse transform row vectors and transpose
for (i = 0; i < n4; ++i) {
#if CONFIG_LGT
if (use_lgt_row)
ilgt4(input, outtmp, lgtmtx_row[i]);
else
#endif
IHT_4x16[tx_type].rows(input, outtmp);
for (j = 0; j < n; ++j) tmp[j][i] = outtmp[j];
input += n;
}
// inverse transform column vectors
for (i = 0; i < n; ++i) {
IHT_4x16[tx_type].cols(tmp[i], out[i]);
}
#if CONFIG_EXT_TX
maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, n4, n);
#endif
// Sum with the destination
for (i = 0; i < n4; ++i) {
for (j = 0; j < n; ++j) {
int d = i * stride + j;
int s = j * outstride + i;
dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 5));
}
}
}
void av1_iht16x4_64_add_c(const tran_low_t *input, uint8_t *dest, int stride,
const TxfmParam *txfm_param) {
int tx_type = txfm_param->tx_type;
#if CONFIG_MRC_TX
assert(tx_type != MRC_DCT && "Invalid tx type for tx size");
#endif // CONFIG_MRC_TX
#if CONFIG_DCT_ONLY
assert(tx_type == DCT_DCT);
#endif
static const transform_2d IHT_16x4[] = {
{ aom_idct4_c, aom_idct16_c }, // DCT_DCT
{ aom_iadst4_c, aom_idct16_c }, // ADST_DCT
{ aom_idct4_c, aom_iadst16_c }, // DCT_ADST
{ aom_iadst4_c, aom_iadst16_c }, // ADST_ADST
#if CONFIG_EXT_TX
{ aom_iadst4_c, aom_idct16_c }, // FLIPADST_DCT
{ aom_idct4_c, aom_iadst16_c }, // DCT_FLIPADST
{ aom_iadst4_c, aom_iadst16_c }, // FLIPADST_FLIPADST
{ aom_iadst4_c, aom_iadst16_c }, // ADST_FLIPADST
{ aom_iadst4_c, aom_iadst16_c }, // FLIPADST_ADST
{ iidtx4_c, iidtx16_c }, // IDTX
{ aom_idct4_c, iidtx16_c }, // V_DCT
{ iidtx4_c, aom_idct16_c }, // H_DCT
{ aom_iadst4_c, iidtx16_c }, // V_ADST
{ iidtx4_c, aom_iadst16_c }, // H_ADST
{ aom_iadst4_c, iidtx16_c }, // V_FLIPADST
{ iidtx4_c, aom_iadst16_c }, // H_FLIPADST
#endif
};
const int n = 4;
const int n4 = 16;
int i, j;
tran_low_t out[16][4], tmp[16][4], outtmp[16];
tran_low_t *outp = &out[0][0];
int outstride = n;
#if CONFIG_LGT
const tran_high_t *lgtmtx_col[16];
int use_lgt_col =
get_inv_lgt4(IHT_16x4[tx_type].cols, txfm_param, lgtmtx_col, 16);
#endif
// inverse transform row vectors and transpose
for (i = 0; i < n; ++i) {
IHT_16x4[tx_type].rows(input, outtmp);
for (j = 0; j < n4; ++j) tmp[j][i] = outtmp[j];
input += n4;
}
// inverse transform column vectors
for (i = 0; i < n4; ++i) {
#if CONFIG_LGT
if (use_lgt_col)
ilgt4(tmp[i], out[i], lgtmtx_col[i]);
else
#endif
IHT_16x4[tx_type].cols(tmp[i], out[i]);
}
#if CONFIG_EXT_TX
maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, n, n4);
#endif
// Sum with the destination
for (i = 0; i < n; ++i) {
for (j = 0; j < n4; ++j) {
int d = i * stride + j;
int s = j * outstride + i;
dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 5));
}
}
}
void av1_iht8x16_128_add_c(const tran_low_t *input, uint8_t *dest, int stride,
const TxfmParam *txfm_param) {
int tx_type = txfm_param->tx_type;
#if CONFIG_MRC_TX
assert(tx_type != MRC_DCT && "Invalid tx type for tx size");
#endif // CONFIG_MRC_TX
#if CONFIG_DCT_ONLY
assert(tx_type == DCT_DCT);
#endif
static const transform_2d IHT_8x16[] = {
{ aom_idct16_c, aom_idct8_c }, // DCT_DCT
{ aom_iadst16_c, aom_idct8_c }, // ADST_DCT
{ aom_idct16_c, aom_iadst8_c }, // DCT_ADST
{ aom_iadst16_c, aom_iadst8_c }, // ADST_ADST
#if CONFIG_EXT_TX
{ aom_iadst16_c, aom_idct8_c }, // FLIPADST_DCT
{ aom_idct16_c, aom_iadst8_c }, // DCT_FLIPADST
{ aom_iadst16_c, aom_iadst8_c }, // FLIPADST_FLIPADST
{ aom_iadst16_c, aom_iadst8_c }, // ADST_FLIPADST
{ aom_iadst16_c, aom_iadst8_c }, // FLIPADST_ADST
{ iidtx16_c, iidtx8_c }, // IDTX
{ aom_idct16_c, iidtx8_c }, // V_DCT
{ iidtx16_c, aom_idct8_c }, // H_DCT
{ aom_iadst16_c, iidtx8_c }, // V_ADST
{ iidtx16_c, aom_iadst8_c }, // H_ADST
{ aom_iadst16_c, iidtx8_c }, // V_FLIPADST
{ iidtx16_c, aom_iadst8_c }, // H_FLIPADST
#endif
};
const int n = 8;
const int n2 = 16;
int i, j;
tran_low_t out[8][16], tmp[8][16], outtmp[8];
tran_low_t *outp = &out[0][0];
int outstride = n2;
#if CONFIG_LGT
const tran_high_t *lgtmtx_row[16];
int use_lgt_row =
get_inv_lgt8(IHT_8x16[tx_type].rows, txfm_param, lgtmtx_row, 16);
#endif
// inverse transform row vectors and transpose
for (i = 0; i < n2; ++i) {
#if CONFIG_LGT
if (use_lgt_row)
ilgt8(input, outtmp, lgtmtx_row[i]);
else
#endif
IHT_8x16[tx_type].rows(input, outtmp);
for (j = 0; j < n; ++j)
tmp[j][i] = (tran_low_t)dct_const_round_shift(outtmp[j] * Sqrt2);
input += n;
}
// inverse transform column vectors
for (i = 0; i < n; ++i) {
IHT_8x16[tx_type].cols(tmp[i], out[i]);
}
#if CONFIG_EXT_TX
maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, n2, n);
#endif
// Sum with the destination
for (i = 0; i < n2; ++i) {
for (j = 0; j < n; ++j) {
int d = i * stride + j;
int s = j * outstride + i;
dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 6));
}
}
}
void av1_iht16x8_128_add_c(const tran_low_t *input, uint8_t *dest, int stride,
const TxfmParam *txfm_param) {
int tx_type = txfm_param->tx_type;
#if CONFIG_MRC_TX
assert(tx_type != MRC_DCT && "Invalid tx type for tx size");
#endif // CONFIG_MRC_TX
#if CONFIG_DCT_ONLY
assert(tx_type == DCT_DCT);
#endif
static const transform_2d IHT_16x8[] = {
{ aom_idct8_c, aom_idct16_c }, // DCT_DCT
{ aom_iadst8_c, aom_idct16_c }, // ADST_DCT
{ aom_idct8_c, aom_iadst16_c }, // DCT_ADST
{ aom_iadst8_c, aom_iadst16_c }, // ADST_ADST
#if CONFIG_EXT_TX
{ aom_iadst8_c, aom_idct16_c }, // FLIPADST_DCT
{ aom_idct8_c, aom_iadst16_c }, // DCT_FLIPADST
{ aom_iadst8_c, aom_iadst16_c }, // FLIPADST_FLIPADST
{ aom_iadst8_c, aom_iadst16_c }, // ADST_FLIPADST
{ aom_iadst8_c, aom_iadst16_c }, // FLIPADST_ADST
{ iidtx8_c, iidtx16_c }, // IDTX
{ aom_idct8_c, iidtx16_c }, // V_DCT
{ iidtx8_c, aom_idct16_c }, // H_DCT
{ aom_iadst8_c, iidtx16_c }, // V_ADST
{ iidtx8_c, aom_iadst16_c }, // H_ADST
{ aom_iadst8_c, iidtx16_c }, // V_FLIPADST
{ iidtx8_c, aom_iadst16_c }, // H_FLIPADST
#endif
};
const int n = 8;
const int n2 = 16;
int i, j;
tran_low_t out[16][8], tmp[16][8], outtmp[16];
tran_low_t *outp = &out[0][0];
int outstride = n;
#if CONFIG_LGT
const tran_high_t *lgtmtx_col[16];
int use_lgt_col =
get_inv_lgt8(IHT_16x8[tx_type].cols, txfm_param, lgtmtx_col, 16);
#endif
// inverse transform row vectors and transpose
for (i = 0; i < n; ++i) {
IHT_16x8[tx_type].rows(input, outtmp);
for (j = 0; j < n2; ++j)
tmp[j][i] = (tran_low_t)dct_const_round_shift(outtmp[j] * Sqrt2);
input += n2;
}
// inverse transform column vectors
for (i = 0; i < n2; ++i) {
#if CONFIG_LGT
if (use_lgt_col)
ilgt8(tmp[i], out[i], lgtmtx_col[i]);
else
#endif
IHT_16x8[tx_type].cols(tmp[i], out[i]);
}
#if CONFIG_EXT_TX
maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, n, n2);
#endif
// Sum with the destination
for (i = 0; i < n; ++i) {
for (j = 0; j < n2; ++j) {
int d = i * stride + j;
int s = j * outstride + i;
dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 6));
}
}
}
void av1_iht8x32_256_add_c(const tran_low_t *input, uint8_t *dest, int stride,
const TxfmParam *txfm_param) {
int tx_type = txfm_param->tx_type;
#if CONFIG_MRC_TX
assert(tx_type != MRC_DCT && "Invalid tx type for tx size");
#endif // CONFIG_MRC_TX
#if CONFIG_DCT_ONLY
assert(tx_type == DCT_DCT);
#endif
static const transform_2d IHT_8x32[] = {
{ aom_idct32_c, aom_idct8_c }, // DCT_DCT
{ ihalfright32_c, aom_idct8_c }, // ADST_DCT
{ aom_idct32_c, aom_iadst8_c }, // DCT_ADST
{ ihalfright32_c, aom_iadst8_c }, // ADST_ADST
#if CONFIG_EXT_TX
{ ihalfright32_c, aom_idct8_c }, // FLIPADST_DCT
{ aom_idct32_c, aom_iadst8_c }, // DCT_FLIPADST
{ ihalfright32_c, aom_iadst8_c }, // FLIPADST_FLIPADST
{ ihalfright32_c, aom_iadst8_c }, // ADST_FLIPADST
{ ihalfright32_c, aom_iadst8_c }, // FLIPADST_ADST
{ iidtx32_c, iidtx8_c }, // IDTX
{ aom_idct32_c, iidtx8_c }, // V_DCT
{ iidtx32_c, aom_idct8_c }, // H_DCT
{ ihalfright32_c, iidtx8_c }, // V_ADST
{ iidtx32_c, aom_iadst8_c }, // H_ADST
{ ihalfright32_c, iidtx8_c }, // V_FLIPADST
{ iidtx32_c, aom_iadst8_c }, // H_FLIPADST
#endif
};
const int n = 8;
const int n4 = 32;
int i, j;
tran_low_t out[8][32], tmp[8][32], outtmp[8];
tran_low_t *outp = &out[0][0];
int outstride = n4;
#if CONFIG_LGT
const tran_high_t *lgtmtx_row[32];
int use_lgt_row =
get_inv_lgt8(IHT_8x32[tx_type].rows, txfm_param, lgtmtx_row, 32);
#endif
// inverse transform row vectors and transpose
for (i = 0; i < n4; ++i) {
#if CONFIG_LGT
if (use_lgt_row)
ilgt8(input, outtmp, lgtmtx_row[i]);
else
#endif
IHT_8x32[tx_type].rows(input, outtmp);
for (j = 0; j < n; ++j) tmp[j][i] = outtmp[j];
input += n;
}
// inverse transform column vectors
for (i = 0; i < n; ++i) {
IHT_8x32[tx_type].cols(tmp[i], out[i]);
}
#if CONFIG_EXT_TX
maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, n4, n);
#endif
// Sum with the destination
for (i = 0; i < n4; ++i) {
for (j = 0; j < n; ++j) {
int d = i * stride + j;
int s = j * outstride + i;
dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 6));
}
}
}
void av1_iht32x8_256_add_c(const tran_low_t *input, uint8_t *dest, int stride,
const TxfmParam *txfm_param) {
int tx_type = txfm_param->tx_type;
#if CONFIG_MRC_TX
assert(tx_type != MRC_DCT && "Invalid tx type for tx size");
#endif // CONFIG_MRC_TX
#if CONFIG_DCT_ONLY
assert(tx_type == DCT_DCT);
#endif
static const transform_2d IHT_32x8[] = {
{ aom_idct8_c, aom_idct32_c }, // DCT_DCT
{ aom_iadst8_c, aom_idct32_c }, // ADST_DCT
{ aom_idct8_c, ihalfright32_c }, // DCT_ADST
{ aom_iadst8_c, ihalfright32_c }, // ADST_ADST
#if CONFIG_EXT_TX
{ aom_iadst8_c, aom_idct32_c }, // FLIPADST_DCT
{ aom_idct8_c, ihalfright32_c }, // DCT_FLIPADST
{ aom_iadst8_c, ihalfright32_c }, // FLIPADST_FLIPADST
{ aom_iadst8_c, ihalfright32_c }, // ADST_FLIPADST
{ aom_iadst8_c, ihalfright32_c }, // FLIPADST_ADST
{ iidtx8_c, iidtx32_c }, // IDTX
{ aom_idct8_c, iidtx32_c }, // V_DCT
{ iidtx8_c, aom_idct32_c }, // H_DCT
{ aom_iadst8_c, iidtx32_c }, // V_ADST
{ iidtx8_c, ihalfright32_c }, // H_ADST
{ aom_iadst8_c, iidtx32_c }, // V_FLIPADST
{ iidtx8_c, ihalfright32_c }, // H_FLIPADST
#endif
};
const int n = 8;
const int n4 = 32;
int i, j;
tran_low_t out[32][8], tmp[32][8], outtmp[32];
tran_low_t *outp = &out[0][0];
int outstride = n;
#if CONFIG_LGT
const tran_high_t *lgtmtx_col[32];
int use_lgt_col =
get_inv_lgt4(IHT_32x8[tx_type].cols, txfm_param, lgtmtx_col, 32);
#endif
// inverse transform row vectors and transpose
for (i = 0; i < n; ++i) {
IHT_32x8[tx_type].rows(input, outtmp);
for (j = 0; j < n4; ++j) tmp[j][i] = outtmp[j];
input += n4;
}
// inverse transform column vectors
for (i = 0; i < n4; ++i) {
#if CONFIG_LGT
if (use_lgt_col)
ilgt8(tmp[i], out[i], lgtmtx_col[i]);
else
#endif
IHT_32x8[tx_type].cols(tmp[i], out[i]);
}
#if CONFIG_EXT_TX
maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, n, n4);
#endif
// Sum with the destination
for (i = 0; i < n; ++i) {
for (j = 0; j < n4; ++j) {
int d = i * stride + j;
int s = j * outstride + i;
dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 6));
}
}
}
void av1_iht16x32_512_add_c(const tran_low_t *input, uint8_t *dest, int stride,
const TxfmParam *txfm_param) {
int tx_type = txfm_param->tx_type;
#if CONFIG_MRC_TX
assert(tx_type != MRC_DCT && "Invalid tx type for tx size");
#endif // CONFIG_MRC_TX
#if CONFIG_DCT_ONLY
assert(tx_type == DCT_DCT);
#endif
static const transform_2d IHT_16x32[] = {
{ aom_idct32_c, aom_idct16_c }, // DCT_DCT
{ ihalfright32_c, aom_idct16_c }, // ADST_DCT
{ aom_idct32_c, aom_iadst16_c }, // DCT_ADST
{ ihalfright32_c, aom_iadst16_c }, // ADST_ADST
#if CONFIG_EXT_TX
{ ihalfright32_c, aom_idct16_c }, // FLIPADST_DCT
{ aom_idct32_c, aom_iadst16_c }, // DCT_FLIPADST
{ ihalfright32_c, aom_iadst16_c }, // FLIPADST_FLIPADST
{ ihalfright32_c, aom_iadst16_c }, // ADST_FLIPADST
{ ihalfright32_c, aom_iadst16_c }, // FLIPADST_ADST
{ iidtx32_c, iidtx16_c }, // IDTX
{ aom_idct32_c, iidtx16_c }, // V_DCT
{ iidtx32_c, aom_idct16_c }, // H_DCT
{ ihalfright32_c, iidtx16_c }, // V_ADST
{ iidtx32_c, aom_iadst16_c }, // H_ADST
{ ihalfright32_c, iidtx16_c }, // V_FLIPADST
{ iidtx32_c, aom_iadst16_c }, // H_FLIPADST
#endif
};
const int n = 16;
const int n2 = 32;
int i, j;
tran_low_t out[16][32], tmp[16][32], outtmp[16];
tran_low_t *outp = &out[0][0];
int outstride = n2;
// inverse transform row vectors and transpose
for (i = 0; i < n2; ++i) {
IHT_16x32[tx_type].rows(input, outtmp);
for (j = 0; j < n; ++j)
tmp[j][i] = (tran_low_t)dct_const_round_shift(outtmp[j] * Sqrt2);
input += n;
}
// inverse transform column vectors
for (i = 0; i < n; ++i) IHT_16x32[tx_type].cols(tmp[i], out[i]);
#if CONFIG_EXT_TX
maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, n2, n);
#endif
// Sum with the destination
for (i = 0; i < n2; ++i) {
for (j = 0; j < n; ++j) {
int d = i * stride + j;
int s = j * outstride + i;
dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 6));
}
}
}
void av1_iht32x16_512_add_c(const tran_low_t *input, uint8_t *dest, int stride,
const TxfmParam *txfm_param) {
int tx_type = txfm_param->tx_type;
#if CONFIG_MRC_TX
assert(tx_type != MRC_DCT && "Invalid tx type for tx size");
#endif // CONFIG_MRC_TX
#if CONFIG_DCT_ONLY
assert(tx_type == DCT_DCT);
#endif
static const transform_2d IHT_32x16[] = {
{ aom_idct16_c, aom_idct32_c }, // DCT_DCT
{ aom_iadst16_c, aom_idct32_c }, // ADST_DCT
{ aom_idct16_c, ihalfright32_c }, // DCT_ADST
{ aom_iadst16_c, ihalfright32_c }, // ADST_ADST
#if CONFIG_EXT_TX
{ aom_iadst16_c, aom_idct32_c }, // FLIPADST_DCT
{ aom_idct16_c, ihalfright32_c }, // DCT_FLIPADST
{ aom_iadst16_c, ihalfright32_c }, // FLIPADST_FLIPADST
{ aom_iadst16_c, ihalfright32_c }, // ADST_FLIPADST
{ aom_iadst16_c, ihalfright32_c }, // FLIPADST_ADST
{ iidtx16_c, iidtx32_c }, // IDTX
{ aom_idct16_c, iidtx32_c }, // V_DCT
{ iidtx16_c, aom_idct32_c }, // H_DCT
{ aom_iadst16_c, iidtx32_c }, // V_ADST
{ iidtx16_c, ihalfright32_c }, // H_ADST
{ aom_iadst16_c, iidtx32_c }, // V_FLIPADST
{ iidtx16_c, ihalfright32_c }, // H_FLIPADST
#endif
};
const int n = 16;
const int n2 = 32;
int i, j;
tran_low_t out[32][16], tmp[32][16], outtmp[32];
tran_low_t *outp = &out[0][0];
int outstride = n;
// inverse transform row vectors and transpose
for (i = 0; i < n; ++i) {
IHT_32x16[tx_type].rows(input, outtmp);
for (j = 0; j < n2; ++j)
tmp[j][i] = (tran_low_t)dct_const_round_shift(outtmp[j] * Sqrt2);
input += n2;
}
// inverse transform column vectors
for (i = 0; i < n2; ++i) IHT_32x16[tx_type].cols(tmp[i], out[i]);
#if CONFIG_EXT_TX
maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, n, n2);
#endif
// Sum with the destination
for (i = 0; i < n; ++i) {
for (j = 0; j < n2; ++j) {
int d = i * stride + j;
int s = j * outstride + i;
dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 6));
}
}
}
void av1_iht8x8_64_add_c(const tran_low_t *input, uint8_t *dest, int stride,
const TxfmParam *txfm_param) {
int tx_type = txfm_param->tx_type;
#if CONFIG_MRC_TX
assert(tx_type != MRC_DCT && "Invalid tx type for tx size");
#endif // CONFIG_MRC_TX
#if CONFIG_DCT_ONLY
assert(tx_type == DCT_DCT);
#endif
static const transform_2d IHT_8[] = {
{ aom_idct8_c, aom_idct8_c }, // DCT_DCT = 0
{ aom_iadst8_c, aom_idct8_c }, // ADST_DCT = 1
{ aom_idct8_c, aom_iadst8_c }, // DCT_ADST = 2
{ aom_iadst8_c, aom_iadst8_c }, // ADST_ADST = 3
#if CONFIG_EXT_TX
{ aom_iadst8_c, aom_idct8_c }, // FLIPADST_DCT
{ aom_idct8_c, aom_iadst8_c }, // DCT_FLIPADST
{ aom_iadst8_c, aom_iadst8_c }, // FLIPADST_FLIPADST
{ aom_iadst8_c, aom_iadst8_c }, // ADST_FLIPADST
{ aom_iadst8_c, aom_iadst8_c }, // FLIPADST_ADST
{ iidtx8_c, iidtx8_c }, // IDTX
{ aom_idct8_c, iidtx8_c }, // V_DCT
{ iidtx8_c, aom_idct8_c }, // H_DCT
{ aom_iadst8_c, iidtx8_c }, // V_ADST
{ iidtx8_c, aom_iadst8_c }, // H_ADST
{ aom_iadst8_c, iidtx8_c }, // V_FLIPADST
{ iidtx8_c, aom_iadst8_c }, // H_FLIPADST
#endif
};
int i, j;
tran_low_t tmp[8][8];
tran_low_t out[8][8];
tran_low_t *outp = &out[0][0];
int outstride = 8;
#if CONFIG_LGT
const tran_high_t *lgtmtx_col[8];
const tran_high_t *lgtmtx_row[8];
int use_lgt_col =
get_inv_lgt8(IHT_8[tx_type].cols, txfm_param, lgtmtx_col, 8);
int use_lgt_row =
get_inv_lgt8(IHT_8[tx_type].rows, txfm_param, lgtmtx_row, 8);
#endif
// inverse transform row vectors
for (i = 0; i < 8; ++i) {
#if CONFIG_LGT
if (use_lgt_row)
ilgt8(input, out[i], lgtmtx_row[i]);
else
#endif
IHT_8[tx_type].rows(input, out[i]);
input += 8;
}
// transpose
for (i = 0; i < 8; i++) {
for (j = 0; j < 8; j++) {
tmp[j][i] = out[i][j];
}
}
// inverse transform column vectors
for (i = 0; i < 8; ++i) {
#if CONFIG_LGT
if (use_lgt_col)
ilgt8(tmp[i], out[i], lgtmtx_col[i]);
else
#endif
IHT_8[tx_type].cols(tmp[i], out[i]);
}
#if CONFIG_EXT_TX
maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, 8, 8);
#endif
// Sum with the destination
for (i = 0; i < 8; ++i) {
for (j = 0; j < 8; ++j) {
int d = i * stride + j;
int s = j * outstride + i;
dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 5));
}
}
}
void av1_iht16x16_256_add_c(const tran_low_t *input, uint8_t *dest, int stride,
const TxfmParam *txfm_param) {
int tx_type = txfm_param->tx_type;
#if CONFIG_MRC_TX
assert(tx_type != MRC_DCT && "Invalid tx type for tx size");
#endif // CONFIG_MRC_TX
#if CONFIG_DCT_ONLY
assert(tx_type == DCT_DCT);
#endif
static const transform_2d IHT_16[] = {
{ aom_idct16_c, aom_idct16_c }, // DCT_DCT = 0
{ aom_iadst16_c, aom_idct16_c }, // ADST_DCT = 1
{ aom_idct16_c, aom_iadst16_c }, // DCT_ADST = 2
{ aom_iadst16_c, aom_iadst16_c }, // ADST_ADST = 3
#if CONFIG_EXT_TX
{ aom_iadst16_c, aom_idct16_c }, // FLIPADST_DCT
{ aom_idct16_c, aom_iadst16_c }, // DCT_FLIPADST
{ aom_iadst16_c, aom_iadst16_c }, // FLIPADST_FLIPADST
{ aom_iadst16_c, aom_iadst16_c }, // ADST_FLIPADST
{ aom_iadst16_c, aom_iadst16_c }, // FLIPADST_ADST
{ iidtx16_c, iidtx16_c }, // IDTX
{ aom_idct16_c, iidtx16_c }, // V_DCT
{ iidtx16_c, aom_idct16_c }, // H_DCT
{ aom_iadst16_c, iidtx16_c }, // V_ADST
{ iidtx16_c, aom_iadst16_c }, // H_ADST
{ aom_iadst16_c, iidtx16_c }, // V_FLIPADST
{ iidtx16_c, aom_iadst16_c }, // H_FLIPADST
#endif
};
int i, j;
tran_low_t tmp[16][16];
tran_low_t out[16][16];
tran_low_t *outp = &out[0][0];
int outstride = 16;
// inverse transform row vectors
for (i = 0; i < 16; ++i) {
IHT_16[tx_type].rows(input, out[i]);
input += 16;
}
// transpose
for (i = 0; i < 16; i++) {
for (j = 0; j < 16; j++) {
tmp[j][i] = out[i][j];
}
}
// inverse transform column vectors
for (i = 0; i < 16; ++i) IHT_16[tx_type].cols(tmp[i], out[i]);
#if CONFIG_EXT_TX
maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, 16, 16);
#endif
// Sum with the destination
for (i = 0; i < 16; ++i) {
for (j = 0; j < 16; ++j) {
int d = i * stride + j;
int s = j * outstride + i;
dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 6));
}
}
}
#if CONFIG_EXT_TX
void av1_iht32x32_1024_add_c(const tran_low_t *input, uint8_t *dest, int stride,
const TxfmParam *txfm_param) {
int tx_type = txfm_param->tx_type;
#if CONFIG_DCT_ONLY
assert(tx_type == DCT_DCT);
#endif
static const transform_2d IHT_32[] = {
{ aom_idct32_c, aom_idct32_c }, // DCT_DCT
{ ihalfright32_c, aom_idct32_c }, // ADST_DCT
{ aom_idct32_c, ihalfright32_c }, // DCT_ADST
{ ihalfright32_c, ihalfright32_c }, // ADST_ADST
{ ihalfright32_c, aom_idct32_c }, // FLIPADST_DCT
{ aom_idct32_c, ihalfright32_c }, // DCT_FLIPADST
{ ihalfright32_c, ihalfright32_c }, // FLIPADST_FLIPADST
{ ihalfright32_c, ihalfright32_c }, // ADST_FLIPADST
{ ihalfright32_c, ihalfright32_c }, // FLIPADST_ADST
{ iidtx32_c, iidtx32_c }, // IDTX
{ aom_idct32_c, iidtx32_c }, // V_DCT
{ iidtx32_c, aom_idct32_c }, // H_DCT
{ ihalfright32_c, iidtx32_c }, // V_ADST
{ iidtx32_c, ihalfright32_c }, // H_ADST
{ ihalfright32_c, iidtx32_c }, // V_FLIPADST
{ iidtx32_c, ihalfright32_c }, // H_FLIPADST
};
int i, j;
tran_low_t tmp[32][32];
tran_low_t out[32][32];
tran_low_t *outp = &out[0][0];
int outstride = 32;
// inverse transform row vectors
for (i = 0; i < 32; ++i) {
IHT_32[tx_type].rows(input, out[i]);
input += 32;
}
// transpose
for (i = 0; i < 32; i++) {
for (j = 0; j < 32; j++) {
tmp[j][i] = out[i][j];
}
}
// inverse transform column vectors
for (i = 0; i < 32; ++i) IHT_32[tx_type].cols(tmp[i], out[i]);
maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, 32, 32);
// Sum with the destination
for (i = 0; i < 32; ++i) {
for (j = 0; j < 32; ++j) {
int d = i * stride + j;
int s = j * outstride + i;
dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 6));
}
}
}
#endif // CONFIG_EXT_TX
#if CONFIG_TX64X64
void av1_iht64x64_4096_add_c(const tran_low_t *input, uint8_t *dest, int stride,
const TxfmParam *txfm_param) {
int tx_type = txfm_param->tx_type;
#if CONFIG_MRC_TX
assert(tx_type != MRC_DCT && "Invalid tx type for tx size");
#endif // CONFIG_MRC_TX
#if CONFIG_DCT_ONLY
assert(tx_type == DCT_DCT);
#endif
static const transform_2d IHT_64[] = {
{ idct64_col_c, idct64_row_c }, // DCT_DCT
{ ihalfright64_c, idct64_row_c }, // ADST_DCT
{ idct64_col_c, ihalfright64_c }, // DCT_ADST
{ ihalfright64_c, ihalfright64_c }, // ADST_ADST
#if CONFIG_EXT_TX
{ ihalfright64_c, idct64_row_c }, // FLIPADST_DCT
{ idct64_col_c, ihalfright64_c }, // DCT_FLIPADST
{ ihalfright64_c, ihalfright64_c }, // FLIPADST_FLIPADST
{ ihalfright64_c, ihalfright64_c }, // ADST_FLIPADST
{ ihalfright64_c, ihalfright64_c }, // FLIPADST_ADST
{ iidtx64_c, iidtx64_c }, // IDTX
{ idct64_col_c, iidtx64_c }, // V_DCT
{ iidtx64_c, idct64_row_c }, // H_DCT
{ ihalfright64_c, iidtx64_c }, // V_ADST
{ iidtx64_c, ihalfright64_c }, // H_ADST
{ ihalfright64_c, iidtx64_c }, // V_FLIPADST
{ iidtx64_c, ihalfright64_c }, // H_FLIPADST
#endif
};
int i, j;
tran_low_t tmp[64][64];
tran_low_t out[64][64];
tran_low_t *outp = &out[0][0];
int outstride = 64;
// inverse transform row vectors
for (i = 0; i < 64; ++i) {
IHT_64[tx_type].rows(input, out[i]);
for (j = 0; j < 64; ++j) out[i][j] = ROUND_POWER_OF_TWO(out[i][j], 1);
input += 64;
}
// transpose
for (i = 0; i < 64; i++) {
for (j = 0; j < 64; j++) {
tmp[j][i] = out[i][j];
}
}
// inverse transform column vectors
for (i = 0; i < 64; ++i) IHT_64[tx_type].cols(tmp[i], out[i]);
#if CONFIG_EXT_TX
maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, 64, 64);
#endif // CONFIG_EXT_TX
// Sum with the destination
for (i = 0; i < 64; ++i) {
for (j = 0; j < 64; ++j) {
int d = i * stride + j;
int s = j * outstride + i;
dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 5));
}
}
}
#endif // CONFIG_TX64X64
// idct
void av1_idct4x4_add(const tran_low_t *input, uint8_t *dest, int stride,
const TxfmParam *txfm_param) {
const int eob = txfm_param->eob;
if (eob > 1)
av1_iht4x4_16_add(input, dest, stride, txfm_param);
else
aom_idct4x4_1_add(input, dest, stride);
}
void av1_iwht4x4_add(const tran_low_t *input, uint8_t *dest, int stride,
const TxfmParam *txfm_param) {
const int eob = txfm_param->eob;
if (eob > 1)
aom_iwht4x4_16_add(input, dest, stride);
else
aom_iwht4x4_1_add(input, dest, stride);
}
static void idct8x8_add(const tran_low_t *input, uint8_t *dest, int stride,
const TxfmParam *txfm_param) {
// If dc is 1, then input[0] is the reconstructed value, do not need
// dequantization. Also, when dc is 1, dc is counted in eobs, namely eobs >=1.
// The calculation can be simplified if there are not many non-zero dct
// coefficients. Use eobs to decide what to do.
// TODO(yunqingwang): "eobs = 1" case is also handled in av1_short_idct8x8_c.
// Combine that with code here.
#if CONFIG_ADAPT_SCAN
const int16_t half = txfm_param->eob_threshold[0];
#else
const int16_t half = 12;
#endif
const int eob = txfm_param->eob;
if (eob == 1)
// DC only DCT coefficient
aom_idct8x8_1_add(input, dest, stride);
else if (eob <= half)
aom_idct8x8_12_add(input, dest, stride);
else
aom_idct8x8_64_add(input, dest, stride);
}
static void idct16x16_add(const tran_low_t *input, uint8_t *dest, int stride,
const TxfmParam *txfm_param) {
// The calculation can be simplified if there are not many non-zero dct
// coefficients. Use eobs to separate different cases.
#if CONFIG_ADAPT_SCAN
const int16_t half = txfm_param->eob_threshold[0];
const int16_t quarter = txfm_param->eob_threshold[1];
#else
const int16_t half = 38;
const int16_t quarter = 10;
#endif
const int eob = txfm_param->eob;
if (eob == 1) /* DC only DCT coefficient. */
aom_idct16x16_1_add(input, dest, stride);
else if (eob <= quarter)
aom_idct16x16_10_add(input, dest, stride);
else if (eob <= half)
aom_idct16x16_38_add(input, dest, stride);
else
aom_idct16x16_256_add(input, dest, stride);
}
static void idct32x32_add(const tran_low_t *input, uint8_t *dest, int stride,
const TxfmParam *txfm_param) {
#if CONFIG_ADAPT_SCAN
const int16_t half = txfm_param->eob_threshold[0];
const int16_t quarter = txfm_param->eob_threshold[1];
#else
const int16_t half = 135;
const int16_t quarter = 34;
#endif
const int eob = txfm_param->eob;
if (eob == 1)
aom_idct32x32_1_add(input, dest, stride);
else if (eob <= quarter)
// non-zero coeff only in upper-left 8x8
aom_idct32x32_34_add(input, dest, stride);
else if (eob <= half)
// non-zero coeff only in upper-left 16x16
aom_idct32x32_135_add(input, dest, stride);
else
aom_idct32x32_1024_add(input, dest, stride);
}
#if CONFIG_MRC_TX
static void get_masked_residual32_inv(const tran_low_t *input, uint8_t *dest,
tran_low_t *output) {
// placeholder for bitmask creation, in the future it
// will likely be made based on dest
(void)dest;
memcpy(output, input, 32 * 32 * sizeof(*input));
}
static void imrc32x32_add_c(const tran_low_t *input, uint8_t *dest, int stride,
const TxfmParam *param) {
// placeholder mrc tx function
tran_low_t masked_input[32 * 32];
get_masked_residual32_inv(input, dest, masked_input);
idct32x32_add(input, dest, stride, param);
}
#endif // CONFIG_MRC_TX
#if CONFIG_TX64X64
static void idct64x64_add(const tran_low_t *input, uint8_t *dest, int stride,
const TxfmParam *txfm_param) {
(void)txfm_param;
av1_iht64x64_4096_add(input, dest, stride, DCT_DCT);
}
#endif // CONFIG_TX64X64
#if CONFIG_CHROMA_2X2
static void inv_txfm_add_2x2(const tran_low_t *input, uint8_t *dest, int stride,
const TxfmParam *txfm_param) {
tran_high_t a1 = input[0] >> UNIT_QUANT_SHIFT;
tran_high_t b1 = input[1] >> UNIT_QUANT_SHIFT;
tran_high_t c1 = input[2] >> UNIT_QUANT_SHIFT;
tran_high_t d1 = input[3] >> UNIT_QUANT_SHIFT;
tran_high_t a2 = a1 + c1;
tran_high_t b2 = b1 + d1;
tran_high_t c2 = a1 - c1;
tran_high_t d2 = b1 - d1;
(void)txfm_param;
a1 = (a2 + b2) >> 2;
b1 = (a2 - b2) >> 2;
c1 = (c2 + d2) >> 2;
d1 = (c2 - d2) >> 2;
dest[0] = clip_pixel_add(dest[0], WRAPLOW(a1));
dest[1] = clip_pixel_add(dest[1], WRAPLOW(b1));
dest[stride] = clip_pixel_add(dest[stride], WRAPLOW(c1));
dest[stride + 1] = clip_pixel_add(dest[stride + 1], WRAPLOW(d1));
}
#endif
static void inv_txfm_add_4x4(const tran_low_t *input, uint8_t *dest, int stride,
const TxfmParam *txfm_param) {
const TX_TYPE tx_type = txfm_param->tx_type;
if (txfm_param->lossless) {
assert(tx_type == DCT_DCT);
av1_iwht4x4_add(input, dest, stride, txfm_param);
return;
}
switch (tx_type) {
#if !CONFIG_DAALA_DCT4
case DCT_DCT: av1_idct4x4_add(input, dest, stride, txfm_param); break;
#else
case DCT_DCT:
#endif
case ADST_DCT:
case DCT_ADST:
case ADST_ADST:
#if CONFIG_LGT
// LGT only exists in C verson
av1_iht4x4_16_add_c(input, dest, stride, txfm_param);
break;
#else
av1_iht4x4_16_add(input, dest, stride, txfm_param);
break;
#endif
#if CONFIG_EXT_TX
case FLIPADST_DCT:
case DCT_FLIPADST:
case FLIPADST_FLIPADST:
case ADST_FLIPADST:
case FLIPADST_ADST:
#if CONFIG_LGT
av1_iht4x4_16_add_c(input, dest, stride, txfm_param);
break;
#else
av1_iht4x4_16_add(input, dest, stride, txfm_param);
break;
#endif
case V_DCT:
case H_DCT:
case V_ADST:
case H_ADST:
case V_FLIPADST:
case H_FLIPADST:
// Use C version since DST only exists in C code
av1_iht4x4_16_add_c(input, dest, stride, txfm_param);
break;
case IDTX: inv_idtx_add_c(input, dest, stride, 4, tx_type); break;
#endif // CONFIG_EXT_TX
default: assert(0); break;
}
}
static void inv_txfm_add_4x8(const tran_low_t *input, uint8_t *dest, int stride,
const TxfmParam *txfm_param) {
#if CONFIG_LGT
av1_iht4x8_32_add_c(input, dest, stride, txfm_param);
#else
av1_iht4x8_32_add(input, dest, stride, txfm_param);
#endif
}
static void inv_txfm_add_8x4(const tran_low_t *input, uint8_t *dest, int stride,
const TxfmParam *txfm_param) {
#if CONFIG_LGT
av1_iht8x4_32_add_c(input, dest, stride, txfm_param);
#else
av1_iht8x4_32_add(input, dest, stride, txfm_param);
#endif
}
// These will be used by the masked-tx experiment in the future.
#if CONFIG_RECT_TX && CONFIG_EXT_TX && CONFIG_RECT_TX_EXT
static void inv_txfm_add_4x16(const tran_low_t *input, uint8_t *dest,
int stride, const TxfmParam *txfm_param) {
#if CONFIG_LGT
av1_iht4x16_64_add_c(input, dest, stride, txfm_param);
#else
av1_iht4x16_64_add(input, dest, stride, txfm_param);
#endif
}
static void inv_txfm_add_16x4(const tran_low_t *input, uint8_t *dest,
int stride, const TxfmParam *txfm_param) {
#if CONFIG_LGT
av1_iht16x4_64_add_c(input, dest, stride, txfm_param);
#else
av1_iht16x4_64_add(input, dest, stride, txfm_param);
#endif
}
static void inv_txfm_add_8x32(const tran_low_t *input, uint8_t *dest,
int stride, const TxfmParam *txfm_param) {
#if CONFIG_LGT
av1_iht8x32_256_add_c(input, dest, stride, txfm_param);
#else
av1_iht8x32_256_add(input, dest, stride, txfm_param);
#endif
}
static void inv_txfm_add_32x8(const tran_low_t *input, uint8_t *dest,
int stride, const TxfmParam *txfm_param) {
#if CONFIG_LGT
av1_iht32x8_256_add_c(input, dest, stride, txfm_param);
#else
av1_iht32x8_256_add(input, dest, stride, txfm_param);
#endif
}
#endif // CONFIG_RECT_TX && CONFIG_EXT_TX && CONFIG_RECT_TX_EXT
static void inv_txfm_add_8x16(const tran_low_t *input, uint8_t *dest,
int stride, const TxfmParam *txfm_param) {
#if CONFIG_LGT
av1_iht8x16_128_add_c(input, dest, stride, txfm_param);
#else
av1_iht8x16_128_add(input, dest, stride, txfm_param);
#endif
}
static void inv_txfm_add_16x8(const tran_low_t *input, uint8_t *dest,
int stride, const TxfmParam *txfm_param) {
#if CONFIG_LGT
av1_iht16x8_128_add_c(input, dest, stride, txfm_param);
#else
av1_iht16x8_128_add(input, dest, stride, txfm_param);
#endif
}
static void inv_txfm_add_16x32(const tran_low_t *input, uint8_t *dest,
int stride, const TxfmParam *txfm_param) {
av1_iht16x32_512_add(input, dest, stride, txfm_param);
}
static void inv_txfm_add_32x16(const tran_low_t *input, uint8_t *dest,
int stride, const TxfmParam *txfm_param) {
av1_iht32x16_512_add(input, dest, stride, txfm_param);
}
static void inv_txfm_add_8x8(const tran_low_t *input, uint8_t *dest, int stride,
const TxfmParam *txfm_param) {
const TX_TYPE tx_type = txfm_param->tx_type;
switch (tx_type) {
case DCT_DCT: idct8x8_add(input, dest, stride, txfm_param); break;
case ADST_DCT:
case DCT_ADST:
case ADST_ADST:
#if CONFIG_LGT
av1_iht8x8_64_add_c(input, dest, stride, txfm_param);
break;
#else
av1_iht8x8_64_add(input, dest, stride, txfm_param);
break;
#endif
#if CONFIG_EXT_TX
case FLIPADST_DCT:
case DCT_FLIPADST:
case FLIPADST_FLIPADST:
case ADST_FLIPADST:
case FLIPADST_ADST:
#if CONFIG_LGT
av1_iht8x8_64_add_c(input, dest, stride, txfm_param);
break;
#else
av1_iht8x8_64_add(input, dest, stride, txfm_param);
break;
#endif
case V_DCT:
case H_DCT:
case V_ADST:
case H_ADST:
case V_FLIPADST:
case H_FLIPADST:
// Use C version since DST only exists in C code
av1_iht8x8_64_add_c(input, dest, stride, txfm_param);
break;
case IDTX: inv_idtx_add_c(input, dest, stride, 8, tx_type); break;
#endif // CONFIG_EXT_TX
default: assert(0); break;
}
}
static void inv_txfm_add_16x16(const tran_low_t *input, uint8_t *dest,
int stride, const TxfmParam *txfm_param) {
const TX_TYPE tx_type = txfm_param->tx_type;
switch (tx_type) {
case DCT_DCT: idct16x16_add(input, dest, stride, txfm_param); break;
case ADST_DCT:
case DCT_ADST:
case ADST_ADST:
av1_iht16x16_256_add(input, dest, stride, txfm_param);
break;
#if CONFIG_EXT_TX
case FLIPADST_DCT:
case DCT_FLIPADST:
case FLIPADST_FLIPADST:
case ADST_FLIPADST:
case FLIPADST_ADST:
case V_DCT:
case H_DCT:
case V_ADST:
case H_ADST:
case V_FLIPADST:
case H_FLIPADST:
av1_iht16x16_256_add(input, dest, stride, txfm_param);
break;
case IDTX: inv_idtx_add_c(input, dest, stride, 16, tx_type); break;
#endif // CONFIG_EXT_TX
#if CONFIG_MRC_TX
case MRC_DCT: assert(0 && "Invalid tx type for tx size");
#endif // CONFIG_MRC_TX
default: assert(0); break;
}
}
static void inv_txfm_add_32x32(const tran_low_t *input, uint8_t *dest,
int stride, const TxfmParam *txfm_param) {
const TX_TYPE tx_type = txfm_param->tx_type;
switch (tx_type) {
case DCT_DCT: idct32x32_add(input, dest, stride, txfm_param); break;
#if CONFIG_EXT_TX
case ADST_DCT:
case DCT_ADST:
case ADST_ADST:
case FLIPADST_DCT:
case DCT_FLIPADST:
case FLIPADST_FLIPADST:
case ADST_FLIPADST:
case FLIPADST_ADST:
case V_DCT:
case H_DCT:
case V_ADST:
case H_ADST:
case V_FLIPADST:
case H_FLIPADST:
av1_iht32x32_1024_add_c(input, dest, stride, txfm_param);
break;
case IDTX: inv_idtx_add_c(input, dest, stride, 32, tx_type); break;
#endif // CONFIG_EXT_TX
#if CONFIG_MRC_TX
case MRC_DCT: imrc32x32_add_c(input, dest, stride, txfm_param); break;
#endif // CONFIG_MRC_TX
default: assert(0); break;
}
}
#if CONFIG_TX64X64
static void inv_txfm_add_64x64(const tran_low_t *input, uint8_t *dest,
int stride, const TxfmParam *txfm_param) {
const TX_TYPE tx_type = txfm_param->tx_type;
switch (tx_type) {
case DCT_DCT: idct64x64_add(input, dest, stride, txfm_param); break;
#if CONFIG_EXT_TX
case ADST_DCT:
case DCT_ADST:
case ADST_ADST:
case FLIPADST_DCT:
case DCT_FLIPADST:
case FLIPADST_FLIPADST:
case ADST_FLIPADST:
case FLIPADST_ADST:
case V_DCT:
case H_DCT:
case V_ADST:
case H_ADST:
case V_FLIPADST:
case H_FLIPADST:
av1_iht64x64_4096_add_c(input, dest, stride, txfm_param);
break;
case IDTX: inv_idtx_add_c(input, dest, stride, 64, tx_type); break;
#endif // CONFIG_EXT_TX
#if CONFIG_MRC_TX
case MRC_DCT: assert(0 && "Invalid tx type for tx size");
#endif // CONFIG_MRC_TX
default: assert(0); break;
}
}
#endif // CONFIG_TX64X64
void av1_highbd_iwht4x4_add(const tran_low_t *input, uint8_t *dest, int stride,
int eob, int bd) {
if (eob > 1)
aom_highbd_iwht4x4_16_add(input, dest, stride, bd);
else
aom_highbd_iwht4x4_1_add(input, dest, stride, bd);
}
#if CONFIG_CHROMA_2X2
static void highbd_inv_txfm_add_2x2(const tran_low_t *input, uint8_t *dest,
int stride, const TxfmParam *txfm_param) {
int eob = txfm_param->eob;
int bd = txfm_param->bd;
int lossless = txfm_param->lossless;
TX_TYPE tx_type = txfm_param->tx_type;
tran_high_t a1 = input[0] >> UNIT_QUANT_SHIFT;
tran_high_t b1 = input[1] >> UNIT_QUANT_SHIFT;
tran_high_t c1 = input[2] >> UNIT_QUANT_SHIFT;
tran_high_t d1 = input[3] >> UNIT_QUANT_SHIFT;
tran_high_t a2 = a1 + c1;
tran_high_t b2 = b1 + d1;
tran_high_t c2 = a1 - c1;
tran_high_t d2 = b1 - d1;
uint16_t *dst = CONVERT_TO_SHORTPTR(dest);
(void)tx_type;
(void)lossless;
(void)eob;
a1 = (a2 + b2) >> 2;
b1 = (a2 - b2) >> 2;
c1 = (c2 + d2) >> 2;
d1 = (c2 - d2) >> 2;
dst[0] = highbd_clip_pixel_add(dst[0], a1, bd);
dst[1] = highbd_clip_pixel_add(dst[1], b1, bd);
dst[stride] = highbd_clip_pixel_add(dst[stride], c1, bd);
dst[stride + 1] = highbd_clip_pixel_add(dst[stride + 1], d1, bd);
}
#endif
void av1_highbd_inv_txfm_add_4x4(const tran_low_t *input, uint8_t *dest,
int stride, const TxfmParam *txfm_param) {
int eob = txfm_param->eob;
int bd = txfm_param->bd;
int lossless = txfm_param->lossless;
const int32_t *src = (const int32_t *)input;
TX_TYPE tx_type = txfm_param->tx_type;
if (lossless) {
assert(tx_type == DCT_DCT);
av1_highbd_iwht4x4_add(input, dest, stride, eob, bd);
return;
}
switch (tx_type) {
case DCT_DCT:
case ADST_DCT:
case DCT_ADST:
case ADST_ADST:
av1_inv_txfm2d_add_4x4(src, CONVERT_TO_SHORTPTR(dest), stride, tx_type,
bd);
break;
#if CONFIG_EXT_TX
case FLIPADST_DCT:
case DCT_FLIPADST:
case FLIPADST_FLIPADST:
case ADST_FLIPADST:
case FLIPADST_ADST:
av1_inv_txfm2d_add_4x4(src, CONVERT_TO_SHORTPTR(dest), stride, tx_type,
bd);
break;
// use the c version for anything including identity for now
case V_DCT:
case H_DCT:
case V_ADST:
case H_ADST:
case V_FLIPADST:
case H_FLIPADST:
case IDTX:
av1_inv_txfm2d_add_4x4_c(src, CONVERT_TO_SHORTPTR(dest), stride, tx_type,
bd);
break;
#endif // CONFIG_EXT_TX
default: assert(0); break;
}
}
void av1_highbd_inv_txfm_add_4x8(const tran_low_t *input, uint8_t *dest,
int stride, const TxfmParam *txfm_param) {
const int32_t *src = (const int32_t *)input;
av1_inv_txfm2d_add_4x8_c(src, CONVERT_TO_SHORTPTR(dest), stride,
txfm_param->tx_type, txfm_param->bd);
}
void av1_highbd_inv_txfm_add_8x4(const tran_low_t *input, uint8_t *dest,
int stride, const TxfmParam *txfm_param) {
const int32_t *src = (const int32_t *)input;
av1_inv_txfm2d_add_8x4_c(src, CONVERT_TO_SHORTPTR(dest), stride,
txfm_param->tx_type, txfm_param->bd);
}
static void highbd_inv_txfm_add_8x16(const tran_low_t *input, uint8_t *dest,
int stride, const TxfmParam *txfm_param) {
const int32_t *src = (const int32_t *)input;
av1_inv_txfm2d_add_8x16_c(src, CONVERT_TO_SHORTPTR(dest), stride,
txfm_param->tx_type, txfm_param->bd);
}
static void highbd_inv_txfm_add_16x8(const tran_low_t *input, uint8_t *dest,
int stride, const TxfmParam *txfm_param) {
const int32_t *src = (const int32_t *)input;
av1_inv_txfm2d_add_16x8_c(src, CONVERT_TO_SHORTPTR(dest), stride,
txfm_param->tx_type, txfm_param->bd);
}
static void highbd_inv_txfm_add_16x32(const tran_low_t *input, uint8_t *dest,
int stride, const TxfmParam *txfm_param) {
const int32_t *src = (const int32_t *)input;
av1_inv_txfm2d_add_16x32_c(src, CONVERT_TO_SHORTPTR(dest), stride,
txfm_param->tx_type, txfm_param->bd);
}
static void highbd_inv_txfm_add_32x16(const tran_low_t *input, uint8_t *dest,
int stride, const TxfmParam *txfm_param) {
const int32_t *src = (const int32_t *)input;
av1_inv_txfm2d_add_32x16_c(src, CONVERT_TO_SHORTPTR(dest), stride,
txfm_param->tx_type, txfm_param->bd);
}
static void highbd_inv_txfm_add_8x8(const tran_low_t *input, uint8_t *dest,
int stride, const TxfmParam *txfm_param) {
int bd = txfm_param->bd;
TX_TYPE tx_type = txfm_param->tx_type;
const int32_t *src = (const int32_t *)input;
switch (tx_type) {
case DCT_DCT:
case ADST_DCT:
case DCT_ADST:
case ADST_ADST:
av1_inv_txfm2d_add_8x8(src, CONVERT_TO_SHORTPTR(dest), stride, tx_type,
bd);
break;
#if CONFIG_EXT_TX
case FLIPADST_DCT:
case DCT_FLIPADST:
case FLIPADST_FLIPADST:
case ADST_FLIPADST:
case FLIPADST_ADST:
av1_inv_txfm2d_add_8x8(src, CONVERT_TO_SHORTPTR(dest), stride, tx_type,
bd);
break;
// use the c version for anything including identity for now
case V_DCT:
case H_DCT:
case V_ADST:
case H_ADST:
case V_FLIPADST:
case H_FLIPADST:
case IDTX:
av1_inv_txfm2d_add_8x8_c(src, CONVERT_TO_SHORTPTR(dest), stride, tx_type,
bd);
break;
#endif // CONFIG_EXT_TX
default: assert(0);
}
}
static void highbd_inv_txfm_add_16x16(const tran_low_t *input, uint8_t *dest,
int stride, const TxfmParam *txfm_param) {
int bd = txfm_param->bd;
TX_TYPE tx_type = txfm_param->tx_type;
const int32_t *src = (const int32_t *)input;
switch (tx_type) {
case DCT_DCT:
case ADST_DCT:
case DCT_ADST:
case ADST_ADST:
av1_inv_txfm2d_add_16x16(src, CONVERT_TO_SHORTPTR(dest), stride, tx_type,
bd);
break;
#if CONFIG_EXT_TX
case FLIPADST_DCT:
case DCT_FLIPADST:
case FLIPADST_FLIPADST:
case ADST_FLIPADST:
case FLIPADST_ADST:
av1_inv_txfm2d_add_16x16(src, CONVERT_TO_SHORTPTR(dest), stride, tx_type,
bd);
break;
// use the c version for anything including identity for now
case V_DCT:
case H_DCT:
case V_ADST:
case H_ADST:
case V_FLIPADST:
case H_FLIPADST:
case IDTX:
av1_inv_txfm2d_add_16x16_c(src, CONVERT_TO_SHORTPTR(dest), stride,
tx_type, bd);
break;
#endif // CONFIG_EXT_TX
default: assert(0);
}
}
static void highbd_inv_txfm_add_32x32(const tran_low_t *input, uint8_t *dest,
int stride, const TxfmParam *txfm_param) {
int bd = txfm_param->bd;
TX_TYPE tx_type = txfm_param->tx_type;
const int32_t *src = (const int32_t *)input;
switch (tx_type) {
case DCT_DCT:
case ADST_DCT:
case DCT_ADST:
case ADST_ADST:
av1_inv_txfm2d_add_32x32(src, CONVERT_TO_SHORTPTR(dest), stride, tx_type,
bd);
break;
#if CONFIG_EXT_TX
case FLIPADST_DCT:
case DCT_FLIPADST:
case FLIPADST_FLIPADST:
case ADST_FLIPADST:
case FLIPADST_ADST:
av1_inv_txfm2d_add_32x32(src, CONVERT_TO_SHORTPTR(dest), stride, tx_type,
bd);
break;
// use the c version for anything including identity for now
case V_DCT:
case H_DCT:
case V_ADST:
case H_ADST:
case V_FLIPADST:
case H_FLIPADST:
case IDTX:
av1_inv_txfm2d_add_32x32_c(src, CONVERT_TO_SHORTPTR(dest), stride,
tx_type, bd);
break;
#endif // CONFIG_EXT_TX
default: assert(0);
}
}
#if CONFIG_TX64X64
static void highbd_inv_txfm_add_64x64(const tran_low_t *input, uint8_t *dest,
int stride, const TxfmParam *txfm_param) {
int bd = txfm_param->bd;
TX_TYPE tx_type = txfm_param->tx_type;
const int32_t *src = (const int32_t *)input;
switch (tx_type) {
case DCT_DCT:
av1_inv_txfm2d_add_64x64(src, CONVERT_TO_SHORTPTR(dest), stride, DCT_DCT,
bd);
break;
#if CONFIG_EXT_TX
case ADST_DCT:
case DCT_ADST:
case ADST_ADST:
case FLIPADST_DCT:
case DCT_FLIPADST:
case FLIPADST_FLIPADST:
case ADST_FLIPADST:
case FLIPADST_ADST:
case V_DCT:
case H_DCT:
case V_ADST:
case H_ADST:
case V_FLIPADST:
case H_FLIPADST:
// TODO(sarahparker)
// I've deleted the 64x64 implementations that existed in lieu
// of adst, flipadst and identity for simplicity but will bring back
// in a later change. This shouldn't impact performance since
// DCT_DCT is the only extended type currently allowed for 64x64,
// as dictated by get_ext_tx_set_type in blockd.h.
av1_inv_txfm2d_add_64x64_c(src, CONVERT_TO_SHORTPTR(dest), stride,
DCT_DCT, bd);
break;
case IDTX:
highbd_inv_idtx_add_c(input, dest, stride, 64, tx_type, bd);
break;
#endif // CONFIG_EXT_TX
default: assert(0); break;
}
}
#endif // CONFIG_TX64X64
void av1_inv_txfm_add(const tran_low_t *input, uint8_t *dest, int stride,
TxfmParam *txfm_param) {
const TX_SIZE tx_size = txfm_param->tx_size;
switch (tx_size) {
#if CONFIG_TX64X64
case TX_64X64: inv_txfm_add_64x64(input, dest, stride, txfm_param); break;
#endif // CONFIG_TX64X64
case TX_32X32: inv_txfm_add_32x32(input, dest, stride, txfm_param); break;
case TX_16X16: inv_txfm_add_16x16(input, dest, stride, txfm_param); break;
case TX_8X8: inv_txfm_add_8x8(input, dest, stride, txfm_param); break;
case TX_4X8: inv_txfm_add_4x8(input, dest, stride, txfm_param); break;
case TX_8X4: inv_txfm_add_8x4(input, dest, stride, txfm_param); break;
case TX_8X16: inv_txfm_add_8x16(input, dest, stride, txfm_param); break;
case TX_16X8: inv_txfm_add_16x8(input, dest, stride, txfm_param); break;
case TX_16X32: inv_txfm_add_16x32(input, dest, stride, txfm_param); break;
case TX_32X16: inv_txfm_add_32x16(input, dest, stride, txfm_param); break;
case TX_4X4:
// this is like av1_short_idct4x4 but has a special case around eob<=1
// which is significant (not just an optimization) for the lossless
// case.
inv_txfm_add_4x4(input, dest, stride, txfm_param);
break;
#if CONFIG_CHROMA_2X2
case TX_2X2: inv_txfm_add_2x2(input, dest, stride, txfm_param); break;
#endif
#if CONFIG_EXT_TX && CONFIG_RECT_TX && CONFIG_RECT_TX_EXT
case TX_32X8: inv_txfm_add_32x8(input, dest, stride, txfm_param); break;
case TX_8X32: inv_txfm_add_8x32(input, dest, stride, txfm_param); break;
case TX_16X4: inv_txfm_add_16x4(input, dest, stride, txfm_param); break;
case TX_4X16: inv_txfm_add_4x16(input, dest, stride, txfm_param); break;
#endif
default: assert(0 && "Invalid transform size"); break;
}
}
static void init_txfm_param(const MACROBLOCKD *xd, TX_SIZE tx_size,
TX_TYPE tx_type, int eob, TxfmParam *txfm_param) {
txfm_param->tx_type = tx_type;
txfm_param->tx_size = tx_size;
txfm_param->eob = eob;
txfm_param->lossless = xd->lossless[xd->mi[0]->mbmi.segment_id];
#if CONFIG_HIGHBITDEPTH
txfm_param->bd = xd->bd;
#endif
#if CONFIG_LGT
txfm_param->is_inter = is_inter_block(&xd->mi[0]->mbmi);
#endif
#if CONFIG_ADAPT_SCAN
txfm_param->eob_threshold =
(const int16_t *)&xd->eob_threshold_md[tx_size][tx_type][0];
#endif
}
typedef void (*InvTxfmFunc)(const tran_low_t *dqcoeff, uint8_t *dst, int stride,
TxfmParam *txfm_param);
static InvTxfmFunc inv_txfm_func[2] = { av1_inv_txfm_add,
av1_highbd_inv_txfm_add };
// TODO(kslu) Change input arguments to TxfmParam, which contains mode,
// tx_type, tx_size, dst, stride, eob. Thus, the additional argument when LGT
// is on will no longer be needed.
void av1_inverse_transform_block(const MACROBLOCKD *xd,
const tran_low_t *dqcoeff,
#if CONFIG_LGT
PREDICTION_MODE mode,
#endif
TX_TYPE tx_type, TX_SIZE tx_size, uint8_t *dst,
int stride, int eob) {
if (!eob) return;
#if CONFIG_PVQ
const BLOCK_SIZE tx_bsize = txsize_to_bsize[tx_size];
const int txb_width = block_size_wide[tx_bsize];
const int txb_height = block_size_high[tx_bsize];
int r, c;
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
for (r = 0; r < txb_height; r++)
for (c = 0; c < txb_width; c++)
CONVERT_TO_SHORTPTR(dst)[r * stride + c] = 0;
} else {
#endif // CONFIG_HIGHBITDEPTH
for (r = 0; r < txb_height; r++)
for (c = 0; c < txb_width; c++) dst[r * stride + c] = 0;
#if CONFIG_HIGHBITDEPTH
}
#endif // CONFIG_HIGHBITDEPTH
#endif // CONFIG_PVQ
TxfmParam txfm_param;
init_txfm_param(xd, tx_size, tx_type, eob, &txfm_param);
#if CONFIG_LGT
txfm_param.dst = dst;
txfm_param.mode = mode;
txfm_param.stride = stride;
#endif
const int is_hbd = get_bitdepth_data_path_index(xd);
inv_txfm_func[is_hbd](dqcoeff, dst, stride, &txfm_param);
}
void av1_inverse_transform_block_facade(MACROBLOCKD *xd, int plane, int block,
int blk_row, int blk_col, int eob) {
struct macroblockd_plane *const pd = &xd->plane[plane];
tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
const PLANE_TYPE plane_type = get_plane_type(plane);
const TX_SIZE tx_size = av1_get_tx_size(plane, xd);
const TX_TYPE tx_type =
av1_get_tx_type(plane_type, xd, blk_row, blk_col, block, tx_size);
const int dst_stride = pd->dst.stride;
uint8_t *dst =
&pd->dst.buf[(blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]];
#if CONFIG_LGT
PREDICTION_MODE mode = get_prediction_mode(xd->mi[0], plane, tx_size, block);
av1_inverse_transform_block(xd, dqcoeff, mode, tx_type, tx_size, dst,
dst_stride, eob);
#else
av1_inverse_transform_block(xd, dqcoeff, tx_type, tx_size, dst, dst_stride,
eob);
#endif // CONFIG_LGT
}
void av1_highbd_inv_txfm_add(const tran_low_t *input, uint8_t *dest, int stride,
TxfmParam *txfm_param) {
const TX_SIZE tx_size = txfm_param->tx_size;
switch (tx_size) {
#if CONFIG_TX64X64
case TX_64X64:
highbd_inv_txfm_add_64x64(input, dest, stride, txfm_param);
break;
#endif // CONFIG_TX64X64
case TX_32X32:
highbd_inv_txfm_add_32x32(input, dest, stride, txfm_param);
break;
case TX_16X16:
highbd_inv_txfm_add_16x16(input, dest, stride, txfm_param);
break;
case TX_8X8:
highbd_inv_txfm_add_8x8(input, dest, stride, txfm_param);
break;
case TX_4X8:
av1_highbd_inv_txfm_add_4x8(input, dest, stride, txfm_param);
break;
case TX_8X4:
av1_highbd_inv_txfm_add_8x4(input, dest, stride, txfm_param);
break;
case TX_8X16:
highbd_inv_txfm_add_8x16(input, dest, stride, txfm_param);
break;
case TX_16X8:
highbd_inv_txfm_add_16x8(input, dest, stride, txfm_param);
break;
case TX_16X32:
highbd_inv_txfm_add_16x32(input, dest, stride, txfm_param);
break;
case TX_32X16:
highbd_inv_txfm_add_32x16(input, dest, stride, txfm_param);
break;
case TX_4X4:
// this is like av1_short_idct4x4 but has a special case around eob<=1
// which is significant (not just an optimization) for the lossless
// case.
av1_highbd_inv_txfm_add_4x4(input, dest, stride, txfm_param);
break;
#if CONFIG_CHROMA_2X2
case TX_2X2:
highbd_inv_txfm_add_2x2(input, dest, stride, txfm_param);
break;
#endif
default: assert(0 && "Invalid transform size"); break;
}
}
#if CONFIG_DPCM_INTRA
void av1_dpcm_inv_txfm_add_4_c(const tran_low_t *input, int stride,
TX_TYPE_1D tx_type, uint8_t *dest) {
assert(tx_type < TX_TYPES_1D);
static const transform_1d IHT[] = { aom_idct4_c, aom_iadst4_c, aom_iadst4_c,
iidtx4_c };
const transform_1d inv_tx = IHT[tx_type];
tran_low_t out[4];
inv_tx(input, out);
for (int i = 0; i < 4; ++i) {
out[i] = (tran_low_t)dct_const_round_shift(out[i] * Sqrt2);
dest[i * stride] =
clip_pixel_add(dest[i * stride], ROUND_POWER_OF_TWO(out[i], 4));
}
}
void av1_dpcm_inv_txfm_add_8_c(const tran_low_t *input, int stride,
TX_TYPE_1D tx_type, uint8_t *dest) {
assert(tx_type < TX_TYPES_1D);
static const transform_1d IHT[] = { aom_idct8_c, aom_iadst8_c, aom_iadst8_c,
iidtx8_c };
const transform_1d inv_tx = IHT[tx_type];
tran_low_t out[8];
inv_tx(input, out);
for (int i = 0; i < 8; ++i) {
dest[i * stride] =
clip_pixel_add(dest[i * stride], ROUND_POWER_OF_TWO(out[i], 4));
}
}
void av1_dpcm_inv_txfm_add_16_c(const tran_low_t *input, int stride,
TX_TYPE_1D tx_type, uint8_t *dest) {
assert(tx_type < TX_TYPES_1D);
static const transform_1d IHT[] = { aom_idct16_c, aom_iadst16_c,
aom_iadst16_c, iidtx16_c };
const transform_1d inv_tx = IHT[tx_type];
tran_low_t out[16];
inv_tx(input, out);
for (int i = 0; i < 16; ++i) {
out[i] = (tran_low_t)dct_const_round_shift(out[i] * Sqrt2);
dest[i * stride] =
clip_pixel_add(dest[i * stride], ROUND_POWER_OF_TWO(out[i], 5));
}
}
void av1_dpcm_inv_txfm_add_32_c(const tran_low_t *input, int stride,
TX_TYPE_1D tx_type, uint8_t *dest) {
assert(tx_type < TX_TYPES_1D);
static const transform_1d IHT[] = { aom_idct32_c, ihalfright32_c,
ihalfright32_c, iidtx32_c };
const transform_1d inv_tx = IHT[tx_type];
tran_low_t out[32];
inv_tx(input, out);
for (int i = 0; i < 32; ++i) {
dest[i * stride] =
clip_pixel_add(dest[i * stride], ROUND_POWER_OF_TWO(out[i], 4));
}
}
dpcm_inv_txfm_add_func av1_get_dpcm_inv_txfm_add_func(int tx_length) {
switch (tx_length) {
case 4: return av1_dpcm_inv_txfm_add_4_c;
case 8: return av1_dpcm_inv_txfm_add_8_c;
case 16: return av1_dpcm_inv_txfm_add_16_c;
case 32:
return av1_dpcm_inv_txfm_add_32_c;
// TODO(huisu): add support for TX_64X64.
default: assert(0); return NULL;
}
}
#if CONFIG_HIGHBITDEPTH
// TODO(sarahparker) I am adding a quick workaround for these functions
// to remove the old hbd transforms. This will be cleaned up in a followup.
void av1_hbd_dpcm_inv_txfm_add_4_c(const tran_low_t *input, int stride,
TX_TYPE_1D tx_type, int bd, uint16_t *dest,
int dir) {
assert(tx_type < TX_TYPES_1D);
static const TxfmFunc IHT[] = { av1_idct4_new, av1_iadst4_new, av1_iadst4_new,
av1_iidentity4_c };
// In order { horizontal, vertical }
static const TXFM_1D_CFG *inv_txfm_cfg_ls[TX_TYPES_1D][2] = {
{ &inv_txfm_1d_row_cfg_dct_4, &inv_txfm_1d_col_cfg_dct_4 },
{ &inv_txfm_1d_row_cfg_adst_4, &inv_txfm_1d_col_cfg_adst_4 },
{ &inv_txfm_1d_row_cfg_adst_4, &inv_txfm_1d_col_cfg_adst_4 },
{ &inv_txfm_1d_cfg_identity_4, &inv_txfm_1d_cfg_identity_4 }
};
const TXFM_1D_CFG *inv_txfm_cfg = inv_txfm_cfg_ls[tx_type][dir];
const TxfmFunc inv_tx = IHT[tx_type];
tran_low_t out[4];
inv_tx(input, out, inv_txfm_cfg->cos_bit, inv_txfm_cfg->stage_range);
for (int i = 0; i < 4; ++i) {
out[i] = (tran_low_t)dct_const_round_shift(out[i] * Sqrt2);
dest[i * stride] = highbd_clip_pixel_add(dest[i * stride],
ROUND_POWER_OF_TWO(out[i], 4), bd);
}
}
void av1_hbd_dpcm_inv_txfm_add_8_c(const tran_low_t *input, int stride,
TX_TYPE_1D tx_type, int bd, uint16_t *dest,
int dir) {
assert(tx_type < TX_TYPES_1D);
static const TxfmFunc IHT[] = { av1_idct4_new, av1_iadst4_new, av1_iadst4_new,
av1_iidentity4_c };
// In order { horizontal, vertical }
static const TXFM_1D_CFG *inv_txfm_cfg_ls[TX_TYPES_1D][2] = {
{ &inv_txfm_1d_row_cfg_dct_8, &inv_txfm_1d_col_cfg_dct_8 },
{ &inv_txfm_1d_row_cfg_adst_8, &inv_txfm_1d_col_cfg_adst_8 },
{ &inv_txfm_1d_row_cfg_adst_8, &inv_txfm_1d_col_cfg_adst_8 },
{ &inv_txfm_1d_cfg_identity_8, &inv_txfm_1d_cfg_identity_8 }
};
const TXFM_1D_CFG *inv_txfm_cfg = inv_txfm_cfg_ls[tx_type][dir];
const TxfmFunc inv_tx = IHT[tx_type];
tran_low_t out[8];
inv_tx(input, out, inv_txfm_cfg->cos_bit, inv_txfm_cfg->stage_range);
for (int i = 0; i < 8; ++i) {
dest[i * stride] = highbd_clip_pixel_add(dest[i * stride],
ROUND_POWER_OF_TWO(out[i], 4), bd);
}
}
void av1_hbd_dpcm_inv_txfm_add_16_c(const tran_low_t *input, int stride,
TX_TYPE_1D tx_type, int bd, uint16_t *dest,
int dir) {
assert(tx_type < TX_TYPES_1D);
static const TxfmFunc IHT[] = { av1_idct4_new, av1_iadst4_new, av1_iadst4_new,
av1_iidentity4_c };
// In order { horizontal, vertical }
static const TXFM_1D_CFG *inv_txfm_cfg_ls[TX_TYPES_1D][2] = {
{ &inv_txfm_1d_row_cfg_dct_16, &inv_txfm_1d_col_cfg_dct_16 },
{ &inv_txfm_1d_row_cfg_adst_16, &inv_txfm_1d_col_cfg_adst_16 },
{ &inv_txfm_1d_row_cfg_adst_16, &inv_txfm_1d_col_cfg_adst_16 },
{ &inv_txfm_1d_cfg_identity_16, &inv_txfm_1d_cfg_identity_16 }
};
const TXFM_1D_CFG *inv_txfm_cfg = inv_txfm_cfg_ls[tx_type][dir];
const TxfmFunc inv_tx = IHT[tx_type];
tran_low_t out[16];
inv_tx(input, out, inv_txfm_cfg->cos_bit, inv_txfm_cfg->stage_range);
for (int i = 0; i < 16; ++i) {
out[i] = (tran_low_t)dct_const_round_shift(out[i] * Sqrt2);
dest[i * stride] = highbd_clip_pixel_add(dest[i * stride],
ROUND_POWER_OF_TWO(out[i], 5), bd);
}
}
void av1_hbd_dpcm_inv_txfm_add_32_c(const tran_low_t *input, int stride,
TX_TYPE_1D tx_type, int bd, uint16_t *dest,
int dir) {
assert(tx_type < TX_TYPES_1D);
static const TxfmFunc IHT[] = { av1_idct4_new, av1_iadst4_new, av1_iadst4_new,
av1_iidentity4_c };
// In order { horizontal, vertical }
static const TXFM_1D_CFG *inv_txfm_cfg_ls[TX_TYPES_1D][2] = {
{ &inv_txfm_1d_row_cfg_dct_32, &inv_txfm_1d_col_cfg_dct_32 },
{ &inv_txfm_1d_row_cfg_adst_32, &inv_txfm_1d_col_cfg_adst_32 },
{ &inv_txfm_1d_row_cfg_adst_32, &inv_txfm_1d_col_cfg_adst_32 },
{ &inv_txfm_1d_cfg_identity_32, &inv_txfm_1d_cfg_identity_32 }
};
const TXFM_1D_CFG *inv_txfm_cfg = inv_txfm_cfg_ls[tx_type][dir];
const TxfmFunc inv_tx = IHT[tx_type];
tran_low_t out[32];
inv_tx(input, out, inv_txfm_cfg->cos_bit, inv_txfm_cfg->stage_range);
for (int i = 0; i < 32; ++i) {
dest[i * stride] = highbd_clip_pixel_add(dest[i * stride],
ROUND_POWER_OF_TWO(out[i], 4), bd);
}
}
hbd_dpcm_inv_txfm_add_func av1_get_hbd_dpcm_inv_txfm_add_func(int tx_length) {
switch (tx_length) {
case 4: return av1_hbd_dpcm_inv_txfm_add_4_c;
case 8: return av1_hbd_dpcm_inv_txfm_add_8_c;
case 16: return av1_hbd_dpcm_inv_txfm_add_16_c;
case 32:
return av1_hbd_dpcm_inv_txfm_add_32_c;
// TODO(huisu): add support for TX_64X64.
default: assert(0); return NULL;
}
}
#endif // CONFIG_HIGHBITDEPTH
#endif // CONFIG_DPCM_INTRA