| /* |
| * Copyright (c) 2010 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include <assert.h> |
| #include <limits.h> |
| #include <math.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include "vpx_mem/vpx_mem.h" |
| #include "vpx_ports/mem.h" |
| #include "vpx_ports/system_state.h" |
| |
| #include "vp10/common/alloccommon.h" |
| #include "vp10/encoder/aq_cyclicrefresh.h" |
| #include "vp10/common/common.h" |
| #include "vp10/common/entropymode.h" |
| #include "vp10/common/quant_common.h" |
| #include "vp10/common/seg_common.h" |
| |
| #include "vp10/encoder/encodemv.h" |
| #include "vp10/encoder/ratectrl.h" |
| |
| // Max rate target for 1080P and below encodes under normal circumstances |
| // (1920 * 1080 / (16 * 16)) * MAX_MB_RATE bits per MB |
| #define MAX_MB_RATE 250 |
| #define MAXRATE_1080P 2025000 |
| |
| #define DEFAULT_KF_BOOST 2000 |
| #define DEFAULT_GF_BOOST 2000 |
| |
| #define LIMIT_QRANGE_FOR_ALTREF_AND_KEY 1 |
| |
| #define MIN_BPB_FACTOR 0.005 |
| #define MAX_BPB_FACTOR 50 |
| |
| #define FRAME_OVERHEAD_BITS 200 |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| #define ASSIGN_MINQ_TABLE(bit_depth, name) \ |
| do { \ |
| switch (bit_depth) { \ |
| case VPX_BITS_8: \ |
| name = name##_8; \ |
| break; \ |
| case VPX_BITS_10: \ |
| name = name##_10; \ |
| break; \ |
| case VPX_BITS_12: \ |
| name = name##_12; \ |
| break; \ |
| default: \ |
| assert(0 && "bit_depth should be VPX_BITS_8, VPX_BITS_10" \ |
| " or VPX_BITS_12"); \ |
| name = NULL; \ |
| } \ |
| } while (0) |
| #else |
| #define ASSIGN_MINQ_TABLE(bit_depth, name) \ |
| do { \ |
| (void) bit_depth; \ |
| name = name##_8; \ |
| } while (0) |
| #endif |
| |
| // Tables relating active max Q to active min Q |
| static int kf_low_motion_minq_8[QINDEX_RANGE]; |
| static int kf_high_motion_minq_8[QINDEX_RANGE]; |
| static int arfgf_low_motion_minq_8[QINDEX_RANGE]; |
| static int arfgf_high_motion_minq_8[QINDEX_RANGE]; |
| static int inter_minq_8[QINDEX_RANGE]; |
| static int rtc_minq_8[QINDEX_RANGE]; |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| static int kf_low_motion_minq_10[QINDEX_RANGE]; |
| static int kf_high_motion_minq_10[QINDEX_RANGE]; |
| static int arfgf_low_motion_minq_10[QINDEX_RANGE]; |
| static int arfgf_high_motion_minq_10[QINDEX_RANGE]; |
| static int inter_minq_10[QINDEX_RANGE]; |
| static int rtc_minq_10[QINDEX_RANGE]; |
| static int kf_low_motion_minq_12[QINDEX_RANGE]; |
| static int kf_high_motion_minq_12[QINDEX_RANGE]; |
| static int arfgf_low_motion_minq_12[QINDEX_RANGE]; |
| static int arfgf_high_motion_minq_12[QINDEX_RANGE]; |
| static int inter_minq_12[QINDEX_RANGE]; |
| static int rtc_minq_12[QINDEX_RANGE]; |
| #endif |
| |
| static int gf_high = 2000; |
| static int gf_low = 400; |
| static int kf_high = 5000; |
| static int kf_low = 400; |
| |
| // Functions to compute the active minq lookup table entries based on a |
| // formulaic approach to facilitate easier adjustment of the Q tables. |
| // The formulae were derived from computing a 3rd order polynomial best |
| // fit to the original data (after plotting real maxq vs minq (not q index)) |
| static int get_minq_index(double maxq, double x3, double x2, double x1, |
| vpx_bit_depth_t bit_depth) { |
| int i; |
| const double minqtarget = MIN(((x3 * maxq + x2) * maxq + x1) * maxq, |
| maxq); |
| |
| // Special case handling to deal with the step from q2.0 |
| // down to lossless mode represented by q 1.0. |
| if (minqtarget <= 2.0) |
| return 0; |
| |
| for (i = 0; i < QINDEX_RANGE; i++) { |
| if (minqtarget <= vp10_convert_qindex_to_q(i, bit_depth)) |
| return i; |
| } |
| |
| return QINDEX_RANGE - 1; |
| } |
| |
| static void init_minq_luts(int *kf_low_m, int *kf_high_m, |
| int *arfgf_low, int *arfgf_high, |
| int *inter, int *rtc, vpx_bit_depth_t bit_depth) { |
| int i; |
| for (i = 0; i < QINDEX_RANGE; i++) { |
| const double maxq = vp10_convert_qindex_to_q(i, bit_depth); |
| kf_low_m[i] = get_minq_index(maxq, 0.000001, -0.0004, 0.150, bit_depth); |
| kf_high_m[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.55, bit_depth); |
| arfgf_low[i] = get_minq_index(maxq, 0.0000015, -0.0009, 0.30, bit_depth); |
| arfgf_high[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.55, bit_depth); |
| inter[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.90, bit_depth); |
| rtc[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.70, bit_depth); |
| } |
| } |
| |
| void vp10_rc_init_minq_luts(void) { |
| init_minq_luts(kf_low_motion_minq_8, kf_high_motion_minq_8, |
| arfgf_low_motion_minq_8, arfgf_high_motion_minq_8, |
| inter_minq_8, rtc_minq_8, VPX_BITS_8); |
| #if CONFIG_VP9_HIGHBITDEPTH |
| init_minq_luts(kf_low_motion_minq_10, kf_high_motion_minq_10, |
| arfgf_low_motion_minq_10, arfgf_high_motion_minq_10, |
| inter_minq_10, rtc_minq_10, VPX_BITS_10); |
| init_minq_luts(kf_low_motion_minq_12, kf_high_motion_minq_12, |
| arfgf_low_motion_minq_12, arfgf_high_motion_minq_12, |
| inter_minq_12, rtc_minq_12, VPX_BITS_12); |
| #endif |
| } |
| |
| // These functions use formulaic calculations to make playing with the |
| // quantizer tables easier. If necessary they can be replaced by lookup |
| // tables if and when things settle down in the experimental bitstream |
| double vp10_convert_qindex_to_q(int qindex, vpx_bit_depth_t bit_depth) { |
| // Convert the index to a real Q value (scaled down to match old Q values) |
| #if CONFIG_VP9_HIGHBITDEPTH |
| switch (bit_depth) { |
| case VPX_BITS_8: |
| return vp10_ac_quant(qindex, 0, bit_depth) / 4.0; |
| case VPX_BITS_10: |
| return vp10_ac_quant(qindex, 0, bit_depth) / 16.0; |
| case VPX_BITS_12: |
| return vp10_ac_quant(qindex, 0, bit_depth) / 64.0; |
| default: |
| assert(0 && "bit_depth should be VPX_BITS_8, VPX_BITS_10 or VPX_BITS_12"); |
| return -1.0; |
| } |
| #else |
| return vp10_ac_quant(qindex, 0, bit_depth) / 4.0; |
| #endif |
| } |
| |
| int vp10_rc_bits_per_mb(FRAME_TYPE frame_type, int qindex, |
| double correction_factor, |
| vpx_bit_depth_t bit_depth) { |
| const double q = vp10_convert_qindex_to_q(qindex, bit_depth); |
| int enumerator = frame_type == KEY_FRAME ? 2700000 : 1800000; |
| |
| assert(correction_factor <= MAX_BPB_FACTOR && |
| correction_factor >= MIN_BPB_FACTOR); |
| |
| // q based adjustment to baseline enumerator |
| enumerator += (int)(enumerator * q) >> 12; |
| return (int)(enumerator * correction_factor / q); |
| } |
| |
| int vp10_estimate_bits_at_q(FRAME_TYPE frame_type, int q, int mbs, |
| double correction_factor, |
| vpx_bit_depth_t bit_depth) { |
| const int bpm = (int)(vp10_rc_bits_per_mb(frame_type, q, correction_factor, |
| bit_depth)); |
| return MAX(FRAME_OVERHEAD_BITS, |
| (int)((uint64_t)bpm * mbs) >> BPER_MB_NORMBITS); |
| } |
| |
| int vp10_rc_clamp_pframe_target_size(const VP9_COMP *const cpi, int target) { |
| const RATE_CONTROL *rc = &cpi->rc; |
| const VP9EncoderConfig *oxcf = &cpi->oxcf; |
| const int min_frame_target = MAX(rc->min_frame_bandwidth, |
| rc->avg_frame_bandwidth >> 5); |
| if (target < min_frame_target) |
| target = min_frame_target; |
| if (cpi->refresh_golden_frame && rc->is_src_frame_alt_ref) { |
| // If there is an active ARF at this location use the minimum |
| // bits on this frame even if it is a constructed arf. |
| // The active maximum quantizer insures that an appropriate |
| // number of bits will be spent if needed for constructed ARFs. |
| target = min_frame_target; |
| } |
| // Clip the frame target to the maximum allowed value. |
| if (target > rc->max_frame_bandwidth) |
| target = rc->max_frame_bandwidth; |
| if (oxcf->rc_max_inter_bitrate_pct) { |
| const int max_rate = rc->avg_frame_bandwidth * |
| oxcf->rc_max_inter_bitrate_pct / 100; |
| target = MIN(target, max_rate); |
| } |
| return target; |
| } |
| |
| int vp10_rc_clamp_iframe_target_size(const VP9_COMP *const cpi, int target) { |
| const RATE_CONTROL *rc = &cpi->rc; |
| const VP9EncoderConfig *oxcf = &cpi->oxcf; |
| if (oxcf->rc_max_intra_bitrate_pct) { |
| const int max_rate = rc->avg_frame_bandwidth * |
| oxcf->rc_max_intra_bitrate_pct / 100; |
| target = MIN(target, max_rate); |
| } |
| if (target > rc->max_frame_bandwidth) |
| target = rc->max_frame_bandwidth; |
| return target; |
| } |
| |
| // Update the buffer level for higher temporal layers, given the encoded current |
| // temporal layer. |
| static void update_layer_buffer_level(SVC *svc, int encoded_frame_size) { |
| int i = 0; |
| int current_temporal_layer = svc->temporal_layer_id; |
| for (i = current_temporal_layer + 1; |
| i < svc->number_temporal_layers; ++i) { |
| const int layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id, i, |
| svc->number_temporal_layers); |
| LAYER_CONTEXT *lc = &svc->layer_context[layer]; |
| RATE_CONTROL *lrc = &lc->rc; |
| int bits_off_for_this_layer = (int)(lc->target_bandwidth / lc->framerate - |
| encoded_frame_size); |
| lrc->bits_off_target += bits_off_for_this_layer; |
| |
| // Clip buffer level to maximum buffer size for the layer. |
| lrc->bits_off_target = MIN(lrc->bits_off_target, lrc->maximum_buffer_size); |
| lrc->buffer_level = lrc->bits_off_target; |
| } |
| } |
| |
| // Update the buffer level: leaky bucket model. |
| static void update_buffer_level(VP9_COMP *cpi, int encoded_frame_size) { |
| const VP10_COMMON *const cm = &cpi->common; |
| RATE_CONTROL *const rc = &cpi->rc; |
| |
| // Non-viewable frames are a special case and are treated as pure overhead. |
| if (!cm->show_frame) { |
| rc->bits_off_target -= encoded_frame_size; |
| } else { |
| rc->bits_off_target += rc->avg_frame_bandwidth - encoded_frame_size; |
| } |
| |
| // Clip the buffer level to the maximum specified buffer size. |
| rc->bits_off_target = MIN(rc->bits_off_target, rc->maximum_buffer_size); |
| rc->buffer_level = rc->bits_off_target; |
| |
| if (is_one_pass_cbr_svc(cpi)) { |
| update_layer_buffer_level(&cpi->svc, encoded_frame_size); |
| } |
| } |
| |
| int vp10_rc_get_default_min_gf_interval( |
| int width, int height, double framerate) { |
| // Assume we do not need any constraint lower than 4K 20 fps |
| static const double factor_safe = 3840 * 2160 * 20.0; |
| const double factor = width * height * framerate; |
| const int default_interval = |
| clamp((int)(framerate * 0.125), MIN_GF_INTERVAL, MAX_GF_INTERVAL); |
| |
| if (factor <= factor_safe) |
| return default_interval; |
| else |
| return MAX(default_interval, |
| (int)(MIN_GF_INTERVAL * factor / factor_safe + 0.5)); |
| // Note this logic makes: |
| // 4K24: 5 |
| // 4K30: 6 |
| // 4K60: 12 |
| } |
| |
| int vp10_rc_get_default_max_gf_interval(double framerate, int min_gf_interval) { |
| int interval = MIN(MAX_GF_INTERVAL, (int)(framerate * 0.75)); |
| interval += (interval & 0x01); // Round to even value |
| return MAX(interval, min_gf_interval); |
| } |
| |
| void vp10_rc_init(const VP9EncoderConfig *oxcf, int pass, RATE_CONTROL *rc) { |
| int i; |
| |
| if (pass == 0 && oxcf->rc_mode == VPX_CBR) { |
| rc->avg_frame_qindex[KEY_FRAME] = oxcf->worst_allowed_q; |
| rc->avg_frame_qindex[INTER_FRAME] = oxcf->worst_allowed_q; |
| } else { |
| rc->avg_frame_qindex[KEY_FRAME] = (oxcf->worst_allowed_q + |
| oxcf->best_allowed_q) / 2; |
| rc->avg_frame_qindex[INTER_FRAME] = (oxcf->worst_allowed_q + |
| oxcf->best_allowed_q) / 2; |
| } |
| |
| rc->last_q[KEY_FRAME] = oxcf->best_allowed_q; |
| rc->last_q[INTER_FRAME] = oxcf->worst_allowed_q; |
| |
| rc->buffer_level = rc->starting_buffer_level; |
| rc->bits_off_target = rc->starting_buffer_level; |
| |
| rc->rolling_target_bits = rc->avg_frame_bandwidth; |
| rc->rolling_actual_bits = rc->avg_frame_bandwidth; |
| rc->long_rolling_target_bits = rc->avg_frame_bandwidth; |
| rc->long_rolling_actual_bits = rc->avg_frame_bandwidth; |
| |
| rc->total_actual_bits = 0; |
| rc->total_target_bits = 0; |
| rc->total_target_vs_actual = 0; |
| |
| rc->frames_since_key = 8; // Sensible default for first frame. |
| rc->this_key_frame_forced = 0; |
| rc->next_key_frame_forced = 0; |
| rc->source_alt_ref_pending = 0; |
| rc->source_alt_ref_active = 0; |
| |
| rc->frames_till_gf_update_due = 0; |
| rc->ni_av_qi = oxcf->worst_allowed_q; |
| rc->ni_tot_qi = 0; |
| rc->ni_frames = 0; |
| |
| rc->tot_q = 0.0; |
| rc->avg_q = vp10_convert_qindex_to_q(oxcf->worst_allowed_q, oxcf->bit_depth); |
| |
| for (i = 0; i < RATE_FACTOR_LEVELS; ++i) { |
| rc->rate_correction_factors[i] = 1.0; |
| } |
| |
| rc->min_gf_interval = oxcf->min_gf_interval; |
| rc->max_gf_interval = oxcf->max_gf_interval; |
| if (rc->min_gf_interval == 0) |
| rc->min_gf_interval = vp10_rc_get_default_min_gf_interval( |
| oxcf->width, oxcf->height, oxcf->init_framerate); |
| if (rc->max_gf_interval == 0) |
| rc->max_gf_interval = vp10_rc_get_default_max_gf_interval( |
| oxcf->init_framerate, rc->min_gf_interval); |
| rc->baseline_gf_interval = (rc->min_gf_interval + rc->max_gf_interval) / 2; |
| } |
| |
| int vp10_rc_drop_frame(VP9_COMP *cpi) { |
| const VP9EncoderConfig *oxcf = &cpi->oxcf; |
| RATE_CONTROL *const rc = &cpi->rc; |
| |
| if (!oxcf->drop_frames_water_mark) { |
| return 0; |
| } else { |
| if (rc->buffer_level < 0) { |
| // Always drop if buffer is below 0. |
| return 1; |
| } else { |
| // If buffer is below drop_mark, for now just drop every other frame |
| // (starting with the next frame) until it increases back over drop_mark. |
| int drop_mark = (int)(oxcf->drop_frames_water_mark * |
| rc->optimal_buffer_level / 100); |
| if ((rc->buffer_level > drop_mark) && |
| (rc->decimation_factor > 0)) { |
| --rc->decimation_factor; |
| } else if (rc->buffer_level <= drop_mark && |
| rc->decimation_factor == 0) { |
| rc->decimation_factor = 1; |
| } |
| if (rc->decimation_factor > 0) { |
| if (rc->decimation_count > 0) { |
| --rc->decimation_count; |
| return 1; |
| } else { |
| rc->decimation_count = rc->decimation_factor; |
| return 0; |
| } |
| } else { |
| rc->decimation_count = 0; |
| return 0; |
| } |
| } |
| } |
| } |
| |
| static double get_rate_correction_factor(const VP9_COMP *cpi) { |
| const RATE_CONTROL *const rc = &cpi->rc; |
| double rcf; |
| |
| if (cpi->common.frame_type == KEY_FRAME) { |
| rcf = rc->rate_correction_factors[KF_STD]; |
| } else if (cpi->oxcf.pass == 2) { |
| RATE_FACTOR_LEVEL rf_lvl = |
| cpi->twopass.gf_group.rf_level[cpi->twopass.gf_group.index]; |
| rcf = rc->rate_correction_factors[rf_lvl]; |
| } else { |
| if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) && |
| !rc->is_src_frame_alt_ref && !cpi->use_svc && |
| (cpi->oxcf.rc_mode != VPX_CBR || cpi->oxcf.gf_cbr_boost_pct > 20)) |
| rcf = rc->rate_correction_factors[GF_ARF_STD]; |
| else |
| rcf = rc->rate_correction_factors[INTER_NORMAL]; |
| } |
| rcf *= rcf_mult[rc->frame_size_selector]; |
| return fclamp(rcf, MIN_BPB_FACTOR, MAX_BPB_FACTOR); |
| } |
| |
| static void set_rate_correction_factor(VP9_COMP *cpi, double factor) { |
| RATE_CONTROL *const rc = &cpi->rc; |
| |
| // Normalize RCF to account for the size-dependent scaling factor. |
| factor /= rcf_mult[cpi->rc.frame_size_selector]; |
| |
| factor = fclamp(factor, MIN_BPB_FACTOR, MAX_BPB_FACTOR); |
| |
| if (cpi->common.frame_type == KEY_FRAME) { |
| rc->rate_correction_factors[KF_STD] = factor; |
| } else if (cpi->oxcf.pass == 2) { |
| RATE_FACTOR_LEVEL rf_lvl = |
| cpi->twopass.gf_group.rf_level[cpi->twopass.gf_group.index]; |
| rc->rate_correction_factors[rf_lvl] = factor; |
| } else { |
| if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) && |
| !rc->is_src_frame_alt_ref && !cpi->use_svc && |
| (cpi->oxcf.rc_mode != VPX_CBR || cpi->oxcf.gf_cbr_boost_pct > 20)) |
| rc->rate_correction_factors[GF_ARF_STD] = factor; |
| else |
| rc->rate_correction_factors[INTER_NORMAL] = factor; |
| } |
| } |
| |
| void vp10_rc_update_rate_correction_factors(VP9_COMP *cpi) { |
| const VP10_COMMON *const cm = &cpi->common; |
| int correction_factor = 100; |
| double rate_correction_factor = get_rate_correction_factor(cpi); |
| double adjustment_limit; |
| |
| int projected_size_based_on_q = 0; |
| |
| // Do not update the rate factors for arf overlay frames. |
| if (cpi->rc.is_src_frame_alt_ref) |
| return; |
| |
| // Clear down mmx registers to allow floating point in what follows |
| vpx_clear_system_state(); |
| |
| // Work out how big we would have expected the frame to be at this Q given |
| // the current correction factor. |
| // Stay in double to avoid int overflow when values are large |
| if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cpi->common.seg.enabled) { |
| projected_size_based_on_q = |
| vp10_cyclic_refresh_estimate_bits_at_q(cpi, rate_correction_factor); |
| } else { |
| projected_size_based_on_q = vp10_estimate_bits_at_q(cpi->common.frame_type, |
| cm->base_qindex, |
| cm->MBs, |
| rate_correction_factor, |
| cm->bit_depth); |
| } |
| // Work out a size correction factor. |
| if (projected_size_based_on_q > FRAME_OVERHEAD_BITS) |
| correction_factor = (int)((100 * (int64_t)cpi->rc.projected_frame_size) / |
| projected_size_based_on_q); |
| |
| // More heavily damped adjustment used if we have been oscillating either side |
| // of target. |
| adjustment_limit = 0.25 + |
| 0.5 * MIN(1, fabs(log10(0.01 * correction_factor))); |
| |
| cpi->rc.q_2_frame = cpi->rc.q_1_frame; |
| cpi->rc.q_1_frame = cm->base_qindex; |
| cpi->rc.rc_2_frame = cpi->rc.rc_1_frame; |
| if (correction_factor > 110) |
| cpi->rc.rc_1_frame = -1; |
| else if (correction_factor < 90) |
| cpi->rc.rc_1_frame = 1; |
| else |
| cpi->rc.rc_1_frame = 0; |
| |
| if (correction_factor > 102) { |
| // We are not already at the worst allowable quality |
| correction_factor = (int)(100 + ((correction_factor - 100) * |
| adjustment_limit)); |
| rate_correction_factor = (rate_correction_factor * correction_factor) / 100; |
| // Keep rate_correction_factor within limits |
| if (rate_correction_factor > MAX_BPB_FACTOR) |
| rate_correction_factor = MAX_BPB_FACTOR; |
| } else if (correction_factor < 99) { |
| // We are not already at the best allowable quality |
| correction_factor = (int)(100 - ((100 - correction_factor) * |
| adjustment_limit)); |
| rate_correction_factor = (rate_correction_factor * correction_factor) / 100; |
| |
| // Keep rate_correction_factor within limits |
| if (rate_correction_factor < MIN_BPB_FACTOR) |
| rate_correction_factor = MIN_BPB_FACTOR; |
| } |
| |
| set_rate_correction_factor(cpi, rate_correction_factor); |
| } |
| |
| |
| int vp10_rc_regulate_q(const VP9_COMP *cpi, int target_bits_per_frame, |
| int active_best_quality, int active_worst_quality) { |
| const VP10_COMMON *const cm = &cpi->common; |
| int q = active_worst_quality; |
| int last_error = INT_MAX; |
| int i, target_bits_per_mb, bits_per_mb_at_this_q; |
| const double correction_factor = get_rate_correction_factor(cpi); |
| |
| // Calculate required scaling factor based on target frame size and size of |
| // frame produced using previous Q. |
| target_bits_per_mb = |
| ((uint64_t)target_bits_per_frame << BPER_MB_NORMBITS) / cm->MBs; |
| |
| i = active_best_quality; |
| |
| do { |
| if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && |
| cm->seg.enabled && |
| cpi->svc.temporal_layer_id == 0 && |
| cpi->svc.spatial_layer_id == 0) { |
| bits_per_mb_at_this_q = |
| (int)vp10_cyclic_refresh_rc_bits_per_mb(cpi, i, correction_factor); |
| } else { |
| bits_per_mb_at_this_q = (int)vp10_rc_bits_per_mb(cm->frame_type, i, |
| correction_factor, |
| cm->bit_depth); |
| } |
| |
| if (bits_per_mb_at_this_q <= target_bits_per_mb) { |
| if ((target_bits_per_mb - bits_per_mb_at_this_q) <= last_error) |
| q = i; |
| else |
| q = i - 1; |
| |
| break; |
| } else { |
| last_error = bits_per_mb_at_this_q - target_bits_per_mb; |
| } |
| } while (++i <= active_worst_quality); |
| |
| // In CBR mode, this makes sure q is between oscillating Qs to prevent |
| // resonance. |
| if (cpi->oxcf.rc_mode == VPX_CBR && |
| (cpi->rc.rc_1_frame * cpi->rc.rc_2_frame == -1) && |
| cpi->rc.q_1_frame != cpi->rc.q_2_frame) { |
| q = clamp(q, MIN(cpi->rc.q_1_frame, cpi->rc.q_2_frame), |
| MAX(cpi->rc.q_1_frame, cpi->rc.q_2_frame)); |
| } |
| return q; |
| } |
| |
| static int get_active_quality(int q, int gfu_boost, int low, int high, |
| int *low_motion_minq, int *high_motion_minq) { |
| if (gfu_boost > high) { |
| return low_motion_minq[q]; |
| } else if (gfu_boost < low) { |
| return high_motion_minq[q]; |
| } else { |
| const int gap = high - low; |
| const int offset = high - gfu_boost; |
| const int qdiff = high_motion_minq[q] - low_motion_minq[q]; |
| const int adjustment = ((offset * qdiff) + (gap >> 1)) / gap; |
| return low_motion_minq[q] + adjustment; |
| } |
| } |
| |
| static int get_kf_active_quality(const RATE_CONTROL *const rc, int q, |
| vpx_bit_depth_t bit_depth) { |
| int *kf_low_motion_minq; |
| int *kf_high_motion_minq; |
| ASSIGN_MINQ_TABLE(bit_depth, kf_low_motion_minq); |
| ASSIGN_MINQ_TABLE(bit_depth, kf_high_motion_minq); |
| return get_active_quality(q, rc->kf_boost, kf_low, kf_high, |
| kf_low_motion_minq, kf_high_motion_minq); |
| } |
| |
| static int get_gf_active_quality(const RATE_CONTROL *const rc, int q, |
| vpx_bit_depth_t bit_depth) { |
| int *arfgf_low_motion_minq; |
| int *arfgf_high_motion_minq; |
| ASSIGN_MINQ_TABLE(bit_depth, arfgf_low_motion_minq); |
| ASSIGN_MINQ_TABLE(bit_depth, arfgf_high_motion_minq); |
| return get_active_quality(q, rc->gfu_boost, gf_low, gf_high, |
| arfgf_low_motion_minq, arfgf_high_motion_minq); |
| } |
| |
| static int calc_active_worst_quality_one_pass_vbr(const VP9_COMP *cpi) { |
| const RATE_CONTROL *const rc = &cpi->rc; |
| const unsigned int curr_frame = cpi->common.current_video_frame; |
| int active_worst_quality; |
| |
| if (cpi->common.frame_type == KEY_FRAME) { |
| active_worst_quality = curr_frame == 0 ? rc->worst_quality |
| : rc->last_q[KEY_FRAME] * 2; |
| } else { |
| if (!rc->is_src_frame_alt_ref && |
| (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) { |
| active_worst_quality = curr_frame == 1 ? rc->last_q[KEY_FRAME] * 5 / 4 |
| : rc->last_q[INTER_FRAME]; |
| } else { |
| active_worst_quality = curr_frame == 1 ? rc->last_q[KEY_FRAME] * 2 |
| : rc->last_q[INTER_FRAME] * 2; |
| } |
| } |
| return MIN(active_worst_quality, rc->worst_quality); |
| } |
| |
| // Adjust active_worst_quality level based on buffer level. |
| static int calc_active_worst_quality_one_pass_cbr(const VP9_COMP *cpi) { |
| // Adjust active_worst_quality: If buffer is above the optimal/target level, |
| // bring active_worst_quality down depending on fullness of buffer. |
| // If buffer is below the optimal level, let the active_worst_quality go from |
| // ambient Q (at buffer = optimal level) to worst_quality level |
| // (at buffer = critical level). |
| const VP10_COMMON *const cm = &cpi->common; |
| const RATE_CONTROL *rc = &cpi->rc; |
| // Buffer level below which we push active_worst to worst_quality. |
| int64_t critical_level = rc->optimal_buffer_level >> 3; |
| int64_t buff_lvl_step = 0; |
| int adjustment = 0; |
| int active_worst_quality; |
| int ambient_qp; |
| if (cm->frame_type == KEY_FRAME) |
| return rc->worst_quality; |
| // For ambient_qp we use minimum of avg_frame_qindex[KEY_FRAME/INTER_FRAME] |
| // for the first few frames following key frame. These are both initialized |
| // to worst_quality and updated with (3/4, 1/4) average in postencode_update. |
| // So for first few frames following key, the qp of that key frame is weighted |
| // into the active_worst_quality setting. |
| ambient_qp = (cm->current_video_frame < 5) ? |
| MIN(rc->avg_frame_qindex[INTER_FRAME], rc->avg_frame_qindex[KEY_FRAME]) : |
| rc->avg_frame_qindex[INTER_FRAME]; |
| active_worst_quality = MIN(rc->worst_quality, |
| ambient_qp * 5 / 4); |
| if (rc->buffer_level > rc->optimal_buffer_level) { |
| // Adjust down. |
| // Maximum limit for down adjustment, ~30%. |
| int max_adjustment_down = active_worst_quality / 3; |
| if (max_adjustment_down) { |
| buff_lvl_step = ((rc->maximum_buffer_size - |
| rc->optimal_buffer_level) / max_adjustment_down); |
| if (buff_lvl_step) |
| adjustment = (int)((rc->buffer_level - rc->optimal_buffer_level) / |
| buff_lvl_step); |
| active_worst_quality -= adjustment; |
| } |
| } else if (rc->buffer_level > critical_level) { |
| // Adjust up from ambient Q. |
| if (critical_level) { |
| buff_lvl_step = (rc->optimal_buffer_level - critical_level); |
| if (buff_lvl_step) { |
| adjustment = (int)((rc->worst_quality - ambient_qp) * |
| (rc->optimal_buffer_level - rc->buffer_level) / |
| buff_lvl_step); |
| } |
| active_worst_quality = ambient_qp + adjustment; |
| } |
| } else { |
| // Set to worst_quality if buffer is below critical level. |
| active_worst_quality = rc->worst_quality; |
| } |
| return active_worst_quality; |
| } |
| |
| static int rc_pick_q_and_bounds_one_pass_cbr(const VP9_COMP *cpi, |
| int *bottom_index, |
| int *top_index) { |
| const VP10_COMMON *const cm = &cpi->common; |
| const RATE_CONTROL *const rc = &cpi->rc; |
| int active_best_quality; |
| int active_worst_quality = calc_active_worst_quality_one_pass_cbr(cpi); |
| int q; |
| int *rtc_minq; |
| ASSIGN_MINQ_TABLE(cm->bit_depth, rtc_minq); |
| |
| if (frame_is_intra_only(cm)) { |
| active_best_quality = rc->best_quality; |
| // Handle the special case for key frames forced when we have reached |
| // the maximum key frame interval. Here force the Q to a range |
| // based on the ambient Q to reduce the risk of popping. |
| if (rc->this_key_frame_forced) { |
| int qindex = rc->last_boosted_qindex; |
| double last_boosted_q = vp10_convert_qindex_to_q(qindex, cm->bit_depth); |
| int delta_qindex = vp10_compute_qdelta(rc, last_boosted_q, |
| (last_boosted_q * 0.75), |
| cm->bit_depth); |
| active_best_quality = MAX(qindex + delta_qindex, rc->best_quality); |
| } else if (cm->current_video_frame > 0) { |
| // not first frame of one pass and kf_boost is set |
| double q_adj_factor = 1.0; |
| double q_val; |
| |
| active_best_quality = |
| get_kf_active_quality(rc, rc->avg_frame_qindex[KEY_FRAME], |
| cm->bit_depth); |
| |
| // Allow somewhat lower kf minq with small image formats. |
| if ((cm->width * cm->height) <= (352 * 288)) { |
| q_adj_factor -= 0.25; |
| } |
| |
| // Convert the adjustment factor to a qindex delta |
| // on active_best_quality. |
| q_val = vp10_convert_qindex_to_q(active_best_quality, cm->bit_depth); |
| active_best_quality += vp10_compute_qdelta(rc, q_val, |
| q_val * q_adj_factor, |
| cm->bit_depth); |
| } |
| } else if (!rc->is_src_frame_alt_ref && |
| !cpi->use_svc && |
| (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) { |
| // Use the lower of active_worst_quality and recent |
| // average Q as basis for GF/ARF best Q limit unless last frame was |
| // a key frame. |
| if (rc->frames_since_key > 1 && |
| rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) { |
| q = rc->avg_frame_qindex[INTER_FRAME]; |
| } else { |
| q = active_worst_quality; |
| } |
| active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth); |
| } else { |
| // Use the lower of active_worst_quality and recent/average Q. |
| if (cm->current_video_frame > 1) { |
| if (rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) |
| active_best_quality = rtc_minq[rc->avg_frame_qindex[INTER_FRAME]]; |
| else |
| active_best_quality = rtc_minq[active_worst_quality]; |
| } else { |
| if (rc->avg_frame_qindex[KEY_FRAME] < active_worst_quality) |
| active_best_quality = rtc_minq[rc->avg_frame_qindex[KEY_FRAME]]; |
| else |
| active_best_quality = rtc_minq[active_worst_quality]; |
| } |
| } |
| |
| // Clip the active best and worst quality values to limits |
| active_best_quality = clamp(active_best_quality, |
| rc->best_quality, rc->worst_quality); |
| active_worst_quality = clamp(active_worst_quality, |
| active_best_quality, rc->worst_quality); |
| |
| *top_index = active_worst_quality; |
| *bottom_index = active_best_quality; |
| |
| #if LIMIT_QRANGE_FOR_ALTREF_AND_KEY |
| // Limit Q range for the adaptive loop. |
| if (cm->frame_type == KEY_FRAME && |
| !rc->this_key_frame_forced && |
| !(cm->current_video_frame == 0)) { |
| int qdelta = 0; |
| vpx_clear_system_state(); |
| qdelta = vp10_compute_qdelta_by_rate(&cpi->rc, cm->frame_type, |
| active_worst_quality, 2.0, |
| cm->bit_depth); |
| *top_index = active_worst_quality + qdelta; |
| *top_index = (*top_index > *bottom_index) ? *top_index : *bottom_index; |
| } |
| #endif |
| |
| // Special case code to try and match quality with forced key frames |
| if (cm->frame_type == KEY_FRAME && rc->this_key_frame_forced) { |
| q = rc->last_boosted_qindex; |
| } else { |
| q = vp10_rc_regulate_q(cpi, rc->this_frame_target, |
| active_best_quality, active_worst_quality); |
| if (q > *top_index) { |
| // Special case when we are targeting the max allowed rate |
| if (rc->this_frame_target >= rc->max_frame_bandwidth) |
| *top_index = q; |
| else |
| q = *top_index; |
| } |
| } |
| assert(*top_index <= rc->worst_quality && |
| *top_index >= rc->best_quality); |
| assert(*bottom_index <= rc->worst_quality && |
| *bottom_index >= rc->best_quality); |
| assert(q <= rc->worst_quality && q >= rc->best_quality); |
| return q; |
| } |
| |
| static int get_active_cq_level(const RATE_CONTROL *rc, |
| const VP9EncoderConfig *const oxcf) { |
| static const double cq_adjust_threshold = 0.1; |
| int active_cq_level = oxcf->cq_level; |
| if (oxcf->rc_mode == VPX_CQ && |
| rc->total_target_bits > 0) { |
| const double x = (double)rc->total_actual_bits / rc->total_target_bits; |
| if (x < cq_adjust_threshold) { |
| active_cq_level = (int)(active_cq_level * x / cq_adjust_threshold); |
| } |
| } |
| return active_cq_level; |
| } |
| |
| static int rc_pick_q_and_bounds_one_pass_vbr(const VP9_COMP *cpi, |
| int *bottom_index, |
| int *top_index) { |
| const VP10_COMMON *const cm = &cpi->common; |
| const RATE_CONTROL *const rc = &cpi->rc; |
| const VP9EncoderConfig *const oxcf = &cpi->oxcf; |
| const int cq_level = get_active_cq_level(rc, oxcf); |
| int active_best_quality; |
| int active_worst_quality = calc_active_worst_quality_one_pass_vbr(cpi); |
| int q; |
| int *inter_minq; |
| ASSIGN_MINQ_TABLE(cm->bit_depth, inter_minq); |
| |
| if (frame_is_intra_only(cm)) { |
| |
| // Handle the special case for key frames forced when we have reached |
| // the maximum key frame interval. Here force the Q to a range |
| // based on the ambient Q to reduce the risk of popping. |
| if (rc->this_key_frame_forced) { |
| int qindex = rc->last_boosted_qindex; |
| double last_boosted_q = vp10_convert_qindex_to_q(qindex, cm->bit_depth); |
| int delta_qindex = vp10_compute_qdelta(rc, last_boosted_q, |
| last_boosted_q * 0.75, |
| cm->bit_depth); |
| active_best_quality = MAX(qindex + delta_qindex, rc->best_quality); |
| } else { |
| // not first frame of one pass and kf_boost is set |
| double q_adj_factor = 1.0; |
| double q_val; |
| |
| active_best_quality = |
| get_kf_active_quality(rc, rc->avg_frame_qindex[KEY_FRAME], |
| cm->bit_depth); |
| |
| // Allow somewhat lower kf minq with small image formats. |
| if ((cm->width * cm->height) <= (352 * 288)) { |
| q_adj_factor -= 0.25; |
| } |
| |
| // Convert the adjustment factor to a qindex delta |
| // on active_best_quality. |
| q_val = vp10_convert_qindex_to_q(active_best_quality, cm->bit_depth); |
| active_best_quality += vp10_compute_qdelta(rc, q_val, |
| q_val * q_adj_factor, |
| cm->bit_depth); |
| } |
| } else if (!rc->is_src_frame_alt_ref && |
| (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) { |
| // Use the lower of active_worst_quality and recent |
| // average Q as basis for GF/ARF best Q limit unless last frame was |
| // a key frame. |
| if (rc->frames_since_key > 1 && |
| rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) { |
| q = rc->avg_frame_qindex[INTER_FRAME]; |
| } else { |
| q = rc->avg_frame_qindex[KEY_FRAME]; |
| } |
| // For constrained quality dont allow Q less than the cq level |
| if (oxcf->rc_mode == VPX_CQ) { |
| if (q < cq_level) |
| q = cq_level; |
| |
| active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth); |
| |
| // Constrained quality use slightly lower active best. |
| active_best_quality = active_best_quality * 15 / 16; |
| |
| } else if (oxcf->rc_mode == VPX_Q) { |
| if (!cpi->refresh_alt_ref_frame) { |
| active_best_quality = cq_level; |
| } else { |
| active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth); |
| } |
| } else { |
| active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth); |
| } |
| } else { |
| if (oxcf->rc_mode == VPX_Q) { |
| active_best_quality = cq_level; |
| } else { |
| // Use the lower of active_worst_quality and recent/average Q. |
| if (cm->current_video_frame > 1) |
| active_best_quality = inter_minq[rc->avg_frame_qindex[INTER_FRAME]]; |
| else |
| active_best_quality = inter_minq[rc->avg_frame_qindex[KEY_FRAME]]; |
| // For the constrained quality mode we don't want |
| // q to fall below the cq level. |
| if ((oxcf->rc_mode == VPX_CQ) && |
| (active_best_quality < cq_level)) { |
| active_best_quality = cq_level; |
| } |
| } |
| } |
| |
| // Clip the active best and worst quality values to limits |
| active_best_quality = clamp(active_best_quality, |
| rc->best_quality, rc->worst_quality); |
| active_worst_quality = clamp(active_worst_quality, |
| active_best_quality, rc->worst_quality); |
| |
| *top_index = active_worst_quality; |
| *bottom_index = active_best_quality; |
| |
| #if LIMIT_QRANGE_FOR_ALTREF_AND_KEY |
| { |
| int qdelta = 0; |
| vpx_clear_system_state(); |
| |
| // Limit Q range for the adaptive loop. |
| if (cm->frame_type == KEY_FRAME && |
| !rc->this_key_frame_forced && |
| !(cm->current_video_frame == 0)) { |
| qdelta = vp10_compute_qdelta_by_rate(&cpi->rc, cm->frame_type, |
| active_worst_quality, 2.0, |
| cm->bit_depth); |
| } else if (!rc->is_src_frame_alt_ref && |
| (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) { |
| qdelta = vp10_compute_qdelta_by_rate(&cpi->rc, cm->frame_type, |
| active_worst_quality, 1.75, |
| cm->bit_depth); |
| } |
| *top_index = active_worst_quality + qdelta; |
| *top_index = (*top_index > *bottom_index) ? *top_index : *bottom_index; |
| } |
| #endif |
| |
| if (oxcf->rc_mode == VPX_Q) { |
| q = active_best_quality; |
| // Special case code to try and match quality with forced key frames |
| } else if ((cm->frame_type == KEY_FRAME) && rc->this_key_frame_forced) { |
| q = rc->last_boosted_qindex; |
| } else { |
| q = vp10_rc_regulate_q(cpi, rc->this_frame_target, |
| active_best_quality, active_worst_quality); |
| if (q > *top_index) { |
| // Special case when we are targeting the max allowed rate |
| if (rc->this_frame_target >= rc->max_frame_bandwidth) |
| *top_index = q; |
| else |
| q = *top_index; |
| } |
| } |
| |
| assert(*top_index <= rc->worst_quality && |
| *top_index >= rc->best_quality); |
| assert(*bottom_index <= rc->worst_quality && |
| *bottom_index >= rc->best_quality); |
| assert(q <= rc->worst_quality && q >= rc->best_quality); |
| return q; |
| } |
| |
| int vp10_frame_type_qdelta(const VP9_COMP *cpi, int rf_level, int q) { |
| static const double rate_factor_deltas[RATE_FACTOR_LEVELS] = { |
| 1.00, // INTER_NORMAL |
| 1.00, // INTER_HIGH |
| 1.50, // GF_ARF_LOW |
| 1.75, // GF_ARF_STD |
| 2.00, // KF_STD |
| }; |
| static const FRAME_TYPE frame_type[RATE_FACTOR_LEVELS] = |
| {INTER_FRAME, INTER_FRAME, INTER_FRAME, INTER_FRAME, KEY_FRAME}; |
| const VP10_COMMON *const cm = &cpi->common; |
| int qdelta = vp10_compute_qdelta_by_rate(&cpi->rc, frame_type[rf_level], |
| q, rate_factor_deltas[rf_level], |
| cm->bit_depth); |
| return qdelta; |
| } |
| |
| #define STATIC_MOTION_THRESH 95 |
| static int rc_pick_q_and_bounds_two_pass(const VP9_COMP *cpi, |
| int *bottom_index, |
| int *top_index) { |
| const VP10_COMMON *const cm = &cpi->common; |
| const RATE_CONTROL *const rc = &cpi->rc; |
| const VP9EncoderConfig *const oxcf = &cpi->oxcf; |
| const GF_GROUP *gf_group = &cpi->twopass.gf_group; |
| const int cq_level = get_active_cq_level(rc, oxcf); |
| int active_best_quality; |
| int active_worst_quality = cpi->twopass.active_worst_quality; |
| int q; |
| int *inter_minq; |
| ASSIGN_MINQ_TABLE(cm->bit_depth, inter_minq); |
| |
| if (frame_is_intra_only(cm) || vp10_is_upper_layer_key_frame(cpi)) { |
| // Handle the special case for key frames forced when we have reached |
| // the maximum key frame interval. Here force the Q to a range |
| // based on the ambient Q to reduce the risk of popping. |
| if (rc->this_key_frame_forced) { |
| double last_boosted_q; |
| int delta_qindex; |
| int qindex; |
| |
| if (cpi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) { |
| qindex = MIN(rc->last_kf_qindex, rc->last_boosted_qindex); |
| active_best_quality = qindex; |
| last_boosted_q = vp10_convert_qindex_to_q(qindex, cm->bit_depth); |
| delta_qindex = vp10_compute_qdelta(rc, last_boosted_q, |
| last_boosted_q * 1.25, |
| cm->bit_depth); |
| active_worst_quality = MIN(qindex + delta_qindex, active_worst_quality); |
| |
| } else { |
| qindex = rc->last_boosted_qindex; |
| last_boosted_q = vp10_convert_qindex_to_q(qindex, cm->bit_depth); |
| delta_qindex = vp10_compute_qdelta(rc, last_boosted_q, |
| last_boosted_q * 0.75, |
| cm->bit_depth); |
| active_best_quality = MAX(qindex + delta_qindex, rc->best_quality); |
| } |
| } else { |
| // Not forced keyframe. |
| double q_adj_factor = 1.0; |
| double q_val; |
| // Baseline value derived from cpi->active_worst_quality and kf boost. |
| active_best_quality = get_kf_active_quality(rc, active_worst_quality, |
| cm->bit_depth); |
| |
| // Allow somewhat lower kf minq with small image formats. |
| if ((cm->width * cm->height) <= (352 * 288)) { |
| q_adj_factor -= 0.25; |
| } |
| |
| // Make a further adjustment based on the kf zero motion measure. |
| q_adj_factor += 0.05 - (0.001 * (double)cpi->twopass.kf_zeromotion_pct); |
| |
| // Convert the adjustment factor to a qindex delta |
| // on active_best_quality. |
| q_val = vp10_convert_qindex_to_q(active_best_quality, cm->bit_depth); |
| active_best_quality += vp10_compute_qdelta(rc, q_val, |
| q_val * q_adj_factor, |
| cm->bit_depth); |
| } |
| } else if (!rc->is_src_frame_alt_ref && |
| (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) { |
| // Use the lower of active_worst_quality and recent |
| // average Q as basis for GF/ARF best Q limit unless last frame was |
| // a key frame. |
| if (rc->frames_since_key > 1 && |
| rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) { |
| q = rc->avg_frame_qindex[INTER_FRAME]; |
| } else { |
| q = active_worst_quality; |
| } |
| // For constrained quality dont allow Q less than the cq level |
| if (oxcf->rc_mode == VPX_CQ) { |
| if (q < cq_level) |
| q = cq_level; |
| |
| active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth); |
| |
| // Constrained quality use slightly lower active best. |
| active_best_quality = active_best_quality * 15 / 16; |
| |
| } else if (oxcf->rc_mode == VPX_Q) { |
| if (!cpi->refresh_alt_ref_frame) { |
| active_best_quality = cq_level; |
| } else { |
| active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth); |
| |
| // Modify best quality for second level arfs. For mode VPX_Q this |
| // becomes the baseline frame q. |
| if (gf_group->rf_level[gf_group->index] == GF_ARF_LOW) |
| active_best_quality = (active_best_quality + cq_level + 1) / 2; |
| } |
| } else { |
| active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth); |
| } |
| } else { |
| if (oxcf->rc_mode == VPX_Q) { |
| active_best_quality = cq_level; |
| } else { |
| active_best_quality = inter_minq[active_worst_quality]; |
| |
| // For the constrained quality mode we don't want |
| // q to fall below the cq level. |
| if ((oxcf->rc_mode == VPX_CQ) && |
| (active_best_quality < cq_level)) { |
| active_best_quality = cq_level; |
| } |
| } |
| } |
| |
| // Extension to max or min Q if undershoot or overshoot is outside |
| // the permitted range. |
| if ((cpi->oxcf.rc_mode != VPX_Q) && |
| (cpi->twopass.gf_zeromotion_pct < VLOW_MOTION_THRESHOLD)) { |
| if (frame_is_intra_only(cm) || |
| (!rc->is_src_frame_alt_ref && |
| (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame))) { |
| active_best_quality -= |
| (cpi->twopass.extend_minq + cpi->twopass.extend_minq_fast); |
| active_worst_quality += (cpi->twopass.extend_maxq / 2); |
| } else { |
| active_best_quality -= |
| (cpi->twopass.extend_minq + cpi->twopass.extend_minq_fast) / 2; |
| active_worst_quality += cpi->twopass.extend_maxq; |
| } |
| } |
| |
| #if LIMIT_QRANGE_FOR_ALTREF_AND_KEY |
| vpx_clear_system_state(); |
| // Static forced key frames Q restrictions dealt with elsewhere. |
| if (!((frame_is_intra_only(cm) || vp10_is_upper_layer_key_frame(cpi))) || |
| !rc->this_key_frame_forced || |
| (cpi->twopass.last_kfgroup_zeromotion_pct < STATIC_MOTION_THRESH)) { |
| int qdelta = vp10_frame_type_qdelta(cpi, gf_group->rf_level[gf_group->index], |
| active_worst_quality); |
| active_worst_quality = MAX(active_worst_quality + qdelta, |
| active_best_quality); |
| } |
| #endif |
| |
| // Modify active_best_quality for downscaled normal frames. |
| if (rc->frame_size_selector != UNSCALED && !frame_is_kf_gf_arf(cpi)) { |
| int qdelta = vp10_compute_qdelta_by_rate(rc, cm->frame_type, |
| active_best_quality, 2.0, |
| cm->bit_depth); |
| active_best_quality = MAX(active_best_quality + qdelta, rc->best_quality); |
| } |
| |
| active_best_quality = clamp(active_best_quality, |
| rc->best_quality, rc->worst_quality); |
| active_worst_quality = clamp(active_worst_quality, |
| active_best_quality, rc->worst_quality); |
| |
| if (oxcf->rc_mode == VPX_Q) { |
| q = active_best_quality; |
| // Special case code to try and match quality with forced key frames. |
| } else if ((frame_is_intra_only(cm) || vp10_is_upper_layer_key_frame(cpi)) && |
| rc->this_key_frame_forced) { |
| // If static since last kf use better of last boosted and last kf q. |
| if (cpi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) { |
| q = MIN(rc->last_kf_qindex, rc->last_boosted_qindex); |
| } else { |
| q = rc->last_boosted_qindex; |
| } |
| } else { |
| q = vp10_rc_regulate_q(cpi, rc->this_frame_target, |
| active_best_quality, active_worst_quality); |
| if (q > active_worst_quality) { |
| // Special case when we are targeting the max allowed rate. |
| if (rc->this_frame_target >= rc->max_frame_bandwidth) |
| active_worst_quality = q; |
| else |
| q = active_worst_quality; |
| } |
| } |
| clamp(q, active_best_quality, active_worst_quality); |
| |
| *top_index = active_worst_quality; |
| *bottom_index = active_best_quality; |
| |
| assert(*top_index <= rc->worst_quality && |
| *top_index >= rc->best_quality); |
| assert(*bottom_index <= rc->worst_quality && |
| *bottom_index >= rc->best_quality); |
| assert(q <= rc->worst_quality && q >= rc->best_quality); |
| return q; |
| } |
| |
| int vp10_rc_pick_q_and_bounds(const VP9_COMP *cpi, |
| int *bottom_index, int *top_index) { |
| int q; |
| if (cpi->oxcf.pass == 0) { |
| if (cpi->oxcf.rc_mode == VPX_CBR) |
| q = rc_pick_q_and_bounds_one_pass_cbr(cpi, bottom_index, top_index); |
| else |
| q = rc_pick_q_and_bounds_one_pass_vbr(cpi, bottom_index, top_index); |
| } else { |
| q = rc_pick_q_and_bounds_two_pass(cpi, bottom_index, top_index); |
| } |
| if (cpi->sf.use_nonrd_pick_mode) { |
| if (cpi->sf.force_frame_boost == 1) |
| q -= cpi->sf.max_delta_qindex; |
| |
| if (q < *bottom_index) |
| *bottom_index = q; |
| else if (q > *top_index) |
| *top_index = q; |
| } |
| return q; |
| } |
| |
| void vp10_rc_compute_frame_size_bounds(const VP9_COMP *cpi, |
| int frame_target, |
| int *frame_under_shoot_limit, |
| int *frame_over_shoot_limit) { |
| if (cpi->oxcf.rc_mode == VPX_Q) { |
| *frame_under_shoot_limit = 0; |
| *frame_over_shoot_limit = INT_MAX; |
| } else { |
| // For very small rate targets where the fractional adjustment |
| // may be tiny make sure there is at least a minimum range. |
| const int tolerance = (cpi->sf.recode_tolerance * frame_target) / 100; |
| *frame_under_shoot_limit = MAX(frame_target - tolerance - 200, 0); |
| *frame_over_shoot_limit = MIN(frame_target + tolerance + 200, |
| cpi->rc.max_frame_bandwidth); |
| } |
| } |
| |
| void vp10_rc_set_frame_target(VP9_COMP *cpi, int target) { |
| const VP10_COMMON *const cm = &cpi->common; |
| RATE_CONTROL *const rc = &cpi->rc; |
| |
| rc->this_frame_target = target; |
| |
| // Modify frame size target when down-scaling. |
| if (cpi->oxcf.resize_mode == RESIZE_DYNAMIC && |
| rc->frame_size_selector != UNSCALED) |
| rc->this_frame_target = (int)(rc->this_frame_target |
| * rate_thresh_mult[rc->frame_size_selector]); |
| |
| // Target rate per SB64 (including partial SB64s. |
| rc->sb64_target_rate = ((int64_t)rc->this_frame_target * 64 * 64) / |
| (cm->width * cm->height); |
| } |
| |
| static void update_alt_ref_frame_stats(VP9_COMP *cpi) { |
| // this frame refreshes means next frames don't unless specified by user |
| RATE_CONTROL *const rc = &cpi->rc; |
| rc->frames_since_golden = 0; |
| |
| // Mark the alt ref as done (setting to 0 means no further alt refs pending). |
| rc->source_alt_ref_pending = 0; |
| |
| // Set the alternate reference frame active flag |
| rc->source_alt_ref_active = 1; |
| } |
| |
| static void update_golden_frame_stats(VP9_COMP *cpi) { |
| RATE_CONTROL *const rc = &cpi->rc; |
| |
| // Update the Golden frame usage counts. |
| if (cpi->refresh_golden_frame) { |
| // this frame refreshes means next frames don't unless specified by user |
| rc->frames_since_golden = 0; |
| |
| // If we are not using alt ref in the up and coming group clear the arf |
| // active flag. |
| if (!rc->source_alt_ref_pending) { |
| rc->source_alt_ref_active = 0; |
| } |
| |
| // Decrement count down till next gf |
| if (rc->frames_till_gf_update_due > 0) |
| rc->frames_till_gf_update_due--; |
| |
| } else if (!cpi->refresh_alt_ref_frame) { |
| // Decrement count down till next gf |
| if (rc->frames_till_gf_update_due > 0) |
| rc->frames_till_gf_update_due--; |
| |
| rc->frames_since_golden++; |
| } |
| } |
| |
| void vp10_rc_postencode_update(VP9_COMP *cpi, uint64_t bytes_used) { |
| const VP10_COMMON *const cm = &cpi->common; |
| const VP9EncoderConfig *const oxcf = &cpi->oxcf; |
| RATE_CONTROL *const rc = &cpi->rc; |
| const int qindex = cm->base_qindex; |
| |
| if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled) { |
| vp10_cyclic_refresh_postencode(cpi); |
| } |
| |
| // Update rate control heuristics |
| rc->projected_frame_size = (int)(bytes_used << 3); |
| |
| // Post encode loop adjustment of Q prediction. |
| vp10_rc_update_rate_correction_factors(cpi); |
| |
| // Keep a record of last Q and ambient average Q. |
| if (cm->frame_type == KEY_FRAME) { |
| rc->last_q[KEY_FRAME] = qindex; |
| rc->avg_frame_qindex[KEY_FRAME] = |
| ROUND_POWER_OF_TWO(3 * rc->avg_frame_qindex[KEY_FRAME] + qindex, 2); |
| } else { |
| if (rc->is_src_frame_alt_ref || |
| !(cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame) || |
| (cpi->use_svc && oxcf->rc_mode == VPX_CBR)) { |
| rc->last_q[INTER_FRAME] = qindex; |
| rc->avg_frame_qindex[INTER_FRAME] = |
| ROUND_POWER_OF_TWO(3 * rc->avg_frame_qindex[INTER_FRAME] + qindex, 2); |
| rc->ni_frames++; |
| rc->tot_q += vp10_convert_qindex_to_q(qindex, cm->bit_depth); |
| rc->avg_q = rc->tot_q / rc->ni_frames; |
| // Calculate the average Q for normal inter frames (not key or GFU |
| // frames). |
| rc->ni_tot_qi += qindex; |
| rc->ni_av_qi = rc->ni_tot_qi / rc->ni_frames; |
| } |
| } |
| |
| // Keep record of last boosted (KF/KF/ARF) Q value. |
| // If the current frame is coded at a lower Q then we also update it. |
| // If all mbs in this group are skipped only update if the Q value is |
| // better than that already stored. |
| // This is used to help set quality in forced key frames to reduce popping |
| if ((qindex < rc->last_boosted_qindex) || |
| (cm->frame_type == KEY_FRAME) || |
| (!rc->constrained_gf_group && |
| (cpi->refresh_alt_ref_frame || |
| (cpi->refresh_golden_frame && !rc->is_src_frame_alt_ref)))) { |
| rc->last_boosted_qindex = qindex; |
| } |
| if (cm->frame_type == KEY_FRAME) |
| rc->last_kf_qindex = qindex; |
| |
| update_buffer_level(cpi, rc->projected_frame_size); |
| |
| // Rolling monitors of whether we are over or underspending used to help |
| // regulate min and Max Q in two pass. |
| if (cm->frame_type != KEY_FRAME) { |
| rc->rolling_target_bits = ROUND_POWER_OF_TWO( |
| rc->rolling_target_bits * 3 + rc->this_frame_target, 2); |
| rc->rolling_actual_bits = ROUND_POWER_OF_TWO( |
| rc->rolling_actual_bits * 3 + rc->projected_frame_size, 2); |
| rc->long_rolling_target_bits = ROUND_POWER_OF_TWO( |
| rc->long_rolling_target_bits * 31 + rc->this_frame_target, 5); |
| rc->long_rolling_actual_bits = ROUND_POWER_OF_TWO( |
| rc->long_rolling_actual_bits * 31 + rc->projected_frame_size, 5); |
| } |
| |
| // Actual bits spent |
| rc->total_actual_bits += rc->projected_frame_size; |
| rc->total_target_bits += cm->show_frame ? rc->avg_frame_bandwidth : 0; |
| |
| rc->total_target_vs_actual = rc->total_actual_bits - rc->total_target_bits; |
| |
| if (is_altref_enabled(cpi) && cpi->refresh_alt_ref_frame && |
| (cm->frame_type != KEY_FRAME)) |
| // Update the alternate reference frame stats as appropriate. |
| update_alt_ref_frame_stats(cpi); |
| else |
| // Update the Golden frame stats as appropriate. |
| update_golden_frame_stats(cpi); |
| |
| if (cm->frame_type == KEY_FRAME) |
| rc->frames_since_key = 0; |
| if (cm->show_frame) { |
| rc->frames_since_key++; |
| rc->frames_to_key--; |
| } |
| |
| // Trigger the resizing of the next frame if it is scaled. |
| if (oxcf->pass != 0) { |
| cpi->resize_pending = |
| rc->next_frame_size_selector != rc->frame_size_selector; |
| rc->frame_size_selector = rc->next_frame_size_selector; |
| } |
| } |
| |
| void vp10_rc_postencode_update_drop_frame(VP9_COMP *cpi) { |
| // Update buffer level with zero size, update frame counters, and return. |
| update_buffer_level(cpi, 0); |
| cpi->rc.frames_since_key++; |
| cpi->rc.frames_to_key--; |
| cpi->rc.rc_2_frame = 0; |
| cpi->rc.rc_1_frame = 0; |
| } |
| |
| // Use this macro to turn on/off use of alt-refs in one-pass mode. |
| #define USE_ALTREF_FOR_ONE_PASS 1 |
| |
| static int calc_pframe_target_size_one_pass_vbr(const VP9_COMP *const cpi) { |
| static const int af_ratio = 10; |
| const RATE_CONTROL *const rc = &cpi->rc; |
| int target; |
| #if USE_ALTREF_FOR_ONE_PASS |
| target = (!rc->is_src_frame_alt_ref && |
| (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) ? |
| (rc->avg_frame_bandwidth * rc->baseline_gf_interval * af_ratio) / |
| (rc->baseline_gf_interval + af_ratio - 1) : |
| (rc->avg_frame_bandwidth * rc->baseline_gf_interval) / |
| (rc->baseline_gf_interval + af_ratio - 1); |
| #else |
| target = rc->avg_frame_bandwidth; |
| #endif |
| return vp10_rc_clamp_pframe_target_size(cpi, target); |
| } |
| |
| static int calc_iframe_target_size_one_pass_vbr(const VP9_COMP *const cpi) { |
| static const int kf_ratio = 25; |
| const RATE_CONTROL *rc = &cpi->rc; |
| const int target = rc->avg_frame_bandwidth * kf_ratio; |
| return vp10_rc_clamp_iframe_target_size(cpi, target); |
| } |
| |
| void vp10_rc_get_one_pass_vbr_params(VP9_COMP *cpi) { |
| VP10_COMMON *const cm = &cpi->common; |
| RATE_CONTROL *const rc = &cpi->rc; |
| int target; |
| // TODO(yaowu): replace the "auto_key && 0" below with proper decision logic. |
| if (!cpi->refresh_alt_ref_frame && |
| (cm->current_video_frame == 0 || |
| (cpi->frame_flags & FRAMEFLAGS_KEY) || |
| rc->frames_to_key == 0 || |
| (cpi->oxcf.auto_key && 0))) { |
| cm->frame_type = KEY_FRAME; |
| rc->this_key_frame_forced = cm->current_video_frame != 0 && |
| rc->frames_to_key == 0; |
| rc->frames_to_key = cpi->oxcf.key_freq; |
| rc->kf_boost = DEFAULT_KF_BOOST; |
| rc->source_alt_ref_active = 0; |
| } else { |
| cm->frame_type = INTER_FRAME; |
| } |
| if (rc->frames_till_gf_update_due == 0) { |
| rc->baseline_gf_interval = (rc->min_gf_interval + rc->max_gf_interval) / 2; |
| rc->frames_till_gf_update_due = rc->baseline_gf_interval; |
| // NOTE: frames_till_gf_update_due must be <= frames_to_key. |
| if (rc->frames_till_gf_update_due > rc->frames_to_key) { |
| rc->frames_till_gf_update_due = rc->frames_to_key; |
| rc->constrained_gf_group = 1; |
| } else { |
| rc->constrained_gf_group = 0; |
| } |
| cpi->refresh_golden_frame = 1; |
| rc->source_alt_ref_pending = USE_ALTREF_FOR_ONE_PASS; |
| rc->gfu_boost = DEFAULT_GF_BOOST; |
| } |
| if (cm->frame_type == KEY_FRAME) |
| target = calc_iframe_target_size_one_pass_vbr(cpi); |
| else |
| target = calc_pframe_target_size_one_pass_vbr(cpi); |
| vp10_rc_set_frame_target(cpi, target); |
| } |
| |
| static int calc_pframe_target_size_one_pass_cbr(const VP9_COMP *cpi) { |
| const VP9EncoderConfig *oxcf = &cpi->oxcf; |
| const RATE_CONTROL *rc = &cpi->rc; |
| const SVC *const svc = &cpi->svc; |
| const int64_t diff = rc->optimal_buffer_level - rc->buffer_level; |
| const int64_t one_pct_bits = 1 + rc->optimal_buffer_level / 100; |
| int min_frame_target = MAX(rc->avg_frame_bandwidth >> 4, FRAME_OVERHEAD_BITS); |
| int target; |
| |
| if (oxcf->gf_cbr_boost_pct) { |
| const int af_ratio_pct = oxcf->gf_cbr_boost_pct + 100; |
| target = cpi->refresh_golden_frame ? |
| (rc->avg_frame_bandwidth * rc->baseline_gf_interval * af_ratio_pct) / |
| (rc->baseline_gf_interval * 100 + af_ratio_pct - 100) : |
| (rc->avg_frame_bandwidth * rc->baseline_gf_interval * 100) / |
| (rc->baseline_gf_interval * 100 + af_ratio_pct - 100); |
| } else { |
| target = rc->avg_frame_bandwidth; |
| } |
| if (is_one_pass_cbr_svc(cpi)) { |
| // Note that for layers, avg_frame_bandwidth is the cumulative |
| // per-frame-bandwidth. For the target size of this frame, use the |
| // layer average frame size (i.e., non-cumulative per-frame-bw). |
| int layer = |
| LAYER_IDS_TO_IDX(svc->spatial_layer_id, |
| svc->temporal_layer_id, svc->number_temporal_layers); |
| const LAYER_CONTEXT *lc = &svc->layer_context[layer]; |
| target = lc->avg_frame_size; |
| min_frame_target = MAX(lc->avg_frame_size >> 4, FRAME_OVERHEAD_BITS); |
| } |
| if (diff > 0) { |
| // Lower the target bandwidth for this frame. |
| const int pct_low = (int)MIN(diff / one_pct_bits, oxcf->under_shoot_pct); |
| target -= (target * pct_low) / 200; |
| } else if (diff < 0) { |
| // Increase the target bandwidth for this frame. |
| const int pct_high = (int)MIN(-diff / one_pct_bits, oxcf->over_shoot_pct); |
| target += (target * pct_high) / 200; |
| } |
| if (oxcf->rc_max_inter_bitrate_pct) { |
| const int max_rate = rc->avg_frame_bandwidth * |
| oxcf->rc_max_inter_bitrate_pct / 100; |
| target = MIN(target, max_rate); |
| } |
| return MAX(min_frame_target, target); |
| } |
| |
| static int calc_iframe_target_size_one_pass_cbr(const VP9_COMP *cpi) { |
| const RATE_CONTROL *rc = &cpi->rc; |
| const VP9EncoderConfig *oxcf = &cpi->oxcf; |
| const SVC *const svc = &cpi->svc; |
| int target; |
| if (cpi->common.current_video_frame == 0) { |
| target = ((rc->starting_buffer_level / 2) > INT_MAX) |
| ? INT_MAX : (int)(rc->starting_buffer_level / 2); |
| } else { |
| int kf_boost = 32; |
| double framerate = cpi->framerate; |
| if (svc->number_temporal_layers > 1 && |
| oxcf->rc_mode == VPX_CBR) { |
| // Use the layer framerate for temporal layers CBR mode. |
| const int layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id, |
| svc->temporal_layer_id, svc->number_temporal_layers); |
| const LAYER_CONTEXT *lc = &svc->layer_context[layer]; |
| framerate = lc->framerate; |
| } |
| kf_boost = MAX(kf_boost, (int)(2 * framerate - 16)); |
| if (rc->frames_since_key < framerate / 2) { |
| kf_boost = (int)(kf_boost * rc->frames_since_key / |
| (framerate / 2)); |
| } |
| target = ((16 + kf_boost) * rc->avg_frame_bandwidth) >> 4; |
| } |
| return vp10_rc_clamp_iframe_target_size(cpi, target); |
| } |
| |
| // Reset information needed to set proper reference frames and buffer updates |
| // for temporal layering. This is called when a key frame is encoded. |
| static void reset_temporal_layer_to_zero(VP9_COMP *cpi) { |
| int sl; |
| LAYER_CONTEXT *lc = NULL; |
| cpi->svc.temporal_layer_id = 0; |
| |
| for (sl = 0; sl < cpi->svc.number_spatial_layers; ++sl) { |
| lc = &cpi->svc.layer_context[sl * cpi->svc.number_temporal_layers]; |
| lc->current_video_frame_in_layer = 0; |
| lc->frames_from_key_frame = 0; |
| } |
| } |
| |
| void vp10_rc_get_svc_params(VP9_COMP *cpi) { |
| VP10_COMMON *const cm = &cpi->common; |
| RATE_CONTROL *const rc = &cpi->rc; |
| int target = rc->avg_frame_bandwidth; |
| const int layer = LAYER_IDS_TO_IDX(cpi->svc.spatial_layer_id, |
| cpi->svc.temporal_layer_id, cpi->svc.number_temporal_layers); |
| |
| if ((cm->current_video_frame == 0) || |
| (cpi->frame_flags & FRAMEFLAGS_KEY) || |
| (cpi->oxcf.auto_key && (rc->frames_since_key % |
| cpi->oxcf.key_freq == 0))) { |
| cm->frame_type = KEY_FRAME; |
| rc->source_alt_ref_active = 0; |
| |
| if (is_two_pass_svc(cpi)) { |
| cpi->svc.layer_context[layer].is_key_frame = 1; |
| cpi->ref_frame_flags &= |
| (~VP9_LAST_FLAG & ~VP9_GOLD_FLAG & ~VP9_ALT_FLAG); |
| } else if (is_one_pass_cbr_svc(cpi)) { |
| cpi->svc.layer_context[layer].is_key_frame = 1; |
| reset_temporal_layer_to_zero(cpi); |
| cpi->ref_frame_flags &= |
| (~VP9_LAST_FLAG & ~VP9_GOLD_FLAG & ~VP9_ALT_FLAG); |
| // Assumption here is that LAST_FRAME is being updated for a keyframe. |
| // Thus no change in update flags. |
| target = calc_iframe_target_size_one_pass_cbr(cpi); |
| } |
| } else { |
| cm->frame_type = INTER_FRAME; |
| if (is_two_pass_svc(cpi)) { |
| LAYER_CONTEXT *lc = &cpi->svc.layer_context[layer]; |
| if (cpi->svc.spatial_layer_id == 0) { |
| lc->is_key_frame = 0; |
| } else { |
| lc->is_key_frame = |
| cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame; |
| if (lc->is_key_frame) |
| cpi->ref_frame_flags &= (~VP9_LAST_FLAG); |
| } |
| cpi->ref_frame_flags &= (~VP9_ALT_FLAG); |
| } else if (is_one_pass_cbr_svc(cpi)) { |
| LAYER_CONTEXT *lc = &cpi->svc.layer_context[layer]; |
| if (cpi->svc.spatial_layer_id == 0) { |
| lc->is_key_frame = 0; |
| } else { |
| lc->is_key_frame = |
| cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame; |
| } |
| target = calc_pframe_target_size_one_pass_cbr(cpi); |
| } |
| } |
| |
| // Any update/change of global cyclic refresh parameters (amount/delta-qp) |
| // should be done here, before the frame qp is selected. |
| if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) |
| vp10_cyclic_refresh_update_parameters(cpi); |
| |
| vp10_rc_set_frame_target(cpi, target); |
| rc->frames_till_gf_update_due = INT_MAX; |
| rc->baseline_gf_interval = INT_MAX; |
| } |
| |
| void vp10_rc_get_one_pass_cbr_params(VP9_COMP *cpi) { |
| VP10_COMMON *const cm = &cpi->common; |
| RATE_CONTROL *const rc = &cpi->rc; |
| int target; |
| // TODO(yaowu): replace the "auto_key && 0" below with proper decision logic. |
| if ((cm->current_video_frame == 0 || |
| (cpi->frame_flags & FRAMEFLAGS_KEY) || |
| rc->frames_to_key == 0 || |
| (cpi->oxcf.auto_key && 0))) { |
| cm->frame_type = KEY_FRAME; |
| rc->this_key_frame_forced = cm->current_video_frame != 0 && |
| rc->frames_to_key == 0; |
| rc->frames_to_key = cpi->oxcf.key_freq; |
| rc->kf_boost = DEFAULT_KF_BOOST; |
| rc->source_alt_ref_active = 0; |
| } else { |
| cm->frame_type = INTER_FRAME; |
| } |
| if (rc->frames_till_gf_update_due == 0) { |
| if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) |
| vp10_cyclic_refresh_set_golden_update(cpi); |
| else |
| rc->baseline_gf_interval = |
| (rc->min_gf_interval + rc->max_gf_interval) / 2; |
| rc->frames_till_gf_update_due = rc->baseline_gf_interval; |
| // NOTE: frames_till_gf_update_due must be <= frames_to_key. |
| if (rc->frames_till_gf_update_due > rc->frames_to_key) |
| rc->frames_till_gf_update_due = rc->frames_to_key; |
| cpi->refresh_golden_frame = 1; |
| rc->gfu_boost = DEFAULT_GF_BOOST; |
| } |
| |
| // Any update/change of global cyclic refresh parameters (amount/delta-qp) |
| // should be done here, before the frame qp is selected. |
| if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) |
| vp10_cyclic_refresh_update_parameters(cpi); |
| |
| if (cm->frame_type == KEY_FRAME) |
| target = calc_iframe_target_size_one_pass_cbr(cpi); |
| else |
| target = calc_pframe_target_size_one_pass_cbr(cpi); |
| |
| vp10_rc_set_frame_target(cpi, target); |
| if (cpi->oxcf.resize_mode == RESIZE_DYNAMIC) |
| cpi->resize_pending = vp10_resize_one_pass_cbr(cpi); |
| else |
| cpi->resize_pending = 0; |
| } |
| |
| int vp10_compute_qdelta(const RATE_CONTROL *rc, double qstart, double qtarget, |
| vpx_bit_depth_t bit_depth) { |
| int start_index = rc->worst_quality; |
| int target_index = rc->worst_quality; |
| int i; |
| |
| // Convert the average q value to an index. |
| for (i = rc->best_quality; i < rc->worst_quality; ++i) { |
| start_index = i; |
| if (vp10_convert_qindex_to_q(i, bit_depth) >= qstart) |
| break; |
| } |
| |
| // Convert the q target to an index |
| for (i = rc->best_quality; i < rc->worst_quality; ++i) { |
| target_index = i; |
| if (vp10_convert_qindex_to_q(i, bit_depth) >= qtarget) |
| break; |
| } |
| |
| return target_index - start_index; |
| } |
| |
| int vp10_compute_qdelta_by_rate(const RATE_CONTROL *rc, FRAME_TYPE frame_type, |
| int qindex, double rate_target_ratio, |
| vpx_bit_depth_t bit_depth) { |
| int target_index = rc->worst_quality; |
| int i; |
| |
| // Look up the current projected bits per block for the base index |
| const int base_bits_per_mb = vp10_rc_bits_per_mb(frame_type, qindex, 1.0, |
| bit_depth); |
| |
| // Find the target bits per mb based on the base value and given ratio. |
| const int target_bits_per_mb = (int)(rate_target_ratio * base_bits_per_mb); |
| |
| // Convert the q target to an index |
| for (i = rc->best_quality; i < rc->worst_quality; ++i) { |
| if (vp10_rc_bits_per_mb(frame_type, i, 1.0, bit_depth) <= |
| target_bits_per_mb) { |
| target_index = i; |
| break; |
| } |
| } |
| return target_index - qindex; |
| } |
| |
| void vp10_rc_set_gf_interval_range(const VP9_COMP *const cpi, |
| RATE_CONTROL *const rc) { |
| const VP9EncoderConfig *const oxcf = &cpi->oxcf; |
| |
| // Set Maximum gf/arf interval |
| rc->max_gf_interval = oxcf->max_gf_interval; |
| rc->min_gf_interval = oxcf->min_gf_interval; |
| if (rc->min_gf_interval == 0) |
| rc->min_gf_interval = vp10_rc_get_default_min_gf_interval( |
| oxcf->width, oxcf->height, cpi->framerate); |
| if (rc->max_gf_interval == 0) |
| rc->max_gf_interval = vp10_rc_get_default_max_gf_interval( |
| cpi->framerate, rc->min_gf_interval); |
| |
| // Extended interval for genuinely static scenes |
| rc->static_scene_max_gf_interval = MAX_LAG_BUFFERS * 2; |
| |
| if (is_altref_enabled(cpi)) { |
| if (rc->static_scene_max_gf_interval > oxcf->lag_in_frames - 1) |
| rc->static_scene_max_gf_interval = oxcf->lag_in_frames - 1; |
| } |
| |
| if (rc->max_gf_interval > rc->static_scene_max_gf_interval) |
| rc->max_gf_interval = rc->static_scene_max_gf_interval; |
| |
| // Clamp min to max |
| rc->min_gf_interval = MIN(rc->min_gf_interval, rc->max_gf_interval); |
| } |
| |
| void vp10_rc_update_framerate(VP9_COMP *cpi) { |
| const VP10_COMMON *const cm = &cpi->common; |
| const VP9EncoderConfig *const oxcf = &cpi->oxcf; |
| RATE_CONTROL *const rc = &cpi->rc; |
| int vbr_max_bits; |
| |
| rc->avg_frame_bandwidth = (int)(oxcf->target_bandwidth / cpi->framerate); |
| rc->min_frame_bandwidth = (int)(rc->avg_frame_bandwidth * |
| oxcf->two_pass_vbrmin_section / 100); |
| |
| rc->min_frame_bandwidth = MAX(rc->min_frame_bandwidth, FRAME_OVERHEAD_BITS); |
| |
| // A maximum bitrate for a frame is defined. |
| // The baseline for this aligns with HW implementations that |
| // can support decode of 1080P content up to a bitrate of MAX_MB_RATE bits |
| // per 16x16 MB (averaged over a frame). However this limit is extended if |
| // a very high rate is given on the command line or the the rate cannnot |
| // be acheived because of a user specificed max q (e.g. when the user |
| // specifies lossless encode. |
| vbr_max_bits = (int)(((int64_t)rc->avg_frame_bandwidth * |
| oxcf->two_pass_vbrmax_section) / 100); |
| rc->max_frame_bandwidth = MAX(MAX((cm->MBs * MAX_MB_RATE), MAXRATE_1080P), |
| vbr_max_bits); |
| |
| vp10_rc_set_gf_interval_range(cpi, rc); |
| } |
| |
| #define VBR_PCT_ADJUSTMENT_LIMIT 50 |
| // For VBR...adjustment to the frame target based on error from previous frames |
| static void vbr_rate_correction(VP9_COMP *cpi, int *this_frame_target) { |
| RATE_CONTROL *const rc = &cpi->rc; |
| int64_t vbr_bits_off_target = rc->vbr_bits_off_target; |
| int max_delta; |
| double position_factor = 1.0; |
| |
| // How far through the clip are we. |
| // This number is used to damp the per frame rate correction. |
| // Range 0 - 1.0 |
| if (cpi->twopass.total_stats.count) { |
| position_factor = sqrt((double)cpi->common.current_video_frame / |
| cpi->twopass.total_stats.count); |
| } |
| max_delta = (int)(position_factor * |
| ((*this_frame_target * VBR_PCT_ADJUSTMENT_LIMIT) / 100)); |
| |
| // vbr_bits_off_target > 0 means we have extra bits to spend |
| if (vbr_bits_off_target > 0) { |
| *this_frame_target += |
| (vbr_bits_off_target > max_delta) ? max_delta |
| : (int)vbr_bits_off_target; |
| } else { |
| *this_frame_target -= |
| (vbr_bits_off_target < -max_delta) ? max_delta |
| : (int)-vbr_bits_off_target; |
| } |
| |
| // Fast redistribution of bits arising from massive local undershoot. |
| // Dont do it for kf,arf,gf or overlay frames. |
| if (!frame_is_kf_gf_arf(cpi) && !rc->is_src_frame_alt_ref && |
| rc->vbr_bits_off_target_fast) { |
| int one_frame_bits = MAX(rc->avg_frame_bandwidth, *this_frame_target); |
| int fast_extra_bits; |
| fast_extra_bits = |
| (int)MIN(rc->vbr_bits_off_target_fast, one_frame_bits); |
| fast_extra_bits = (int)MIN(fast_extra_bits, |
| MAX(one_frame_bits / 8, rc->vbr_bits_off_target_fast / 8)); |
| *this_frame_target += (int)fast_extra_bits; |
| rc->vbr_bits_off_target_fast -= fast_extra_bits; |
| } |
| } |
| |
| void vp10_set_target_rate(VP9_COMP *cpi) { |
| RATE_CONTROL *const rc = &cpi->rc; |
| int target_rate = rc->base_frame_target; |
| |
| // Correction to rate target based on prior over or under shoot. |
| if (cpi->oxcf.rc_mode == VPX_VBR || cpi->oxcf.rc_mode == VPX_CQ) |
| vbr_rate_correction(cpi, &target_rate); |
| vp10_rc_set_frame_target(cpi, target_rate); |
| } |
| |
| // Check if we should resize, based on average QP from past x frames. |
| // Only allow for resize at most one scale down for now, scaling factor is 2. |
| int vp10_resize_one_pass_cbr(VP9_COMP *cpi) { |
| const VP10_COMMON *const cm = &cpi->common; |
| RATE_CONTROL *const rc = &cpi->rc; |
| int resize_now = 0; |
| cpi->resize_scale_num = 1; |
| cpi->resize_scale_den = 1; |
| // Don't resize on key frame; reset the counters on key frame. |
| if (cm->frame_type == KEY_FRAME) { |
| cpi->resize_avg_qp = 0; |
| cpi->resize_count = 0; |
| return 0; |
| } |
| // Resize based on average buffer underflow and QP over some window. |
| // Ignore samples close to key frame, since QP is usually high after key. |
| if (cpi->rc.frames_since_key > 2 * cpi->framerate) { |
| const int window = (int)(5 * cpi->framerate); |
| cpi->resize_avg_qp += cm->base_qindex; |
| if (cpi->rc.buffer_level < (int)(30 * rc->optimal_buffer_level / 100)) |
| ++cpi->resize_buffer_underflow; |
| ++cpi->resize_count; |
| // Check for resize action every "window" frames. |
| if (cpi->resize_count >= window) { |
| int avg_qp = cpi->resize_avg_qp / cpi->resize_count; |
| // Resize down if buffer level has underflowed sufficent amount in past |
| // window, and we are at original resolution. |
| // Resize back up if average QP is low, and we are currently in a resized |
| // down state. |
| if (cpi->resize_state == 0 && |
| cpi->resize_buffer_underflow > (cpi->resize_count >> 2)) { |
| resize_now = 1; |
| cpi->resize_state = 1; |
| } else if (cpi->resize_state == 1 && |
| avg_qp < 40 * cpi->rc.worst_quality / 100) { |
| resize_now = -1; |
| cpi->resize_state = 0; |
| } |
| // Reset for next window measurement. |
| cpi->resize_avg_qp = 0; |
| cpi->resize_count = 0; |
| cpi->resize_buffer_underflow = 0; |
| } |
| } |
| // If decision is to resize, reset some quantities, and check is we should |
| // reduce rate correction factor, |
| if (resize_now != 0) { |
| int target_bits_per_frame; |
| int active_worst_quality; |
| int qindex; |
| int tot_scale_change; |
| // For now, resize is by 1/2 x 1/2. |
| cpi->resize_scale_num = 1; |
| cpi->resize_scale_den = 2; |
| tot_scale_change = (cpi->resize_scale_den * cpi->resize_scale_den) / |
| (cpi->resize_scale_num * cpi->resize_scale_num); |
| // Reset buffer level to optimal, update target size. |
| rc->buffer_level = rc->optimal_buffer_level; |
| rc->bits_off_target = rc->optimal_buffer_level; |
| rc->this_frame_target = calc_pframe_target_size_one_pass_cbr(cpi); |
| // Reset cyclic refresh parameters. |
| if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled) |
| vp10_cyclic_refresh_reset_resize(cpi); |
| // Get the projected qindex, based on the scaled target frame size (scaled |
| // so target_bits_per_mb in vp10_rc_regulate_q will be correct target). |
| target_bits_per_frame = (resize_now == 1) ? |
| rc->this_frame_target * tot_scale_change : |
| rc->this_frame_target / tot_scale_change; |
| active_worst_quality = calc_active_worst_quality_one_pass_cbr(cpi); |
| qindex = vp10_rc_regulate_q(cpi, |
| target_bits_per_frame, |
| rc->best_quality, |
| active_worst_quality); |
| // If resize is down, check if projected q index is close to worst_quality, |
| // and if so, reduce the rate correction factor (since likely can afford |
| // lower q for resized frame). |
| if (resize_now == 1 && |
| qindex > 90 * cpi->rc.worst_quality / 100) { |
| rc->rate_correction_factors[INTER_NORMAL] *= 0.85; |
| } |
| // If resize is back up, check if projected q index is too much above the |
| // current base_qindex, and if so, reduce the rate correction factor |
| // (since prefer to keep q for resized frame at least close to previous q). |
| if (resize_now == -1 && |
| qindex > 130 * cm->base_qindex / 100) { |
| rc->rate_correction_factors[INTER_NORMAL] *= 0.9; |
| } |
| } |
| return resize_now; |
| } |