blob: ad471491d4d009a4135a857ed0cd1d66f7d8969f [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <string.h>
#include "./aom_dsp_rtcd.h"
#include "./av1_rtcd.h"
#include "av1/common/blockd.h"
#include "av1/common/convolve.h"
#include "av1/common/filter.h"
#include "av1/common/onyxc_int.h"
#include "av1/common/resize.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_ports/mem.h"
#define MAX_BLOCK_WIDTH (MAX_SB_SIZE)
#define MAX_BLOCK_HEIGHT (MAX_SB_SIZE)
#define MAX_STEP (32)
void av1_convolve_horiz_rs_c(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, int w, int h,
const int16_t *x_filters, const int x0_qn,
const int x_step_qn) {
src -= UPSCALE_NORMATIVE_TAPS / 2 - 1;
for (int y = 0; y < h; ++y) {
int x_qn = x0_qn;
for (int x = 0; x < w; ++x) {
const uint8_t *const src_x = &src[x_qn >> RS_SCALE_SUBPEL_BITS];
const int x_filter_idx =
(x_qn & RS_SCALE_SUBPEL_MASK) >> RS_SCALE_EXTRA_BITS;
assert(x_filter_idx <= RS_SUBPEL_MASK);
const int16_t *const x_filter =
&x_filters[x_filter_idx * UPSCALE_NORMATIVE_TAPS];
int sum = 0;
for (int k = 0; k < UPSCALE_NORMATIVE_TAPS; ++k)
sum += src_x[k] * x_filter[k];
dst[x] = clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS));
x_qn += x_step_qn;
}
src += src_stride;
dst += dst_stride;
}
}
// TODO(yaowu: remove "const" from pass-by-value params in this and other funcs)
void av1_highbd_convolve_horiz_rs_c(const uint16_t *src, int src_stride,
uint16_t *dst, int dst_stride, int w, int h,
const int16_t *x_filters, const int x0_qn,
const int x_step_qn, int bd) {
src -= UPSCALE_NORMATIVE_TAPS / 2 - 1;
for (int y = 0; y < h; ++y) {
int x_qn = x0_qn;
for (int x = 0; x < w; ++x) {
const uint16_t *const src_x = &src[x_qn >> RS_SCALE_SUBPEL_BITS];
const int x_filter_idx =
(x_qn & RS_SCALE_SUBPEL_MASK) >> RS_SCALE_EXTRA_BITS;
assert(x_filter_idx <= RS_SUBPEL_MASK);
const int16_t *const x_filter =
&x_filters[x_filter_idx * UPSCALE_NORMATIVE_TAPS];
int sum = 0;
for (int k = 0; k < UPSCALE_NORMATIVE_TAPS; ++k)
sum += src_x[k] * x_filter[k];
dst[x] = clip_pixel_highbd(ROUND_POWER_OF_TWO(sum, FILTER_BITS), bd);
x_qn += x_step_qn;
}
src += src_stride;
dst += dst_stride;
}
}
void av1_convolve_rounding_c(const int32_t *src, int src_stride, uint8_t *dst,
int dst_stride, int w, int h, int bits) {
for (int r = 0; r < h; ++r) {
for (int c = 0; c < w; ++c) {
dst[r * dst_stride + c] =
clip_pixel(ROUND_POWER_OF_TWO(src[r * src_stride + c], bits));
}
}
}
/* Note: For notes on hardware implementations, including the required
bit widths for various intermediate values, see the comments above
av1_warp_affine_c.
*/
void av1_convolve_2d_c(const uint8_t *src, int src_stride, uint8_t *dst0,
int dst_stride0, int w, int h,
InterpFilterParams *filter_params_x,
InterpFilterParams *filter_params_y,
const int subpel_x_q4, const int subpel_y_q4,
ConvolveParams *conv_params) {
CONV_BUF_TYPE *dst = conv_params->dst;
int dst_stride = conv_params->dst_stride;
int16_t im_block[(MAX_SB_SIZE + MAX_FILTER_TAP - 1) * MAX_SB_SIZE];
int im_h = h + filter_params_y->taps - 1;
int im_stride = w;
const int fo_vert = filter_params_y->taps / 2 - 1;
const int fo_horiz = filter_params_x->taps / 2 - 1;
const int bd = 8;
(void)dst0;
(void)dst_stride0;
// horizontal filter
const uint8_t *src_horiz = src - fo_vert * src_stride;
const int16_t *x_filter = av1_get_interp_filter_subpel_kernel(
*filter_params_x, subpel_x_q4 & SUBPEL_MASK);
for (int y = 0; y < im_h; ++y) {
for (int x = 0; x < w; ++x) {
int32_t sum = (1 << (bd + FILTER_BITS - 1));
for (int k = 0; k < filter_params_x->taps; ++k) {
sum += x_filter[k] * src_horiz[y * src_stride + x - fo_horiz + k];
}
assert(0 <= sum && sum < (1 << (bd + FILTER_BITS + 1)));
im_block[y * im_stride + x] =
(int16_t)ROUND_POWER_OF_TWO(sum, conv_params->round_0);
}
}
// vertical filter
int16_t *src_vert = im_block + fo_vert * im_stride;
const int16_t *y_filter = av1_get_interp_filter_subpel_kernel(
*filter_params_y, subpel_y_q4 & SUBPEL_MASK);
const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
CONV_BUF_TYPE sum = 1 << offset_bits;
for (int k = 0; k < filter_params_y->taps; ++k) {
sum += y_filter[k] * src_vert[(y - fo_vert + k) * im_stride + x];
}
assert(0 <= sum && sum < (1 << (offset_bits + 2)));
CONV_BUF_TYPE res = ROUND_POWER_OF_TWO(sum, conv_params->round_1) -
((1 << (offset_bits - conv_params->round_1)) +
(1 << (offset_bits - conv_params->round_1 - 1)));
if (conv_params->do_average) {
int32_t tmp = dst[y * dst_stride + x];
tmp += res;
dst[y * dst_stride + x] = tmp >> 1;
} else {
dst[y * dst_stride + x] = res;
}
}
}
}
void av1_convolve_y_c(const uint8_t *src, int src_stride, uint8_t *dst0,
int dst_stride0, int w, int h,
InterpFilterParams *filter_params_x,
InterpFilterParams *filter_params_y,
const int subpel_x_q4, const int subpel_y_q4,
ConvolveParams *conv_params) {
CONV_BUF_TYPE *dst = conv_params->dst;
int dst_stride = conv_params->dst_stride;
const int fo_vert = filter_params_y->taps / 2 - 1;
const int bits = FILTER_BITS - conv_params->round_0;
(void)filter_params_x;
(void)subpel_x_q4;
(void)dst0;
(void)dst_stride0;
assert(bits >= 0);
// vertical filter
const int16_t *y_filter = av1_get_interp_filter_subpel_kernel(
*filter_params_y, subpel_y_q4 & SUBPEL_MASK);
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
CONV_BUF_TYPE res = 0;
for (int k = 0; k < filter_params_y->taps; ++k) {
res += y_filter[k] * src[(y - fo_vert + k) * src_stride + x];
}
res *= (1 << bits);
res = ROUND_POWER_OF_TWO(res, conv_params->round_1);
if (conv_params->do_average) {
int32_t tmp = dst[y * dst_stride + x];
tmp += res;
dst[y * dst_stride + x] = tmp >> 1;
} else {
dst[y * dst_stride + x] = res;
}
}
}
}
void av1_convolve_x_c(const uint8_t *src, int src_stride, uint8_t *dst0,
int dst_stride0, int w, int h,
InterpFilterParams *filter_params_x,
InterpFilterParams *filter_params_y,
const int subpel_x_q4, const int subpel_y_q4,
ConvolveParams *conv_params) {
CONV_BUF_TYPE *dst = conv_params->dst;
int dst_stride = conv_params->dst_stride;
const int fo_horiz = filter_params_x->taps / 2 - 1;
const int bits = FILTER_BITS - conv_params->round_1;
(void)filter_params_y;
(void)subpel_y_q4;
(void)dst0;
(void)dst_stride0;
assert(bits >= 0);
// horizontal filter
const int16_t *x_filter = av1_get_interp_filter_subpel_kernel(
*filter_params_x, subpel_x_q4 & SUBPEL_MASK);
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
CONV_BUF_TYPE res = 0;
for (int k = 0; k < filter_params_x->taps; ++k) {
res += x_filter[k] * src[y * src_stride + x - fo_horiz + k];
}
res = (1 << bits) * ROUND_POWER_OF_TWO(res, conv_params->round_0);
if (conv_params->do_average) {
int32_t tmp = dst[y * dst_stride + x];
tmp += res;
dst[y * dst_stride + x] = tmp >> 1;
} else {
dst[y * dst_stride + x] = res;
}
}
}
}
void av1_convolve_2d_copy_c(const uint8_t *src, int src_stride, uint8_t *dst0,
int dst_stride0, int w, int h,
InterpFilterParams *filter_params_x,
InterpFilterParams *filter_params_y,
const int subpel_x_q4, const int subpel_y_q4,
ConvolveParams *conv_params) {
CONV_BUF_TYPE *dst = conv_params->dst;
int dst_stride = conv_params->dst_stride;
const int bits =
FILTER_BITS * 2 - conv_params->round_1 - conv_params->round_0;
(void)filter_params_x;
(void)filter_params_y;
(void)subpel_x_q4;
(void)subpel_y_q4;
(void)dst0;
(void)dst_stride0;
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
CONV_BUF_TYPE res = src[y * src_stride + x] << bits;
if (conv_params->do_average) {
int32_t tmp = dst[y * dst_stride + x];
tmp += res;
dst[y * dst_stride + x] = tmp >> 1;
} else {
dst[y * dst_stride + x] = res;
}
}
}
}
void av1_convolve_2d_sr_c(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, int w, int h,
InterpFilterParams *filter_params_x,
InterpFilterParams *filter_params_y,
const int subpel_x_q4, const int subpel_y_q4,
ConvolveParams *conv_params) {
int16_t im_block[(MAX_SB_SIZE + MAX_FILTER_TAP - 1) * MAX_SB_SIZE];
int im_h = h + filter_params_y->taps - 1;
int im_stride = w;
const int fo_vert = filter_params_y->taps / 2 - 1;
const int fo_horiz = filter_params_x->taps / 2 - 1;
const int bd = 8;
const int bits =
FILTER_BITS * 2 - conv_params->round_0 - conv_params->round_1;
// horizontal filter
const uint8_t *src_horiz = src - fo_vert * src_stride;
const int16_t *x_filter = av1_get_interp_filter_subpel_kernel(
*filter_params_x, subpel_x_q4 & SUBPEL_MASK);
for (int y = 0; y < im_h; ++y) {
for (int x = 0; x < w; ++x) {
int32_t sum = (1 << (bd + FILTER_BITS - 1));
for (int k = 0; k < filter_params_x->taps; ++k) {
sum += x_filter[k] * src_horiz[y * src_stride + x - fo_horiz + k];
}
assert(0 <= sum && sum < (1 << (bd + FILTER_BITS + 1)));
im_block[y * im_stride + x] =
(int16_t)ROUND_POWER_OF_TWO(sum, conv_params->round_0);
}
}
// vertical filter
int16_t *src_vert = im_block + fo_vert * im_stride;
const int16_t *y_filter = av1_get_interp_filter_subpel_kernel(
*filter_params_y, subpel_y_q4 & SUBPEL_MASK);
const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
CONV_BUF_TYPE sum = 1 << offset_bits;
for (int k = 0; k < filter_params_y->taps; ++k) {
sum += y_filter[k] * src_vert[(y - fo_vert + k) * im_stride + x];
}
assert(0 <= sum && sum < (1 << (offset_bits + 2)));
CONV_BUF_TYPE res = ROUND_POWER_OF_TWO(sum, conv_params->round_1) -
((1 << (offset_bits - conv_params->round_1)) +
(1 << (offset_bits - conv_params->round_1 - 1)));
dst[y * dst_stride + x] = clip_pixel(ROUND_POWER_OF_TWO(res, bits));
}
}
}
void av1_convolve_y_sr_c(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, int w, int h,
InterpFilterParams *filter_params_x,
InterpFilterParams *filter_params_y,
const int subpel_x_q4, const int subpel_y_q4,
ConvolveParams *conv_params) {
const int fo_vert = filter_params_y->taps / 2 - 1;
(void)filter_params_x;
(void)subpel_x_q4;
(void)conv_params;
assert(conv_params->round_0 <= FILTER_BITS);
assert(((conv_params->round_0 + conv_params->round_1) <= (FILTER_BITS + 1)) ||
((conv_params->round_0 + conv_params->round_1) == (2 * FILTER_BITS)));
// vertical filter
const int16_t *y_filter = av1_get_interp_filter_subpel_kernel(
*filter_params_y, subpel_y_q4 & SUBPEL_MASK);
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
CONV_BUF_TYPE res = 0;
for (int k = 0; k < filter_params_y->taps; ++k) {
res += y_filter[k] * src[(y - fo_vert + k) * src_stride + x];
}
dst[y * dst_stride + x] =
clip_pixel(ROUND_POWER_OF_TWO(res, FILTER_BITS));
}
}
}
void av1_convolve_x_sr_c(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, int w, int h,
InterpFilterParams *filter_params_x,
InterpFilterParams *filter_params_y,
const int subpel_x_q4, const int subpel_y_q4,
ConvolveParams *conv_params) {
const int fo_horiz = filter_params_x->taps / 2 - 1;
const int bits = FILTER_BITS - conv_params->round_0;
(void)filter_params_y;
(void)subpel_y_q4;
(void)conv_params;
assert(bits >= 0);
assert((FILTER_BITS - conv_params->round_1) >= 0 ||
((conv_params->round_0 + conv_params->round_1) == 2 * FILTER_BITS));
// horizontal filter
const int16_t *x_filter = av1_get_interp_filter_subpel_kernel(
*filter_params_x, subpel_x_q4 & SUBPEL_MASK);
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
CONV_BUF_TYPE res = 0;
for (int k = 0; k < filter_params_x->taps; ++k) {
res += x_filter[k] * src[y * src_stride + x - fo_horiz + k];
}
res = ROUND_POWER_OF_TWO(res, conv_params->round_0);
dst[y * dst_stride + x] = clip_pixel(ROUND_POWER_OF_TWO(res, bits));
}
}
}
void av1_convolve_2d_copy_sr_c(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, int w, int h,
InterpFilterParams *filter_params_x,
InterpFilterParams *filter_params_y,
const int subpel_x_q4, const int subpel_y_q4,
ConvolveParams *conv_params) {
(void)filter_params_x;
(void)filter_params_y;
(void)subpel_x_q4;
(void)subpel_y_q4;
(void)conv_params;
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
dst[y * dst_stride + x] = src[y * src_stride + x];
}
}
}
void av1_jnt_convolve_2d_c(const uint8_t *src, int src_stride, uint8_t *dst0,
int dst_stride0, int w, int h,
InterpFilterParams *filter_params_x,
InterpFilterParams *filter_params_y,
const int subpel_x_q4, const int subpel_y_q4,
ConvolveParams *conv_params) {
CONV_BUF_TYPE *dst = conv_params->dst;
int dst_stride = conv_params->dst_stride;
int16_t im_block[(MAX_SB_SIZE + MAX_FILTER_TAP - 1) * MAX_SB_SIZE];
int im_h = h + filter_params_y->taps - 1;
int im_stride = w;
const int fo_vert = filter_params_y->taps / 2 - 1;
const int fo_horiz = filter_params_x->taps / 2 - 1;
const int bd = 8;
(void)dst0;
(void)dst_stride0;
// horizontal filter
const uint8_t *src_horiz = src - fo_vert * src_stride;
const int16_t *x_filter = av1_get_interp_filter_subpel_kernel(
*filter_params_x, subpel_x_q4 & SUBPEL_MASK);
for (int y = 0; y < im_h; ++y) {
for (int x = 0; x < w; ++x) {
int32_t sum = (1 << (bd + FILTER_BITS - 1));
for (int k = 0; k < filter_params_x->taps; ++k) {
sum += x_filter[k] * src_horiz[y * src_stride + x - fo_horiz + k];
}
assert(0 <= sum && sum < (1 << (bd + FILTER_BITS + 1)));
im_block[y * im_stride + x] =
(int16_t)ROUND_POWER_OF_TWO(sum, conv_params->round_0);
}
}
// vertical filter
int16_t *src_vert = im_block + fo_vert * im_stride;
const int16_t *y_filter = av1_get_interp_filter_subpel_kernel(
*filter_params_y, subpel_y_q4 & SUBPEL_MASK);
const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
CONV_BUF_TYPE sum = 1 << offset_bits;
for (int k = 0; k < filter_params_y->taps; ++k) {
sum += y_filter[k] * src_vert[(y - fo_vert + k) * im_stride + x];
}
assert(0 <= sum && sum < (1 << (offset_bits + 2)));
CONV_BUF_TYPE res = ROUND_POWER_OF_TWO(sum, conv_params->round_1) -
((1 << (offset_bits - conv_params->round_1)) +
(1 << (offset_bits - conv_params->round_1 - 1)));
if (conv_params->use_jnt_comp_avg) {
if (conv_params->do_average) {
int32_t tmp = dst[y * dst_stride + x];
tmp = tmp * conv_params->fwd_offset + res * conv_params->bck_offset;
dst[y * dst_stride + x] = tmp >> DIST_PRECISION_BITS;
} else {
dst[y * dst_stride + x] = res;
}
} else {
if (conv_params->do_average) {
int32_t tmp = dst[y * dst_stride + x];
tmp += res;
dst[y * dst_stride + x] = tmp >> 1;
} else {
dst[y * dst_stride + x] = res;
}
}
}
}
}
void av1_jnt_convolve_y_c(const uint8_t *src, int src_stride, uint8_t *dst0,
int dst_stride0, int w, int h,
InterpFilterParams *filter_params_x,
InterpFilterParams *filter_params_y,
const int subpel_x_q4, const int subpel_y_q4,
ConvolveParams *conv_params) {
CONV_BUF_TYPE *dst = conv_params->dst;
int dst_stride = conv_params->dst_stride;
const int fo_vert = filter_params_y->taps / 2 - 1;
const int bits = FILTER_BITS - conv_params->round_0;
(void)filter_params_x;
(void)subpel_x_q4;
(void)dst0;
(void)dst_stride0;
// vertical filter
const int16_t *y_filter = av1_get_interp_filter_subpel_kernel(
*filter_params_y, subpel_y_q4 & SUBPEL_MASK);
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
CONV_BUF_TYPE res = 0;
for (int k = 0; k < filter_params_y->taps; ++k) {
res += y_filter[k] * src[(y - fo_vert + k) * src_stride + x];
}
res *= (1 << bits);
res = ROUND_POWER_OF_TWO(res, conv_params->round_1);
if (conv_params->use_jnt_comp_avg) {
if (conv_params->do_average) {
int32_t tmp = dst[y * dst_stride + x];
tmp = tmp * conv_params->fwd_offset + res * conv_params->bck_offset;
dst[y * dst_stride + x] = tmp >> DIST_PRECISION_BITS;
} else {
dst[y * dst_stride + x] = res;
}
} else {
if (conv_params->do_average) {
int32_t tmp = dst[y * dst_stride + x];
tmp += res;
dst[y * dst_stride + x] = tmp >> 1;
} else {
dst[y * dst_stride + x] = res;
}
}
}
}
}
void av1_jnt_convolve_x_c(const uint8_t *src, int src_stride, uint8_t *dst0,
int dst_stride0, int w, int h,
InterpFilterParams *filter_params_x,
InterpFilterParams *filter_params_y,
const int subpel_x_q4, const int subpel_y_q4,
ConvolveParams *conv_params) {
CONV_BUF_TYPE *dst = conv_params->dst;
int dst_stride = conv_params->dst_stride;
const int fo_horiz = filter_params_x->taps / 2 - 1;
const int bits = FILTER_BITS - conv_params->round_1;
(void)filter_params_y;
(void)subpel_y_q4;
(void)dst0;
(void)dst_stride0;
// horizontal filter
const int16_t *x_filter = av1_get_interp_filter_subpel_kernel(
*filter_params_x, subpel_x_q4 & SUBPEL_MASK);
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
CONV_BUF_TYPE res = 0;
for (int k = 0; k < filter_params_x->taps; ++k) {
res += x_filter[k] * src[y * src_stride + x - fo_horiz + k];
}
res = (1 << bits) * ROUND_POWER_OF_TWO(res, conv_params->round_0);
if (conv_params->use_jnt_comp_avg) {
if (conv_params->do_average) {
int32_t tmp = dst[y * dst_stride + x];
tmp = tmp * conv_params->fwd_offset + res * conv_params->bck_offset;
dst[y * dst_stride + x] = tmp >> DIST_PRECISION_BITS;
} else {
dst[y * dst_stride + x] = res;
}
} else {
if (conv_params->do_average) {
int32_t tmp = dst[y * dst_stride + x];
tmp += res;
dst[y * dst_stride + x] = tmp >> 1;
} else {
dst[y * dst_stride + x] = res;
}
}
}
}
}
void av1_jnt_convolve_2d_copy_c(const uint8_t *src, int src_stride,
uint8_t *dst0, int dst_stride0, int w, int h,
InterpFilterParams *filter_params_x,
InterpFilterParams *filter_params_y,
const int subpel_x_q4, const int subpel_y_q4,
ConvolveParams *conv_params) {
CONV_BUF_TYPE *dst = conv_params->dst;
int dst_stride = conv_params->dst_stride;
const int bits =
FILTER_BITS * 2 - conv_params->round_1 - conv_params->round_0;
(void)filter_params_x;
(void)filter_params_y;
(void)subpel_x_q4;
(void)subpel_y_q4;
(void)dst0;
(void)dst_stride0;
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
CONV_BUF_TYPE res = src[y * src_stride + x] << bits;
if (conv_params->use_jnt_comp_avg) {
if (conv_params->do_average) {
int32_t tmp = dst[y * dst_stride + x];
tmp = tmp * conv_params->fwd_offset + res * conv_params->bck_offset;
dst[y * dst_stride + x] = tmp >> DIST_PRECISION_BITS;
} else {
dst[y * dst_stride + x] = res;
}
} else {
if (conv_params->do_average) {
int32_t tmp = dst[y * dst_stride + x];
tmp += res;
dst[y * dst_stride + x] = tmp >> 1;
} else {
dst[y * dst_stride + x] = res;
}
}
}
}
}
void av1_convolve_2d_scale_c(const uint8_t *src, int src_stride,
CONV_BUF_TYPE *dst, int dst_stride, int w, int h,
InterpFilterParams *filter_params_x,
InterpFilterParams *filter_params_y,
const int subpel_x_qn, const int x_step_qn,
const int subpel_y_qn, const int y_step_qn,
ConvolveParams *conv_params) {
int16_t im_block[(2 * MAX_SB_SIZE + MAX_FILTER_TAP) * MAX_SB_SIZE];
int im_h = (((h - 1) * y_step_qn + subpel_y_qn) >> SCALE_SUBPEL_BITS) +
filter_params_y->taps;
int im_stride = w;
const int fo_vert = filter_params_y->taps / 2 - 1;
const int fo_horiz = filter_params_x->taps / 2 - 1;
const int bd = 8;
// horizontal filter
const uint8_t *src_horiz = src - fo_vert * src_stride;
for (int y = 0; y < im_h; ++y) {
int x_qn = subpel_x_qn;
for (int x = 0; x < w; ++x, x_qn += x_step_qn) {
const uint8_t *const src_x = &src_horiz[(x_qn >> SCALE_SUBPEL_BITS)];
const int x_filter_idx = (x_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS;
assert(x_filter_idx < SUBPEL_SHIFTS);
const int16_t *x_filter =
av1_get_interp_filter_subpel_kernel(*filter_params_x, x_filter_idx);
int32_t sum = (1 << (bd + FILTER_BITS - 1));
for (int k = 0; k < filter_params_x->taps; ++k) {
sum += x_filter[k] * src_x[k - fo_horiz];
}
assert(0 <= sum && sum < (1 << (bd + FILTER_BITS + 1)));
im_block[y * im_stride + x] =
(int16_t)ROUND_POWER_OF_TWO(sum, conv_params->round_0);
}
src_horiz += src_stride;
}
// vertical filter
int16_t *src_vert = im_block + fo_vert * im_stride;
const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
for (int x = 0; x < w; ++x) {
int y_qn = subpel_y_qn;
for (int y = 0; y < h; ++y, y_qn += y_step_qn) {
const int16_t *src_y = &src_vert[(y_qn >> SCALE_SUBPEL_BITS) * im_stride];
const int y_filter_idx = (y_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS;
assert(y_filter_idx < SUBPEL_SHIFTS);
const int16_t *y_filter =
av1_get_interp_filter_subpel_kernel(*filter_params_y, y_filter_idx);
CONV_BUF_TYPE sum = 1 << offset_bits;
for (int k = 0; k < filter_params_y->taps; ++k) {
sum += y_filter[k] * src_y[(k - fo_vert) * im_stride];
}
assert(0 <= sum && sum < (1 << (offset_bits + 2)));
CONV_BUF_TYPE res = ROUND_POWER_OF_TWO(sum, conv_params->round_1) -
((1 << (offset_bits - conv_params->round_1)) +
(1 << (offset_bits - conv_params->round_1 - 1)));
if (conv_params->use_jnt_comp_avg) {
if (conv_params->do_average) {
int32_t tmp = dst[y * dst_stride + x];
tmp = tmp * conv_params->fwd_offset + res * conv_params->bck_offset;
dst[y * dst_stride + x] = tmp >> DIST_PRECISION_BITS;
} else {
dst[y * dst_stride + x] = res;
}
} else {
if (conv_params->do_average) {
int32_t tmp = dst[y * dst_stride + x];
tmp += res;
dst[y * dst_stride + x] = tmp >> 1;
} else {
dst[y * dst_stride + x] = res;
}
}
}
src_vert++;
}
}
static void convolve_2d_scale_wrapper(
const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, int w,
int h, InterpFilterParams *filter_params_x,
InterpFilterParams *filter_params_y, const int subpel_x_qn,
const int x_step_qn, const int subpel_y_qn, const int y_step_qn,
ConvolveParams *conv_params) {
if (conv_params->is_compound) {
assert(conv_params->dst != NULL);
av1_convolve_2d_scale(src, src_stride, conv_params->dst,
conv_params->dst_stride, w, h, filter_params_x,
filter_params_y, subpel_x_qn, x_step_qn, subpel_y_qn,
y_step_qn, conv_params);
} else {
CONV_BUF_TYPE tmp_dst[MAX_SB_SIZE * MAX_SB_SIZE];
int tmp_dst_stride = MAX_SB_SIZE;
av1_convolve_2d_scale(src, src_stride, tmp_dst, tmp_dst_stride, w, h,
filter_params_x, filter_params_y, subpel_x_qn,
x_step_qn, subpel_y_qn, y_step_qn, conv_params);
const int rbits =
2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1;
av1_convolve_rounding(tmp_dst, tmp_dst_stride, dst, dst_stride, w, h,
rbits);
}
}
void av1_convolve_2d_facade(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, int w, int h,
InterpFilters interp_filters, const int subpel_x_q4,
int x_step_q4, const int subpel_y_q4, int y_step_q4,
int scaled, ConvolveParams *conv_params,
const struct scale_factors *sf) {
(void)x_step_q4;
(void)y_step_q4;
(void)dst;
(void)dst_stride;
InterpFilterParams filter_params_x, filter_params_y;
#if CONFIG_SHORT_FILTER
av1_get_convolve_filter_params(interp_filters, &filter_params_x,
&filter_params_y, w, h);
#else
av1_get_convolve_filter_params(interp_filters, &filter_params_x,
&filter_params_y);
#endif
if (scaled)
convolve_2d_scale_wrapper(src, src_stride, dst, dst_stride, w, h,
&filter_params_x, &filter_params_y, subpel_x_q4,
x_step_q4, subpel_y_q4, y_step_q4, conv_params);
else
sf->convolve[subpel_x_q4 != 0][subpel_y_q4 != 0][conv_params->is_compound](
src, src_stride, dst, dst_stride, w, h, &filter_params_x,
&filter_params_y, subpel_x_q4, subpel_y_q4, conv_params);
}
void av1_highbd_convolve_rounding_c(const int32_t *src, int src_stride,
uint8_t *dst8, int dst_stride, int w, int h,
int bits, int bd) {
uint16_t *dst = CONVERT_TO_SHORTPTR(dst8);
for (int r = 0; r < h; ++r) {
for (int c = 0; c < w; ++c) {
dst[r * dst_stride + c] = clip_pixel_highbd(
ROUND_POWER_OF_TWO(src[r * src_stride + c], bits), bd);
}
}
}
void av1_highbd_convolve_2d_c(const uint16_t *src, int src_stride,
uint16_t *dst0, int dst_stride0, int w, int h,
InterpFilterParams *filter_params_x,
InterpFilterParams *filter_params_y,
const int subpel_x_q4, const int subpel_y_q4,
ConvolveParams *conv_params, int bd) {
int16_t im_block[(MAX_SB_SIZE + MAX_FILTER_TAP - 1) * MAX_SB_SIZE];
CONV_BUF_TYPE *dst = conv_params->dst;
int dst_stride = conv_params->dst_stride;
int im_h = h + filter_params_y->taps - 1;
int im_stride = w;
const int fo_vert = filter_params_y->taps / 2 - 1;
const int fo_horiz = filter_params_x->taps / 2 - 1;
(void)dst0;
(void)dst_stride0;
// horizontal filter
const uint16_t *src_horiz = src - fo_vert * src_stride;
const int16_t *x_filter = av1_get_interp_filter_subpel_kernel(
*filter_params_x, subpel_x_q4 & SUBPEL_MASK);
for (int y = 0; y < im_h; ++y) {
for (int x = 0; x < w; ++x) {
int32_t sum = (1 << (bd + FILTER_BITS - 1));
for (int k = 0; k < filter_params_x->taps; ++k) {
sum += x_filter[k] * src_horiz[y * src_stride + x - fo_horiz + k];
}
assert(0 <= sum && sum < (1 << (bd + FILTER_BITS + 1)));
(void)bd;
im_block[y * im_stride + x] =
(int16_t)ROUND_POWER_OF_TWO(sum, conv_params->round_0);
}
}
// vertical filter
int16_t *src_vert = im_block + fo_vert * im_stride;
const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
const int16_t *y_filter = av1_get_interp_filter_subpel_kernel(
*filter_params_y, subpel_y_q4 & SUBPEL_MASK);
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
CONV_BUF_TYPE sum = 1 << offset_bits;
for (int k = 0; k < filter_params_y->taps; ++k) {
sum += y_filter[k] * src_vert[(y - fo_vert + k) * im_stride + x];
}
assert(0 <= sum && sum < (1 << (offset_bits + 2)));
CONV_BUF_TYPE res = ROUND_POWER_OF_TWO(sum, conv_params->round_1) -
((1 << (offset_bits - conv_params->round_1)) +
(1 << (offset_bits - conv_params->round_1 - 1)));
if (conv_params->do_average) {
int32_t tmp = dst[y * dst_stride + x];
tmp += res;
dst[y * dst_stride + x] = tmp >> 1;
} else {
dst[y * dst_stride + x] = res;
}
}
}
}
void av1_highbd_convolve_2d_copy_c(const uint16_t *src, int src_stride,
uint16_t *dst0, int dst_stride0, int w,
int h, InterpFilterParams *filter_params_x,
InterpFilterParams *filter_params_y,
const int subpel_x_q4, const int subpel_y_q4,
ConvolveParams *conv_params, int bd) {
CONV_BUF_TYPE *dst = conv_params->dst;
int dst_stride = conv_params->dst_stride;
const int bits =
FILTER_BITS * 2 - conv_params->round_1 - conv_params->round_0;
(void)filter_params_x;
(void)filter_params_y;
(void)subpel_x_q4;
(void)subpel_y_q4;
(void)dst0;
(void)dst_stride0;
(void)bd;
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
CONV_BUF_TYPE res = src[y * src_stride + x] << bits;
if (conv_params->do_average) {
int32_t tmp = dst[y * dst_stride + x];
tmp += res;
dst[y * dst_stride + x] = tmp >> 1;
} else {
dst[y * dst_stride + x] = res;
}
}
}
}
void av1_highbd_convolve_x_c(const uint16_t *src, int src_stride,
uint16_t *dst0, int dst_stride0, int w, int h,
InterpFilterParams *filter_params_x,
InterpFilterParams *filter_params_y,
const int subpel_x_q4, const int subpel_y_q4,
ConvolveParams *conv_params, int bd) {
CONV_BUF_TYPE *dst = conv_params->dst;
int dst_stride = conv_params->dst_stride;
const int fo_horiz = filter_params_x->taps / 2 - 1;
const int bits = FILTER_BITS - conv_params->round_1;
(void)filter_params_y;
(void)subpel_y_q4;
(void)dst0;
(void)dst_stride0;
(void)bd;
assert(bits >= 0);
// horizontal filter
const int16_t *x_filter = av1_get_interp_filter_subpel_kernel(
*filter_params_x, subpel_x_q4 & SUBPEL_MASK);
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
CONV_BUF_TYPE res = 0;
for (int k = 0; k < filter_params_x->taps; ++k) {
res += x_filter[k] * src[y * src_stride + x - fo_horiz + k];
}
res = (1 << bits) * ROUND_POWER_OF_TWO(res, conv_params->round_0);
if (conv_params->do_average) {
int32_t tmp = dst[y * dst_stride + x];
tmp += res;
dst[y * dst_stride + x] = tmp >> 1;
} else {
dst[y * dst_stride + x] = res;
}
}
}
}
void av1_highbd_convolve_y_c(const uint16_t *src, int src_stride,
uint16_t *dst0, int dst_stride0, int w, int h,
InterpFilterParams *filter_params_x,
InterpFilterParams *filter_params_y,
const int subpel_x_q4, const int subpel_y_q4,
ConvolveParams *conv_params, int bd) {
CONV_BUF_TYPE *dst = conv_params->dst;
int dst_stride = conv_params->dst_stride;
const int fo_vert = filter_params_y->taps / 2 - 1;
const int bits = FILTER_BITS - conv_params->round_0;
(void)filter_params_x;
(void)subpel_x_q4;
(void)dst0;
(void)dst_stride0;
(void)bd;
assert(bits >= 0);
// vertical filter
const int16_t *y_filter = av1_get_interp_filter_subpel_kernel(
*filter_params_y, subpel_y_q4 & SUBPEL_MASK);
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
CONV_BUF_TYPE res = 0;
for (int k = 0; k < filter_params_y->taps; ++k) {
res += y_filter[k] * src[(y - fo_vert + k) * src_stride + x];
}
res *= (1 << bits);
res = ROUND_POWER_OF_TWO(res, conv_params->round_1);
if (conv_params->do_average) {
int32_t tmp = dst[y * dst_stride + x];
tmp += res;
dst[y * dst_stride + x] = tmp >> 1;
} else {
dst[y * dst_stride + x] = res;
}
}
}
}
void av1_highbd_convolve_2d_copy_sr_c(
const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride, int w,
int h, InterpFilterParams *filter_params_x,
InterpFilterParams *filter_params_y, const int subpel_x_q4,
const int subpel_y_q4, ConvolveParams *conv_params, int bd) {
(void)filter_params_x;
(void)filter_params_y;
(void)subpel_x_q4;
(void)subpel_y_q4;
(void)conv_params;
(void)bd;
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
dst[y * dst_stride + x] = src[y * src_stride + x];
}
}
}
void av1_highbd_convolve_x_sr_c(const uint16_t *src, int src_stride,
uint16_t *dst, int dst_stride, int w, int h,
InterpFilterParams *filter_params_x,
InterpFilterParams *filter_params_y,
const int subpel_x_q4, const int subpel_y_q4,
ConvolveParams *conv_params, int bd) {
const int fo_horiz = filter_params_x->taps / 2 - 1;
const int bits = FILTER_BITS - conv_params->round_0;
(void)filter_params_y;
(void)subpel_y_q4;
assert(bits >= 0);
assert((FILTER_BITS - conv_params->round_1) >= 0 ||
((conv_params->round_0 + conv_params->round_1) == 2 * FILTER_BITS));
// horizontal filter
const int16_t *x_filter = av1_get_interp_filter_subpel_kernel(
*filter_params_x, subpel_x_q4 & SUBPEL_MASK);
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
CONV_BUF_TYPE res = 0;
for (int k = 0; k < filter_params_x->taps; ++k) {
res += x_filter[k] * src[y * src_stride + x - fo_horiz + k];
}
res = ROUND_POWER_OF_TWO(res, conv_params->round_0);
dst[y * dst_stride + x] =
clip_pixel_highbd(ROUND_POWER_OF_TWO(res, bits), bd);
}
}
}
void av1_highbd_convolve_y_sr_c(const uint16_t *src, int src_stride,
uint16_t *dst, int dst_stride, int w, int h,
InterpFilterParams *filter_params_x,
InterpFilterParams *filter_params_y,
const int subpel_x_q4, const int subpel_y_q4,
ConvolveParams *conv_params, int bd) {
const int fo_vert = filter_params_y->taps / 2 - 1;
(void)filter_params_x;
(void)subpel_x_q4;
(void)conv_params;
assert(conv_params->round_0 <= FILTER_BITS);
assert(((conv_params->round_0 + conv_params->round_1) <= (FILTER_BITS + 1)) ||
((conv_params->round_0 + conv_params->round_1) == (2 * FILTER_BITS)));
// vertical filter
const int16_t *y_filter = av1_get_interp_filter_subpel_kernel(
*filter_params_y, subpel_y_q4 & SUBPEL_MASK);
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
CONV_BUF_TYPE res = 0;
for (int k = 0; k < filter_params_y->taps; ++k) {
res += y_filter[k] * src[(y - fo_vert + k) * src_stride + x];
}
dst[y * dst_stride + x] =
clip_pixel_highbd(ROUND_POWER_OF_TWO(res, FILTER_BITS), bd);
}
}
}
void av1_highbd_convolve_2d_sr_c(const uint16_t *src, int src_stride,
uint16_t *dst, int dst_stride, int w, int h,
InterpFilterParams *filter_params_x,
InterpFilterParams *filter_params_y,
const int subpel_x_q4, const int subpel_y_q4,
ConvolveParams *conv_params, int bd) {
int16_t im_block[(MAX_SB_SIZE + MAX_FILTER_TAP - 1) * MAX_SB_SIZE];
int im_h = h + filter_params_y->taps - 1;
int im_stride = w;
const int fo_vert = filter_params_y->taps / 2 - 1;
const int fo_horiz = filter_params_x->taps / 2 - 1;
const int bits =
FILTER_BITS * 2 - conv_params->round_0 - conv_params->round_1;
// horizontal filter
const uint16_t *src_horiz = src - fo_vert * src_stride;
const int16_t *x_filter = av1_get_interp_filter_subpel_kernel(
*filter_params_x, subpel_x_q4 & SUBPEL_MASK);
for (int y = 0; y < im_h; ++y) {
for (int x = 0; x < w; ++x) {
int32_t sum = (1 << (bd + FILTER_BITS - 1));
for (int k = 0; k < filter_params_x->taps; ++k) {
sum += x_filter[k] * src_horiz[y * src_stride + x - fo_horiz + k];
}
assert(0 <= sum && sum < (1 << (bd + FILTER_BITS + 1)));
im_block[y * im_stride + x] =
ROUND_POWER_OF_TWO(sum, conv_params->round_0);
}
}
// vertical filter
int16_t *src_vert = im_block + fo_vert * im_stride;
const int16_t *y_filter = av1_get_interp_filter_subpel_kernel(
*filter_params_y, subpel_y_q4 & SUBPEL_MASK);
const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
CONV_BUF_TYPE sum = 1 << offset_bits;
for (int k = 0; k < filter_params_y->taps; ++k) {
sum += y_filter[k] * src_vert[(y - fo_vert + k) * im_stride + x];
}
assert(0 <= sum && sum < (1 << (offset_bits + 2)));
CONV_BUF_TYPE res = ROUND_POWER_OF_TWO(sum, conv_params->round_1) -
((1 << (offset_bits - conv_params->round_1)) +
(1 << (offset_bits - conv_params->round_1 - 1)));
dst[y * dst_stride + x] =
clip_pixel_highbd(ROUND_POWER_OF_TWO(res, bits), bd);
}
}
}
void av1_highbd_jnt_convolve_2d_c(const uint16_t *src, int src_stride,
uint16_t *dst0, int dst_stride0, int w, int h,
InterpFilterParams *filter_params_x,
InterpFilterParams *filter_params_y,
const int subpel_x_q4, const int subpel_y_q4,
ConvolveParams *conv_params, int bd) {
int x, y, k;
int16_t im_block[(MAX_SB_SIZE + MAX_FILTER_TAP - 1) * MAX_SB_SIZE];
CONV_BUF_TYPE *dst = conv_params->dst;
int dst_stride = conv_params->dst_stride;
int im_h = h + filter_params_y->taps - 1;
int im_stride = w;
const int fo_vert = filter_params_y->taps / 2 - 1;
const int fo_horiz = filter_params_x->taps / 2 - 1;
(void)dst0;
(void)dst_stride0;
// horizontal filter
const uint16_t *src_horiz = src - fo_vert * src_stride;
const int16_t *x_filter = av1_get_interp_filter_subpel_kernel(
*filter_params_x, subpel_x_q4 & SUBPEL_MASK);
for (y = 0; y < im_h; ++y) {
for (x = 0; x < w; ++x) {
int32_t sum = (1 << (bd + FILTER_BITS - 1));
for (k = 0; k < filter_params_x->taps; ++k) {
sum += x_filter[k] * src_horiz[y * src_stride + x - fo_horiz + k];
}
assert(0 <= sum && sum < (1 << (bd + FILTER_BITS + 1)));
(void)bd;
im_block[y * im_stride + x] =
(int16_t)ROUND_POWER_OF_TWO(sum, conv_params->round_0);
}
}
// vertical filter
int16_t *src_vert = im_block + fo_vert * im_stride;
const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
const int16_t *y_filter = av1_get_interp_filter_subpel_kernel(
*filter_params_y, subpel_y_q4 & SUBPEL_MASK);
for (y = 0; y < h; ++y) {
for (x = 0; x < w; ++x) {
CONV_BUF_TYPE sum = 1 << offset_bits;
for (k = 0; k < filter_params_y->taps; ++k) {
sum += y_filter[k] * src_vert[(y - fo_vert + k) * im_stride + x];
}
assert(0 <= sum && sum < (1 << (offset_bits + 2)));
CONV_BUF_TYPE res = ROUND_POWER_OF_TWO(sum, conv_params->round_1) -
((1 << (offset_bits - conv_params->round_1)) +
(1 << (offset_bits - conv_params->round_1 - 1)));
if (conv_params->use_jnt_comp_avg) {
if (conv_params->do_average) {
int32_t tmp = dst[y * dst_stride + x];
tmp = tmp * conv_params->fwd_offset + res * conv_params->bck_offset;
dst[y * dst_stride + x] = tmp >> DIST_PRECISION_BITS;
} else {
dst[y * dst_stride + x] = res;
}
} else {
if (conv_params->do_average) {
int32_t tmp = dst[y * dst_stride + x];
tmp += res;
dst[y * dst_stride + x] = tmp >> 1;
} else {
dst[y * dst_stride + x] = res;
}
}
}
}
}
void av1_highbd_jnt_convolve_x_c(const uint16_t *src, int src_stride,
uint16_t *dst0, int dst_stride0, int w, int h,
InterpFilterParams *filter_params_x,
InterpFilterParams *filter_params_y,
const int subpel_x_q4, const int subpel_y_q4,
ConvolveParams *conv_params, int bd) {
CONV_BUF_TYPE *dst = conv_params->dst;
int dst_stride = conv_params->dst_stride;
const int fo_horiz = filter_params_x->taps / 2 - 1;
const int bits = FILTER_BITS - conv_params->round_1;
(void)filter_params_y;
(void)subpel_y_q4;
(void)dst0;
(void)dst_stride0;
(void)bd;
assert(bits >= 0);
// horizontal filter
const int16_t *x_filter = av1_get_interp_filter_subpel_kernel(
*filter_params_x, subpel_x_q4 & SUBPEL_MASK);
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
CONV_BUF_TYPE res = 0;
for (int k = 0; k < filter_params_x->taps; ++k) {
res += x_filter[k] * src[y * src_stride + x - fo_horiz + k];
}
res = (1 << bits) * ROUND_POWER_OF_TWO(res, conv_params->round_0);
if (conv_params->use_jnt_comp_avg) {
if (conv_params->do_average) {
int32_t tmp = dst[y * dst_stride + x];
tmp = tmp * conv_params->fwd_offset + res * conv_params->bck_offset;
dst[y * dst_stride + x] = tmp >> DIST_PRECISION_BITS;
} else {
dst[y * dst_stride + x] = res;
}
} else {
if (conv_params->do_average) {
int32_t tmp = dst[y * dst_stride + x];
tmp += res;
dst[y * dst_stride + x] = tmp >> 1;
} else {
dst[y * dst_stride + x] = res;
}
}
}
}
}
void av1_highbd_jnt_convolve_y_c(const uint16_t *src, int src_stride,
uint16_t *dst0, int dst_stride0, int w, int h,
InterpFilterParams *filter_params_x,
InterpFilterParams *filter_params_y,
const int subpel_x_q4, const int subpel_y_q4,
ConvolveParams *conv_params, int bd) {
CONV_BUF_TYPE *dst = conv_params->dst;
int dst_stride = conv_params->dst_stride;
const int fo_vert = filter_params_y->taps / 2 - 1;
const int bits = FILTER_BITS - conv_params->round_0;
(void)filter_params_x;
(void)subpel_x_q4;
(void)dst0;
(void)dst_stride0;
(void)bd;
assert(bits >= 0);
// vertical filter
const int16_t *y_filter = av1_get_interp_filter_subpel_kernel(
*filter_params_y, subpel_y_q4 & SUBPEL_MASK);
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
CONV_BUF_TYPE res = 0;
for (int k = 0; k < filter_params_y->taps; ++k) {
res += y_filter[k] * src[(y - fo_vert + k) * src_stride + x];
}
res *= (1 << bits);
res = ROUND_POWER_OF_TWO(res, conv_params->round_1);
if (conv_params->use_jnt_comp_avg) {
if (conv_params->do_average) {
int32_t tmp = dst[y * dst_stride + x];
tmp = tmp * conv_params->fwd_offset + res * conv_params->bck_offset;
dst[y * dst_stride + x] = tmp >> DIST_PRECISION_BITS;
} else {
dst[y * dst_stride + x] = res;
}
} else {
if (conv_params->do_average) {
int32_t tmp = dst[y * dst_stride + x];
tmp += res;
dst[y * dst_stride + x] = tmp >> 1;
} else {
dst[y * dst_stride + x] = res;
}
}
}
}
}
void av1_highbd_jnt_convolve_2d_copy_c(
const uint16_t *src, int src_stride, uint16_t *dst0, int dst_stride0, int w,
int h, InterpFilterParams *filter_params_x,
InterpFilterParams *filter_params_y, const int subpel_x_q4,
const int subpel_y_q4, ConvolveParams *conv_params, int bd) {
CONV_BUF_TYPE *dst = conv_params->dst;
int dst_stride = conv_params->dst_stride;
const int bits =
FILTER_BITS * 2 - conv_params->round_1 - conv_params->round_0;
(void)filter_params_x;
(void)filter_params_y;
(void)subpel_x_q4;
(void)subpel_y_q4;
(void)dst0;
(void)dst_stride0;
(void)bd;
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
CONV_BUF_TYPE res = src[y * src_stride + x] << bits;
if (conv_params->use_jnt_comp_avg) {
if (conv_params->do_average) {
int32_t tmp = dst[y * dst_stride + x];
tmp = tmp * conv_params->fwd_offset + res * conv_params->bck_offset;
dst[y * dst_stride + x] = tmp >> DIST_PRECISION_BITS;
} else {
dst[y * dst_stride + x] = res;
}
} else {
if (conv_params->do_average) {
int32_t tmp = dst[y * dst_stride + x];
tmp += res;
dst[y * dst_stride + x] = tmp >> 1;
} else {
dst[y * dst_stride + x] = res;
}
}
}
}
}
void av1_highbd_convolve_2d_scale_c(const uint16_t *src, int src_stride,
CONV_BUF_TYPE *dst, int dst_stride, int w,
int h, InterpFilterParams *filter_params_x,
InterpFilterParams *filter_params_y,
const int subpel_x_qn, const int x_step_qn,
const int subpel_y_qn, const int y_step_qn,
ConvolveParams *conv_params, int bd) {
int16_t im_block[(2 * MAX_SB_SIZE + MAX_FILTER_TAP) * MAX_SB_SIZE];
int im_h = (((h - 1) * y_step_qn + subpel_y_qn) >> SCALE_SUBPEL_BITS) +
filter_params_y->taps;
int im_stride = w;
const int fo_vert = filter_params_y->taps / 2 - 1;
const int fo_horiz = filter_params_x->taps / 2 - 1;
// horizontal filter
const uint16_t *src_horiz = src - fo_vert * src_stride;
for (int y = 0; y < im_h; ++y) {
int x_qn = subpel_x_qn;
for (int x = 0; x < w; ++x, x_qn += x_step_qn) {
const uint16_t *const src_x = &src_horiz[(x_qn >> SCALE_SUBPEL_BITS)];
const int x_filter_idx = (x_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS;
assert(x_filter_idx < SUBPEL_SHIFTS);
const int16_t *x_filter =
av1_get_interp_filter_subpel_kernel(*filter_params_x, x_filter_idx);
int32_t sum = (1 << (bd + FILTER_BITS - 1));
for (int k = 0; k < filter_params_x->taps; ++k) {
sum += x_filter[k] * src_x[k - fo_horiz];
}
assert(0 <= sum && sum < (1 << (bd + FILTER_BITS + 1)));
im_block[y * im_stride + x] =
(int16_t)ROUND_POWER_OF_TWO(sum, conv_params->round_0);
}
src_horiz += src_stride;
}
// vertical filter
int16_t *src_vert = im_block + fo_vert * im_stride;
const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
for (int x = 0; x < w; ++x) {
int y_qn = subpel_y_qn;
for (int y = 0; y < h; ++y, y_qn += y_step_qn) {
const int16_t *src_y = &src_vert[(y_qn >> SCALE_SUBPEL_BITS) * im_stride];
const int y_filter_idx = (y_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS;
assert(y_filter_idx < SUBPEL_SHIFTS);
const int16_t *y_filter =
av1_get_interp_filter_subpel_kernel(*filter_params_y, y_filter_idx);
CONV_BUF_TYPE sum = 1 << offset_bits;
for (int k = 0; k < filter_params_y->taps; ++k) {
sum += y_filter[k] * src_y[(k - fo_vert) * im_stride];
}
assert(0 <= sum && sum < (1 << (offset_bits + 2)));
CONV_BUF_TYPE res = ROUND_POWER_OF_TWO(sum, conv_params->round_1) -
((1 << (offset_bits - conv_params->round_1)) +
(1 << (offset_bits - conv_params->round_1 - 1)));
if (conv_params->use_jnt_comp_avg) {
if (conv_params->do_average) {
int32_t tmp = dst[y * dst_stride + x];
tmp = tmp * conv_params->fwd_offset + res * conv_params->bck_offset;
dst[y * dst_stride + x] = tmp >> DIST_PRECISION_BITS;
} else {
dst[y * dst_stride + x] = res;
}
} else {
if (conv_params->do_average) {
int32_t tmp = dst[y * dst_stride + x];
tmp += res;
dst[y * dst_stride + x] = tmp >> 1;
} else {
dst[y * dst_stride + x] = res;
}
}
}
src_vert++;
}
}
void av1_highbd_convolve_2d_facade(const uint8_t *src8, int src_stride,
uint8_t *dst8, int dst_stride, int w, int h,
InterpFilters interp_filters,
const int subpel_x_q4, int x_step_q4,
const int subpel_y_q4, int y_step_q4,
int scaled, ConvolveParams *conv_params,
const struct scale_factors *sf, int bd) {
(void)x_step_q4;
(void)y_step_q4;
(void)dst_stride;
const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
InterpFilterParams filter_params_x, filter_params_y;
#if CONFIG_SHORT_FILTER
av1_get_convolve_filter_params(interp_filters, &filter_params_x,
&filter_params_y, w, h);
#else
av1_get_convolve_filter_params(interp_filters, &filter_params_x,
&filter_params_y);
#endif
if (scaled) {
if (conv_params->is_compound) {
av1_highbd_convolve_2d_scale(
src, src_stride, conv_params->dst, conv_params->dst_stride, w, h,
&filter_params_x, &filter_params_y, subpel_x_q4, x_step_q4,
subpel_y_q4, y_step_q4, conv_params, bd);
} else {
CONV_BUF_TYPE tmp_dst[MAX_SB_SIZE * MAX_SB_SIZE];
int tmp_dst_stride = MAX_SB_SIZE;
av1_highbd_convolve_2d_scale(src, src_stride, tmp_dst, tmp_dst_stride, w,
h, &filter_params_x, &filter_params_y,
subpel_x_q4, x_step_q4, subpel_y_q4,
y_step_q4, conv_params, bd);
// 0-bit rounding just to convert from int32 to uint16
const int rbits =
2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1;
assert(rbits >= 0);
av1_highbd_convolve_rounding(tmp_dst, tmp_dst_stride, dst8, dst_stride, w,
h, rbits, bd);
}
} else {
uint16_t *dst = CONVERT_TO_SHORTPTR(dst8);
sf->highbd_convolve[subpel_x_q4 != 0][subpel_y_q4 !=
0][conv_params->is_compound](
src, src_stride, dst, dst_stride, w, h, &filter_params_x,
&filter_params_y, subpel_x_q4, subpel_y_q4, conv_params, bd);
}
}