blob: 6be210129e1af2464d827142c4675f3f9cb8e061 [file] [log] [blame]
/*
* Copyright (c) 2017, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
// Lightfield Encoder
// ==================
//
// This is an example of a simple lightfield encoder. It builds upon the
// twopass_encoder.c example. It takes an input file in YV12 format,
// treating it as a planar lightfield instead of a video. The img_width
// and img_height arguments are the dimensions of the lightfield images,
// while the lf_width and lf_height arguments are the number of
// lightfield images in each dimension. The lf_blocksize determines the
// number of reference images used for MCP. For example, 5 means that there
// is a reference image for every 5x5 lightfield image block. All images
// within a block will use the center image in that block as the reference
// image for MCP.
// Run "make test" to download lightfield test data: vase10x10.yuv.
// Run lightfield encoder to encode whole lightfield:
// examples/lightfield_encoder 1024 1024 vase10x10.yuv vase10x10.ivf 10 10 5
// Note: In bitstream.c and encoder.c, define EXT_TILE_DEBUG as 1 will print
// out the uncompressed header and the frame contexts, which can be used to
// test the bit exactness of the headers and the frame contexts for large scale
// tile coded frames.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "aom/aom_encoder.h"
#include "aom/aomcx.h"
#include "aom_scale/yv12config.h"
#include "av1/common/enums.h"
#include "common/tools_common.h"
#include "common/video_writer.h"
static const char *exec_name;
void usage_exit(void) {
fprintf(stderr,
"Usage: %s <img_width> <img_height> <infile> <outfile> "
"<lf_width> <lf_height> <lf_blocksize>\n",
exec_name);
exit(EXIT_FAILURE);
}
static int img_size_bytes(aom_image_t *img) {
int image_size_bytes = 0;
int plane;
for (plane = 0; plane < 3; ++plane) {
const int w = aom_img_plane_width(img, plane) *
((img->fmt & AOM_IMG_FMT_HIGHBITDEPTH) ? 2 : 1);
const int h = aom_img_plane_height(img, plane);
image_size_bytes += w * h;
}
return image_size_bytes;
}
static int get_frame_stats(aom_codec_ctx_t *ctx, const aom_image_t *img,
aom_codec_pts_t pts, unsigned int duration,
aom_enc_frame_flags_t flags,
aom_fixed_buf_t *stats) {
int got_pkts = 0;
aom_codec_iter_t iter = NULL;
const aom_codec_cx_pkt_t *pkt = NULL;
const aom_codec_err_t res = aom_codec_encode(ctx, img, pts, duration, flags);
if (res != AOM_CODEC_OK) die_codec(ctx, "Failed to get frame stats.");
while ((pkt = aom_codec_get_cx_data(ctx, &iter)) != NULL) {
got_pkts = 1;
if (pkt->kind == AOM_CODEC_STATS_PKT) {
const uint8_t *const pkt_buf = pkt->data.twopass_stats.buf;
const size_t pkt_size = pkt->data.twopass_stats.sz;
stats->buf = realloc(stats->buf, stats->sz + pkt_size);
if (!stats->buf) die("Failed to allocate frame stats buffer.");
memcpy((uint8_t *)stats->buf + stats->sz, pkt_buf, pkt_size);
stats->sz += pkt_size;
}
}
return got_pkts;
}
static int encode_frame(aom_codec_ctx_t *ctx, const aom_image_t *img,
aom_codec_pts_t pts, unsigned int duration,
aom_enc_frame_flags_t flags, AvxVideoWriter *writer) {
int got_pkts = 0;
aom_codec_iter_t iter = NULL;
const aom_codec_cx_pkt_t *pkt = NULL;
const aom_codec_err_t res = aom_codec_encode(ctx, img, pts, duration, flags);
if (res != AOM_CODEC_OK) die_codec(ctx, "Failed to encode frame.");
while ((pkt = aom_codec_get_cx_data(ctx, &iter)) != NULL) {
got_pkts = 1;
if (pkt->kind == AOM_CODEC_CX_FRAME_PKT) {
const int keyframe = (pkt->data.frame.flags & AOM_FRAME_IS_KEY) != 0;
if (!aom_video_writer_write_frame(writer, pkt->data.frame.buf,
pkt->data.frame.sz,
pkt->data.frame.pts))
die_codec(ctx, "Failed to write compressed frame.");
printf(keyframe ? "K" : ".");
fflush(stdout);
}
}
return got_pkts;
}
static void get_raw_image(aom_image_t **frame_to_encode, aom_image_t *raw,
aom_image_t *raw_shift) {
if (FORCE_HIGHBITDEPTH_DECODING) {
// Need to allocate larger buffer to use hbd internal.
int input_shift = 0;
aom_img_upshift(raw_shift, raw, input_shift);
*frame_to_encode = raw_shift;
} else {
*frame_to_encode = raw;
}
}
static aom_fixed_buf_t pass0(aom_image_t *raw, FILE *infile,
aom_codec_iface_t *encoder,
const aom_codec_enc_cfg_t *cfg, int lf_width,
int lf_height, int lf_blocksize, int flags,
aom_image_t *raw_shift) {
aom_codec_ctx_t codec;
int frame_count = 0;
int image_size_bytes = img_size_bytes(raw);
int u_blocks, v_blocks;
int bu, bv;
aom_fixed_buf_t stats = { NULL, 0 };
aom_image_t *frame_to_encode;
if (aom_codec_enc_init(&codec, encoder, cfg, flags))
die("Failed to initialize encoder");
if (aom_codec_control(&codec, AOME_SET_ENABLEAUTOALTREF, 0))
die_codec(&codec, "Failed to turn off auto altref");
if (aom_codec_control(&codec, AV1E_SET_FRAME_PARALLEL_DECODING, 0))
die_codec(&codec, "Failed to set frame parallel decoding");
// How many reference images we need to encode.
u_blocks = (lf_width + lf_blocksize - 1) / lf_blocksize;
v_blocks = (lf_height + lf_blocksize - 1) / lf_blocksize;
printf("\n First pass: ");
for (bv = 0; bv < v_blocks; ++bv) {
for (bu = 0; bu < u_blocks; ++bu) {
const int block_u_min = bu * lf_blocksize;
const int block_v_min = bv * lf_blocksize;
int block_u_end = (bu + 1) * lf_blocksize;
int block_v_end = (bv + 1) * lf_blocksize;
int u_block_size, v_block_size;
int block_ref_u, block_ref_v;
block_u_end = block_u_end < lf_width ? block_u_end : lf_width;
block_v_end = block_v_end < lf_height ? block_v_end : lf_height;
u_block_size = block_u_end - block_u_min;
v_block_size = block_v_end - block_v_min;
block_ref_u = block_u_min + u_block_size / 2;
block_ref_v = block_v_min + v_block_size / 2;
printf("A%d, ", (block_ref_u + block_ref_v * lf_width));
fseek(infile, (block_ref_u + block_ref_v * lf_width) * image_size_bytes,
SEEK_SET);
aom_img_read(raw, infile);
get_raw_image(&frame_to_encode, raw, raw_shift);
// Reference frames can be encoded encoded without tiles.
++frame_count;
get_frame_stats(&codec, frame_to_encode, frame_count, 1,
AOM_EFLAG_NO_REF_LAST2 | AOM_EFLAG_NO_REF_LAST3 |
AOM_EFLAG_NO_REF_GF | AOM_EFLAG_NO_REF_ARF |
AOM_EFLAG_NO_REF_BWD | AOM_EFLAG_NO_REF_ARF2 |
AOM_EFLAG_NO_UPD_LAST | AOM_EFLAG_NO_UPD_GF |
AOM_EFLAG_NO_UPD_ARF,
&stats);
}
}
if (aom_codec_control(&codec, AV1E_SET_FRAME_PARALLEL_DECODING, 1))
die_codec(&codec, "Failed to set frame parallel decoding");
for (bv = 0; bv < v_blocks; ++bv) {
for (bu = 0; bu < u_blocks; ++bu) {
const int block_u_min = bu * lf_blocksize;
const int block_v_min = bv * lf_blocksize;
int block_u_end = (bu + 1) * lf_blocksize;
int block_v_end = (bv + 1) * lf_blocksize;
int u, v;
block_u_end = block_u_end < lf_width ? block_u_end : lf_width;
block_v_end = block_v_end < lf_height ? block_v_end : lf_height;
for (v = block_v_min; v < block_v_end; ++v) {
for (u = block_u_min; u < block_u_end; ++u) {
printf("C%d, ", (u + v * lf_width));
fseek(infile, (u + v * lf_width) * image_size_bytes, SEEK_SET);
aom_img_read(raw, infile);
get_raw_image(&frame_to_encode, raw, raw_shift);
++frame_count;
get_frame_stats(&codec, frame_to_encode, frame_count, 1,
AOM_EFLAG_NO_REF_LAST2 | AOM_EFLAG_NO_REF_LAST3 |
AOM_EFLAG_NO_REF_GF | AOM_EFLAG_NO_REF_ARF |
AOM_EFLAG_NO_REF_BWD | AOM_EFLAG_NO_REF_ARF2 |
AOM_EFLAG_NO_UPD_LAST | AOM_EFLAG_NO_UPD_GF |
AOM_EFLAG_NO_UPD_ARF | AOM_EFLAG_NO_UPD_ENTROPY,
&stats);
}
}
}
}
// Flush encoder.
// No ARF, this should not be needed.
while (get_frame_stats(&codec, NULL, frame_count, 1, 0, &stats)) {
}
if (aom_codec_destroy(&codec)) die_codec(&codec, "Failed to destroy codec.");
printf("\nFirst pass complete. Processed %d frames.\n", frame_count);
return stats;
}
static void pass1(aom_image_t *raw, FILE *infile, const char *outfile_name,
aom_codec_iface_t *encoder, aom_codec_enc_cfg_t *cfg,
int lf_width, int lf_height, int lf_blocksize, int flags,
aom_image_t *raw_shift) {
AvxVideoInfo info = { get_fourcc_by_aom_encoder(encoder),
cfg->g_w,
cfg->g_h,
{ cfg->g_timebase.num, cfg->g_timebase.den },
0 };
AvxVideoWriter *writer = NULL;
aom_codec_ctx_t codec;
int frame_count = 0;
int image_size_bytes = img_size_bytes(raw);
int bu, bv;
int u_blocks, v_blocks;
aom_image_t *frame_to_encode;
aom_image_t reference_images[MAX_EXTERNAL_REFERENCES];
int reference_image_num = 0;
int i;
writer = aom_video_writer_open(outfile_name, kContainerIVF, &info);
if (!writer) die("Failed to open %s for writing", outfile_name);
if (aom_codec_enc_init(&codec, encoder, cfg, flags))
die("Failed to initialize encoder");
if (aom_codec_control(&codec, AOME_SET_ENABLEAUTOALTREF, 0))
die_codec(&codec, "Failed to turn off auto altref");
if (aom_codec_control(&codec, AV1E_SET_FRAME_PARALLEL_DECODING, 0))
die_codec(&codec, "Failed to set frame parallel decoding");
if (aom_codec_control(&codec, AV1E_ENABLE_EXT_TILE_DEBUG, 1))
die_codec(&codec, "Failed to enable encoder ext_tile debug");
if (aom_codec_control(&codec, AOME_SET_CPUUSED, 3))
die_codec(&codec, "Failed to set cpu-used");
// Note: The superblock is a sequence parameter and has to be the same for 1
// sequence. In lightfield application, must choose the superblock size(either
// 64x64 or 128x128) before the encoding starts. Otherwise, the default is
// AOM_SUPERBLOCK_SIZE_DYNAMIC, and the superblock size will be set to 64x64
// internally.
if (aom_codec_control(&codec, AV1E_SET_SUPERBLOCK_SIZE,
AOM_SUPERBLOCK_SIZE_64X64))
die_codec(&codec, "Failed to set SB size");
u_blocks = (lf_width + lf_blocksize - 1) / lf_blocksize;
v_blocks = (lf_height + lf_blocksize - 1) / lf_blocksize;
reference_image_num = u_blocks * v_blocks;
// Set the max gf group length so the references are guaranteed to be in
// a different gf group than any of the regular frames. This avoids using
// both vbr and constant quality mode in a single group. The number of
// references now cannot surpass 17 because of the enforced MAX_GF_INTERVAL of
// 16. If it is necessary to exceed this reference frame limit, one will have
// to do some additional handling to ensure references are in separate gf
// groups from the regular frames.
if (aom_codec_control(&codec, AV1E_SET_MAX_GF_INTERVAL,
reference_image_num - 1))
die_codec(&codec, "Failed to set max gf interval");
aom_img_fmt_t ref_fmt = AOM_IMG_FMT_I420;
if (FORCE_HIGHBITDEPTH_DECODING) ref_fmt |= AOM_IMG_FMT_HIGHBITDEPTH;
// Allocate memory with the border so that it can be used as a reference.
int border_in_pixels =
(codec.config.enc->rc_resize_mode || codec.config.enc->rc_superres_mode)
? AOM_BORDER_IN_PIXELS
: AOM_ENC_NO_SCALE_BORDER;
for (i = 0; i < reference_image_num; i++) {
if (!aom_img_alloc_with_border(&reference_images[i], ref_fmt, cfg->g_w,
cfg->g_h, 32, 8, border_in_pixels)) {
die("Failed to allocate image.");
}
}
printf("\n Second pass: ");
// Encode reference images first.
printf("Encoding Reference Images\n");
for (bv = 0; bv < v_blocks; ++bv) {
for (bu = 0; bu < u_blocks; ++bu) {
const int block_u_min = bu * lf_blocksize;
const int block_v_min = bv * lf_blocksize;
int block_u_end = (bu + 1) * lf_blocksize;
int block_v_end = (bv + 1) * lf_blocksize;
int u_block_size, v_block_size;
int block_ref_u, block_ref_v;
block_u_end = block_u_end < lf_width ? block_u_end : lf_width;
block_v_end = block_v_end < lf_height ? block_v_end : lf_height;
u_block_size = block_u_end - block_u_min;
v_block_size = block_v_end - block_v_min;
block_ref_u = block_u_min + u_block_size / 2;
block_ref_v = block_v_min + v_block_size / 2;
printf("A%d, ", (block_ref_u + block_ref_v * lf_width));
fseek(infile, (block_ref_u + block_ref_v * lf_width) * image_size_bytes,
SEEK_SET);
aom_img_read(raw, infile);
get_raw_image(&frame_to_encode, raw, raw_shift);
// Reference frames may be encoded without tiles.
++frame_count;
printf("Encoding reference image %d of %d\n", bv * u_blocks + bu,
u_blocks * v_blocks);
encode_frame(&codec, frame_to_encode, frame_count, 1,
AOM_EFLAG_NO_REF_LAST2 | AOM_EFLAG_NO_REF_LAST3 |
AOM_EFLAG_NO_REF_GF | AOM_EFLAG_NO_REF_ARF |
AOM_EFLAG_NO_REF_BWD | AOM_EFLAG_NO_REF_ARF2 |
AOM_EFLAG_NO_UPD_LAST | AOM_EFLAG_NO_UPD_GF |
AOM_EFLAG_NO_UPD_ARF | AOM_EFLAG_NO_UPD_ENTROPY,
writer);
if (aom_codec_control(&codec, AV1_COPY_NEW_FRAME_IMAGE,
&reference_images[frame_count - 1]))
die_codec(&codec, "Failed to copy decoder reference frame");
}
}
cfg->large_scale_tile = 1;
// Fixed q encoding for camera frames.
cfg->rc_end_usage = AOM_Q;
if (aom_codec_enc_config_set(&codec, cfg))
die_codec(&codec, "Failed to configure encoder");
// The fixed q value used in encoding.
if (aom_codec_control(&codec, AOME_SET_CQ_LEVEL, 36))
die_codec(&codec, "Failed to set cq level");
if (aom_codec_control(&codec, AV1E_SET_FRAME_PARALLEL_DECODING, 1))
die_codec(&codec, "Failed to set frame parallel decoding");
if (aom_codec_control(&codec, AV1E_SET_SINGLE_TILE_DECODING, 1))
die_codec(&codec, "Failed to turn on single tile decoding");
// Set tile_columns and tile_rows to MAX values, which guarantees the tile
// size of 64 x 64 pixels(i.e. 1 SB) for <= 4k resolution.
if (aom_codec_control(&codec, AV1E_SET_TILE_COLUMNS, 6))
die_codec(&codec, "Failed to set tile width");
if (aom_codec_control(&codec, AV1E_SET_TILE_ROWS, 6))
die_codec(&codec, "Failed to set tile height");
for (bv = 0; bv < v_blocks; ++bv) {
for (bu = 0; bu < u_blocks; ++bu) {
const int block_u_min = bu * lf_blocksize;
const int block_v_min = bv * lf_blocksize;
int block_u_end = (bu + 1) * lf_blocksize;
int block_v_end = (bv + 1) * lf_blocksize;
int u, v;
block_u_end = block_u_end < lf_width ? block_u_end : lf_width;
block_v_end = block_v_end < lf_height ? block_v_end : lf_height;
for (v = block_v_min; v < block_v_end; ++v) {
for (u = block_u_min; u < block_u_end; ++u) {
av1_ref_frame_t ref;
ref.idx = 0;
ref.use_external_ref = 1;
ref.img = reference_images[bv * u_blocks + bu];
if (aom_codec_control(&codec, AV1_SET_REFERENCE, &ref))
die_codec(&codec, "Failed to set reference frame");
printf("C%d, ", (u + v * lf_width));
fseek(infile, (u + v * lf_width) * image_size_bytes, SEEK_SET);
aom_img_read(raw, infile);
get_raw_image(&frame_to_encode, raw, raw_shift);
++frame_count;
printf("Encoding image %d of %d\n",
frame_count - (u_blocks * v_blocks), lf_width * lf_height);
encode_frame(&codec, frame_to_encode, frame_count, 1,
AOM_EFLAG_NO_REF_LAST2 | AOM_EFLAG_NO_REF_LAST3 |
AOM_EFLAG_NO_REF_GF | AOM_EFLAG_NO_REF_ARF |
AOM_EFLAG_NO_REF_BWD | AOM_EFLAG_NO_REF_ARF2 |
AOM_EFLAG_NO_UPD_LAST | AOM_EFLAG_NO_UPD_GF |
AOM_EFLAG_NO_UPD_ARF | AOM_EFLAG_NO_UPD_ENTROPY,
writer);
}
}
}
}
// Flush encoder.
// No ARF, this should not be needed.
while (encode_frame(&codec, NULL, -1, 1, 0, writer)) {
}
for (i = 0; i < reference_image_num; i++) aom_img_free(&reference_images[i]);
if (aom_codec_destroy(&codec)) die_codec(&codec, "Failed to destroy codec.");
// Modify large_scale_file fourcc.
if (cfg->large_scale_tile == 1)
aom_video_writer_set_fourcc(writer, LST_FOURCC);
aom_video_writer_close(writer);
printf("\nSecond pass complete. Processed %d frames.\n", frame_count);
}
int main(int argc, char **argv) {
FILE *infile = NULL;
int w, h;
// The number of lightfield images in the u and v dimensions.
int lf_width, lf_height;
// Defines how many images refer to the same reference image for MCP.
// lf_blocksize X lf_blocksize images will all use the reference image
// in the middle of the block of images.
int lf_blocksize;
aom_codec_ctx_t codec;
aom_codec_enc_cfg_t cfg;
aom_image_t raw;
aom_image_t raw_shift;
aom_codec_err_t res;
aom_fixed_buf_t stats;
int flags = 0;
const int fps = 30;
const int bitrate = 200; // kbit/s
const char *const width_arg = argv[1];
const char *const height_arg = argv[2];
const char *const infile_arg = argv[3];
const char *const outfile_arg = argv[4];
const char *const lf_width_arg = argv[5];
const char *const lf_height_arg = argv[6];
const char *lf_blocksize_arg = argv[7];
exec_name = argv[0];
if (argc < 8) die("Invalid number of arguments");
aom_codec_iface_t *encoder = get_aom_encoder_by_short_name("av1");
if (!encoder) die("Unsupported codec.");
w = (int)strtol(width_arg, NULL, 0);
h = (int)strtol(height_arg, NULL, 0);
lf_width = (int)strtol(lf_width_arg, NULL, 0);
lf_height = (int)strtol(lf_height_arg, NULL, 0);
lf_blocksize = (int)strtol(lf_blocksize_arg, NULL, 0);
lf_blocksize = lf_blocksize < lf_width ? lf_blocksize : lf_width;
lf_blocksize = lf_blocksize < lf_height ? lf_blocksize : lf_height;
if (w <= 0 || h <= 0 || (w % 2) != 0 || (h % 2) != 0)
die("Invalid frame size: %dx%d", w, h);
if (lf_width <= 0 || lf_height <= 0)
die("Invalid lf_width and/or lf_height: %dx%d", lf_width, lf_height);
if (lf_blocksize <= 0) die("Invalid lf_blocksize: %d", lf_blocksize);
if (!aom_img_alloc(&raw, AOM_IMG_FMT_I420, w, h, 32)) {
die("Failed to allocate image.");
}
if (FORCE_HIGHBITDEPTH_DECODING) {
// Need to allocate larger buffer to use hbd internal.
aom_img_alloc(&raw_shift, AOM_IMG_FMT_I420 | AOM_IMG_FMT_HIGHBITDEPTH, w, h,
32);
}
printf("Using %s\n", aom_codec_iface_name(encoder));
// Configuration
res = aom_codec_enc_config_default(encoder, &cfg, 0);
if (res) die_codec(&codec, "Failed to get default codec config.");
cfg.g_w = w;
cfg.g_h = h;
cfg.g_timebase.num = 1;
cfg.g_timebase.den = fps;
cfg.rc_target_bitrate = bitrate;
cfg.g_error_resilient = 0; // This is required.
cfg.g_lag_in_frames = 0; // need to set this since default is 19.
cfg.kf_mode = AOM_KF_DISABLED;
cfg.large_scale_tile = 0; // Only set it to 1 for camera frame encoding.
cfg.g_bit_depth = AOM_BITS_8;
flags |= (cfg.g_bit_depth > AOM_BITS_8 || FORCE_HIGHBITDEPTH_DECODING)
? AOM_CODEC_USE_HIGHBITDEPTH
: 0;
if (!(infile = fopen(infile_arg, "rb")))
die("Failed to open %s for reading", infile_arg);
// Pass 0
cfg.g_pass = AOM_RC_FIRST_PASS;
stats = pass0(&raw, infile, encoder, &cfg, lf_width, lf_height, lf_blocksize,
flags, &raw_shift);
// Pass 1
rewind(infile);
cfg.g_pass = AOM_RC_LAST_PASS;
cfg.rc_twopass_stats_in = stats;
pass1(&raw, infile, outfile_arg, encoder, &cfg, lf_width, lf_height,
lf_blocksize, flags, &raw_shift);
free(stats.buf);
if (FORCE_HIGHBITDEPTH_DECODING) aom_img_free(&raw_shift);
aom_img_free(&raw);
fclose(infile);
return EXIT_SUCCESS;
}