blob: d0b747ed1bd43c66a1224c8ad6f128f79351031b [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <string.h>
#include "./aom_dsp_rtcd.h"
#include "./av1_rtcd.h"
#include "av1/common/blockd.h"
#include "av1/common/convolve.h"
#include "av1/common/filter.h"
#include "av1/common/onyxc_int.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_ports/mem.h"
#define MAX_BLOCK_WIDTH (MAX_SB_SIZE)
#define MAX_BLOCK_HEIGHT (MAX_SB_SIZE)
#define MAX_STEP (32)
#if CONFIG_HORZONLY_FRAME_SUPERRES
#define UPSCALE_PROC_UNIT 64 // Source step (roughly)
#define UPSCALE_PROC_UNIT_SCALE (UPSCALE_PROC_UNIT / SCALE_NUMERATOR)
void av1_convolve_horiz_rs_c(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, int w, int h,
const int16_t *x_filters, int interp_taps,
const int x0_qn, const int x_step_qn) {
src -= interp_taps / 2 - 1;
for (int y = 0; y < h; ++y) {
int x_qn = x0_qn;
for (int x = 0; x < w; ++x) {
const uint8_t *const src_x = &src[x_qn >> RS_SCALE_SUBPEL_BITS];
const int x_filter_idx =
(x_qn & RS_SCALE_SUBPEL_MASK) >> RS_SCALE_EXTRA_BITS;
assert(x_filter_idx <= RS_SUBPEL_MASK);
const int16_t *const x_filter = &x_filters[x_filter_idx * interp_taps];
int sum = 0;
for (int k = 0; k < interp_taps; ++k) sum += src_x[k] * x_filter[k];
dst[x] = clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS));
x_qn += x_step_qn;
}
src += src_stride;
dst += dst_stride;
}
}
#if CONFIG_HIGHBITDEPTH
void av1_highbd_convolve_horiz_rs_c(const uint16_t *src, int src_stride,
uint16_t *dst, int dst_stride, int w, int h,
const int16_t *x_filters, int interp_taps,
int x0_qn, int x_step_qn, int bd) {
src -= interp_taps / 2 - 1;
for (int y = 0; y < h; ++y) {
int x_qn = x0_qn;
for (int x = 0; x < w; ++x) {
const uint16_t *const src_x = &src[x_qn >> RS_SCALE_SUBPEL_BITS];
const int x_filter_idx =
(x_qn & RS_SCALE_SUBPEL_MASK) >> RS_SCALE_EXTRA_BITS;
assert(x_filter_idx <= RS_SUBPEL_MASK);
const int16_t *const x_filter = &x_filters[x_filter_idx * interp_taps];
int sum = 0;
for (int k = 0; k < interp_taps; ++k) sum += src_x[k] * x_filter[k];
dst[x] = clip_pixel_highbd(ROUND_POWER_OF_TWO(sum, FILTER_BITS), bd);
x_qn += x_step_qn;
}
src += src_stride;
dst += dst_stride;
}
}
#endif // CONFIG_HIGHBITDEPTH
#endif // CONFIG_HORZONLY_FRAME_SUPERRES
void av1_convolve_horiz_c(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, int w, int h,
const InterpFilterParams filter_params,
const int subpel_x_q4, int x_step_q4,
ConvolveParams *conv_params) {
int filter_size = filter_params.taps;
assert(conv_params->round == CONVOLVE_OPT_ROUND);
src -= filter_size / 2 - 1;
for (int y = 0; y < h; ++y) {
int x_q4 = subpel_x_q4;
for (int x = 0; x < w; ++x) {
const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS];
const int16_t *x_filter = av1_get_interp_filter_subpel_kernel(
filter_params, x_q4 & SUBPEL_MASK);
int sum = 0;
for (int k = 0; k < filter_size; ++k) sum += src_x[k] * x_filter[k];
sum = clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS));
if (conv_params->do_average)
dst[x] = ROUND_POWER_OF_TWO(dst[x] + sum, 1);
else
dst[x] = sum;
x_q4 += x_step_q4;
}
src += src_stride;
dst += dst_stride;
}
}
void av1_convolve_horiz_scale(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, int w, int h,
const InterpFilterParams filter_params,
const int subpel_x_qn, int x_step_qn,
ConvolveParams *conv_params) {
int filter_size = filter_params.taps;
assert(conv_params->round == CONVOLVE_OPT_ROUND);
src -= filter_size / 2 - 1;
for (int y = 0; y < h; ++y) {
int x_qn = subpel_x_qn;
for (int x = 0; x < w; ++x) {
const uint8_t *const src_x = &src[x_qn >> SCALE_SUBPEL_BITS];
const int x_filter_idx = (x_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS;
assert(x_filter_idx < SUBPEL_SHIFTS);
const int16_t *x_filter =
av1_get_interp_filter_subpel_kernel(filter_params, x_filter_idx);
int sum = 0;
for (int k = 0; k < filter_size; ++k) sum += src_x[k] * x_filter[k];
sum = clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS));
if (conv_params->do_average)
dst[x] = ROUND_POWER_OF_TWO(dst[x] + sum, 1);
else
dst[x] = sum;
x_qn += x_step_qn;
}
src += src_stride;
dst += dst_stride;
}
}
void av1_convolve_vert_c(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, int w, int h,
const InterpFilterParams filter_params,
const int subpel_y_q4, int y_step_q4,
ConvolveParams *conv_params) {
int filter_size = filter_params.taps;
assert(conv_params->round == CONVOLVE_OPT_ROUND);
src -= src_stride * (filter_size / 2 - 1);
for (int x = 0; x < w; ++x) {
int y_q4 = subpel_y_q4;
for (int y = 0; y < h; ++y) {
const uint8_t *const src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride];
const int16_t *y_filter = av1_get_interp_filter_subpel_kernel(
filter_params, y_q4 & SUBPEL_MASK);
int sum = 0;
for (int k = 0; k < filter_size; ++k)
sum += src_y[k * src_stride] * y_filter[k];
sum = clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS));
if (conv_params->do_average)
dst[y * dst_stride] = ROUND_POWER_OF_TWO(dst[y * dst_stride] + sum, 1);
else
dst[y * dst_stride] = sum;
y_q4 += y_step_q4;
}
++src;
++dst;
}
}
static void convolve_vert_scale(const uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride, int w, int h,
const InterpFilterParams filter_params,
const int subpel_y_qn, int y_step_qn,
ConvolveParams *conv_params) {
int filter_size = filter_params.taps;
assert(conv_params->round == CONVOLVE_OPT_ROUND);
src -= src_stride * (filter_size / 2 - 1);
for (int x = 0; x < w; ++x) {
int y_qn = subpel_y_qn;
for (int y = 0; y < h; ++y) {
const uint8_t *const src_y =
&src[(y_qn >> SCALE_SUBPEL_BITS) * src_stride];
const int y_filter_idx = (y_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS;
assert(y_filter_idx < SUBPEL_SHIFTS);
const int16_t *y_filter =
av1_get_interp_filter_subpel_kernel(filter_params, y_filter_idx);
int sum = 0;
for (int k = 0; k < filter_size; ++k)
sum += src_y[k * src_stride] * y_filter[k];
sum = clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS));
if (conv_params->do_average)
dst[y * dst_stride] = ROUND_POWER_OF_TWO(dst[y * dst_stride] + sum, 1);
else
dst[y * dst_stride] = sum;
y_qn += y_step_qn;
}
++src;
++dst;
}
}
static void convolve_copy(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, int w, int h,
ConvolveParams *conv_params) {
assert(conv_params->round == CONVOLVE_OPT_ROUND);
if (conv_params->do_average == 0) {
for (int r = 0; r < h; ++r) {
memcpy(dst, src, w);
src += src_stride;
dst += dst_stride;
}
} else {
for (int r = 0; r < h; ++r) {
for (int c = 0; c < w; ++c) {
dst[c] = clip_pixel(ROUND_POWER_OF_TWO(dst[c] + src[c], 1));
}
src += src_stride;
dst += dst_stride;
}
}
}
static void convolve_horiz_facade(const uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride, int w, int h,
const InterpFilterParams filter_params,
const int subpel_x_q4, int x_step_q4,
ConvolveParams *conv_params) {
assert(conv_params->round == CONVOLVE_OPT_ROUND);
if (filter_params.taps == SUBPEL_TAPS) {
const int16_t *filter_x =
av1_get_interp_filter_subpel_kernel(filter_params, subpel_x_q4);
if (conv_params->do_average == 0)
aom_convolve8_horiz(src, src_stride, dst, dst_stride, filter_x, x_step_q4,
NULL, -1, w, h);
else
aom_convolve8_avg_horiz(src, src_stride, dst, dst_stride, filter_x,
x_step_q4, NULL, -1, w, h);
} else {
av1_convolve_horiz(src, src_stride, dst, dst_stride, w, h, filter_params,
subpel_x_q4, x_step_q4, conv_params);
}
}
static void convolve_horiz_facade_c(const uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride, int w, int h,
const InterpFilterParams filter_params,
const int subpel_x_q4, int x_step_q4,
ConvolveParams *conv_params) {
assert(conv_params->round == CONVOLVE_OPT_ROUND);
if (filter_params.taps == SUBPEL_TAPS) {
const int16_t *filter_x =
av1_get_interp_filter_subpel_kernel(filter_params, subpel_x_q4);
if (conv_params->do_average == 0)
aom_convolve8_horiz_c(src, src_stride, dst, dst_stride, filter_x,
x_step_q4, NULL, -1, w, h);
else
aom_convolve8_avg_horiz_c(src, src_stride, dst, dst_stride, filter_x,
x_step_q4, NULL, -1, w, h);
} else {
av1_convolve_horiz_c(src, src_stride, dst, dst_stride, w, h, filter_params,
subpel_x_q4, x_step_q4, conv_params);
}
}
void av1_convolve_horiz_facade_scale(const uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride, int w, int h,
const InterpFilterParams filter_params,
const int subpel_x_qn, int x_step_qn,
ConvolveParams *conv_params) {
assert(conv_params->round == CONVOLVE_OPT_ROUND);
if (filter_params.taps == SUBPEL_TAPS) {
const int16_t *filter_x = av1_get_interp_filter_subpel_kernel(
filter_params, subpel_x_qn >> SCALE_EXTRA_BITS);
if (conv_params->do_average == 0)
aom_convolve8_horiz_scale(src, src_stride, dst, dst_stride, filter_x,
subpel_x_qn, x_step_qn, NULL, 0, -1, w, h);
else
aom_convolve8_avg_horiz_scale(src, src_stride, dst, dst_stride, filter_x,
subpel_x_qn, x_step_qn, NULL, 0, -1, w, h);
} else {
av1_convolve_horiz_scale(src, src_stride, dst, dst_stride, w, h,
filter_params, subpel_x_qn, x_step_qn,
conv_params);
}
}
static void convolve_vert_facade(const uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride, int w, int h,
const InterpFilterParams filter_params,
const int subpel_y_q4, int y_step_q4,
ConvolveParams *conv_params) {
assert(conv_params->round == CONVOLVE_OPT_ROUND);
if (filter_params.taps == SUBPEL_TAPS) {
const int16_t *filter_y =
av1_get_interp_filter_subpel_kernel(filter_params, subpel_y_q4);
if (conv_params->do_average == 0) {
aom_convolve8_vert(src, src_stride, dst, dst_stride, NULL, -1, filter_y,
y_step_q4, w, h);
} else {
aom_convolve8_avg_vert(src, src_stride, dst, dst_stride, NULL, -1,
filter_y, y_step_q4, w, h);
}
} else {
av1_convolve_vert(src, src_stride, dst, dst_stride, w, h, filter_params,
subpel_y_q4, y_step_q4, conv_params);
}
}
static void convolve_vert_facade_c(const uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride, int w, int h,
const InterpFilterParams filter_params,
const int subpel_y_q4, int y_step_q4,
ConvolveParams *conv_params) {
assert(conv_params->round == CONVOLVE_OPT_ROUND);
if (filter_params.taps == SUBPEL_TAPS) {
const int16_t *filter_y =
av1_get_interp_filter_subpel_kernel(filter_params, subpel_y_q4);
if (conv_params->do_average == 0) {
aom_convolve8_vert_c(src, src_stride, dst, dst_stride, NULL, -1, filter_y,
y_step_q4, w, h);
} else {
aom_convolve8_avg_vert_c(src, src_stride, dst, dst_stride, NULL, -1,
filter_y, y_step_q4, w, h);
}
} else {
av1_convolve_vert_c(src, src_stride, dst, dst_stride, w, h, filter_params,
subpel_y_q4, y_step_q4, conv_params);
}
}
void av1_convolve_vert_facade_scale(const uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride, int w, int h,
const InterpFilterParams filter_params,
const int subpel_y_qn, int y_step_qn,
ConvolveParams *conv_params) {
assert(conv_params->round == CONVOLVE_OPT_ROUND);
if (filter_params.taps == SUBPEL_TAPS) {
const int16_t *filter_y = av1_get_interp_filter_subpel_kernel(
filter_params, subpel_y_qn >> SCALE_EXTRA_BITS);
if (conv_params->do_average == 0) {
aom_convolve8_vert_scale(src, src_stride, dst, dst_stride, NULL, 0, -1,
filter_y, subpel_y_qn, y_step_qn, w, h);
} else {
aom_convolve8_avg_vert_scale(src, src_stride, dst, dst_stride, NULL, 0,
-1, filter_y, subpel_y_qn, y_step_qn, w, h);
}
} else {
convolve_vert_scale(src, src_stride, dst, dst_stride, w, h, filter_params,
subpel_y_qn, y_step_qn, conv_params);
}
}
void av1_convolve_rounding_c(const int32_t *src, int src_stride, uint8_t *dst,
int dst_stride, int w, int h, int bits) {
for (int r = 0; r < h; ++r) {
for (int c = 0; c < w; ++c) {
dst[r * dst_stride + c] =
clip_pixel(ROUND_POWER_OF_TWO(src[r * src_stride + c], bits));
}
}
}
/* When convolve-round is enabled and compound-round is disabled, we use a
high-precision convolve filter.
Note: For notes on hardware implementations, including the required
bit widths for various intermediate values, see the comments above
av1_warp_affine_c.
*/
void av1_convolve_2d_c(const uint8_t *src, int src_stride, CONV_BUF_TYPE *dst,
int dst_stride, int w, int h,
InterpFilterParams *filter_params_x,
InterpFilterParams *filter_params_y,
const int subpel_x_q4, const int subpel_y_q4,
ConvolveParams *conv_params) {
int32_t im_block[(MAX_SB_SIZE + MAX_FILTER_TAP - 1) * MAX_SB_SIZE];
int im_h = h + filter_params_y->taps - 1;
int im_stride = w;
const int fo_vert = filter_params_y->taps / 2 - 1;
const int fo_horiz = filter_params_x->taps / 2 - 1;
const int bd = 8;
// horizontal filter
const uint8_t *src_horiz = src - fo_vert * src_stride;
const int16_t *x_filter = av1_get_interp_filter_subpel_kernel(
*filter_params_x, subpel_x_q4 & SUBPEL_MASK);
for (int y = 0; y < im_h; ++y) {
for (int x = 0; x < w; ++x) {
int32_t sum = (1 << (bd + FILTER_BITS - 1));
for (int k = 0; k < filter_params_x->taps; ++k) {
sum += x_filter[k] * src_horiz[y * src_stride + x - fo_horiz + k];
}
assert(0 <= sum && sum < (1 << (bd + FILTER_BITS + 1)));
im_block[y * im_stride + x] =
ROUND_POWER_OF_TWO(sum, conv_params->round_0);
}
}
// vertical filter
int32_t *src_vert = im_block + fo_vert * im_stride;
const int16_t *y_filter = av1_get_interp_filter_subpel_kernel(
*filter_params_y, subpel_y_q4 & SUBPEL_MASK);
const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
CONV_BUF_TYPE sum = 1 << offset_bits;
for (int k = 0; k < filter_params_y->taps; ++k) {
sum += y_filter[k] * src_vert[(y - fo_vert + k) * im_stride + x];
}
assert(0 <= sum && sum < (1 << (offset_bits + 2)));
CONV_BUF_TYPE res = ROUND_POWER_OF_TWO(sum, conv_params->round_1) -
((1 << (offset_bits - conv_params->round_1)) +
(1 << (offset_bits - conv_params->round_1 - 1)));
if (conv_params->do_average)
dst[y * dst_stride + x] += res;
else
dst[y * dst_stride + x] = res;
}
}
}
void av1_convolve_y_c(const uint8_t *src, int src_stride, CONV_BUF_TYPE *dst,
int dst_stride, int w, int h,
InterpFilterParams *filter_params_x,
InterpFilterParams *filter_params_y,
const int subpel_x_q4, const int subpel_y_q4,
ConvolveParams *conv_params) {
const int fo_vert = filter_params_y->taps / 2 - 1;
const int bits = FILTER_BITS - conv_params->round_0 - conv_params->round_1;
(void)filter_params_x;
(void)subpel_x_q4;
// vertical filter
const int16_t *y_filter = av1_get_interp_filter_subpel_kernel(
*filter_params_y, subpel_y_q4 & SUBPEL_MASK);
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
CONV_BUF_TYPE res = 0;
for (int k = 0; k < filter_params_y->taps; ++k) {
res += y_filter[k] * src[(y - fo_vert + k) * src_stride + x];
}
res *= (1 << bits);
if (conv_params->do_average)
dst[y * dst_stride + x] += res;
else
dst[y * dst_stride + x] = res;
}
}
}
void av1_convolve_x_c(const uint8_t *src, int src_stride, CONV_BUF_TYPE *dst,
int dst_stride, int w, int h,
InterpFilterParams *filter_params_x,
InterpFilterParams *filter_params_y,
const int subpel_x_q4, const int subpel_y_q4,
ConvolveParams *conv_params) {
const int fo_horiz = filter_params_x->taps / 2 - 1;
const int bits = FILTER_BITS - conv_params->round_1;
(void)filter_params_y;
(void)subpel_y_q4;
// horizontal filter
const int16_t *x_filter = av1_get_interp_filter_subpel_kernel(
*filter_params_x, subpel_x_q4 & SUBPEL_MASK);
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
CONV_BUF_TYPE res = 0;
for (int k = 0; k < filter_params_x->taps; ++k) {
res += x_filter[k] * src[y * src_stride + x - fo_horiz + k];
}
res = (1 << bits) * ROUND_POWER_OF_TWO(res, conv_params->round_0);
if (conv_params->do_average)
dst[y * dst_stride + x] += res;
else
dst[y * dst_stride + x] = res;
}
}
}
void av1_convolve_2d_copy_c(const uint8_t *src, int src_stride,
CONV_BUF_TYPE *dst, int dst_stride, int w, int h,
InterpFilterParams *filter_params_x,
InterpFilterParams *filter_params_y,
const int subpel_x_q4, const int subpel_y_q4,
ConvolveParams *conv_params) {
const int bits =
FILTER_BITS * 2 - conv_params->round_1 - conv_params->round_0;
(void)filter_params_x;
(void)filter_params_y;
(void)subpel_x_q4;
(void)subpel_y_q4;
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
CONV_BUF_TYPE res = src[y * src_stride + x] << bits;
if (conv_params->do_average)
dst[y * dst_stride + x] += res;
else
dst[y * dst_stride + x] = res;
}
}
}
#if CONFIG_JNT_COMP
void av1_jnt_convolve_2d_c(const uint8_t *src, int src_stride,
CONV_BUF_TYPE *dst, int dst_stride, int w, int h,
InterpFilterParams *filter_params_x,
InterpFilterParams *filter_params_y,
const int subpel_x_q4, const int subpel_y_q4,
ConvolveParams *conv_params) {
int32_t im_block[(MAX_SB_SIZE + MAX_FILTER_TAP - 1) * MAX_SB_SIZE];
int im_h = h + filter_params_y->taps - 1;
int im_stride = w;
const int fo_vert = filter_params_y->taps / 2 - 1;
const int fo_horiz = filter_params_x->taps / 2 - 1;
const int bd = 8;
// horizontal filter
const uint8_t *src_horiz = src - fo_vert * src_stride;
const int16_t *x_filter = av1_get_interp_filter_subpel_kernel(
*filter_params_x, subpel_x_q4 & SUBPEL_MASK);
for (int y = 0; y < im_h; ++y) {
for (int x = 0; x < w; ++x) {
int32_t sum = (1 << (bd + FILTER_BITS - 1));
for (int k = 0; k < filter_params_x->taps; ++k) {
sum += x_filter[k] * src_horiz[y * src_stride + x - fo_horiz + k];
}
assert(0 <= sum && sum < (1 << (bd + FILTER_BITS + 1)));
im_block[y * im_stride + x] =
ROUND_POWER_OF_TWO(sum, conv_params->round_0);
}
}
// vertical filter
int32_t *src_vert = im_block + fo_vert * im_stride;
const int16_t *y_filter = av1_get_interp_filter_subpel_kernel(
*filter_params_y, subpel_y_q4 & SUBPEL_MASK);
const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
CONV_BUF_TYPE sum = 1 << offset_bits;
for (int k = 0; k < filter_params_y->taps; ++k) {
sum += y_filter[k] * src_vert[(y - fo_vert + k) * im_stride + x];
}
assert(0 <= sum && sum < (1 << (offset_bits + 2)));
CONV_BUF_TYPE res = ROUND_POWER_OF_TWO(sum, conv_params->round_1) -
((1 << (offset_bits - conv_params->round_1)) +
(1 << (offset_bits - conv_params->round_1 - 1)));
if (conv_params->use_jnt_comp_avg) {
if (conv_params->do_average) {
dst[y * dst_stride + x] += res * conv_params->bck_offset;
dst[y * dst_stride + x] = ROUND_POWER_OF_TWO(dst[y * dst_stride + x],
DIST_PRECISION_BITS - 1);
} else {
dst[y * dst_stride + x] = res * conv_params->fwd_offset;
}
} else {
if (conv_params->do_average)
dst[y * dst_stride + x] += res;
else
dst[y * dst_stride + x] = res;
}
}
}
}
void av1_jnt_convolve_2d_copy_c(const uint8_t *src, int src_stride,
CONV_BUF_TYPE *dst, int dst_stride, int w,
int h, InterpFilterParams *filter_params_x,
InterpFilterParams *filter_params_y,
const int subpel_x_q4, const int subpel_y_q4,
ConvolveParams *conv_params) {
const int bits =
FILTER_BITS * 2 - conv_params->round_1 - conv_params->round_0;
(void)filter_params_x;
(void)filter_params_y;
(void)subpel_x_q4;
(void)subpel_y_q4;
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
CONV_BUF_TYPE res = (1 << bits) * src[y * src_stride + x];
if (conv_params->use_jnt_comp_avg) {
if (conv_params->do_average) {
dst[y * dst_stride + x] +=
(src[y * src_stride + x] * conv_params->bck_offset) << bits;
dst[y * dst_stride + x] = ROUND_POWER_OF_TWO(dst[y * dst_stride + x],
DIST_PRECISION_BITS - 1);
} else {
dst[y * dst_stride + x] =
(src[y * src_stride + x] * conv_params->fwd_offset) << bits;
}
} else {
if (conv_params->do_average)
dst[y * dst_stride + x] += res;
else
dst[y * dst_stride + x] = res;
}
}
}
}
#endif // CONFIG_JNT_COMP
void av1_convolve_2d_scale_c(const uint8_t *src, int src_stride,
CONV_BUF_TYPE *dst, int dst_stride, int w, int h,
InterpFilterParams *filter_params_x,
InterpFilterParams *filter_params_y,
const int subpel_x_qn, const int x_step_qn,
const int subpel_y_qn, const int y_step_qn,
ConvolveParams *conv_params) {
int32_t im_block[(2 * MAX_SB_SIZE + MAX_FILTER_TAP) * MAX_SB_SIZE];
int im_h = (((h - 1) * y_step_qn + subpel_y_qn) >> SCALE_SUBPEL_BITS) +
filter_params_y->taps;
int im_stride = w;
const int fo_vert = filter_params_y->taps / 2 - 1;
const int fo_horiz = filter_params_x->taps / 2 - 1;
const int bd = 8;
// horizontal filter
const uint8_t *src_horiz = src - fo_vert * src_stride;
for (int y = 0; y < im_h; ++y) {
int x_qn = subpel_x_qn;
for (int x = 0; x < w; ++x, x_qn += x_step_qn) {
const uint8_t *const src_x = &src_horiz[(x_qn >> SCALE_SUBPEL_BITS)];
const int x_filter_idx = (x_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS;
assert(x_filter_idx < SUBPEL_SHIFTS);
const int16_t *x_filter =
av1_get_interp_filter_subpel_kernel(*filter_params_x, x_filter_idx);
int32_t sum = (1 << (bd + FILTER_BITS - 1));
for (int k = 0; k < filter_params_x->taps; ++k) {
sum += x_filter[k] * src_x[k - fo_horiz];
}
assert(0 <= sum && sum < (1 << (bd + FILTER_BITS + 1)));
im_block[y * im_stride + x] =
ROUND_POWER_OF_TWO(sum, conv_params->round_0);
}
src_horiz += src_stride;
}
// vertical filter
int32_t *src_vert = im_block + fo_vert * im_stride;
const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
for (int x = 0; x < w; ++x) {
int y_qn = subpel_y_qn;
for (int y = 0; y < h; ++y, y_qn += y_step_qn) {
const int32_t *src_y = &src_vert[(y_qn >> SCALE_SUBPEL_BITS) * im_stride];
const int y_filter_idx = (y_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS;
assert(y_filter_idx < SUBPEL_SHIFTS);
const int16_t *y_filter =
av1_get_interp_filter_subpel_kernel(*filter_params_y, y_filter_idx);
CONV_BUF_TYPE sum = 1 << offset_bits;
for (int k = 0; k < filter_params_y->taps; ++k) {
sum += y_filter[k] * src_y[(k - fo_vert) * im_stride];
}
assert(0 <= sum && sum < (1 << (offset_bits + 2)));
CONV_BUF_TYPE res = ROUND_POWER_OF_TWO(sum, conv_params->round_1) -
((1 << (offset_bits - conv_params->round_1)) +
(1 << (offset_bits - conv_params->round_1 - 1)));
#if CONFIG_JNT_COMP
if (conv_params->use_jnt_comp_avg) {
if (conv_params->do_average) {
dst[y * dst_stride + x] += res * conv_params->bck_offset;
dst[y * dst_stride + x] = ROUND_POWER_OF_TWO(dst[y * dst_stride + x],
DIST_PRECISION_BITS - 1);
} else {
dst[y * dst_stride + x] = res * conv_params->fwd_offset;
}
} else {
if (conv_params->do_average)
dst[y * dst_stride + x] += res;
else
dst[y * dst_stride + x] = res;
}
#else
if (conv_params->do_average)
dst[y * dst_stride + x] += res;
else
dst[y * dst_stride + x] = res;
#endif // CONFIG_JNT_COMP
}
src_vert++;
}
}
void av1_convolve_2d_facade(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, int w, int h,
InterpFilters interp_filters, const int subpel_x_q4,
int x_step_q4, const int subpel_y_q4, int y_step_q4,
int scaled, ConvolveParams *conv_params) {
(void)x_step_q4;
(void)y_step_q4;
(void)dst;
(void)dst_stride;
InterpFilterParams filter_params_x, filter_params_y;
#if CONFIG_SHORT_FILTER
av1_get_convolve_filter_params(interp_filters, 1, &filter_params_x,
&filter_params_y, w, h);
#else
av1_get_convolve_filter_params(interp_filters, 1, &filter_params_x,
&filter_params_y);
#endif
if (filter_params_y.taps < filter_params_x.taps) {
uint8_t tr_src[(MAX_SB_SIZE + MAX_FILTER_TAP - 1) *
(MAX_SB_SIZE + MAX_FILTER_TAP - 1)];
int tr_src_stride = MAX_SB_SIZE + MAX_FILTER_TAP - 1;
CONV_BUF_TYPE tr_dst[MAX_SB_SIZE * MAX_SB_SIZE];
int tr_dst_stride = MAX_SB_SIZE;
int fo_vert = filter_params_y.taps / 2 - 1;
int fo_horiz = filter_params_x.taps / 2 - 1;
transpose_uint8(tr_src, tr_src_stride,
src - fo_vert * src_stride - fo_horiz, src_stride,
w + filter_params_x.taps - 1, h + filter_params_y.taps - 1);
transpose_int32(tr_dst, tr_dst_stride, conv_params->dst,
conv_params->dst_stride, w, h);
// horizontal and vertical parameters are swapped because of the transpose
#if CONFIG_JNT_COMP
if (scaled)
av1_convolve_2d_scale(tr_src + fo_horiz * tr_src_stride + fo_vert,
tr_src_stride, tr_dst, tr_dst_stride, h, w,
&filter_params_y, &filter_params_x, subpel_y_q4,
y_step_q4, subpel_x_q4, x_step_q4, conv_params);
else
av1_jnt_convolve_2d(tr_src + fo_horiz * tr_src_stride + fo_vert,
tr_src_stride, tr_dst, tr_dst_stride, h, w,
&filter_params_y, &filter_params_x, subpel_y_q4,
subpel_x_q4, conv_params);
#else
if (scaled)
av1_convolve_2d_scale(tr_src + fo_horiz * tr_src_stride + fo_vert,
tr_src_stride, tr_dst, tr_dst_stride, h, w,
&filter_params_y, &filter_params_x, subpel_y_q4,
y_step_q4, subpel_x_q4, x_step_q4, conv_params);
else
av1_convolve_2d(tr_src + fo_horiz * tr_src_stride + fo_vert,
tr_src_stride, tr_dst, tr_dst_stride, h, w,
&filter_params_y, &filter_params_x, subpel_y_q4,
subpel_x_q4, conv_params);
#endif // CONFIG_JNT_COMP
transpose_int32(conv_params->dst, conv_params->dst_stride, tr_dst,
tr_dst_stride, h, w);
} else {
#if CONFIG_JNT_COMP
if (scaled) {
av1_convolve_2d_scale(src, src_stride, conv_params->dst,
conv_params->dst_stride, w, h, &filter_params_x,
&filter_params_y, subpel_x_q4, x_step_q4,
subpel_y_q4, y_step_q4, conv_params);
} else {
if (subpel_x_q4 == 0 && subpel_y_q4 == 0) {
av1_jnt_convolve_2d_copy(src, src_stride, conv_params->dst,
conv_params->dst_stride, w, h,
&filter_params_x, &filter_params_y,
subpel_x_q4, subpel_y_q4, conv_params);
} else if (subpel_x_q4 == 0) {
// place holder
av1_jnt_convolve_2d(src, src_stride, conv_params->dst,
conv_params->dst_stride, w, h, &filter_params_x,
&filter_params_y, subpel_x_q4, subpel_y_q4,
conv_params);
} else if (subpel_y_q4 == 0) {
// place holder
av1_jnt_convolve_2d(src, src_stride, conv_params->dst,
conv_params->dst_stride, w, h, &filter_params_x,
&filter_params_y, subpel_x_q4, subpel_y_q4,
conv_params);
} else {
av1_jnt_convolve_2d(src, src_stride, conv_params->dst,
conv_params->dst_stride, w, h, &filter_params_x,
&filter_params_y, subpel_x_q4, subpel_y_q4,
conv_params);
}
}
#else
if (scaled) {
av1_convolve_2d_scale(src, src_stride, conv_params->dst,
conv_params->dst_stride, w, h, &filter_params_x,
&filter_params_y, subpel_x_q4, x_step_q4,
subpel_y_q4, y_step_q4, conv_params);
} else {
// Special case convolve functions should produce the same result as
// av1_convolve_2d.
if (subpel_x_q4 == 0 && subpel_y_q4 == 0) {
av1_convolve_2d_copy(src, src_stride, conv_params->dst,
conv_params->dst_stride, w, h, &filter_params_x,
&filter_params_y, subpel_x_q4, subpel_y_q4,
conv_params);
} else if (subpel_x_q4 == 0) {
av1_convolve_y(src, src_stride, conv_params->dst,
conv_params->dst_stride, w, h, &filter_params_x,
&filter_params_y, subpel_x_q4, subpel_y_q4, conv_params);
} else if (subpel_y_q4 == 0) {
av1_convolve_x(src, src_stride, conv_params->dst,
conv_params->dst_stride, w, h, &filter_params_x,
&filter_params_y, subpel_x_q4, subpel_y_q4, conv_params);
} else {
// subpel_x_q4 != 0 && subpel_y_q4 != 0
av1_convolve_2d(src, src_stride, conv_params->dst,
conv_params->dst_stride, w, h, &filter_params_x,
&filter_params_y, subpel_x_q4, subpel_y_q4,
conv_params);
}
}
#endif // CONFIG_JNT_COMP
}
}
#if CONFIG_HIGHBITDEPTH
void av1_highbd_convolve_rounding_c(const int32_t *src, int src_stride,
uint8_t *dst8, int dst_stride, int w, int h,
int bits, int bd) {
uint16_t *dst = CONVERT_TO_SHORTPTR(dst8);
for (int r = 0; r < h; ++r) {
for (int c = 0; c < w; ++c) {
dst[r * dst_stride + c] = clip_pixel_highbd(
ROUND_POWER_OF_TWO(src[r * src_stride + c], bits), bd);
}
}
}
void av1_highbd_convolve_2d_c(const uint16_t *src, int src_stride,
CONV_BUF_TYPE *dst, int dst_stride, int w, int h,
InterpFilterParams *filter_params_x,
InterpFilterParams *filter_params_y,
const int subpel_x_q4, const int subpel_y_q4,
ConvolveParams *conv_params, int bd) {
int32_t im_block[(MAX_SB_SIZE + MAX_FILTER_TAP - 1) * MAX_SB_SIZE];
int im_h = h + filter_params_y->taps - 1;
int im_stride = w;
const int fo_vert = filter_params_y->taps / 2 - 1;
const int fo_horiz = filter_params_x->taps / 2 - 1;
// horizontal filter
const uint16_t *src_horiz = src - fo_vert * src_stride;
const int16_t *x_filter = av1_get_interp_filter_subpel_kernel(
*filter_params_x, subpel_x_q4 & SUBPEL_MASK);
for (int y = 0; y < im_h; ++y) {
for (int x = 0; x < w; ++x) {
int32_t sum = (1 << (bd + FILTER_BITS - 1));
for (int k = 0; k < filter_params_x->taps; ++k) {
sum += x_filter[k] * src_horiz[y * src_stride + x - fo_horiz + k];
}
assert(0 <= sum && sum < (1 << (bd + FILTER_BITS + 1)));
(void)bd;
im_block[y * im_stride + x] =
ROUND_POWER_OF_TWO(sum, conv_params->round_0);
}
}
// vertical filter
int32_t *src_vert = im_block + fo_vert * im_stride;
const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
const int16_t *y_filter = av1_get_interp_filter_subpel_kernel(
*filter_params_y, subpel_y_q4 & SUBPEL_MASK);
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
CONV_BUF_TYPE sum = 1 << offset_bits;
for (int k = 0; k < filter_params_y->taps; ++k) {
sum += y_filter[k] * src_vert[(y - fo_vert + k) * im_stride + x];
}
assert(0 <= sum && sum < (1 << (offset_bits + 2)));
CONV_BUF_TYPE res = ROUND_POWER_OF_TWO(sum, conv_params->round_1) -
((1 << (offset_bits - conv_params->round_1)) +
(1 << (offset_bits - conv_params->round_1 - 1)));
if (conv_params->do_average)
dst[y * dst_stride + x] += res;
else
dst[y * dst_stride + x] = res;
}
}
}
void av1_highbd_convolve_2d_scale_c(const uint16_t *src, int src_stride,
CONV_BUF_TYPE *dst, int dst_stride, int w,
int h, InterpFilterParams *filter_params_x,
InterpFilterParams *filter_params_y,
const int subpel_x_qn, const int x_step_qn,
const int subpel_y_qn, const int y_step_qn,
ConvolveParams *conv_params, int bd) {
int32_t im_block[(2 * MAX_SB_SIZE + MAX_FILTER_TAP) * MAX_SB_SIZE];
int im_h = (((h - 1) * y_step_qn + subpel_y_qn) >> SCALE_SUBPEL_BITS) +
filter_params_y->taps;
int im_stride = w;
const int fo_vert = filter_params_y->taps / 2 - 1;
const int fo_horiz = filter_params_x->taps / 2 - 1;
// horizontal filter
const uint16_t *src_horiz = src - fo_vert * src_stride;
for (int y = 0; y < im_h; ++y) {
int x_qn = subpel_x_qn;
for (int x = 0; x < w; ++x, x_qn += x_step_qn) {
const uint16_t *const src_x = &src_horiz[(x_qn >> SCALE_SUBPEL_BITS)];
const int x_filter_idx = (x_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS;
assert(x_filter_idx < SUBPEL_SHIFTS);
const int16_t *x_filter =
av1_get_interp_filter_subpel_kernel(*filter_params_x, x_filter_idx);
int32_t sum = (1 << (bd + FILTER_BITS - 1));
for (int k = 0; k < filter_params_x->taps; ++k) {
sum += x_filter[k] * src_x[k - fo_horiz];
}
assert(0 <= sum && sum < (1 << (bd + FILTER_BITS + 1)));
im_block[y * im_stride + x] =
ROUND_POWER_OF_TWO(sum, conv_params->round_0);
}
src_horiz += src_stride;
}
// vertical filter
int32_t *src_vert = im_block + fo_vert * im_stride;
const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
for (int x = 0; x < w; ++x) {
int y_qn = subpel_y_qn;
for (int y = 0; y < h; ++y, y_qn += y_step_qn) {
const int32_t *src_y = &src_vert[(y_qn >> SCALE_SUBPEL_BITS) * im_stride];
const int y_filter_idx = (y_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS;
assert(y_filter_idx < SUBPEL_SHIFTS);
const int16_t *y_filter =
av1_get_interp_filter_subpel_kernel(*filter_params_y, y_filter_idx);
CONV_BUF_TYPE sum = 1 << offset_bits;
for (int k = 0; k < filter_params_y->taps; ++k) {
sum += y_filter[k] * src_y[(k - fo_vert) * im_stride];
}
assert(0 <= sum && sum < (1 << (offset_bits + 2)));
CONV_BUF_TYPE res = ROUND_POWER_OF_TWO(sum, conv_params->round_1) -
((1 << (offset_bits - conv_params->round_1)) +
(1 << (offset_bits - conv_params->round_1 - 1)));
if (conv_params->do_average)
dst[y * dst_stride + x] += res;
else
dst[y * dst_stride + x] = res;
}
src_vert++;
}
}
void av1_highbd_convolve_2d_facade(const uint8_t *src8, int src_stride,
uint8_t *dst, int dst_stride, int w, int h,
InterpFilters interp_filters,
const int subpel_x_q4, int x_step_q4,
const int subpel_y_q4, int y_step_q4,
int scaled, ConvolveParams *conv_params,
int bd) {
(void)dst;
(void)dst_stride;
InterpFilterParams filter_params_x, filter_params_y;
#if CONFIG_SHORT_FILTER
av1_get_convolve_filter_params(interp_filters, 1, &filter_params_x,
&filter_params_y, w, h);
#else
av1_get_convolve_filter_params(interp_filters, 1, &filter_params_x,
&filter_params_y);
#endif
const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
if (filter_params_y.taps < filter_params_x.taps) {
uint16_t tr_src[(MAX_SB_SIZE + MAX_FILTER_TAP - 1) *
(MAX_SB_SIZE + MAX_FILTER_TAP - 1)];
int tr_src_stride = MAX_SB_SIZE + MAX_FILTER_TAP - 1;
CONV_BUF_TYPE tr_dst[MAX_SB_SIZE * MAX_SB_SIZE];
int tr_dst_stride = MAX_SB_SIZE;
int fo_vert = filter_params_y.taps / 2 - 1;
int fo_horiz = filter_params_x.taps / 2 - 1;
transpose_uint16(
tr_src, tr_src_stride, src - fo_vert * src_stride - fo_horiz,
src_stride, w + filter_params_x.taps - 1, h + filter_params_y.taps - 1);
transpose_int32(tr_dst, tr_dst_stride, conv_params->dst,
conv_params->dst_stride, w, h);
// horizontal and vertical parameters are swapped because of the transpose
if (scaled)
av1_highbd_convolve_2d_scale(
tr_src + fo_horiz * tr_src_stride + fo_vert, tr_src_stride, tr_dst,
tr_dst_stride, h, w, &filter_params_y, &filter_params_x, subpel_y_q4,
y_step_q4, subpel_x_q4, x_step_q4, conv_params, bd);
else
av1_highbd_convolve_2d(tr_src + fo_horiz * tr_src_stride + fo_vert,
tr_src_stride, tr_dst, tr_dst_stride, h, w,
&filter_params_y, &filter_params_x, subpel_y_q4,
subpel_x_q4, conv_params, bd);
transpose_int32(conv_params->dst, conv_params->dst_stride, tr_dst,
tr_dst_stride, h, w);
} else {
if (scaled)
av1_highbd_convolve_2d_scale(
src, src_stride, conv_params->dst, conv_params->dst_stride, w, h,
&filter_params_x, &filter_params_y, subpel_x_q4, x_step_q4,
subpel_y_q4, y_step_q4, conv_params, bd);
else
av1_highbd_convolve_2d(src, src_stride, conv_params->dst,
conv_params->dst_stride, w, h, &filter_params_x,
&filter_params_y, subpel_x_q4, subpel_y_q4,
conv_params, bd);
}
}
#endif // CONFIG_HIGHBITDEPTH
typedef void (*ConvolveFunc)(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, int w, int h,
const InterpFilterParams filter_params,
const int subpel_q4, int step_q4,
ConvolveParams *conv_params);
static void convolve_helper(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, int w, int h,
const InterpFilters interp_filters,
const int subpel_x_q4, int x_step_q4,
const int subpel_y_q4, int y_step_q4,
ConvolveParams *conv_params,
ConvolveFunc convolve_horiz,
ConvolveFunc convolve_vert) {
int ignore_horiz = x_step_q4 == SUBPEL_SHIFTS && subpel_x_q4 == 0;
int ignore_vert = y_step_q4 == SUBPEL_SHIFTS && subpel_y_q4 == 0;
InterpFilterParams filter_params_x, filter_params_y;
#if CONFIG_SHORT_FILTER
av1_get_convolve_filter_params(interp_filters, 0, &filter_params_x,
&filter_params_y, w, h);
#else
av1_get_convolve_filter_params(interp_filters, 0, &filter_params_x,
&filter_params_y);
#endif
assert(conv_params->round == CONVOLVE_OPT_ROUND);
assert(w <= MAX_BLOCK_WIDTH);
assert(h <= MAX_BLOCK_HEIGHT);
assert(y_step_q4 <= MAX_STEP);
assert(x_step_q4 <= MAX_STEP);
if (ignore_horiz && ignore_vert) {
convolve_copy(src, src_stride, dst, dst_stride, w, h, conv_params);
} else if (ignore_vert) {
assert(filter_params_x.taps <= MAX_FILTER_TAP);
convolve_horiz(src, src_stride, dst, dst_stride, w, h, filter_params_x,
subpel_x_q4, x_step_q4, conv_params);
} else if (ignore_horiz) {
assert(filter_params_y.taps <= MAX_FILTER_TAP);
convolve_vert(src, src_stride, dst, dst_stride, w, h, filter_params_y,
subpel_y_q4, y_step_q4, conv_params);
} else {
// temp's size is set to a 256 aligned value to facilitate SIMD
// implementation. The value is greater than (maximum possible intermediate
// height or width) * MAX_SB_SIZE
DECLARE_ALIGNED(16, uint8_t,
temp[((MAX_SB_SIZE * 2 + 16) + 16) * MAX_SB_SIZE]);
int max_intermediate_size = ((MAX_SB_SIZE * 2 + 16) + 16);
int filter_size;
#if CONFIG_DUAL_FILTER && USE_EXTRA_FILTER
av1_convolve_filter_params_fixup_1212(&filter_params_x, &filter_params_y);
// we do filter with fewer taps first to reduce hardware implementation
// complexity
if (filter_params_y.taps < filter_params_x.taps) {
const int temp_stride = max_intermediate_size;
ConvolveParams temp_conv_params;
temp_conv_params.ref = 0;
temp_conv_params.do_average = 0;
temp_conv_params.round = CONVOLVE_OPT_ROUND;
filter_size = filter_params_x.taps;
const int intermediate_width =
(((w - 1) * x_step_q4 + subpel_x_q4) >> SUBPEL_BITS) + filter_size;
assert(intermediate_width <= max_intermediate_size);
assert(filter_params_y.taps <= MAX_FILTER_TAP);
convolve_vert(src - (filter_size / 2 - 1), src_stride, temp, temp_stride,
intermediate_width, h, filter_params_y, subpel_y_q4,
y_step_q4, &temp_conv_params);
assert(filter_params_x.taps <= MAX_FILTER_TAP);
convolve_horiz(temp + (filter_size / 2 - 1), temp_stride, dst, dst_stride,
w, h, filter_params_x, subpel_x_q4, x_step_q4,
conv_params);
} else
#endif // CONFIG_DUAL_FILTER && USE_EXTRA_FILTER
{
const int temp_stride = MAX_SB_SIZE;
ConvolveParams temp_conv_params;
temp_conv_params.ref = 0;
temp_conv_params.do_average = 0;
temp_conv_params.round = CONVOLVE_OPT_ROUND;
filter_size = filter_params_y.taps;
const int intermediate_height =
(((h - 1) * y_step_q4 + subpel_y_q4) >> SUBPEL_BITS) + filter_size;
assert(intermediate_height <= max_intermediate_size);
(void)max_intermediate_size;
assert(filter_params_x.taps <= MAX_FILTER_TAP);
convolve_horiz(src - src_stride * (filter_size / 2 - 1), src_stride, temp,
temp_stride, w, intermediate_height, filter_params_x,
subpel_x_q4, x_step_q4, &temp_conv_params);
assert(filter_params_y.taps <= MAX_FILTER_TAP);
convolve_vert(temp + temp_stride * (filter_size / 2 - 1), temp_stride,
dst, dst_stride, w, h, filter_params_y, subpel_y_q4,
y_step_q4, conv_params);
}
}
}
static void convolve_scale_helper(const uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride, int w, int h,
const InterpFilters interp_filters,
const int subpel_x_qn, int x_step_qn,
const int subpel_y_qn, int y_step_qn,
ConvolveParams *conv_params,
ConvolveFunc convolve_horiz,
ConvolveFunc convolve_vert) {
int ignore_horiz = x_step_qn == SCALE_SUBPEL_SHIFTS && subpel_x_qn == 0;
int ignore_vert = y_step_qn == SCALE_SUBPEL_SHIFTS && subpel_y_qn == 0;
InterpFilterParams filter_params_x, filter_params_y;
#if CONFIG_SHORT_FILTER
av1_get_convolve_filter_params(interp_filters, 0, &filter_params_x,
&filter_params_y, w, h);
#else
av1_get_convolve_filter_params(interp_filters, 0, &filter_params_x,
&filter_params_y);
#endif
assert(conv_params->round == CONVOLVE_OPT_ROUND);
assert(w <= MAX_BLOCK_WIDTH);
assert(h <= MAX_BLOCK_HEIGHT);
assert(y_step_qn <= (MAX_STEP << SCALE_EXTRA_BITS));
assert(x_step_qn <= (MAX_STEP << SCALE_EXTRA_BITS));
if (ignore_horiz && ignore_vert) {
convolve_copy(src, src_stride, dst, dst_stride, w, h, conv_params);
} else if (ignore_vert) {
assert(filter_params_x.taps <= MAX_FILTER_TAP);
convolve_horiz(src, src_stride, dst, dst_stride, w, h, filter_params_x,
subpel_x_qn, x_step_qn, conv_params);
} else if (ignore_horiz) {
assert(filter_params_y.taps <= MAX_FILTER_TAP);
convolve_vert(src, src_stride, dst, dst_stride, w, h, filter_params_y,
subpel_y_qn, y_step_qn, conv_params);
} else {
// temp's size is set to a 256 aligned value to facilitate SIMD
// implementation. The value is greater than (maximum possible intermediate
// height or width) * MAX_SB_SIZE
DECLARE_ALIGNED(16, uint8_t,
temp[((MAX_SB_SIZE * 2 + 16) + 16) * MAX_SB_SIZE]);
int max_intermediate_size = ((MAX_SB_SIZE * 2 + 16) + 16);
int filter_size;
#if CONFIG_DUAL_FILTER && USE_EXTRA_FILTER
av1_convolve_filter_params_fixup_1212(&filter_params_x, &filter_params_y);
// we do filter with fewer taps first to reduce hardware implementation
// complexity
if (filter_params_y.taps < filter_params_x.taps) {
const int temp_stride = max_intermediate_size;
ConvolveParams temp_conv_params;
temp_conv_params.ref = 0;
temp_conv_params.do_average = 0;
temp_conv_params.round = CONVOLVE_OPT_ROUND;
filter_size = filter_params_x.taps;
const int intermediate_width =
(((w - 1) * x_step_qn + subpel_x_qn) >> SCALE_SUBPEL_BITS) +
filter_size;
assert(intermediate_width <= max_intermediate_size);
assert(filter_params_y.taps <= MAX_FILTER_TAP);
convolve_vert(src - (filter_size / 2 - 1), src_stride, temp, temp_stride,
intermediate_width, h, filter_params_y, subpel_y_qn,
y_step_qn, &temp_conv_params);
assert(filter_params_x.taps <= MAX_FILTER_TAP);
convolve_horiz(temp + (filter_size / 2 - 1), temp_stride, dst, dst_stride,
w, h, filter_params_x, subpel_x_qn, x_step_qn,
conv_params);
} else {
#endif // CONFIG_DUAL_FILTER && USE_EXTRA_FILTER
const int temp_stride = MAX_SB_SIZE;
ConvolveParams temp_conv_params;
temp_conv_params.ref = 0;
temp_conv_params.do_average = 0;
temp_conv_params.round = CONVOLVE_OPT_ROUND;
filter_size = filter_params_y.taps;
const int intermediate_height =
(((h - 1) * y_step_qn + subpel_y_qn) >> SCALE_SUBPEL_BITS) +
filter_size;
assert(intermediate_height <= max_intermediate_size);
(void)max_intermediate_size;
assert(filter_params_x.taps <= MAX_FILTER_TAP);
convolve_horiz(src - src_stride * (filter_size / 2 - 1), src_stride, temp,
temp_stride, w, intermediate_height, filter_params_x,
subpel_x_qn, x_step_qn, &temp_conv_params);
assert(filter_params_y.taps <= MAX_FILTER_TAP);
convolve_vert(temp + temp_stride * (filter_size / 2 - 1), temp_stride,
dst, dst_stride, w, h, filter_params_y, subpel_y_qn,
y_step_qn, conv_params);
#if CONFIG_DUAL_FILTER && USE_EXTRA_FILTER
}
#endif // CONFIG_DUAL_FILTER && USE_EXTRA_FILTER
}
}
void av1_convolve(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, int w, int h, InterpFilters interp_filters,
const int subpel_x_q4, int x_step_q4, const int subpel_y_q4,
int y_step_q4, ConvolveParams *conv_params) {
convolve_helper(src, src_stride, dst, dst_stride, w, h, interp_filters,
subpel_x_q4, x_step_q4, subpel_y_q4, y_step_q4, conv_params,
convolve_horiz_facade, convolve_vert_facade);
}
void av1_convolve_c(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, int w, int h, InterpFilters interp_filters,
const int subpel_x_q4, int x_step_q4, const int subpel_y_q4,
int y_step_q4, ConvolveParams *conv_params) {
convolve_helper(src, src_stride, dst, dst_stride, w, h, interp_filters,
subpel_x_q4, x_step_q4, subpel_y_q4, y_step_q4, conv_params,
convolve_horiz_facade_c, convolve_vert_facade_c);
}
void av1_convolve_scale(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, int w, int h,
InterpFilters interp_filters, const int subpel_x_qn,
int x_step_qn, const int subpel_y_qn, int y_step_qn,
ConvolveParams *conv_params) {
convolve_scale_helper(src, src_stride, dst, dst_stride, w, h, interp_filters,
subpel_x_qn, x_step_qn, subpel_y_qn, y_step_qn,
conv_params, av1_convolve_horiz_facade_scale,
av1_convolve_vert_facade_scale);
}
void av1_lowbd_convolve_init_c(void) {
// A placeholder for SIMD initialization
return;
}
void av1_highbd_convolve_init_c(void) {
// A placeholder for SIMD initialization
return;
}
void av1_convolve_init(AV1_COMMON *cm) {
#if CONFIG_HIGHBITDEPTH
if (cm->use_highbitdepth)
av1_highbd_convolve_init();
else
av1_lowbd_convolve_init();
#else
(void)cm;
av1_lowbd_convolve_init();
#endif
return;
}
#if CONFIG_HIGHBITDEPTH
void av1_highbd_convolve_horiz_c(const uint16_t *src, int src_stride,
uint16_t *dst, int dst_stride, int w, int h,
const InterpFilterParams filter_params,
const int subpel_x_q4, int x_step_q4, int avg,
int bd) {
int filter_size = filter_params.taps;
src -= filter_size / 2 - 1;
for (int y = 0; y < h; ++y) {
int x_q4 = subpel_x_q4;
for (int x = 0; x < w; ++x) {
const uint16_t *const src_x = &src[x_q4 >> SUBPEL_BITS];
const int16_t *x_filter = av1_get_interp_filter_subpel_kernel(
filter_params, x_q4 & SUBPEL_MASK);
int sum = 0;
for (int k = 0; k < filter_size; ++k) sum += src_x[k] * x_filter[k];
if (avg)
dst[x] = ROUND_POWER_OF_TWO(
dst[x] +
clip_pixel_highbd(ROUND_POWER_OF_TWO(sum, FILTER_BITS), bd),
1);
else
dst[x] = clip_pixel_highbd(ROUND_POWER_OF_TWO(sum, FILTER_BITS), bd);
x_q4 += x_step_q4;
}
src += src_stride;
dst += dst_stride;
}
}
static void highbd_convolve_horiz_scale(const uint16_t *src, int src_stride,
uint16_t *dst, int dst_stride, int w,
int h,
const InterpFilterParams filter_params,
const int subpel_x_qn, int x_step_qn,
int avg, int bd) {
int filter_size = filter_params.taps;
src -= filter_size / 2 - 1;
for (int y = 0; y < h; ++y) {
int x_qn = subpel_x_qn;
for (int x = 0; x < w; ++x) {
const uint16_t *const src_x = &src[x_qn >> SCALE_SUBPEL_BITS];
const int x_filter_idx = (x_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS;
assert(x_filter_idx < SUBPEL_SHIFTS);
const int16_t *x_filter =
av1_get_interp_filter_subpel_kernel(filter_params, x_filter_idx);
int sum = 0;
for (int k = 0; k < filter_size; ++k) sum += src_x[k] * x_filter[k];
if (avg)
dst[x] = ROUND_POWER_OF_TWO(
dst[x] +
clip_pixel_highbd(ROUND_POWER_OF_TWO(sum, FILTER_BITS), bd),
1);
else
dst[x] = clip_pixel_highbd(ROUND_POWER_OF_TWO(sum, FILTER_BITS), bd);
x_qn += x_step_qn;
}
src += src_stride;
dst += dst_stride;
}
}
void av1_highbd_convolve_vert_c(const uint16_t *src, int src_stride,
uint16_t *dst, int dst_stride, int w, int h,
const InterpFilterParams filter_params,
const int subpel_y_q4, int y_step_q4, int avg,
int bd) {
int filter_size = filter_params.taps;
src -= src_stride * (filter_size / 2 - 1);
for (int x = 0; x < w; ++x) {
int y_q4 = subpel_y_q4;
for (int y = 0; y < h; ++y) {
const uint16_t *const src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride];
const int16_t *y_filter = av1_get_interp_filter_subpel_kernel(
filter_params, y_q4 & SUBPEL_MASK);
int sum = 0;
for (int k = 0; k < filter_size; ++k)
sum += src_y[k * src_stride] * y_filter[k];
if (avg) {
dst[y * dst_stride] = ROUND_POWER_OF_TWO(
dst[y * dst_stride] +
clip_pixel_highbd(ROUND_POWER_OF_TWO(sum, FILTER_BITS), bd),
1);
} else {
dst[y * dst_stride] =
clip_pixel_highbd(ROUND_POWER_OF_TWO(sum, FILTER_BITS), bd);
}
y_q4 += y_step_q4;
}
++src;
++dst;
}
}
static void highbd_convolve_vert_scale(const uint16_t *src, int src_stride,
uint16_t *dst, int dst_stride, int w,
int h,
const InterpFilterParams filter_params,
const int subpel_y_qn, int y_step_qn,
int avg, int bd) {
int filter_size = filter_params.taps;
src -= src_stride * (filter_size / 2 - 1);
for (int x = 0; x < w; ++x) {
int y_qn = subpel_y_qn;
for (int y = 0; y < h; ++y) {
const uint16_t *const src_y =
&src[(y_qn >> SCALE_SUBPEL_BITS) * src_stride];
const int y_filter_idx = (y_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS;
assert(y_filter_idx < SUBPEL_SHIFTS);
const int16_t *y_filter =
av1_get_interp_filter_subpel_kernel(filter_params, y_filter_idx);
int sum = 0;
for (int k = 0; k < filter_size; ++k)
sum += src_y[k * src_stride] * y_filter[k];
if (avg) {
dst[y * dst_stride] = ROUND_POWER_OF_TWO(
dst[y * dst_stride] +
clip_pixel_highbd(ROUND_POWER_OF_TWO(sum, FILTER_BITS), bd),
1);
} else {
dst[y * dst_stride] =
clip_pixel_highbd(ROUND_POWER_OF_TWO(sum, FILTER_BITS), bd);
}
y_qn += y_step_qn;
}
++src;
++dst;
}
}
static void highbd_convolve_copy(const uint16_t *src, int src_stride,
uint16_t *dst, int dst_stride, int w, int h,
int avg, int bd) {
if (avg == 0) {
for (int r = 0; r < h; ++r) {
memcpy(dst, src, w * sizeof(*src));
src += src_stride;
dst += dst_stride;
}
} else {
for (int r = 0; r < h; ++r) {
for (int c = 0; c < w; ++c) {
dst[c] = clip_pixel_highbd(ROUND_POWER_OF_TWO(dst[c] + src[c], 1), bd);
}
src += src_stride;
dst += dst_stride;
}
}
}
static void highbd_convolve_horiz_facade(const uint8_t *src8, int src_stride,
uint8_t *dst8, int dst_stride, int w,
int h,
const InterpFilterParams filter_params,
const int subpel_x_q4, int x_step_q4,
int avg, int bd) {
if (filter_params.taps == SUBPEL_TAPS) {
const int16_t *filter_x =
av1_get_interp_filter_subpel_kernel(filter_params, subpel_x_q4);
if (avg == 0)
aom_highbd_convolve8_horiz(src8, src_stride, dst8, dst_stride, filter_x,
x_step_q4, NULL, -1, w, h, bd);
else
aom_highbd_convolve8_avg_horiz(src8, src_stride, dst8, dst_stride,
filter_x, x_step_q4, NULL, -1, w, h, bd);
} else {
uint16_t *src = CONVERT_TO_SHORTPTR(src8);
uint16_t *dst = CONVERT_TO_SHORTPTR(dst8);
av1_highbd_convolve_horiz(src, src_stride, dst, dst_stride, w, h,
filter_params, subpel_x_q4, x_step_q4, avg, bd);
}
}
static void highbd_convolve_horiz_facade_scale(
const uint8_t *src8, int src_stride, uint8_t *dst8, int dst_stride, int w,
int h, const InterpFilterParams filter_params, const int subpel_x_qn,
int x_step_qn, int avg, int bd) {
uint16_t *src = CONVERT_TO_SHORTPTR(src8);
uint16_t *dst = CONVERT_TO_SHORTPTR(dst8);
// TODO(debargha): Add special functions for filter_params.taps == SUBPEL_TAPS
// as in the function above.
highbd_convolve_horiz_scale(src, src_stride, dst, dst_stride, w, h,
filter_params, subpel_x_qn, x_step_qn, avg, bd);
}
static void highbd_convolve_vert_facade(const uint8_t *src8, int src_stride,
uint8_t *dst8, int dst_stride, int w,
int h,
const InterpFilterParams filter_params,
const int subpel_y_q4, int y_step_q4,
int avg, int bd) {
if (filter_params.taps == SUBPEL_TAPS) {
const int16_t *filter_y =
av1_get_interp_filter_subpel_kernel(filter_params, subpel_y_q4);
if (avg == 0) {
aom_highbd_convolve8_vert(src8, src_stride, dst8, dst_stride, NULL, -1,
filter_y, y_step_q4, w, h, bd);
} else {
aom_highbd_convolve8_avg_vert(src8, src_stride, dst8, dst_stride, NULL,
-1, filter_y, y_step_q4, w, h, bd);
}
} else {
uint16_t *src = CONVERT_TO_SHORTPTR(src8);
uint16_t *dst = CONVERT_TO_SHORTPTR(dst8);
av1_highbd_convolve_vert(src, src_stride, dst, dst_stride, w, h,
filter_params, subpel_y_q4, y_step_q4, avg, bd);
}
}
static void highbd_convolve_vert_facade_scale(
const uint8_t *src8, int src_stride, uint8_t *dst8, int dst_stride, int w,
int h, const InterpFilterParams filter_params, const int subpel_y_qn,
int y_step_qn, int avg, int bd) {
uint16_t *src = CONVERT_TO_SHORTPTR(src8);
uint16_t *dst = CONVERT_TO_SHORTPTR(dst8);
// TODO(debargha): Add special functions for filter_params.taps == SUBPEL_TAPS
// as in the function above.
highbd_convolve_vert_scale(src, src_stride, dst, dst_stride, w, h,
filter_params, subpel_y_qn, y_step_qn, avg, bd);
}
void av1_highbd_convolve(const uint8_t *src8, int src_stride, uint8_t *dst8,
int dst_stride, int w, int h,
InterpFilters interp_filters, const int subpel_x_q4,
int x_step_q4, const int subpel_y_q4, int y_step_q4,
int ref_idx, int bd) {
int ignore_horiz = x_step_q4 == SUBPEL_SHIFTS && subpel_x_q4 == 0;
int ignore_vert = y_step_q4 == SUBPEL_SHIFTS && subpel_y_q4 == 0;
assert(w <= MAX_BLOCK_WIDTH);
assert(h <= MAX_BLOCK_HEIGHT);
assert(y_step_q4 <= MAX_STEP);
assert(x_step_q4 <= MAX_STEP);
if (ignore_horiz && ignore_vert) {
uint16_t *src = CONVERT_TO_SHORTPTR(src8);
uint16_t *dst = CONVERT_TO_SHORTPTR(dst8);
highbd_convolve_copy(src, src_stride, dst, dst_stride, w, h, ref_idx, bd);
return;
}
InterpFilterParams filter_params_x, filter_params_y;
#if CONFIG_SHORT_FILTER
av1_get_convolve_filter_params(interp_filters, 0, &filter_params_x,
&filter_params_y, w, h);
#else
av1_get_convolve_filter_params(interp_filters, 0, &filter_params_x,
&filter_params_y);
#endif
if (ignore_vert) {
highbd_convolve_horiz_facade(src8, src_stride, dst8, dst_stride, w, h,
filter_params_x, subpel_x_q4, x_step_q4,
ref_idx, bd);
} else if (ignore_horiz) {
highbd_convolve_vert_facade(src8, src_stride, dst8, dst_stride, w, h,
filter_params_y, subpel_y_q4, y_step_q4,
ref_idx, bd);
} else {
// temp's size is set to a 256 aligned value to facilitate SIMD
// implementation. The value is greater than (maximum possible intermediate
// height or width) * MAX_SB_SIZE
DECLARE_ALIGNED(16, uint16_t,
temp[((MAX_SB_SIZE * 2 + 16) + 16) * MAX_SB_SIZE]);
uint8_t *temp8 = CONVERT_TO_BYTEPTR(temp);
int max_intermediate_size = ((MAX_SB_SIZE * 2 + 16) + 16);
int filter_size;
#if CONFIG_DUAL_FILTER && USE_EXTRA_FILTER
av1_convolve_filter_params_fixup_1212(&filter_params_x, &filter_params_y);
if (filter_params_y.taps < filter_params_x.taps) {
const int temp_stride = max_intermediate_size;
filter_size = filter_params_x.taps;
const int intermediate_width =
(((w - 1) * x_step_q4 + subpel_x_q4) >> SUBPEL_BITS) + filter_size;
assert(intermediate_width <= max_intermediate_size);
assert(filter_params_y.taps <= MAX_FILTER_TAP);
highbd_convolve_vert_facade(src8 - (filter_size / 2 - 1), src_stride,
temp8, temp_stride, intermediate_width, h,
filter_params_y, subpel_y_q4, y_step_q4, 0,
bd);
assert(filter_params_x.taps <= MAX_FILTER_TAP);
highbd_convolve_horiz_facade(temp8 + (filter_size / 2 - 1), temp_stride,
dst8, dst_stride, w, h, filter_params_x,
subpel_x_q4, x_step_q4, ref_idx, bd);
} else
#endif // CONFIG_DUAL_FILTER && USE_EXTRA_FILTER
{
const int temp_stride = MAX_SB_SIZE;
filter_size = filter_params_y.taps;
const int intermediate_height =
(((h - 1) * y_step_q4 + subpel_y_q4) >> SUBPEL_BITS) + filter_size;
assert(intermediate_height <= max_intermediate_size);
(void)max_intermediate_size;
highbd_convolve_horiz_facade(src8 - src_stride * (filter_size / 2 - 1),
src_stride, temp8, temp_stride, w,
intermediate_height, filter_params_x,
subpel_x_q4, x_step_q4, 0, bd);
filter_size = filter_params_y.taps;
assert(filter_params_y.taps <= MAX_FILTER_TAP);
highbd_convolve_vert_facade(temp8 + temp_stride * (filter_size / 2 - 1),
temp_stride, dst8, dst_stride, w, h,
filter_params_y, subpel_y_q4, y_step_q4,
ref_idx, bd);
}
}
}
void av1_highbd_convolve_scale(const uint8_t *src8, int src_stride,
uint8_t *dst8, int dst_stride, int w, int h,
InterpFilters interp_filters,
const int subpel_x_qn, int x_step_qn,
const int subpel_y_qn, int y_step_qn,
int ref_idx, int bd) {
int ignore_horiz = x_step_qn == SCALE_SUBPEL_SHIFTS && subpel_x_qn == 0;
int ignore_vert = y_step_qn == SCALE_SUBPEL_SHIFTS && subpel_y_qn == 0;
assert(w <= MAX_BLOCK_WIDTH);
assert(h <= MAX_BLOCK_HEIGHT);
assert(y_step_qn <= (MAX_STEP << SCALE_EXTRA_BITS));
assert(x_step_qn <= (MAX_STEP << SCALE_EXTRA_BITS));
if (ignore_horiz && ignore_vert) {
uint16_t *src = CONVERT_TO_SHORTPTR(src8);
uint16_t *dst = CONVERT_TO_SHORTPTR(dst8);
highbd_convolve_copy(src, src_stride, dst, dst_stride, w, h, ref_idx, bd);
return;
}
InterpFilterParams filter_params_x, filter_params_y;
#if CONFIG_SHORT_FILTER
av1_get_convolve_filter_params(interp_filters, 0, &filter_params_x,
&filter_params_y, w, h);
#else
av1_get_convolve_filter_params(interp_filters, 0, &filter_params_x,
&filter_params_y);
#endif
if (ignore_vert) {
highbd_convolve_horiz_facade_scale(src8, src_stride, dst8, dst_stride, w, h,
filter_params_x, subpel_x_qn, x_step_qn,
ref_idx, bd);
} else if (ignore_horiz) {
highbd_convolve_vert_facade_scale(src8, src_stride, dst8, dst_stride, w, h,
filter_params_y, subpel_y_qn, y_step_qn,
ref_idx, bd);
} else {
// temp's size is set to a 256 aligned value to facilitate SIMD
// implementation. The value is greater than (maximum possible intermediate
// height or width) * MAX_SB_SIZE
DECLARE_ALIGNED(16, uint16_t,
temp[((MAX_SB_SIZE * 2 + 16) + 16) * MAX_SB_SIZE]);
uint8_t *temp8 = CONVERT_TO_BYTEPTR(temp);
int max_intermediate_size = ((MAX_SB_SIZE * 2 + 16) + 16);
int filter_size;
#if CONFIG_DUAL_FILTER && USE_EXTRA_FILTER
av1_convolve_filter_params_fixup_1212(&filter_params_x, &filter_params_y);
if (filter_params_y.taps < filter_params_x.taps) {
const int temp_stride = max_intermediate_size;
filter_size = filter_params_x.taps;
const int intermediate_width =
(((w - 1) * x_step_qn + subpel_x_qn) >> SCALE_SUBPEL_BITS) +
filter_size;
assert(intermediate_width <= max_intermediate_size);
assert(filter_params_y.taps <= MAX_FILTER_TAP);
highbd_convolve_vert_facade_scale(src8 - (filter_size / 2 - 1),
src_stride, temp8, temp_stride,
intermediate_width, h, filter_params_y,
subpel_y_qn, y_step_qn, 0, bd);
assert(filter_params_x.taps <= MAX_FILTER_TAP);
highbd_convolve_horiz_facade_scale(
temp8 + (filter_size / 2 - 1), temp_stride, dst8, dst_stride, w, h,
filter_params_x, subpel_x_qn, x_step_qn, ref_idx, bd);
} else {
#endif // CONFIG_DUAL_FILTER && USE_EXTRA_FILTER
const int temp_stride = MAX_SB_SIZE;
filter_size = filter_params_y.taps;
const int intermediate_height =
(((h - 1) * y_step_qn + subpel_y_qn) >> SCALE_SUBPEL_BITS) +
filter_size;
assert(intermediate_height <= max_intermediate_size);
(void)max_intermediate_size;
highbd_convolve_horiz_facade_scale(
src8 - src_stride * (filter_size / 2 - 1), src_stride, temp8,
temp_stride, w, intermediate_height, filter_params_x, subpel_x_qn,
x_step_qn, 0, bd);
filter_size = filter_params_y.taps;
assert(filter_params_y.taps <= MAX_FILTER_TAP);
highbd_convolve_vert_facade_scale(
temp8 + temp_stride * (filter_size / 2 - 1), temp_stride, dst8,
dst_stride, w, h, filter_params_y, subpel_y_qn, y_step_qn, ref_idx,
bd);
#if CONFIG_DUAL_FILTER && USE_EXTRA_FILTER
}
#endif // CONFIG_DUAL_FILTER && USE_EXTRA_FILTER
}
}
#endif // CONFIG_HIGHBITDEPTH