| /* |
| * Copyright (c) 2017, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <math.h> |
| |
| #include <stdio.h> |
| #include <stdlib.h> |
| |
| #include "aom_dsp/noise_util.h" |
| #include "aom_mem/aom_mem.h" |
| |
| // Return normally distrbuted values with standard deviation of sigma. |
| double aom_randn(double sigma) { |
| while (1) { |
| const double u = 2.0 * ((double)rand()) / RAND_MAX - 1.0; |
| const double v = 2.0 * ((double)rand()) / RAND_MAX - 1.0; |
| const double s = u * u + v * v; |
| if (s > 0 && s < 1) { |
| return sigma * (u * sqrt(-2.0 * log(s) / s)); |
| } |
| } |
| return 0; |
| } |
| |
| double aom_normalized_cross_correlation(const double *a, const double *b, |
| int n) { |
| double c = 0; |
| double a_len = 0; |
| double b_len = 0; |
| for (int i = 0; i < n; ++i) { |
| a_len += a[i] * a[i]; |
| b_len += b[i] * b[i]; |
| c += a[i] * b[i]; |
| } |
| return c / (sqrt(a_len) * sqrt(b_len)); |
| } |
| |
| void aom_noise_synth(int lag, int n, const int (*coords)[2], |
| const double *coeffs, double *data, int w, int h) { |
| const int pad_size = 3 * lag; |
| const int padded_w = w + pad_size; |
| const int padded_h = h + pad_size; |
| int x = 0, y = 0; |
| double *padded = (double *)aom_malloc(padded_w * padded_h * sizeof(*padded)); |
| |
| for (y = 0; y < padded_h; ++y) { |
| for (x = 0; x < padded_w; ++x) { |
| padded[y * padded_w + x] = aom_randn(1.0); |
| } |
| } |
| for (y = lag; y < padded_h; ++y) { |
| for (x = lag; x < padded_w; ++x) { |
| double sum = 0; |
| int i = 0; |
| for (i = 0; i < n; ++i) { |
| const int dx = coords[i][0]; |
| const int dy = coords[i][1]; |
| sum += padded[(y + dy) * padded_w + (x + dx)] * coeffs[i]; |
| } |
| padded[y * padded_w + x] += sum; |
| } |
| } |
| // Copy over the padded rows to the output |
| for (y = 0; y < h; ++y) { |
| memcpy(data + y * w, padded + y * padded_w, sizeof(*data) * w); |
| } |
| aom_free(padded); |
| } |
| |
| int aom_noise_data_validate(const double *data, int w, int h) { |
| const double kVarianceThreshold = 2; |
| const double kMeanThreshold = 2; |
| |
| int x = 0, y = 0; |
| int ret_value = 1; |
| double var = 0, mean = 0; |
| double *mean_x, *mean_y, *var_x, *var_y; |
| |
| // Check that noise variance is not increasing in x or y |
| // and that the data is zero mean. |
| mean_x = (double *)aom_malloc(sizeof(*mean_x) * w); |
| var_x = (double *)aom_malloc(sizeof(*var_x) * w); |
| mean_y = (double *)aom_malloc(sizeof(*mean_x) * h); |
| var_y = (double *)aom_malloc(sizeof(*var_y) * h); |
| |
| memset(mean_x, 0, sizeof(*mean_x) * w); |
| memset(var_x, 0, sizeof(*var_x) * w); |
| memset(mean_y, 0, sizeof(*mean_y) * h); |
| memset(var_y, 0, sizeof(*var_y) * h); |
| |
| for (y = 0; y < h; ++y) { |
| for (x = 0; x < w; ++x) { |
| const double d = data[y * w + x]; |
| var_x[x] += d * d; |
| var_y[y] += d * d; |
| mean_x[x] += d; |
| mean_y[y] += d; |
| var += d * d; |
| mean += d; |
| } |
| } |
| mean /= (w * h); |
| var = var / (w * h) - mean * mean; |
| |
| for (y = 0; y < h; ++y) { |
| mean_y[y] /= h; |
| var_y[y] = var_y[y] / h - mean_y[y] * mean_y[y]; |
| if (fabs(var_y[y] - var) >= kVarianceThreshold) { |
| fprintf(stderr, "Variance distance too large %f %f\n", var_y[y], var); |
| ret_value = 0; |
| break; |
| } |
| if (fabs(mean_y[y] - mean) >= kMeanThreshold) { |
| fprintf(stderr, "Mean distance too large %f %f\n", mean_y[y], mean); |
| ret_value = 0; |
| break; |
| } |
| } |
| |
| for (x = 0; x < w; ++x) { |
| mean_x[x] /= w; |
| var_x[x] = var_x[x] / w - mean_x[x] * mean_x[x]; |
| if (fabs(var_x[x] - var) >= kVarianceThreshold) { |
| fprintf(stderr, "Variance distance too large %f %f\n", var_x[x], var); |
| ret_value = 0; |
| break; |
| } |
| if (fabs(mean_x[x] - mean) >= kMeanThreshold) { |
| fprintf(stderr, "Mean distance too large %f %f\n", mean_x[x], mean); |
| ret_value = 0; |
| break; |
| } |
| } |
| |
| aom_free(mean_x); |
| aom_free(mean_y); |
| aom_free(var_x); |
| aom_free(var_y); |
| |
| return ret_value; |
| } |