| /* |
| * Copyright (c) 2010 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include <assert.h> |
| #include <math.h> |
| |
| #include "./vp10_rtcd.h" |
| #include "./vpx_dsp_rtcd.h" |
| |
| #include "vpx_mem/vpx_mem.h" |
| #include "vpx_ports/mem.h" |
| #include "vpx_ports/system_state.h" |
| |
| #include "vp10/common/common.h" |
| #include "vp10/common/entropy.h" |
| #include "vp10/common/entropymode.h" |
| #include "vp10/common/idct.h" |
| #include "vp10/common/mvref_common.h" |
| #include "vp10/common/pred_common.h" |
| #include "vp10/common/quant_common.h" |
| #include "vp10/common/reconinter.h" |
| #include "vp10/common/reconintra.h" |
| #include "vp10/common/scan.h" |
| #include "vp10/common/seg_common.h" |
| |
| #include "vp10/encoder/cost.h" |
| #include "vp10/encoder/encodemb.h" |
| #include "vp10/encoder/encodemv.h" |
| #include "vp10/encoder/encoder.h" |
| #include "vp10/encoder/mcomp.h" |
| #include "vp10/encoder/quantize.h" |
| #include "vp10/encoder/ratectrl.h" |
| #include "vp10/encoder/rd.h" |
| #include "vp10/encoder/rdopt.h" |
| #include "vp10/encoder/aq_variance.h" |
| |
| #define LAST_FRAME_MODE_MASK ((1 << GOLDEN_FRAME) | (1 << ALTREF_FRAME) | \ |
| (1 << INTRA_FRAME)) |
| #define GOLDEN_FRAME_MODE_MASK ((1 << LAST_FRAME) | (1 << ALTREF_FRAME) | \ |
| (1 << INTRA_FRAME)) |
| #define ALT_REF_MODE_MASK ((1 << LAST_FRAME) | (1 << GOLDEN_FRAME) | \ |
| (1 << INTRA_FRAME)) |
| |
| #define SECOND_REF_FRAME_MASK ((1 << ALTREF_FRAME) | 0x01) |
| |
| #define MIN_EARLY_TERM_INDEX 3 |
| #define NEW_MV_DISCOUNT_FACTOR 8 |
| |
| typedef struct { |
| PREDICTION_MODE mode; |
| MV_REFERENCE_FRAME ref_frame[2]; |
| } MODE_DEFINITION; |
| |
| typedef struct { |
| MV_REFERENCE_FRAME ref_frame[2]; |
| } REF_DEFINITION; |
| |
| struct rdcost_block_args { |
| MACROBLOCK *x; |
| ENTROPY_CONTEXT t_above[16]; |
| ENTROPY_CONTEXT t_left[16]; |
| int this_rate; |
| int64_t this_dist; |
| int64_t this_sse; |
| int64_t this_rd; |
| int64_t best_rd; |
| int exit_early; |
| int use_fast_coef_costing; |
| const scan_order *so; |
| uint8_t skippable; |
| }; |
| |
| #define LAST_NEW_MV_INDEX 6 |
| static const MODE_DEFINITION vp10_mode_order[MAX_MODES] = { |
| {NEARESTMV, {LAST_FRAME, NONE}}, |
| {NEARESTMV, {ALTREF_FRAME, NONE}}, |
| {NEARESTMV, {GOLDEN_FRAME, NONE}}, |
| |
| {DC_PRED, {INTRA_FRAME, NONE}}, |
| |
| {NEWMV, {LAST_FRAME, NONE}}, |
| {NEWMV, {ALTREF_FRAME, NONE}}, |
| {NEWMV, {GOLDEN_FRAME, NONE}}, |
| |
| {NEARMV, {LAST_FRAME, NONE}}, |
| {NEARMV, {ALTREF_FRAME, NONE}}, |
| {NEARMV, {GOLDEN_FRAME, NONE}}, |
| |
| {ZEROMV, {LAST_FRAME, NONE}}, |
| {ZEROMV, {GOLDEN_FRAME, NONE}}, |
| {ZEROMV, {ALTREF_FRAME, NONE}}, |
| |
| {NEARESTMV, {LAST_FRAME, ALTREF_FRAME}}, |
| {NEARESTMV, {GOLDEN_FRAME, ALTREF_FRAME}}, |
| |
| {TM_PRED, {INTRA_FRAME, NONE}}, |
| |
| {NEARMV, {LAST_FRAME, ALTREF_FRAME}}, |
| {NEWMV, {LAST_FRAME, ALTREF_FRAME}}, |
| {NEARMV, {GOLDEN_FRAME, ALTREF_FRAME}}, |
| {NEWMV, {GOLDEN_FRAME, ALTREF_FRAME}}, |
| |
| {ZEROMV, {LAST_FRAME, ALTREF_FRAME}}, |
| {ZEROMV, {GOLDEN_FRAME, ALTREF_FRAME}}, |
| |
| {H_PRED, {INTRA_FRAME, NONE}}, |
| {V_PRED, {INTRA_FRAME, NONE}}, |
| {D135_PRED, {INTRA_FRAME, NONE}}, |
| {D207_PRED, {INTRA_FRAME, NONE}}, |
| {D153_PRED, {INTRA_FRAME, NONE}}, |
| {D63_PRED, {INTRA_FRAME, NONE}}, |
| {D117_PRED, {INTRA_FRAME, NONE}}, |
| {D45_PRED, {INTRA_FRAME, NONE}}, |
| }; |
| |
| static const REF_DEFINITION vp10_ref_order[MAX_REFS] = { |
| {{LAST_FRAME, NONE}}, |
| {{GOLDEN_FRAME, NONE}}, |
| {{ALTREF_FRAME, NONE}}, |
| {{LAST_FRAME, ALTREF_FRAME}}, |
| {{GOLDEN_FRAME, ALTREF_FRAME}}, |
| {{INTRA_FRAME, NONE}}, |
| }; |
| |
| static void swap_block_ptr(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx, |
| int m, int n, int min_plane, int max_plane) { |
| int i; |
| |
| for (i = min_plane; i < max_plane; ++i) { |
| struct macroblock_plane *const p = &x->plane[i]; |
| struct macroblockd_plane *const pd = &x->e_mbd.plane[i]; |
| |
| p->coeff = ctx->coeff_pbuf[i][m]; |
| p->qcoeff = ctx->qcoeff_pbuf[i][m]; |
| pd->dqcoeff = ctx->dqcoeff_pbuf[i][m]; |
| p->eobs = ctx->eobs_pbuf[i][m]; |
| |
| ctx->coeff_pbuf[i][m] = ctx->coeff_pbuf[i][n]; |
| ctx->qcoeff_pbuf[i][m] = ctx->qcoeff_pbuf[i][n]; |
| ctx->dqcoeff_pbuf[i][m] = ctx->dqcoeff_pbuf[i][n]; |
| ctx->eobs_pbuf[i][m] = ctx->eobs_pbuf[i][n]; |
| |
| ctx->coeff_pbuf[i][n] = p->coeff; |
| ctx->qcoeff_pbuf[i][n] = p->qcoeff; |
| ctx->dqcoeff_pbuf[i][n] = pd->dqcoeff; |
| ctx->eobs_pbuf[i][n] = p->eobs; |
| } |
| } |
| |
| static void model_rd_for_sb(VP9_COMP *cpi, BLOCK_SIZE bsize, |
| MACROBLOCK *x, MACROBLOCKD *xd, |
| int *out_rate_sum, int64_t *out_dist_sum, |
| int *skip_txfm_sb, int64_t *skip_sse_sb) { |
| // Note our transform coeffs are 8 times an orthogonal transform. |
| // Hence quantizer step is also 8 times. To get effective quantizer |
| // we need to divide by 8 before sending to modeling function. |
| int i; |
| int64_t rate_sum = 0; |
| int64_t dist_sum = 0; |
| const int ref = xd->mi[0]->mbmi.ref_frame[0]; |
| unsigned int sse; |
| unsigned int var = 0; |
| unsigned int sum_sse = 0; |
| int64_t total_sse = 0; |
| int skip_flag = 1; |
| const int shift = 6; |
| int rate; |
| int64_t dist; |
| const int dequant_shift = |
| #if CONFIG_VP9_HIGHBITDEPTH |
| (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? |
| xd->bd - 5 : |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| 3; |
| |
| x->pred_sse[ref] = 0; |
| |
| for (i = 0; i < MAX_MB_PLANE; ++i) { |
| struct macroblock_plane *const p = &x->plane[i]; |
| struct macroblockd_plane *const pd = &xd->plane[i]; |
| const BLOCK_SIZE bs = get_plane_block_size(bsize, pd); |
| const TX_SIZE max_tx_size = max_txsize_lookup[bs]; |
| const BLOCK_SIZE unit_size = txsize_to_bsize[max_tx_size]; |
| const int64_t dc_thr = p->quant_thred[0] >> shift; |
| const int64_t ac_thr = p->quant_thred[1] >> shift; |
| // The low thresholds are used to measure if the prediction errors are |
| // low enough so that we can skip the mode search. |
| const int64_t low_dc_thr = MIN(50, dc_thr >> 2); |
| const int64_t low_ac_thr = MIN(80, ac_thr >> 2); |
| int bw = 1 << (b_width_log2_lookup[bs] - b_width_log2_lookup[unit_size]); |
| int bh = 1 << (b_height_log2_lookup[bs] - b_width_log2_lookup[unit_size]); |
| int idx, idy; |
| int lw = b_width_log2_lookup[unit_size] + 2; |
| int lh = b_height_log2_lookup[unit_size] + 2; |
| |
| sum_sse = 0; |
| |
| for (idy = 0; idy < bh; ++idy) { |
| for (idx = 0; idx < bw; ++idx) { |
| uint8_t *src = p->src.buf + (idy * p->src.stride << lh) + (idx << lw); |
| uint8_t *dst = pd->dst.buf + (idy * pd->dst.stride << lh) + (idx << lh); |
| int block_idx = (idy << 1) + idx; |
| int low_err_skip = 0; |
| |
| var = cpi->fn_ptr[unit_size].vf(src, p->src.stride, |
| dst, pd->dst.stride, &sse); |
| x->bsse[(i << 2) + block_idx] = sse; |
| sum_sse += sse; |
| |
| x->skip_txfm[(i << 2) + block_idx] = SKIP_TXFM_NONE; |
| if (!x->select_tx_size) { |
| // Check if all ac coefficients can be quantized to zero. |
| if (var < ac_thr || var == 0) { |
| x->skip_txfm[(i << 2) + block_idx] = SKIP_TXFM_AC_ONLY; |
| |
| // Check if dc coefficient can be quantized to zero. |
| if (sse - var < dc_thr || sse == var) { |
| x->skip_txfm[(i << 2) + block_idx] = SKIP_TXFM_AC_DC; |
| |
| if (!sse || (var < low_ac_thr && sse - var < low_dc_thr)) |
| low_err_skip = 1; |
| } |
| } |
| } |
| |
| if (skip_flag && !low_err_skip) |
| skip_flag = 0; |
| |
| if (i == 0) |
| x->pred_sse[ref] += sse; |
| } |
| } |
| |
| total_sse += sum_sse; |
| |
| // Fast approximate the modelling function. |
| if (cpi->sf.simple_model_rd_from_var) { |
| int64_t rate; |
| const int64_t square_error = sum_sse; |
| int quantizer = (pd->dequant[1] >> dequant_shift); |
| |
| if (quantizer < 120) |
| rate = (square_error * (280 - quantizer)) >> 8; |
| else |
| rate = 0; |
| dist = (square_error * quantizer) >> 8; |
| rate_sum += rate; |
| dist_sum += dist; |
| } else { |
| vp10_model_rd_from_var_lapndz(sum_sse, num_pels_log2_lookup[bs], |
| pd->dequant[1] >> dequant_shift, |
| &rate, &dist); |
| rate_sum += rate; |
| dist_sum += dist; |
| } |
| } |
| |
| *skip_txfm_sb = skip_flag; |
| *skip_sse_sb = total_sse << 4; |
| *out_rate_sum = (int)rate_sum; |
| *out_dist_sum = dist_sum << 4; |
| } |
| |
| int64_t vp10_block_error_c(const tran_low_t *coeff, const tran_low_t *dqcoeff, |
| intptr_t block_size, int64_t *ssz) { |
| int i; |
| int64_t error = 0, sqcoeff = 0; |
| |
| for (i = 0; i < block_size; i++) { |
| const int diff = coeff[i] - dqcoeff[i]; |
| error += diff * diff; |
| sqcoeff += coeff[i] * coeff[i]; |
| } |
| |
| *ssz = sqcoeff; |
| return error; |
| } |
| |
| int64_t vp10_block_error_fp_c(const int16_t *coeff, const int16_t *dqcoeff, |
| int block_size) { |
| int i; |
| int64_t error = 0; |
| |
| for (i = 0; i < block_size; i++) { |
| const int diff = coeff[i] - dqcoeff[i]; |
| error += diff * diff; |
| } |
| |
| return error; |
| } |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| int64_t vp10_highbd_block_error_c(const tran_low_t *coeff, |
| const tran_low_t *dqcoeff, |
| intptr_t block_size, |
| int64_t *ssz, int bd) { |
| int i; |
| int64_t error = 0, sqcoeff = 0; |
| int shift = 2 * (bd - 8); |
| int rounding = shift > 0 ? 1 << (shift - 1) : 0; |
| |
| for (i = 0; i < block_size; i++) { |
| const int64_t diff = coeff[i] - dqcoeff[i]; |
| error += diff * diff; |
| sqcoeff += (int64_t)coeff[i] * (int64_t)coeff[i]; |
| } |
| assert(error >= 0 && sqcoeff >= 0); |
| error = (error + rounding) >> shift; |
| sqcoeff = (sqcoeff + rounding) >> shift; |
| |
| *ssz = sqcoeff; |
| return error; |
| } |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| /* The trailing '0' is a terminator which is used inside cost_coeffs() to |
| * decide whether to include cost of a trailing EOB node or not (i.e. we |
| * can skip this if the last coefficient in this transform block, e.g. the |
| * 16th coefficient in a 4x4 block or the 64th coefficient in a 8x8 block, |
| * were non-zero). */ |
| static const int16_t band_counts[TX_SIZES][8] = { |
| { 1, 2, 3, 4, 3, 16 - 13, 0 }, |
| { 1, 2, 3, 4, 11, 64 - 21, 0 }, |
| { 1, 2, 3, 4, 11, 256 - 21, 0 }, |
| { 1, 2, 3, 4, 11, 1024 - 21, 0 }, |
| }; |
| static int cost_coeffs(MACROBLOCK *x, |
| int plane, int block, |
| ENTROPY_CONTEXT *A, ENTROPY_CONTEXT *L, |
| TX_SIZE tx_size, |
| const int16_t *scan, const int16_t *nb, |
| int use_fast_coef_costing) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; |
| const struct macroblock_plane *p = &x->plane[plane]; |
| const struct macroblockd_plane *pd = &xd->plane[plane]; |
| const PLANE_TYPE type = pd->plane_type; |
| const int16_t *band_count = &band_counts[tx_size][1]; |
| const int eob = p->eobs[block]; |
| const tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block); |
| unsigned int (*token_costs)[2][COEFF_CONTEXTS][ENTROPY_TOKENS] = |
| x->token_costs[tx_size][type][is_inter_block(mbmi)]; |
| uint8_t token_cache[32 * 32]; |
| int pt = combine_entropy_contexts(*A, *L); |
| int c, cost; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| const int16_t *cat6_high_cost = vp10_get_high_cost_table(xd->bd); |
| #else |
| const int16_t *cat6_high_cost = vp10_get_high_cost_table(8); |
| #endif |
| |
| // Check for consistency of tx_size with mode info |
| assert(type == PLANE_TYPE_Y ? mbmi->tx_size == tx_size |
| : get_uv_tx_size(mbmi, pd) == tx_size); |
| |
| if (eob == 0) { |
| // single eob token |
| cost = token_costs[0][0][pt][EOB_TOKEN]; |
| c = 0; |
| } else { |
| int band_left = *band_count++; |
| |
| // dc token |
| int v = qcoeff[0]; |
| int16_t prev_t; |
| EXTRABIT e; |
| vp10_get_token_extra(v, &prev_t, &e); |
| cost = (*token_costs)[0][pt][prev_t] + |
| vp10_get_cost(prev_t, e, cat6_high_cost); |
| |
| token_cache[0] = vp10_pt_energy_class[prev_t]; |
| ++token_costs; |
| |
| // ac tokens |
| for (c = 1; c < eob; c++) { |
| const int rc = scan[c]; |
| int16_t t; |
| |
| v = qcoeff[rc]; |
| vp10_get_token_extra(v, &t, &e); |
| if (use_fast_coef_costing) { |
| cost += (*token_costs)[!prev_t][!prev_t][t] + |
| vp10_get_cost(t, e, cat6_high_cost); |
| } else { |
| pt = get_coef_context(nb, token_cache, c); |
| cost += (*token_costs)[!prev_t][pt][t] + |
| vp10_get_cost(t, e, cat6_high_cost); |
| token_cache[rc] = vp10_pt_energy_class[t]; |
| } |
| prev_t = t; |
| if (!--band_left) { |
| band_left = *band_count++; |
| ++token_costs; |
| } |
| } |
| |
| // eob token |
| if (band_left) { |
| if (use_fast_coef_costing) { |
| cost += (*token_costs)[0][!prev_t][EOB_TOKEN]; |
| } else { |
| pt = get_coef_context(nb, token_cache, c); |
| cost += (*token_costs)[0][pt][EOB_TOKEN]; |
| } |
| } |
| } |
| |
| // is eob first coefficient; |
| *A = *L = (c > 0); |
| |
| return cost; |
| } |
| |
| static void dist_block(MACROBLOCK *x, int plane, int block, TX_SIZE tx_size, |
| int64_t *out_dist, int64_t *out_sse) { |
| const int ss_txfrm_size = tx_size << 1; |
| MACROBLOCKD* const xd = &x->e_mbd; |
| const struct macroblock_plane *const p = &x->plane[plane]; |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| int64_t this_sse; |
| int shift = tx_size == TX_32X32 ? 0 : 2; |
| tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block); |
| tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); |
| #if CONFIG_VP9_HIGHBITDEPTH |
| const int bd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? xd->bd : 8; |
| *out_dist = vp10_highbd_block_error(coeff, dqcoeff, 16 << ss_txfrm_size, |
| &this_sse, bd) >> shift; |
| #else |
| *out_dist = vp10_block_error(coeff, dqcoeff, 16 << ss_txfrm_size, |
| &this_sse) >> shift; |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| *out_sse = this_sse >> shift; |
| |
| if (x->skip_encode && !is_inter_block(&xd->mi[0]->mbmi)) { |
| // TODO(jingning): tune the model to better capture the distortion. |
| int64_t p = (pd->dequant[1] * pd->dequant[1] * |
| (1 << ss_txfrm_size)) >> |
| #if CONFIG_VP9_HIGHBITDEPTH |
| (shift + 2 + (bd - 8) * 2); |
| #else |
| (shift + 2); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| *out_dist += (p >> 4); |
| *out_sse += p; |
| } |
| } |
| |
| static int rate_block(int plane, int block, BLOCK_SIZE plane_bsize, |
| TX_SIZE tx_size, struct rdcost_block_args* args) { |
| int x_idx, y_idx; |
| txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &x_idx, &y_idx); |
| |
| return cost_coeffs(args->x, plane, block, args->t_above + x_idx, |
| args->t_left + y_idx, tx_size, |
| args->so->scan, args->so->neighbors, |
| args->use_fast_coef_costing); |
| } |
| |
| static void block_rd_txfm(int plane, int block, BLOCK_SIZE plane_bsize, |
| TX_SIZE tx_size, void *arg) { |
| struct rdcost_block_args *args = arg; |
| MACROBLOCK *const x = args->x; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| int64_t rd1, rd2, rd; |
| int rate; |
| int64_t dist; |
| int64_t sse; |
| |
| if (args->exit_early) |
| return; |
| |
| if (!is_inter_block(mbmi)) { |
| struct encode_b_args arg = {x, NULL, &mbmi->skip}; |
| vp10_encode_block_intra(plane, block, plane_bsize, tx_size, &arg); |
| dist_block(x, plane, block, tx_size, &dist, &sse); |
| } else if (max_txsize_lookup[plane_bsize] == tx_size) { |
| if (x->skip_txfm[(plane << 2) + (block >> (tx_size << 1))] == |
| SKIP_TXFM_NONE) { |
| // full forward transform and quantization |
| vp10_xform_quant(x, plane, block, plane_bsize, tx_size); |
| dist_block(x, plane, block, tx_size, &dist, &sse); |
| } else if (x->skip_txfm[(plane << 2) + (block >> (tx_size << 1))] == |
| SKIP_TXFM_AC_ONLY) { |
| // compute DC coefficient |
| tran_low_t *const coeff = BLOCK_OFFSET(x->plane[plane].coeff, block); |
| tran_low_t *const dqcoeff = BLOCK_OFFSET(xd->plane[plane].dqcoeff, block); |
| vp10_xform_quant_dc(x, plane, block, plane_bsize, tx_size); |
| sse = x->bsse[(plane << 2) + (block >> (tx_size << 1))] << 4; |
| dist = sse; |
| if (x->plane[plane].eobs[block]) { |
| const int64_t orig_sse = (int64_t)coeff[0] * coeff[0]; |
| const int64_t resd_sse = coeff[0] - dqcoeff[0]; |
| int64_t dc_correct = orig_sse - resd_sse * resd_sse; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| dc_correct >>= ((xd->bd - 8) * 2); |
| #endif |
| if (tx_size != TX_32X32) |
| dc_correct >>= 2; |
| |
| dist = MAX(0, sse - dc_correct); |
| } |
| } else { |
| // SKIP_TXFM_AC_DC |
| // skip forward transform |
| x->plane[plane].eobs[block] = 0; |
| sse = x->bsse[(plane << 2) + (block >> (tx_size << 1))] << 4; |
| dist = sse; |
| } |
| } else { |
| // full forward transform and quantization |
| vp10_xform_quant(x, plane, block, plane_bsize, tx_size); |
| dist_block(x, plane, block, tx_size, &dist, &sse); |
| } |
| |
| rd = RDCOST(x->rdmult, x->rddiv, 0, dist); |
| if (args->this_rd + rd > args->best_rd) { |
| args->exit_early = 1; |
| return; |
| } |
| |
| rate = rate_block(plane, block, plane_bsize, tx_size, args); |
| rd1 = RDCOST(x->rdmult, x->rddiv, rate, dist); |
| rd2 = RDCOST(x->rdmult, x->rddiv, 0, sse); |
| |
| // TODO(jingning): temporarily enabled only for luma component |
| rd = MIN(rd1, rd2); |
| if (plane == 0) |
| x->zcoeff_blk[tx_size][block] = !x->plane[plane].eobs[block] || |
| (rd1 > rd2 && !xd->lossless); |
| |
| args->this_rate += rate; |
| args->this_dist += dist; |
| args->this_sse += sse; |
| args->this_rd += rd; |
| |
| if (args->this_rd > args->best_rd) { |
| args->exit_early = 1; |
| return; |
| } |
| |
| args->skippable &= !x->plane[plane].eobs[block]; |
| } |
| |
| static void txfm_rd_in_plane(MACROBLOCK *x, |
| int *rate, int64_t *distortion, |
| int *skippable, int64_t *sse, |
| int64_t ref_best_rd, int plane, |
| BLOCK_SIZE bsize, TX_SIZE tx_size, |
| int use_fast_coef_casting) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| struct rdcost_block_args args; |
| vp10_zero(args); |
| args.x = x; |
| args.best_rd = ref_best_rd; |
| args.use_fast_coef_costing = use_fast_coef_casting; |
| args.skippable = 1; |
| |
| if (plane == 0) |
| xd->mi[0]->mbmi.tx_size = tx_size; |
| |
| vp10_get_entropy_contexts(bsize, tx_size, pd, args.t_above, args.t_left); |
| |
| args.so = get_scan(xd, tx_size, pd->plane_type, 0); |
| |
| vp10_foreach_transformed_block_in_plane(xd, bsize, plane, |
| block_rd_txfm, &args); |
| if (args.exit_early) { |
| *rate = INT_MAX; |
| *distortion = INT64_MAX; |
| *sse = INT64_MAX; |
| *skippable = 0; |
| } else { |
| *distortion = args.this_dist; |
| *rate = args.this_rate; |
| *sse = args.this_sse; |
| *skippable = args.skippable; |
| } |
| } |
| |
| static void choose_largest_tx_size(VP9_COMP *cpi, MACROBLOCK *x, |
| int *rate, int64_t *distortion, |
| int *skip, int64_t *sse, |
| int64_t ref_best_rd, |
| BLOCK_SIZE bs) { |
| const TX_SIZE max_tx_size = max_txsize_lookup[bs]; |
| VP10_COMMON *const cm = &cpi->common; |
| const TX_SIZE largest_tx_size = tx_mode_to_biggest_tx_size[cm->tx_mode]; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| |
| mbmi->tx_size = MIN(max_tx_size, largest_tx_size); |
| |
| txfm_rd_in_plane(x, rate, distortion, skip, |
| sse, ref_best_rd, 0, bs, |
| mbmi->tx_size, cpi->sf.use_fast_coef_costing); |
| } |
| |
| static void choose_tx_size_from_rd(VP9_COMP *cpi, MACROBLOCK *x, |
| int *rate, |
| int64_t *distortion, |
| int *skip, |
| int64_t *psse, |
| int64_t ref_best_rd, |
| BLOCK_SIZE bs) { |
| const TX_SIZE max_tx_size = max_txsize_lookup[bs]; |
| VP10_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| vpx_prob skip_prob = vp10_get_skip_prob(cm, xd); |
| int r[TX_SIZES][2], s[TX_SIZES]; |
| int64_t d[TX_SIZES], sse[TX_SIZES]; |
| int64_t rd[TX_SIZES][2] = {{INT64_MAX, INT64_MAX}, |
| {INT64_MAX, INT64_MAX}, |
| {INT64_MAX, INT64_MAX}, |
| {INT64_MAX, INT64_MAX}}; |
| int n, m; |
| int s0, s1; |
| int64_t best_rd = INT64_MAX; |
| TX_SIZE best_tx = max_tx_size; |
| int start_tx, end_tx; |
| |
| const vpx_prob *tx_probs = get_tx_probs2(max_tx_size, xd, &cm->fc->tx_probs); |
| assert(skip_prob > 0); |
| s0 = vp10_cost_bit(skip_prob, 0); |
| s1 = vp10_cost_bit(skip_prob, 1); |
| |
| if (cm->tx_mode == TX_MODE_SELECT) { |
| start_tx = max_tx_size; |
| end_tx = 0; |
| } else { |
| TX_SIZE chosen_tx_size = MIN(max_tx_size, |
| tx_mode_to_biggest_tx_size[cm->tx_mode]); |
| start_tx = chosen_tx_size; |
| end_tx = chosen_tx_size; |
| } |
| |
| for (n = start_tx; n >= end_tx; n--) { |
| txfm_rd_in_plane(x, &r[n][0], &d[n], &s[n], |
| &sse[n], ref_best_rd, 0, bs, n, |
| cpi->sf.use_fast_coef_costing); |
| r[n][1] = r[n][0]; |
| if (r[n][0] < INT_MAX) { |
| for (m = 0; m <= n - (n == (int) max_tx_size); m++) { |
| if (m == n) |
| r[n][1] += vp10_cost_zero(tx_probs[m]); |
| else |
| r[n][1] += vp10_cost_one(tx_probs[m]); |
| } |
| } |
| if (d[n] == INT64_MAX) { |
| rd[n][0] = rd[n][1] = INT64_MAX; |
| } else if (s[n]) { |
| rd[n][0] = rd[n][1] = RDCOST(x->rdmult, x->rddiv, s1, d[n]); |
| } else { |
| rd[n][0] = RDCOST(x->rdmult, x->rddiv, r[n][0] + s0, d[n]); |
| rd[n][1] = RDCOST(x->rdmult, x->rddiv, r[n][1] + s0, d[n]); |
| } |
| |
| // Early termination in transform size search. |
| if (cpi->sf.tx_size_search_breakout && |
| (rd[n][1] == INT64_MAX || |
| (n < (int) max_tx_size && rd[n][1] > rd[n + 1][1]) || |
| s[n] == 1)) |
| break; |
| |
| if (rd[n][1] < best_rd) { |
| best_tx = n; |
| best_rd = rd[n][1]; |
| } |
| } |
| mbmi->tx_size = best_tx; |
| |
| *distortion = d[mbmi->tx_size]; |
| *rate = r[mbmi->tx_size][cm->tx_mode == TX_MODE_SELECT]; |
| *skip = s[mbmi->tx_size]; |
| *psse = sse[mbmi->tx_size]; |
| } |
| |
| static void super_block_yrd(VP9_COMP *cpi, MACROBLOCK *x, int *rate, |
| int64_t *distortion, int *skip, |
| int64_t *psse, BLOCK_SIZE bs, |
| int64_t ref_best_rd) { |
| MACROBLOCKD *xd = &x->e_mbd; |
| int64_t sse; |
| int64_t *ret_sse = psse ? psse : &sse; |
| |
| assert(bs == xd->mi[0]->mbmi.sb_type); |
| |
| if (cpi->sf.tx_size_search_method == USE_LARGESTALL || xd->lossless) { |
| choose_largest_tx_size(cpi, x, rate, distortion, skip, ret_sse, ref_best_rd, |
| bs); |
| } else { |
| choose_tx_size_from_rd(cpi, x, rate, distortion, skip, ret_sse, |
| ref_best_rd, bs); |
| } |
| } |
| |
| static int conditional_skipintra(PREDICTION_MODE mode, |
| PREDICTION_MODE best_intra_mode) { |
| if (mode == D117_PRED && |
| best_intra_mode != V_PRED && |
| best_intra_mode != D135_PRED) |
| return 1; |
| if (mode == D63_PRED && |
| best_intra_mode != V_PRED && |
| best_intra_mode != D45_PRED) |
| return 1; |
| if (mode == D207_PRED && |
| best_intra_mode != H_PRED && |
| best_intra_mode != D45_PRED) |
| return 1; |
| if (mode == D153_PRED && |
| best_intra_mode != H_PRED && |
| best_intra_mode != D135_PRED) |
| return 1; |
| return 0; |
| } |
| |
| static int64_t rd_pick_intra4x4block(VP9_COMP *cpi, MACROBLOCK *x, |
| int row, int col, |
| PREDICTION_MODE *best_mode, |
| const int *bmode_costs, |
| ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l, |
| int *bestrate, int *bestratey, |
| int64_t *bestdistortion, |
| BLOCK_SIZE bsize, int64_t rd_thresh) { |
| PREDICTION_MODE mode; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| int64_t best_rd = rd_thresh; |
| struct macroblock_plane *p = &x->plane[0]; |
| struct macroblockd_plane *pd = &xd->plane[0]; |
| const int src_stride = p->src.stride; |
| const int dst_stride = pd->dst.stride; |
| const uint8_t *src_init = &p->src.buf[row * 4 * src_stride + col * 4]; |
| uint8_t *dst_init = &pd->dst.buf[row * 4 * src_stride + col * 4]; |
| ENTROPY_CONTEXT ta[2], tempa[2]; |
| ENTROPY_CONTEXT tl[2], templ[2]; |
| const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize]; |
| const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize]; |
| int idx, idy; |
| uint8_t best_dst[8 * 8]; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| uint16_t best_dst16[8 * 8]; |
| #endif |
| |
| memcpy(ta, a, sizeof(ta)); |
| memcpy(tl, l, sizeof(tl)); |
| xd->mi[0]->mbmi.tx_size = TX_4X4; |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| for (mode = DC_PRED; mode <= TM_PRED; ++mode) { |
| int64_t this_rd; |
| int ratey = 0; |
| int64_t distortion = 0; |
| int rate = bmode_costs[mode]; |
| |
| if (!(cpi->sf.intra_y_mode_mask[TX_4X4] & (1 << mode))) |
| continue; |
| |
| // Only do the oblique modes if the best so far is |
| // one of the neighboring directional modes |
| if (cpi->sf.mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) { |
| if (conditional_skipintra(mode, *best_mode)) |
| continue; |
| } |
| |
| memcpy(tempa, ta, sizeof(ta)); |
| memcpy(templ, tl, sizeof(tl)); |
| |
| for (idy = 0; idy < num_4x4_blocks_high; ++idy) { |
| for (idx = 0; idx < num_4x4_blocks_wide; ++idx) { |
| const int block = (row + idy) * 2 + (col + idx); |
| const uint8_t *const src = &src_init[idx * 4 + idy * 4 * src_stride]; |
| uint8_t *const dst = &dst_init[idx * 4 + idy * 4 * dst_stride]; |
| int16_t *const src_diff = vp10_raster_block_offset_int16(BLOCK_8X8, |
| block, |
| p->src_diff); |
| tran_low_t *const coeff = BLOCK_OFFSET(x->plane[0].coeff, block); |
| xd->mi[0]->bmi[block].as_mode = mode; |
| vp10_predict_intra_block(xd, 1, TX_4X4, mode, |
| x->skip_encode ? src : dst, |
| x->skip_encode ? src_stride : dst_stride, |
| dst, dst_stride, |
| col + idx, row + idy, 0); |
| vpx_highbd_subtract_block(4, 4, src_diff, 8, src, src_stride, |
| dst, dst_stride, xd->bd); |
| if (xd->lossless) { |
| const scan_order *so = &vp10_default_scan_orders[TX_4X4]; |
| vp10_highbd_fwht4x4(src_diff, coeff, 8); |
| vp10_regular_quantize_b_4x4(x, 0, block, so->scan, so->iscan); |
| ratey += cost_coeffs(x, 0, block, tempa + idx, templ + idy, TX_4X4, |
| so->scan, so->neighbors, |
| cpi->sf.use_fast_coef_costing); |
| if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd) |
| goto next_highbd; |
| vp10_highbd_iwht4x4_add(BLOCK_OFFSET(pd->dqcoeff, block), |
| dst, dst_stride, |
| p->eobs[block], xd->bd); |
| } else { |
| int64_t unused; |
| const TX_TYPE tx_type = get_tx_type_4x4(PLANE_TYPE_Y, xd, block); |
| const scan_order *so = &vp10_scan_orders[TX_4X4][tx_type]; |
| if (tx_type == DCT_DCT) |
| vpx_highbd_fdct4x4(src_diff, coeff, 8); |
| else |
| vp10_highbd_fht4x4(src_diff, coeff, 8, tx_type); |
| vp10_regular_quantize_b_4x4(x, 0, block, so->scan, so->iscan); |
| ratey += cost_coeffs(x, 0, block, tempa + idx, templ + idy, TX_4X4, |
| so->scan, so->neighbors, |
| cpi->sf.use_fast_coef_costing); |
| distortion += vp10_highbd_block_error( |
| coeff, BLOCK_OFFSET(pd->dqcoeff, block), |
| 16, &unused, xd->bd) >> 2; |
| if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd) |
| goto next_highbd; |
| vp10_highbd_iht4x4_add(tx_type, BLOCK_OFFSET(pd->dqcoeff, block), |
| dst, dst_stride, p->eobs[block], xd->bd); |
| } |
| } |
| } |
| |
| rate += ratey; |
| this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion); |
| |
| if (this_rd < best_rd) { |
| *bestrate = rate; |
| *bestratey = ratey; |
| *bestdistortion = distortion; |
| best_rd = this_rd; |
| *best_mode = mode; |
| memcpy(a, tempa, sizeof(tempa)); |
| memcpy(l, templ, sizeof(templ)); |
| for (idy = 0; idy < num_4x4_blocks_high * 4; ++idy) { |
| memcpy(best_dst16 + idy * 8, |
| CONVERT_TO_SHORTPTR(dst_init + idy * dst_stride), |
| num_4x4_blocks_wide * 4 * sizeof(uint16_t)); |
| } |
| } |
| next_highbd: |
| {} |
| } |
| if (best_rd >= rd_thresh || x->skip_encode) |
| return best_rd; |
| |
| for (idy = 0; idy < num_4x4_blocks_high * 4; ++idy) { |
| memcpy(CONVERT_TO_SHORTPTR(dst_init + idy * dst_stride), |
| best_dst16 + idy * 8, |
| num_4x4_blocks_wide * 4 * sizeof(uint16_t)); |
| } |
| |
| return best_rd; |
| } |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| for (mode = DC_PRED; mode <= TM_PRED; ++mode) { |
| int64_t this_rd; |
| int ratey = 0; |
| int64_t distortion = 0; |
| int rate = bmode_costs[mode]; |
| |
| if (!(cpi->sf.intra_y_mode_mask[TX_4X4] & (1 << mode))) |
| continue; |
| |
| // Only do the oblique modes if the best so far is |
| // one of the neighboring directional modes |
| if (cpi->sf.mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) { |
| if (conditional_skipintra(mode, *best_mode)) |
| continue; |
| } |
| |
| memcpy(tempa, ta, sizeof(ta)); |
| memcpy(templ, tl, sizeof(tl)); |
| |
| for (idy = 0; idy < num_4x4_blocks_high; ++idy) { |
| for (idx = 0; idx < num_4x4_blocks_wide; ++idx) { |
| const int block = (row + idy) * 2 + (col + idx); |
| const uint8_t *const src = &src_init[idx * 4 + idy * 4 * src_stride]; |
| uint8_t *const dst = &dst_init[idx * 4 + idy * 4 * dst_stride]; |
| int16_t *const src_diff = |
| vp10_raster_block_offset_int16(BLOCK_8X8, block, p->src_diff); |
| tran_low_t *const coeff = BLOCK_OFFSET(x->plane[0].coeff, block); |
| xd->mi[0]->bmi[block].as_mode = mode; |
| vp10_predict_intra_block(xd, 1, TX_4X4, mode, |
| x->skip_encode ? src : dst, |
| x->skip_encode ? src_stride : dst_stride, |
| dst, dst_stride, col + idx, row + idy, 0); |
| vpx_subtract_block(4, 4, src_diff, 8, src, src_stride, dst, dst_stride); |
| |
| if (xd->lossless) { |
| const scan_order *so = &vp10_default_scan_orders[TX_4X4]; |
| vp10_fwht4x4(src_diff, coeff, 8); |
| vp10_regular_quantize_b_4x4(x, 0, block, so->scan, so->iscan); |
| ratey += cost_coeffs(x, 0, block, tempa + idx, templ + idy, TX_4X4, |
| so->scan, so->neighbors, |
| cpi->sf.use_fast_coef_costing); |
| if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd) |
| goto next; |
| vp10_iwht4x4_add(BLOCK_OFFSET(pd->dqcoeff, block), dst, dst_stride, |
| p->eobs[block]); |
| } else { |
| int64_t unused; |
| const TX_TYPE tx_type = get_tx_type_4x4(PLANE_TYPE_Y, xd, block); |
| const scan_order *so = &vp10_scan_orders[TX_4X4][tx_type]; |
| vp10_fht4x4(src_diff, coeff, 8, tx_type); |
| vp10_regular_quantize_b_4x4(x, 0, block, so->scan, so->iscan); |
| ratey += cost_coeffs(x, 0, block, tempa + idx, templ + idy, TX_4X4, |
| so->scan, so->neighbors, |
| cpi->sf.use_fast_coef_costing); |
| distortion += vp10_block_error(coeff, BLOCK_OFFSET(pd->dqcoeff, block), |
| 16, &unused) >> 2; |
| if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd) |
| goto next; |
| vp10_iht4x4_add(tx_type, BLOCK_OFFSET(pd->dqcoeff, block), |
| dst, dst_stride, p->eobs[block]); |
| } |
| } |
| } |
| |
| rate += ratey; |
| this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion); |
| |
| if (this_rd < best_rd) { |
| *bestrate = rate; |
| *bestratey = ratey; |
| *bestdistortion = distortion; |
| best_rd = this_rd; |
| *best_mode = mode; |
| memcpy(a, tempa, sizeof(tempa)); |
| memcpy(l, templ, sizeof(templ)); |
| for (idy = 0; idy < num_4x4_blocks_high * 4; ++idy) |
| memcpy(best_dst + idy * 8, dst_init + idy * dst_stride, |
| num_4x4_blocks_wide * 4); |
| } |
| next: |
| {} |
| } |
| |
| if (best_rd >= rd_thresh || x->skip_encode) |
| return best_rd; |
| |
| for (idy = 0; idy < num_4x4_blocks_high * 4; ++idy) |
| memcpy(dst_init + idy * dst_stride, best_dst + idy * 8, |
| num_4x4_blocks_wide * 4); |
| |
| return best_rd; |
| } |
| |
| static int64_t rd_pick_intra_sub_8x8_y_mode(VP9_COMP *cpi, MACROBLOCK *mb, |
| int *rate, int *rate_y, |
| int64_t *distortion, |
| int64_t best_rd) { |
| int i, j; |
| const MACROBLOCKD *const xd = &mb->e_mbd; |
| MODE_INFO *const mic = xd->mi[0]; |
| const MODE_INFO *above_mi = xd->above_mi; |
| const MODE_INFO *left_mi = xd->left_mi; |
| const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type; |
| const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize]; |
| const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize]; |
| int idx, idy; |
| int cost = 0; |
| int64_t total_distortion = 0; |
| int tot_rate_y = 0; |
| int64_t total_rd = 0; |
| ENTROPY_CONTEXT t_above[4], t_left[4]; |
| const int *bmode_costs = cpi->mbmode_cost; |
| |
| memcpy(t_above, xd->plane[0].above_context, sizeof(t_above)); |
| memcpy(t_left, xd->plane[0].left_context, sizeof(t_left)); |
| |
| // Pick modes for each sub-block (of size 4x4, 4x8, or 8x4) in an 8x8 block. |
| for (idy = 0; idy < 2; idy += num_4x4_blocks_high) { |
| for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) { |
| PREDICTION_MODE best_mode = DC_PRED; |
| int r = INT_MAX, ry = INT_MAX; |
| int64_t d = INT64_MAX, this_rd = INT64_MAX; |
| i = idy * 2 + idx; |
| if (cpi->common.frame_type == KEY_FRAME) { |
| const PREDICTION_MODE A = vp10_above_block_mode(mic, above_mi, i); |
| const PREDICTION_MODE L = vp10_left_block_mode(mic, left_mi, i); |
| |
| bmode_costs = cpi->y_mode_costs[A][L]; |
| } |
| |
| this_rd = rd_pick_intra4x4block(cpi, mb, idy, idx, &best_mode, |
| bmode_costs, t_above + idx, t_left + idy, |
| &r, &ry, &d, bsize, best_rd - total_rd); |
| if (this_rd >= best_rd - total_rd) |
| return INT64_MAX; |
| |
| total_rd += this_rd; |
| cost += r; |
| total_distortion += d; |
| tot_rate_y += ry; |
| |
| mic->bmi[i].as_mode = best_mode; |
| for (j = 1; j < num_4x4_blocks_high; ++j) |
| mic->bmi[i + j * 2].as_mode = best_mode; |
| for (j = 1; j < num_4x4_blocks_wide; ++j) |
| mic->bmi[i + j].as_mode = best_mode; |
| |
| if (total_rd >= best_rd) |
| return INT64_MAX; |
| } |
| } |
| |
| *rate = cost; |
| *rate_y = tot_rate_y; |
| *distortion = total_distortion; |
| mic->mbmi.mode = mic->bmi[3].as_mode; |
| |
| return RDCOST(mb->rdmult, mb->rddiv, cost, total_distortion); |
| } |
| |
| // This function is used only for intra_only frames |
| static int64_t rd_pick_intra_sby_mode(VP9_COMP *cpi, MACROBLOCK *x, |
| int *rate, int *rate_tokenonly, |
| int64_t *distortion, int *skippable, |
| BLOCK_SIZE bsize, |
| int64_t best_rd) { |
| PREDICTION_MODE mode; |
| PREDICTION_MODE mode_selected = DC_PRED; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MODE_INFO *const mic = xd->mi[0]; |
| int this_rate, this_rate_tokenonly, s; |
| int64_t this_distortion, this_rd; |
| TX_SIZE best_tx = TX_4X4; |
| int *bmode_costs; |
| const MODE_INFO *above_mi = xd->above_mi; |
| const MODE_INFO *left_mi = xd->left_mi; |
| const PREDICTION_MODE A = vp10_above_block_mode(mic, above_mi, 0); |
| const PREDICTION_MODE L = vp10_left_block_mode(mic, left_mi, 0); |
| bmode_costs = cpi->y_mode_costs[A][L]; |
| |
| memset(x->skip_txfm, SKIP_TXFM_NONE, sizeof(x->skip_txfm)); |
| /* Y Search for intra prediction mode */ |
| for (mode = DC_PRED; mode <= TM_PRED; mode++) { |
| |
| if (cpi->sf.use_nonrd_pick_mode) { |
| // These speed features are turned on in hybrid non-RD and RD mode |
| // for key frame coding in the context of real-time setting. |
| if (conditional_skipintra(mode, mode_selected)) |
| continue; |
| if (*skippable) |
| break; |
| } |
| |
| mic->mbmi.mode = mode; |
| |
| super_block_yrd(cpi, x, &this_rate_tokenonly, &this_distortion, |
| &s, NULL, bsize, best_rd); |
| |
| if (this_rate_tokenonly == INT_MAX) |
| continue; |
| |
| this_rate = this_rate_tokenonly + bmode_costs[mode]; |
| this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion); |
| |
| if (this_rd < best_rd) { |
| mode_selected = mode; |
| best_rd = this_rd; |
| best_tx = mic->mbmi.tx_size; |
| *rate = this_rate; |
| *rate_tokenonly = this_rate_tokenonly; |
| *distortion = this_distortion; |
| *skippable = s; |
| } |
| } |
| |
| mic->mbmi.mode = mode_selected; |
| mic->mbmi.tx_size = best_tx; |
| |
| return best_rd; |
| } |
| |
| // Return value 0: early termination triggered, no valid rd cost available; |
| // 1: rd cost values are valid. |
| static int super_block_uvrd(const VP9_COMP *cpi, MACROBLOCK *x, |
| int *rate, int64_t *distortion, int *skippable, |
| int64_t *sse, BLOCK_SIZE bsize, |
| int64_t ref_best_rd) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| const TX_SIZE uv_tx_size = get_uv_tx_size(mbmi, &xd->plane[1]); |
| int plane; |
| int pnrate = 0, pnskip = 1; |
| int64_t pndist = 0, pnsse = 0; |
| int is_cost_valid = 1; |
| |
| if (ref_best_rd < 0) |
| is_cost_valid = 0; |
| |
| if (is_inter_block(mbmi) && is_cost_valid) { |
| int plane; |
| for (plane = 1; plane < MAX_MB_PLANE; ++plane) |
| vp10_subtract_plane(x, bsize, plane); |
| } |
| |
| *rate = 0; |
| *distortion = 0; |
| *sse = 0; |
| *skippable = 1; |
| |
| for (plane = 1; plane < MAX_MB_PLANE; ++plane) { |
| txfm_rd_in_plane(x, &pnrate, &pndist, &pnskip, &pnsse, |
| ref_best_rd, plane, bsize, uv_tx_size, |
| cpi->sf.use_fast_coef_costing); |
| if (pnrate == INT_MAX) { |
| is_cost_valid = 0; |
| break; |
| } |
| *rate += pnrate; |
| *distortion += pndist; |
| *sse += pnsse; |
| *skippable &= pnskip; |
| } |
| |
| if (!is_cost_valid) { |
| // reset cost value |
| *rate = INT_MAX; |
| *distortion = INT64_MAX; |
| *sse = INT64_MAX; |
| *skippable = 0; |
| } |
| |
| return is_cost_valid; |
| } |
| |
| static int64_t rd_pick_intra_sbuv_mode(VP9_COMP *cpi, MACROBLOCK *x, |
| PICK_MODE_CONTEXT *ctx, |
| int *rate, int *rate_tokenonly, |
| int64_t *distortion, int *skippable, |
| BLOCK_SIZE bsize, TX_SIZE max_tx_size) { |
| MACROBLOCKD *xd = &x->e_mbd; |
| PREDICTION_MODE mode; |
| PREDICTION_MODE mode_selected = DC_PRED; |
| int64_t best_rd = INT64_MAX, this_rd; |
| int this_rate_tokenonly, this_rate, s; |
| int64_t this_distortion, this_sse; |
| |
| memset(x->skip_txfm, SKIP_TXFM_NONE, sizeof(x->skip_txfm)); |
| for (mode = DC_PRED; mode <= TM_PRED; ++mode) { |
| if (!(cpi->sf.intra_uv_mode_mask[max_tx_size] & (1 << mode))) |
| continue; |
| |
| xd->mi[0]->mbmi.uv_mode = mode; |
| |
| if (!super_block_uvrd(cpi, x, &this_rate_tokenonly, |
| &this_distortion, &s, &this_sse, bsize, best_rd)) |
| continue; |
| this_rate = this_rate_tokenonly + |
| cpi->intra_uv_mode_cost[cpi->common.frame_type][mode]; |
| this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion); |
| |
| if (this_rd < best_rd) { |
| mode_selected = mode; |
| best_rd = this_rd; |
| *rate = this_rate; |
| *rate_tokenonly = this_rate_tokenonly; |
| *distortion = this_distortion; |
| *skippable = s; |
| if (!x->select_tx_size) |
| swap_block_ptr(x, ctx, 2, 0, 1, MAX_MB_PLANE); |
| } |
| } |
| |
| xd->mi[0]->mbmi.uv_mode = mode_selected; |
| return best_rd; |
| } |
| |
| static int64_t rd_sbuv_dcpred(const VP9_COMP *cpi, MACROBLOCK *x, |
| int *rate, int *rate_tokenonly, |
| int64_t *distortion, int *skippable, |
| BLOCK_SIZE bsize) { |
| const VP10_COMMON *cm = &cpi->common; |
| int64_t unused; |
| |
| x->e_mbd.mi[0]->mbmi.uv_mode = DC_PRED; |
| memset(x->skip_txfm, SKIP_TXFM_NONE, sizeof(x->skip_txfm)); |
| super_block_uvrd(cpi, x, rate_tokenonly, distortion, |
| skippable, &unused, bsize, INT64_MAX); |
| *rate = *rate_tokenonly + cpi->intra_uv_mode_cost[cm->frame_type][DC_PRED]; |
| return RDCOST(x->rdmult, x->rddiv, *rate, *distortion); |
| } |
| |
| static void choose_intra_uv_mode(VP9_COMP *cpi, MACROBLOCK *const x, |
| PICK_MODE_CONTEXT *ctx, |
| BLOCK_SIZE bsize, TX_SIZE max_tx_size, |
| int *rate_uv, int *rate_uv_tokenonly, |
| int64_t *dist_uv, int *skip_uv, |
| PREDICTION_MODE *mode_uv) { |
| // Use an estimated rd for uv_intra based on DC_PRED if the |
| // appropriate speed flag is set. |
| if (cpi->sf.use_uv_intra_rd_estimate) { |
| rd_sbuv_dcpred(cpi, x, rate_uv, rate_uv_tokenonly, dist_uv, |
| skip_uv, bsize < BLOCK_8X8 ? BLOCK_8X8 : bsize); |
| // Else do a proper rd search for each possible transform size that may |
| // be considered in the main rd loop. |
| } else { |
| rd_pick_intra_sbuv_mode(cpi, x, ctx, |
| rate_uv, rate_uv_tokenonly, dist_uv, skip_uv, |
| bsize < BLOCK_8X8 ? BLOCK_8X8 : bsize, max_tx_size); |
| } |
| *mode_uv = x->e_mbd.mi[0]->mbmi.uv_mode; |
| } |
| |
| static int cost_mv_ref(const VP9_COMP *cpi, PREDICTION_MODE mode, |
| int mode_context) { |
| assert(is_inter_mode(mode)); |
| return cpi->inter_mode_cost[mode_context][INTER_OFFSET(mode)]; |
| } |
| |
| static int set_and_cost_bmi_mvs(VP9_COMP *cpi, MACROBLOCK *x, MACROBLOCKD *xd, |
| int i, |
| PREDICTION_MODE mode, int_mv this_mv[2], |
| int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES], |
| int_mv seg_mvs[MAX_REF_FRAMES], |
| int_mv *best_ref_mv[2], const int *mvjcost, |
| int *mvcost[2]) { |
| MODE_INFO *const mic = xd->mi[0]; |
| const MB_MODE_INFO *const mbmi = &mic->mbmi; |
| const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; |
| int thismvcost = 0; |
| int idx, idy; |
| const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[mbmi->sb_type]; |
| const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[mbmi->sb_type]; |
| const int is_compound = has_second_ref(mbmi); |
| |
| switch (mode) { |
| case NEWMV: |
| this_mv[0].as_int = seg_mvs[mbmi->ref_frame[0]].as_int; |
| thismvcost += vp10_mv_bit_cost(&this_mv[0].as_mv, &best_ref_mv[0]->as_mv, |
| mvjcost, mvcost, MV_COST_WEIGHT_SUB); |
| if (is_compound) { |
| this_mv[1].as_int = seg_mvs[mbmi->ref_frame[1]].as_int; |
| thismvcost += vp10_mv_bit_cost(&this_mv[1].as_mv, &best_ref_mv[1]->as_mv, |
| mvjcost, mvcost, MV_COST_WEIGHT_SUB); |
| } |
| break; |
| case NEARMV: |
| case NEARESTMV: |
| this_mv[0].as_int = frame_mv[mode][mbmi->ref_frame[0]].as_int; |
| if (is_compound) |
| this_mv[1].as_int = frame_mv[mode][mbmi->ref_frame[1]].as_int; |
| break; |
| case ZEROMV: |
| this_mv[0].as_int = 0; |
| if (is_compound) |
| this_mv[1].as_int = 0; |
| break; |
| default: |
| break; |
| } |
| |
| mic->bmi[i].as_mv[0].as_int = this_mv[0].as_int; |
| if (is_compound) |
| mic->bmi[i].as_mv[1].as_int = this_mv[1].as_int; |
| |
| mic->bmi[i].as_mode = mode; |
| |
| for (idy = 0; idy < num_4x4_blocks_high; ++idy) |
| for (idx = 0; idx < num_4x4_blocks_wide; ++idx) |
| memmove(&mic->bmi[i + idy * 2 + idx], &mic->bmi[i], sizeof(mic->bmi[i])); |
| |
| return cost_mv_ref(cpi, mode, mbmi_ext->mode_context[mbmi->ref_frame[0]]) + |
| thismvcost; |
| } |
| |
| static int64_t encode_inter_mb_segment(VP9_COMP *cpi, |
| MACROBLOCK *x, |
| int64_t best_yrd, |
| int i, |
| int *labelyrate, |
| int64_t *distortion, int64_t *sse, |
| ENTROPY_CONTEXT *ta, |
| ENTROPY_CONTEXT *tl, |
| int mi_row, int mi_col) { |
| int k; |
| MACROBLOCKD *xd = &x->e_mbd; |
| struct macroblockd_plane *const pd = &xd->plane[0]; |
| struct macroblock_plane *const p = &x->plane[0]; |
| MODE_INFO *const mi = xd->mi[0]; |
| const BLOCK_SIZE plane_bsize = get_plane_block_size(mi->mbmi.sb_type, pd); |
| const int width = 4 * num_4x4_blocks_wide_lookup[plane_bsize]; |
| const int height = 4 * num_4x4_blocks_high_lookup[plane_bsize]; |
| int idx, idy; |
| |
| const uint8_t *const src = |
| &p->src.buf[vp10_raster_block_offset(BLOCK_8X8, i, p->src.stride)]; |
| uint8_t *const dst = &pd->dst.buf[vp10_raster_block_offset(BLOCK_8X8, i, |
| pd->dst.stride)]; |
| int64_t thisdistortion = 0, thissse = 0; |
| int thisrate = 0, ref; |
| const scan_order *so = &vp10_default_scan_orders[TX_4X4]; |
| const int is_compound = has_second_ref(&mi->mbmi); |
| const InterpKernel *kernel = vp10_filter_kernels[mi->mbmi.interp_filter]; |
| |
| for (ref = 0; ref < 1 + is_compound; ++ref) { |
| const uint8_t *pre = &pd->pre[ref].buf[vp10_raster_block_offset(BLOCK_8X8, i, |
| pd->pre[ref].stride)]; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| vp10_highbd_build_inter_predictor(pre, pd->pre[ref].stride, |
| dst, pd->dst.stride, |
| &mi->bmi[i].as_mv[ref].as_mv, |
| &xd->block_refs[ref]->sf, width, height, |
| ref, kernel, MV_PRECISION_Q3, |
| mi_col * MI_SIZE + 4 * (i % 2), |
| mi_row * MI_SIZE + 4 * (i / 2), xd->bd); |
| } else { |
| vp10_build_inter_predictor(pre, pd->pre[ref].stride, |
| dst, pd->dst.stride, |
| &mi->bmi[i].as_mv[ref].as_mv, |
| &xd->block_refs[ref]->sf, width, height, ref, |
| kernel, MV_PRECISION_Q3, |
| mi_col * MI_SIZE + 4 * (i % 2), |
| mi_row * MI_SIZE + 4 * (i / 2)); |
| } |
| #else |
| vp10_build_inter_predictor(pre, pd->pre[ref].stride, |
| dst, pd->dst.stride, |
| &mi->bmi[i].as_mv[ref].as_mv, |
| &xd->block_refs[ref]->sf, width, height, ref, |
| kernel, MV_PRECISION_Q3, |
| mi_col * MI_SIZE + 4 * (i % 2), |
| mi_row * MI_SIZE + 4 * (i / 2)); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| } |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| vpx_highbd_subtract_block( |
| height, width, vp10_raster_block_offset_int16(BLOCK_8X8, i, p->src_diff), |
| 8, src, p->src.stride, dst, pd->dst.stride, xd->bd); |
| } else { |
| vpx_subtract_block( |
| height, width, vp10_raster_block_offset_int16(BLOCK_8X8, i, p->src_diff), |
| 8, src, p->src.stride, dst, pd->dst.stride); |
| } |
| #else |
| vpx_subtract_block(height, width, |
| vp10_raster_block_offset_int16(BLOCK_8X8, i, p->src_diff), |
| 8, src, p->src.stride, dst, pd->dst.stride); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| k = i; |
| for (idy = 0; idy < height / 4; ++idy) { |
| for (idx = 0; idx < width / 4; ++idx) { |
| int64_t ssz, rd, rd1, rd2; |
| tran_low_t* coeff; |
| |
| k += (idy * 2 + idx); |
| coeff = BLOCK_OFFSET(p->coeff, k); |
| x->fwd_txm4x4(vp10_raster_block_offset_int16(BLOCK_8X8, k, p->src_diff), |
| coeff, 8); |
| vp10_regular_quantize_b_4x4(x, 0, k, so->scan, so->iscan); |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| thisdistortion += vp10_highbd_block_error(coeff, |
| BLOCK_OFFSET(pd->dqcoeff, k), |
| 16, &ssz, xd->bd); |
| } else { |
| thisdistortion += vp10_block_error(coeff, BLOCK_OFFSET(pd->dqcoeff, k), |
| 16, &ssz); |
| } |
| #else |
| thisdistortion += vp10_block_error(coeff, BLOCK_OFFSET(pd->dqcoeff, k), |
| 16, &ssz); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| thissse += ssz; |
| thisrate += cost_coeffs(x, 0, k, ta + (k & 1), tl + (k >> 1), TX_4X4, |
| so->scan, so->neighbors, |
| cpi->sf.use_fast_coef_costing); |
| rd1 = RDCOST(x->rdmult, x->rddiv, thisrate, thisdistortion >> 2); |
| rd2 = RDCOST(x->rdmult, x->rddiv, 0, thissse >> 2); |
| rd = MIN(rd1, rd2); |
| if (rd >= best_yrd) |
| return INT64_MAX; |
| } |
| } |
| |
| *distortion = thisdistortion >> 2; |
| *labelyrate = thisrate; |
| *sse = thissse >> 2; |
| |
| return RDCOST(x->rdmult, x->rddiv, *labelyrate, *distortion); |
| } |
| |
| typedef struct { |
| int eobs; |
| int brate; |
| int byrate; |
| int64_t bdist; |
| int64_t bsse; |
| int64_t brdcost; |
| int_mv mvs[2]; |
| ENTROPY_CONTEXT ta[2]; |
| ENTROPY_CONTEXT tl[2]; |
| } SEG_RDSTAT; |
| |
| typedef struct { |
| int_mv *ref_mv[2]; |
| int_mv mvp; |
| |
| int64_t segment_rd; |
| int r; |
| int64_t d; |
| int64_t sse; |
| int segment_yrate; |
| PREDICTION_MODE modes[4]; |
| SEG_RDSTAT rdstat[4][INTER_MODES]; |
| int mvthresh; |
| } BEST_SEG_INFO; |
| |
| static INLINE int mv_check_bounds(const MACROBLOCK *x, const MV *mv) { |
| return (mv->row >> 3) < x->mv_row_min || |
| (mv->row >> 3) > x->mv_row_max || |
| (mv->col >> 3) < x->mv_col_min || |
| (mv->col >> 3) > x->mv_col_max; |
| } |
| |
| static INLINE void mi_buf_shift(MACROBLOCK *x, int i) { |
| MB_MODE_INFO *const mbmi = &x->e_mbd.mi[0]->mbmi; |
| struct macroblock_plane *const p = &x->plane[0]; |
| struct macroblockd_plane *const pd = &x->e_mbd.plane[0]; |
| |
| p->src.buf = &p->src.buf[vp10_raster_block_offset(BLOCK_8X8, i, |
| p->src.stride)]; |
| assert(((intptr_t)pd->pre[0].buf & 0x7) == 0); |
| pd->pre[0].buf = &pd->pre[0].buf[vp10_raster_block_offset(BLOCK_8X8, i, |
| pd->pre[0].stride)]; |
| if (has_second_ref(mbmi)) |
| pd->pre[1].buf = &pd->pre[1].buf[vp10_raster_block_offset(BLOCK_8X8, i, |
| pd->pre[1].stride)]; |
| } |
| |
| static INLINE void mi_buf_restore(MACROBLOCK *x, struct buf_2d orig_src, |
| struct buf_2d orig_pre[2]) { |
| MB_MODE_INFO *mbmi = &x->e_mbd.mi[0]->mbmi; |
| x->plane[0].src = orig_src; |
| x->e_mbd.plane[0].pre[0] = orig_pre[0]; |
| if (has_second_ref(mbmi)) |
| x->e_mbd.plane[0].pre[1] = orig_pre[1]; |
| } |
| |
| static INLINE int mv_has_subpel(const MV *mv) { |
| return (mv->row & 0x0F) || (mv->col & 0x0F); |
| } |
| |
| // Check if NEARESTMV/NEARMV/ZEROMV is the cheapest way encode zero motion. |
| // TODO(aconverse): Find out if this is still productive then clean up or remove |
| static int check_best_zero_mv( |
| const VP9_COMP *cpi, const uint8_t mode_context[MAX_REF_FRAMES], |
| int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES], int this_mode, |
| const MV_REFERENCE_FRAME ref_frames[2]) { |
| if ((this_mode == NEARMV || this_mode == NEARESTMV || this_mode == ZEROMV) && |
| frame_mv[this_mode][ref_frames[0]].as_int == 0 && |
| (ref_frames[1] == NONE || |
| frame_mv[this_mode][ref_frames[1]].as_int == 0)) { |
| int rfc = mode_context[ref_frames[0]]; |
| int c1 = cost_mv_ref(cpi, NEARMV, rfc); |
| int c2 = cost_mv_ref(cpi, NEARESTMV, rfc); |
| int c3 = cost_mv_ref(cpi, ZEROMV, rfc); |
| |
| if (this_mode == NEARMV) { |
| if (c1 > c3) return 0; |
| } else if (this_mode == NEARESTMV) { |
| if (c2 > c3) return 0; |
| } else { |
| assert(this_mode == ZEROMV); |
| if (ref_frames[1] == NONE) { |
| if ((c3 >= c2 && frame_mv[NEARESTMV][ref_frames[0]].as_int == 0) || |
| (c3 >= c1 && frame_mv[NEARMV][ref_frames[0]].as_int == 0)) |
| return 0; |
| } else { |
| if ((c3 >= c2 && frame_mv[NEARESTMV][ref_frames[0]].as_int == 0 && |
| frame_mv[NEARESTMV][ref_frames[1]].as_int == 0) || |
| (c3 >= c1 && frame_mv[NEARMV][ref_frames[0]].as_int == 0 && |
| frame_mv[NEARMV][ref_frames[1]].as_int == 0)) |
| return 0; |
| } |
| } |
| } |
| return 1; |
| } |
| |
| static void joint_motion_search(VP9_COMP *cpi, MACROBLOCK *x, |
| BLOCK_SIZE bsize, |
| int_mv *frame_mv, |
| int mi_row, int mi_col, |
| int_mv single_newmv[MAX_REF_FRAMES], |
| int *rate_mv) { |
| const VP10_COMMON *const cm = &cpi->common; |
| const int pw = 4 * num_4x4_blocks_wide_lookup[bsize]; |
| const int ph = 4 * num_4x4_blocks_high_lookup[bsize]; |
| MACROBLOCKD *xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; |
| const int refs[2] = {mbmi->ref_frame[0], |
| mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1]}; |
| int_mv ref_mv[2]; |
| int ite, ref; |
| const InterpKernel *kernel = vp10_filter_kernels[mbmi->interp_filter]; |
| struct scale_factors sf; |
| |
| // Do joint motion search in compound mode to get more accurate mv. |
| struct buf_2d backup_yv12[2][MAX_MB_PLANE]; |
| int last_besterr[2] = {INT_MAX, INT_MAX}; |
| const YV12_BUFFER_CONFIG *const scaled_ref_frame[2] = { |
| vp10_get_scaled_ref_frame(cpi, mbmi->ref_frame[0]), |
| vp10_get_scaled_ref_frame(cpi, mbmi->ref_frame[1]) |
| }; |
| |
| // Prediction buffer from second frame. |
| #if CONFIG_VP9_HIGHBITDEPTH |
| DECLARE_ALIGNED(16, uint16_t, second_pred_alloc_16[64 * 64]); |
| uint8_t *second_pred; |
| #else |
| DECLARE_ALIGNED(16, uint8_t, second_pred[64 * 64]); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| for (ref = 0; ref < 2; ++ref) { |
| ref_mv[ref] = x->mbmi_ext->ref_mvs[refs[ref]][0]; |
| |
| if (scaled_ref_frame[ref]) { |
| int i; |
| // Swap out the reference frame for a version that's been scaled to |
| // match the resolution of the current frame, allowing the existing |
| // motion search code to be used without additional modifications. |
| for (i = 0; i < MAX_MB_PLANE; i++) |
| backup_yv12[ref][i] = xd->plane[i].pre[ref]; |
| vp10_setup_pre_planes(xd, ref, scaled_ref_frame[ref], mi_row, mi_col, |
| NULL); |
| } |
| |
| frame_mv[refs[ref]].as_int = single_newmv[refs[ref]].as_int; |
| } |
| |
| // Since we have scaled the reference frames to match the size of the current |
| // frame we must use a unit scaling factor during mode selection. |
| #if CONFIG_VP9_HIGHBITDEPTH |
| vp10_setup_scale_factors_for_frame(&sf, cm->width, cm->height, |
| cm->width, cm->height, |
| cm->use_highbitdepth); |
| #else |
| vp10_setup_scale_factors_for_frame(&sf, cm->width, cm->height, |
| cm->width, cm->height); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| // Allow joint search multiple times iteratively for each reference frame |
| // and break out of the search loop if it couldn't find a better mv. |
| for (ite = 0; ite < 4; ite++) { |
| struct buf_2d ref_yv12[2]; |
| int bestsme = INT_MAX; |
| int sadpb = x->sadperbit16; |
| MV tmp_mv; |
| int search_range = 3; |
| |
| int tmp_col_min = x->mv_col_min; |
| int tmp_col_max = x->mv_col_max; |
| int tmp_row_min = x->mv_row_min; |
| int tmp_row_max = x->mv_row_max; |
| int id = ite % 2; // Even iterations search in the first reference frame, |
| // odd iterations search in the second. The predictor |
| // found for the 'other' reference frame is factored in. |
| |
| // Initialized here because of compiler problem in Visual Studio. |
| ref_yv12[0] = xd->plane[0].pre[0]; |
| ref_yv12[1] = xd->plane[0].pre[1]; |
| |
| // Get the prediction block from the 'other' reference frame. |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| second_pred = CONVERT_TO_BYTEPTR(second_pred_alloc_16); |
| vp10_highbd_build_inter_predictor(ref_yv12[!id].buf, |
| ref_yv12[!id].stride, |
| second_pred, pw, |
| &frame_mv[refs[!id]].as_mv, |
| &sf, pw, ph, 0, |
| kernel, MV_PRECISION_Q3, |
| mi_col * MI_SIZE, mi_row * MI_SIZE, |
| xd->bd); |
| } else { |
| second_pred = (uint8_t *)second_pred_alloc_16; |
| vp10_build_inter_predictor(ref_yv12[!id].buf, |
| ref_yv12[!id].stride, |
| second_pred, pw, |
| &frame_mv[refs[!id]].as_mv, |
| &sf, pw, ph, 0, |
| kernel, MV_PRECISION_Q3, |
| mi_col * MI_SIZE, mi_row * MI_SIZE); |
| } |
| #else |
| vp10_build_inter_predictor(ref_yv12[!id].buf, |
| ref_yv12[!id].stride, |
| second_pred, pw, |
| &frame_mv[refs[!id]].as_mv, |
| &sf, pw, ph, 0, |
| kernel, MV_PRECISION_Q3, |
| mi_col * MI_SIZE, mi_row * MI_SIZE); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| // Do compound motion search on the current reference frame. |
| if (id) |
| xd->plane[0].pre[0] = ref_yv12[id]; |
| vp10_set_mv_search_range(x, &ref_mv[id].as_mv); |
| |
| // Use the mv result from the single mode as mv predictor. |
| tmp_mv = frame_mv[refs[id]].as_mv; |
| |
| tmp_mv.col >>= 3; |
| tmp_mv.row >>= 3; |
| |
| // Small-range full-pixel motion search. |
| bestsme = vp10_refining_search_8p_c(x, &tmp_mv, sadpb, |
| search_range, |
| &cpi->fn_ptr[bsize], |
| &ref_mv[id].as_mv, second_pred); |
| if (bestsme < INT_MAX) |
| bestsme = vp10_get_mvpred_av_var(x, &tmp_mv, &ref_mv[id].as_mv, |
| second_pred, &cpi->fn_ptr[bsize], 1); |
| |
| x->mv_col_min = tmp_col_min; |
| x->mv_col_max = tmp_col_max; |
| x->mv_row_min = tmp_row_min; |
| x->mv_row_max = tmp_row_max; |
| |
| if (bestsme < INT_MAX) { |
| int dis; /* TODO: use dis in distortion calculation later. */ |
| unsigned int sse; |
| bestsme = cpi->find_fractional_mv_step( |
| x, &tmp_mv, |
| &ref_mv[id].as_mv, |
| cpi->common.allow_high_precision_mv, |
| x->errorperbit, |
| &cpi->fn_ptr[bsize], |
| 0, cpi->sf.mv.subpel_iters_per_step, |
| NULL, |
| x->nmvjointcost, x->mvcost, |
| &dis, &sse, second_pred, |
| pw, ph); |
| } |
| |
| // Restore the pointer to the first (possibly scaled) prediction buffer. |
| if (id) |
| xd->plane[0].pre[0] = ref_yv12[0]; |
| |
| if (bestsme < last_besterr[id]) { |
| frame_mv[refs[id]].as_mv = tmp_mv; |
| last_besterr[id] = bestsme; |
| } else { |
| break; |
| } |
| } |
| |
| *rate_mv = 0; |
| |
| for (ref = 0; ref < 2; ++ref) { |
| if (scaled_ref_frame[ref]) { |
| // Restore the prediction frame pointers to their unscaled versions. |
| int i; |
| for (i = 0; i < MAX_MB_PLANE; i++) |
| xd->plane[i].pre[ref] = backup_yv12[ref][i]; |
| } |
| |
| *rate_mv += vp10_mv_bit_cost(&frame_mv[refs[ref]].as_mv, |
| &x->mbmi_ext->ref_mvs[refs[ref]][0].as_mv, |
| x->nmvjointcost, x->mvcost, MV_COST_WEIGHT); |
| } |
| } |
| |
| static int64_t rd_pick_best_sub8x8_mode(VP9_COMP *cpi, MACROBLOCK *x, |
| int_mv *best_ref_mv, |
| int_mv *second_best_ref_mv, |
| int64_t best_rd, int *returntotrate, |
| int *returnyrate, |
| int64_t *returndistortion, |
| int *skippable, int64_t *psse, |
| int mvthresh, |
| int_mv seg_mvs[4][MAX_REF_FRAMES], |
| BEST_SEG_INFO *bsi_buf, int filter_idx, |
| int mi_row, int mi_col) { |
| int i; |
| BEST_SEG_INFO *bsi = bsi_buf + filter_idx; |
| MACROBLOCKD *xd = &x->e_mbd; |
| MODE_INFO *mi = xd->mi[0]; |
| MB_MODE_INFO *mbmi = &mi->mbmi; |
| int mode_idx; |
| int k, br = 0, idx, idy; |
| int64_t bd = 0, block_sse = 0; |
| PREDICTION_MODE this_mode; |
| VP10_COMMON *cm = &cpi->common; |
| struct macroblock_plane *const p = &x->plane[0]; |
| struct macroblockd_plane *const pd = &xd->plane[0]; |
| const int label_count = 4; |
| int64_t this_segment_rd = 0; |
| int label_mv_thresh; |
| int segmentyrate = 0; |
| const BLOCK_SIZE bsize = mbmi->sb_type; |
| const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize]; |
| const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize]; |
| ENTROPY_CONTEXT t_above[2], t_left[2]; |
| int subpelmv = 1, have_ref = 0; |
| const int has_second_rf = has_second_ref(mbmi); |
| const int inter_mode_mask = cpi->sf.inter_mode_mask[bsize]; |
| MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; |
| |
| vp10_zero(*bsi); |
| |
| bsi->segment_rd = best_rd; |
| bsi->ref_mv[0] = best_ref_mv; |
| bsi->ref_mv[1] = second_best_ref_mv; |
| bsi->mvp.as_int = best_ref_mv->as_int; |
| bsi->mvthresh = mvthresh; |
| |
| for (i = 0; i < 4; i++) |
| bsi->modes[i] = ZEROMV; |
| |
| memcpy(t_above, pd->above_context, sizeof(t_above)); |
| memcpy(t_left, pd->left_context, sizeof(t_left)); |
| |
| // 64 makes this threshold really big effectively |
| // making it so that we very rarely check mvs on |
| // segments. setting this to 1 would make mv thresh |
| // roughly equal to what it is for macroblocks |
| label_mv_thresh = 1 * bsi->mvthresh / label_count; |
| |
| // Segmentation method overheads |
| for (idy = 0; idy < 2; idy += num_4x4_blocks_high) { |
| for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) { |
| // TODO(jingning,rbultje): rewrite the rate-distortion optimization |
| // loop for 4x4/4x8/8x4 block coding. to be replaced with new rd loop |
| int_mv mode_mv[MB_MODE_COUNT][2]; |
| int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES]; |
| PREDICTION_MODE mode_selected = ZEROMV; |
| int64_t best_rd = INT64_MAX; |
| const int i = idy * 2 + idx; |
| int ref; |
| |
| for (ref = 0; ref < 1 + has_second_rf; ++ref) { |
| const MV_REFERENCE_FRAME frame = mbmi->ref_frame[ref]; |
| frame_mv[ZEROMV][frame].as_int = 0; |
| vp10_append_sub8x8_mvs_for_idx(cm, xd, i, ref, mi_row, mi_col, |
| &frame_mv[NEARESTMV][frame], |
| &frame_mv[NEARMV][frame], |
| mbmi_ext->mode_context); |
| } |
| |
| // search for the best motion vector on this segment |
| for (this_mode = NEARESTMV; this_mode <= NEWMV; ++this_mode) { |
| const struct buf_2d orig_src = x->plane[0].src; |
| struct buf_2d orig_pre[2]; |
| |
| mode_idx = INTER_OFFSET(this_mode); |
| bsi->rdstat[i][mode_idx].brdcost = INT64_MAX; |
| if (!(inter_mode_mask & (1 << this_mode))) |
| continue; |
| |
| if (!check_best_zero_mv(cpi, mbmi_ext->mode_context, frame_mv, |
| this_mode, mbmi->ref_frame)) |
| continue; |
| |
| memcpy(orig_pre, pd->pre, sizeof(orig_pre)); |
| memcpy(bsi->rdstat[i][mode_idx].ta, t_above, |
| sizeof(bsi->rdstat[i][mode_idx].ta)); |
| memcpy(bsi->rdstat[i][mode_idx].tl, t_left, |
| sizeof(bsi->rdstat[i][mode_idx].tl)); |
| |
| // motion search for newmv (single predictor case only) |
| if (!has_second_rf && this_mode == NEWMV && |
| seg_mvs[i][mbmi->ref_frame[0]].as_int == INVALID_MV) { |
| MV *const new_mv = &mode_mv[NEWMV][0].as_mv; |
| int step_param = 0; |
| int thissme, bestsme = INT_MAX; |
| int sadpb = x->sadperbit4; |
| MV mvp_full; |
| int max_mv; |
| int cost_list[5]; |
| |
| /* Is the best so far sufficiently good that we cant justify doing |
| * and new motion search. */ |
| if (best_rd < label_mv_thresh) |
| break; |
| |
| if (cpi->oxcf.mode != BEST) { |
| // use previous block's result as next block's MV predictor. |
| if (i > 0) { |
| bsi->mvp.as_int = mi->bmi[i - 1].as_mv[0].as_int; |
| if (i == 2) |
| bsi->mvp.as_int = mi->bmi[i - 2].as_mv[0].as_int; |
| } |
| } |
| if (i == 0) |
| max_mv = x->max_mv_context[mbmi->ref_frame[0]]; |
| else |
| max_mv = MAX(abs(bsi->mvp.as_mv.row), abs(bsi->mvp.as_mv.col)) >> 3; |
| |
| if (cpi->sf.mv.auto_mv_step_size && cm->show_frame) { |
| // Take wtd average of the step_params based on the last frame's |
| // max mv magnitude and the best ref mvs of the current block for |
| // the given reference. |
| step_param = (vp10_init_search_range(max_mv) + |
| cpi->mv_step_param) / 2; |
| } else { |
| step_param = cpi->mv_step_param; |
| } |
| |
| mvp_full.row = bsi->mvp.as_mv.row >> 3; |
| mvp_full.col = bsi->mvp.as_mv.col >> 3; |
| |
| if (cpi->sf.adaptive_motion_search) { |
| mvp_full.row = x->pred_mv[mbmi->ref_frame[0]].row >> 3; |
| mvp_full.col = x->pred_mv[mbmi->ref_frame[0]].col >> 3; |
| step_param = MAX(step_param, 8); |
| } |
| |
| // adjust src pointer for this block |
| mi_buf_shift(x, i); |
| |
| vp10_set_mv_search_range(x, &bsi->ref_mv[0]->as_mv); |
| |
| bestsme = vp10_full_pixel_search( |
| cpi, x, bsize, &mvp_full, step_param, sadpb, |
| cpi->sf.mv.subpel_search_method != SUBPEL_TREE ? cost_list : NULL, |
| &bsi->ref_mv[0]->as_mv, new_mv, |
| INT_MAX, 1); |
| |
| // Should we do a full search (best quality only) |
| if (cpi->oxcf.mode == BEST) { |
| int_mv *const best_mv = &mi->bmi[i].as_mv[0]; |
| /* Check if mvp_full is within the range. */ |
| clamp_mv(&mvp_full, x->mv_col_min, x->mv_col_max, |
| x->mv_row_min, x->mv_row_max); |
| thissme = cpi->full_search_sad(x, &mvp_full, |
| sadpb, 16, &cpi->fn_ptr[bsize], |
| &bsi->ref_mv[0]->as_mv, |
| &best_mv->as_mv); |
| cost_list[1] = cost_list[2] = cost_list[3] = cost_list[4] = INT_MAX; |
| if (thissme < bestsme) { |
| bestsme = thissme; |
| *new_mv = best_mv->as_mv; |
| } else { |
| // The full search result is actually worse so re-instate the |
| // previous best vector |
| best_mv->as_mv = *new_mv; |
| } |
| } |
| |
| if (bestsme < INT_MAX) { |
| int distortion; |
| cpi->find_fractional_mv_step( |
| x, |
| new_mv, |
| &bsi->ref_mv[0]->as_mv, |
| cm->allow_high_precision_mv, |
| x->errorperbit, &cpi->fn_ptr[bsize], |
| cpi->sf.mv.subpel_force_stop, |
| cpi->sf.mv.subpel_iters_per_step, |
| cond_cost_list(cpi, cost_list), |
| x->nmvjointcost, x->mvcost, |
| &distortion, |
| &x->pred_sse[mbmi->ref_frame[0]], |
| NULL, 0, 0); |
| |
| // save motion search result for use in compound prediction |
| seg_mvs[i][mbmi->ref_frame[0]].as_mv = *new_mv; |
| } |
| |
| if (cpi->sf.adaptive_motion_search) |
| x->pred_mv[mbmi->ref_frame[0]] = *new_mv; |
| |
| // restore src pointers |
| mi_buf_restore(x, orig_src, orig_pre); |
| } |
| |
| if (has_second_rf) { |
| if (seg_mvs[i][mbmi->ref_frame[1]].as_int == INVALID_MV || |
| seg_mvs[i][mbmi->ref_frame[0]].as_int == INVALID_MV) |
| continue; |
| } |
| |
| if (has_second_rf && this_mode == NEWMV && |
| mbmi->interp_filter == EIGHTTAP) { |
| // adjust src pointers |
| mi_buf_shift(x, i); |
| if (cpi->sf.comp_inter_joint_search_thresh <= bsize) { |
| int rate_mv; |
| joint_motion_search(cpi, x, bsize, frame_mv[this_mode], |
| mi_row, mi_col, seg_mvs[i], |
| &rate_mv); |
| seg_mvs[i][mbmi->ref_frame[0]].as_int = |
| frame_mv[this_mode][mbmi->ref_frame[0]].as_int; |
| seg_mvs[i][mbmi->ref_frame[1]].as_int = |
| frame_mv[this_mode][mbmi->ref_frame[1]].as_int; |
| } |
| // restore src pointers |
| mi_buf_restore(x, orig_src, orig_pre); |
| } |
| |
| bsi->rdstat[i][mode_idx].brate = |
| set_and_cost_bmi_mvs(cpi, x, xd, i, this_mode, mode_mv[this_mode], |
| frame_mv, seg_mvs[i], bsi->ref_mv, |
| x->nmvjointcost, x->mvcost); |
| |
| for (ref = 0; ref < 1 + has_second_rf; ++ref) { |
| bsi->rdstat[i][mode_idx].mvs[ref].as_int = |
| mode_mv[this_mode][ref].as_int; |
| if (num_4x4_blocks_wide > 1) |
| bsi->rdstat[i + 1][mode_idx].mvs[ref].as_int = |
| mode_mv[this_mode][ref].as_int; |
| if (num_4x4_blocks_high > 1) |
| bsi->rdstat[i + 2][mode_idx].mvs[ref].as_int = |
| mode_mv[this_mode][ref].as_int; |
| } |
| |
| // Trap vectors that reach beyond the UMV borders |
| if (mv_check_bounds(x, &mode_mv[this_mode][0].as_mv) || |
| (has_second_rf && |
| mv_check_bounds(x, &mode_mv[this_mode][1].as_mv))) |
| continue; |
| |
| if (filter_idx > 0) { |
| BEST_SEG_INFO *ref_bsi = bsi_buf; |
| subpelmv = 0; |
| have_ref = 1; |
| |
| for (ref = 0; ref < 1 + has_second_rf; ++ref) { |
| subpelmv |= mv_has_subpel(&mode_mv[this_mode][ref].as_mv); |
| have_ref &= mode_mv[this_mode][ref].as_int == |
| ref_bsi->rdstat[i][mode_idx].mvs[ref].as_int; |
| } |
| |
| if (filter_idx > 1 && !subpelmv && !have_ref) { |
| ref_bsi = bsi_buf + 1; |
| have_ref = 1; |
| for (ref = 0; ref < 1 + has_second_rf; ++ref) |
| have_ref &= mode_mv[this_mode][ref].as_int == |
| ref_bsi->rdstat[i][mode_idx].mvs[ref].as_int; |
| } |
| |
| if (!subpelmv && have_ref && |
| ref_bsi->rdstat[i][mode_idx].brdcost < INT64_MAX) { |
| memcpy(&bsi->rdstat[i][mode_idx], &ref_bsi->rdstat[i][mode_idx], |
| sizeof(SEG_RDSTAT)); |
| if (num_4x4_blocks_wide > 1) |
| bsi->rdstat[i + 1][mode_idx].eobs = |
| ref_bsi->rdstat[i + 1][mode_idx].eobs; |
| if (num_4x4_blocks_high > 1) |
| bsi->rdstat[i + 2][mode_idx].eobs = |
| ref_bsi->rdstat[i + 2][mode_idx].eobs; |
| |
| if (bsi->rdstat[i][mode_idx].brdcost < best_rd) { |
| mode_selected = this_mode; |
| best_rd = bsi->rdstat[i][mode_idx].brdcost; |
| } |
| continue; |
| } |
| } |
| |
| bsi->rdstat[i][mode_idx].brdcost = |
| encode_inter_mb_segment(cpi, x, |
| bsi->segment_rd - this_segment_rd, i, |
| &bsi->rdstat[i][mode_idx].byrate, |
| &bsi->rdstat[i][mode_idx].bdist, |
| &bsi->rdstat[i][mode_idx].bsse, |
| bsi->rdstat[i][mode_idx].ta, |
| bsi->rdstat[i][mode_idx].tl, |
| mi_row, mi_col); |
| if (bsi->rdstat[i][mode_idx].brdcost < INT64_MAX) { |
| bsi->rdstat[i][mode_idx].brdcost += RDCOST(x->rdmult, x->rddiv, |
| bsi->rdstat[i][mode_idx].brate, 0); |
| bsi->rdstat[i][mode_idx].brate += bsi->rdstat[i][mode_idx].byrate; |
| bsi->rdstat[i][mode_idx].eobs = p->eobs[i]; |
| if (num_4x4_blocks_wide > 1) |
| bsi->rdstat[i + 1][mode_idx].eobs = p->eobs[i + 1]; |
| if (num_4x4_blocks_high > 1) |
| bsi->rdstat[i + 2][mode_idx].eobs = p->eobs[i + 2]; |
| } |
| |
| if (bsi->rdstat[i][mode_idx].brdcost < best_rd) { |
| mode_selected = this_mode; |
| best_rd = bsi->rdstat[i][mode_idx].brdcost; |
| } |
| } /*for each 4x4 mode*/ |
| |
| if (best_rd == INT64_MAX) { |
| int iy, midx; |
| for (iy = i + 1; iy < 4; ++iy) |
| for (midx = 0; midx < INTER_MODES; ++midx) |
| bsi->rdstat[iy][midx].brdcost = INT64_MAX; |
| bsi->segment_rd = INT64_MAX; |
| return INT64_MAX; |
| } |
| |
| mode_idx = INTER_OFFSET(mode_selected); |
| memcpy(t_above, bsi->rdstat[i][mode_idx].ta, sizeof(t_above)); |
| memcpy(t_left, bsi->rdstat[i][mode_idx].tl, sizeof(t_left)); |
| |
| set_and_cost_bmi_mvs(cpi, x, xd, i, mode_selected, mode_mv[mode_selected], |
| frame_mv, seg_mvs[i], bsi->ref_mv, x->nmvjointcost, |
| x->mvcost); |
| |
| br += bsi->rdstat[i][mode_idx].brate; |
| bd += bsi->rdstat[i][mode_idx].bdist; |
| block_sse += bsi->rdstat[i][mode_idx].bsse; |
| segmentyrate += bsi->rdstat[i][mode_idx].byrate; |
| this_segment_rd += bsi->rdstat[i][mode_idx].brdcost; |
| |
| if (this_segment_rd > bsi->segment_rd) { |
| int iy, midx; |
| for (iy = i + 1; iy < 4; ++iy) |
| for (midx = 0; midx < INTER_MODES; ++midx) |
| bsi->rdstat[iy][midx].brdcost = INT64_MAX; |
| bsi->segment_rd = INT64_MAX; |
| return INT64_MAX; |
| } |
| } |
| } /* for each label */ |
| |
| bsi->r = br; |
| bsi->d = bd; |
| bsi->segment_yrate = segmentyrate; |
| bsi->segment_rd = this_segment_rd; |
| bsi->sse = block_sse; |
| |
| // update the coding decisions |
| for (k = 0; k < 4; ++k) |
| bsi->modes[k] = mi->bmi[k].as_mode; |
| |
| if (bsi->segment_rd > best_rd) |
| return INT64_MAX; |
| /* set it to the best */ |
| for (i = 0; i < 4; i++) { |
| mode_idx = INTER_OFFSET(bsi->modes[i]); |
| mi->bmi[i].as_mv[0].as_int = bsi->rdstat[i][mode_idx].mvs[0].as_int; |
| if (has_second_ref(mbmi)) |
| mi->bmi[i].as_mv[1].as_int = bsi->rdstat[i][mode_idx].mvs[1].as_int; |
| x->plane[0].eobs[i] = bsi->rdstat[i][mode_idx].eobs; |
| mi->bmi[i].as_mode = bsi->modes[i]; |
| } |
| |
| /* |
| * used to set mbmi->mv.as_int |
| */ |
| *returntotrate = bsi->r; |
| *returndistortion = bsi->d; |
| *returnyrate = bsi->segment_yrate; |
| *skippable = vp10_is_skippable_in_plane(x, BLOCK_8X8, 0); |
| *psse = bsi->sse; |
| mbmi->mode = bsi->modes[3]; |
| |
| return bsi->segment_rd; |
| } |
| |
| static void estimate_ref_frame_costs(const VP10_COMMON *cm, |
| const MACROBLOCKD *xd, |
| int segment_id, |
| unsigned int *ref_costs_single, |
| unsigned int *ref_costs_comp, |
| vpx_prob *comp_mode_p) { |
| int seg_ref_active = segfeature_active(&cm->seg, segment_id, |
| SEG_LVL_REF_FRAME); |
| if (seg_ref_active) { |
| memset(ref_costs_single, 0, MAX_REF_FRAMES * sizeof(*ref_costs_single)); |
| memset(ref_costs_comp, 0, MAX_REF_FRAMES * sizeof(*ref_costs_comp)); |
| *comp_mode_p = 128; |
| } else { |
| vpx_prob intra_inter_p = vp10_get_intra_inter_prob(cm, xd); |
| vpx_prob comp_inter_p = 128; |
| |
| if (cm->reference_mode == REFERENCE_MODE_SELECT) { |
| comp_inter_p = vp10_get_reference_mode_prob(cm, xd); |
| *comp_mode_p = comp_inter_p; |
| } else { |
| *comp_mode_p = 128; |
| } |
| |
| ref_costs_single[INTRA_FRAME] = vp10_cost_bit(intra_inter_p, 0); |
| |
| if (cm->reference_mode != COMPOUND_REFERENCE) { |
| vpx_prob ref_single_p1 = vp10_get_pred_prob_single_ref_p1(cm, xd); |
| vpx_prob ref_single_p2 = vp10_get_pred_prob_single_ref_p2(cm, xd); |
| unsigned int base_cost = vp10_cost_bit(intra_inter_p, 1); |
| |
| if (cm->reference_mode == REFERENCE_MODE_SELECT) |
| base_cost += vp10_cost_bit(comp_inter_p, 0); |
| |
| ref_costs_single[LAST_FRAME] = ref_costs_single[GOLDEN_FRAME] = |
| ref_costs_single[ALTREF_FRAME] = base_cost; |
| ref_costs_single[LAST_FRAME] += vp10_cost_bit(ref_single_p1, 0); |
| ref_costs_single[GOLDEN_FRAME] += vp10_cost_bit(ref_single_p1, 1); |
| ref_costs_single[ALTREF_FRAME] += vp10_cost_bit(ref_single_p1, 1); |
| ref_costs_single[GOLDEN_FRAME] += vp10_cost_bit(ref_single_p2, 0); |
| ref_costs_single[ALTREF_FRAME] += vp10_cost_bit(ref_single_p2, 1); |
| } else { |
| ref_costs_single[LAST_FRAME] = 512; |
| ref_costs_single[GOLDEN_FRAME] = 512; |
| ref_costs_single[ALTREF_FRAME] = 512; |
| } |
| if (cm->reference_mode != SINGLE_REFERENCE) { |
| vpx_prob ref_comp_p = vp10_get_pred_prob_comp_ref_p(cm, xd); |
| unsigned int base_cost = vp10_cost_bit(intra_inter_p, 1); |
| |
| if (cm->reference_mode == REFERENCE_MODE_SELECT) |
| base_cost += vp10_cost_bit(comp_inter_p, 1); |
| |
| ref_costs_comp[LAST_FRAME] = base_cost + vp10_cost_bit(ref_comp_p, 0); |
| ref_costs_comp[GOLDEN_FRAME] = base_cost + vp10_cost_bit(ref_comp_p, 1); |
| } else { |
| ref_costs_comp[LAST_FRAME] = 512; |
| ref_costs_comp[GOLDEN_FRAME] = 512; |
| } |
| } |
| } |
| |
| static void store_coding_context(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx, |
| int mode_index, |
| int64_t comp_pred_diff[REFERENCE_MODES], |
| int64_t best_filter_diff[SWITCHABLE_FILTER_CONTEXTS], |
| int skippable) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| |
| // Take a snapshot of the coding context so it can be |
| // restored if we decide to encode this way |
| ctx->skip = x->skip; |
| ctx->skippable = skippable; |
| ctx->best_mode_index = mode_index; |
| ctx->mic = *xd->mi[0]; |
| ctx->mbmi_ext = *x->mbmi_ext; |
| ctx->single_pred_diff = (int)comp_pred_diff[SINGLE_REFERENCE]; |
| ctx->comp_pred_diff = (int)comp_pred_diff[COMPOUND_REFERENCE]; |
| ctx->hybrid_pred_diff = (int)comp_pred_diff[REFERENCE_MODE_SELECT]; |
| |
| memcpy(ctx->best_filter_diff, best_filter_diff, |
| sizeof(*best_filter_diff) * SWITCHABLE_FILTER_CONTEXTS); |
| } |
| |
| static void setup_buffer_inter(VP9_COMP *cpi, MACROBLOCK *x, |
| MV_REFERENCE_FRAME ref_frame, |
| BLOCK_SIZE block_size, |
| int mi_row, int mi_col, |
| int_mv frame_nearest_mv[MAX_REF_FRAMES], |
| int_mv frame_near_mv[MAX_REF_FRAMES], |
| struct buf_2d yv12_mb[4][MAX_MB_PLANE]) { |
| const VP10_COMMON *cm = &cpi->common; |
| const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, ref_frame); |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MODE_INFO *const mi = xd->mi[0]; |
| int_mv *const candidates = x->mbmi_ext->ref_mvs[ref_frame]; |
| const struct scale_factors *const sf = &cm->frame_refs[ref_frame - 1].sf; |
| MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; |
| |
| assert(yv12 != NULL); |
| |
| // TODO(jkoleszar): Is the UV buffer ever used here? If so, need to make this |
| // use the UV scaling factors. |
| vp10_setup_pred_block(xd, yv12_mb[ref_frame], yv12, mi_row, mi_col, sf, sf); |
| |
| // Gets an initial list of candidate vectors from neighbours and orders them |
| vp10_find_mv_refs(cm, xd, mi, ref_frame, candidates, mi_row, mi_col, |
| NULL, NULL, mbmi_ext->mode_context); |
| |
| // Candidate refinement carried out at encoder and decoder |
| vp10_find_best_ref_mvs(xd, cm->allow_high_precision_mv, candidates, |
| &frame_nearest_mv[ref_frame], |
| &frame_near_mv[ref_frame]); |
| |
| // Further refinement that is encode side only to test the top few candidates |
| // in full and choose the best as the centre point for subsequent searches. |
| // The current implementation doesn't support scaling. |
| if (!vp10_is_scaled(sf) && block_size >= BLOCK_8X8) |
| vp10_mv_pred(cpi, x, yv12_mb[ref_frame][0].buf, yv12->y_stride, |
| ref_frame, block_size); |
| } |
| |
| static void single_motion_search(VP9_COMP *cpi, MACROBLOCK *x, |
| BLOCK_SIZE bsize, |
| int mi_row, int mi_col, |
| int_mv *tmp_mv, int *rate_mv) { |
| MACROBLOCKD *xd = &x->e_mbd; |
| const VP10_COMMON *cm = &cpi->common; |
| MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; |
| struct buf_2d backup_yv12[MAX_MB_PLANE] = {{0, 0}}; |
| int bestsme = INT_MAX; |
| int step_param; |
| int sadpb = x->sadperbit16; |
| MV mvp_full; |
| int ref = mbmi->ref_frame[0]; |
| MV ref_mv = x->mbmi_ext->ref_mvs[ref][0].as_mv; |
| |
| int tmp_col_min = x->mv_col_min; |
| int tmp_col_max = x->mv_col_max; |
| int tmp_row_min = x->mv_row_min; |
| int tmp_row_max = x->mv_row_max; |
| int cost_list[5]; |
| |
| const YV12_BUFFER_CONFIG *scaled_ref_frame = vp10_get_scaled_ref_frame(cpi, |
| ref); |
| |
| MV pred_mv[3]; |
| pred_mv[0] = x->mbmi_ext->ref_mvs[ref][0].as_mv; |
| pred_mv[1] = x->mbmi_ext->ref_mvs[ref][1].as_mv; |
| pred_mv[2] = x->pred_mv[ref]; |
| |
| if (scaled_ref_frame) { |
| int i; |
| // Swap out the reference frame for a version that's been scaled to |
| // match the resolution of the current frame, allowing the existing |
| // motion search code to be used without additional modifications. |
| for (i = 0; i < MAX_MB_PLANE; i++) |
| backup_yv12[i] = xd->plane[i].pre[0]; |
| |
| vp10_setup_pre_planes(xd, 0, scaled_ref_frame, mi_row, mi_col, NULL); |
| } |
| |
| vp10_set_mv_search_range(x, &ref_mv); |
| |
| // Work out the size of the first step in the mv step search. |
| // 0 here is maximum length first step. 1 is MAX >> 1 etc. |
| if (cpi->sf.mv.auto_mv_step_size && cm->show_frame) { |
| // Take wtd average of the step_params based on the last frame's |
| // max mv magnitude and that based on the best ref mvs of the current |
| // block for the given reference. |
| step_param = (vp10_init_search_range(x->max_mv_context[ref]) + |
| cpi->mv_step_param) / 2; |
| } else { |
| step_param = cpi->mv_step_param; |
| } |
| |
| if (cpi->sf.adaptive_motion_search && bsize < BLOCK_64X64) { |
| int boffset = 2 * (b_width_log2_lookup[BLOCK_64X64] - |
| MIN(b_height_log2_lookup[bsize], b_width_log2_lookup[bsize])); |
| step_param = MAX(step_param, boffset); |
| } |
| |
| if (cpi->sf.adaptive_motion_search) { |
| int bwl = b_width_log2_lookup[bsize]; |
| int bhl = b_height_log2_lookup[bsize]; |
| int tlevel = x->pred_mv_sad[ref] >> (bwl + bhl + 4); |
| |
| if (tlevel < 5) |
| step_param += 2; |
| |
| // prev_mv_sad is not setup for dynamically scaled frames. |
| if (cpi->oxcf.resize_mode != RESIZE_DYNAMIC) { |
| int i; |
| for (i = LAST_FRAME; i <= ALTREF_FRAME && cm->show_frame; ++i) { |
| if ((x->pred_mv_sad[ref] >> 3) > x->pred_mv_sad[i]) { |
| x->pred_mv[ref].row = 0; |
| x->pred_mv[ref].col = 0; |
| tmp_mv->as_int = INVALID_MV; |
| |
| if (scaled_ref_frame) { |
| int i; |
| for (i = 0; i < MAX_MB_PLANE; ++i) |
| xd->plane[i].pre[0] = backup_yv12[i]; |
| } |
| return; |
| } |
| } |
| } |
| } |
| |
| mvp_full = pred_mv[x->mv_best_ref_index[ref]]; |
| |
| mvp_full.col >>= 3; |
| mvp_full.row >>= 3; |
| |
| bestsme = vp10_full_pixel_search(cpi, x, bsize, &mvp_full, step_param, sadpb, |
| cond_cost_list(cpi, cost_list), |
| &ref_mv, &tmp_mv->as_mv, INT_MAX, 1); |
| |
| x->mv_col_min = tmp_col_min; |
| x->mv_col_max = tmp_col_max; |
| x->mv_row_min = tmp_row_min; |
| x->mv_row_max = tmp_row_max; |
| |
| if (bestsme < INT_MAX) { |
| int dis; /* TODO: use dis in distortion calculation later. */ |
| cpi->find_fractional_mv_step(x, &tmp_mv->as_mv, &ref_mv, |
| cm->allow_high_precision_mv, |
| x->errorperbit, |
| &cpi->fn_ptr[bsize], |
| cpi->sf.mv.subpel_force_stop, |
| cpi->sf.mv.subpel_iters_per_step, |
| cond_cost_list(cpi, cost_list), |
| x->nmvjointcost, x->mvcost, |
| &dis, &x->pred_sse[ref], NULL, 0, 0); |
| } |
| *rate_mv = vp10_mv_bit_cost(&tmp_mv->as_mv, &ref_mv, |
| x->nmvjointcost, x->mvcost, MV_COST_WEIGHT); |
| |
| if (cpi->sf.adaptive_motion_search) |
| x->pred_mv[ref] = tmp_mv->as_mv; |
| |
| if (scaled_ref_frame) { |
| int i; |
| for (i = 0; i < MAX_MB_PLANE; i++) |
| xd->plane[i].pre[0] = backup_yv12[i]; |
| } |
| } |
| |
| |
| |
| static INLINE void restore_dst_buf(MACROBLOCKD *xd, |
| uint8_t *orig_dst[MAX_MB_PLANE], |
| int orig_dst_stride[MAX_MB_PLANE]) { |
| int i; |
| for (i = 0; i < MAX_MB_PLANE; i++) { |
| xd->plane[i].dst.buf = orig_dst[i]; |
| xd->plane[i].dst.stride = orig_dst_stride[i]; |
| } |
| } |
| |
| // In some situations we want to discount tha pparent cost of a new motion |
| // vector. Where there is a subtle motion field and especially where there is |
| // low spatial complexity then it can be hard to cover the cost of a new motion |
| // vector in a single block, even if that motion vector reduces distortion. |
| // However, once established that vector may be usable through the nearest and |
| // near mv modes to reduce distortion in subsequent blocks and also improve |
| // visual quality. |
| static int discount_newmv_test(const VP9_COMP *cpi, |
| int this_mode, |
| int_mv this_mv, |
| int_mv (*mode_mv)[MAX_REF_FRAMES], |
| int ref_frame) { |
| return (!cpi->rc.is_src_frame_alt_ref && |
| (this_mode == NEWMV) && |
| (this_mv.as_int != 0) && |
| ((mode_mv[NEARESTMV][ref_frame].as_int == 0) || |
| (mode_mv[NEARESTMV][ref_frame].as_int == INVALID_MV)) && |
| ((mode_mv[NEARMV][ref_frame].as_int == 0) || |
| (mode_mv[NEARMV][ref_frame].as_int == INVALID_MV))); |
| } |
| |
| static int64_t handle_inter_mode(VP9_COMP *cpi, MACROBLOCK *x, |
| BLOCK_SIZE bsize, |
| int *rate2, int64_t *distortion, |
| int *skippable, |
| int *rate_y, int *rate_uv, |
| int *disable_skip, |
| int_mv (*mode_mv)[MAX_REF_FRAMES], |
| int mi_row, int mi_col, |
| int_mv single_newmv[MAX_REF_FRAMES], |
| INTERP_FILTER (*single_filter)[MAX_REF_FRAMES], |
| int (*single_skippable)[MAX_REF_FRAMES], |
| int64_t *psse, |
| const int64_t ref_best_rd, |
| int64_t *mask_filter, |
| int64_t filter_cache[]) { |
| VP10_COMMON *cm = &cpi->common; |
| MACROBLOCKD *xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; |
| MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; |
| const int is_comp_pred = has_second_ref(mbmi); |
| const int this_mode = mbmi->mode; |
| int_mv *frame_mv = mode_mv[this_mode]; |
| int i; |
| int refs[2] = { mbmi->ref_frame[0], |
| (mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1]) }; |
| int_mv cur_mv[2]; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| DECLARE_ALIGNED(16, uint16_t, tmp_buf16[MAX_MB_PLANE * 64 * 64]); |
| uint8_t *tmp_buf; |
| #else |
| DECLARE_ALIGNED(16, uint8_t, tmp_buf[MAX_MB_PLANE * 64 * 64]); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| int pred_exists = 0; |
| int intpel_mv; |
| int64_t rd, tmp_rd, best_rd = INT64_MAX; |
| int best_needs_copy = 0; |
| uint8_t *orig_dst[MAX_MB_PLANE]; |
| int orig_dst_stride[MAX_MB_PLANE]; |
| int rs = 0; |
| INTERP_FILTER best_filter = SWITCHABLE; |
| uint8_t skip_txfm[MAX_MB_PLANE << 2] = {0}; |
| int64_t bsse[MAX_MB_PLANE << 2] = {0}; |
| |
| int bsl = mi_width_log2_lookup[bsize]; |
| int pred_filter_search = cpi->sf.cb_pred_filter_search ? |
| (((mi_row + mi_col) >> bsl) + |
| get_chessboard_index(cm->current_video_frame)) & 0x1 : 0; |
| |
| int skip_txfm_sb = 0; |
| int64_t skip_sse_sb = INT64_MAX; |
| int64_t distortion_y = 0, distortion_uv = 0; |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| tmp_buf = CONVERT_TO_BYTEPTR(tmp_buf16); |
| } else { |
| tmp_buf = (uint8_t *)tmp_buf16; |
| } |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| if (pred_filter_search) { |
| INTERP_FILTER af = SWITCHABLE, lf = SWITCHABLE; |
| if (xd->up_available) |
| af = xd->mi[-xd->mi_stride]->mbmi.interp_filter; |
| if (xd->left_available) |
| lf = xd->mi[-1]->mbmi.interp_filter; |
| |
| if ((this_mode != NEWMV) || (af == lf)) |
| best_filter = af; |
| } |
| |
| if (is_comp_pred) { |
| if (frame_mv[refs[0]].as_int == INVALID_MV || |
| frame_mv[refs[1]].as_int == INVALID_MV) |
| return INT64_MAX; |
| |
| if (cpi->sf.adaptive_mode_search) { |
| if (single_filter[this_mode][refs[0]] == |
| single_filter[this_mode][refs[1]]) |
| best_filter = single_filter[this_mode][refs[0]]; |
| } |
| } |
| |
| if (this_mode == NEWMV) { |
| int rate_mv; |
| if (is_comp_pred) { |
| // Initialize mv using single prediction mode result. |
| frame_mv[refs[0]].as_int = single_newmv[refs[0]].as_int; |
| frame_mv[refs[1]].as_int = single_newmv[refs[1]].as_int; |
| |
| if (cpi->sf.comp_inter_joint_search_thresh <= bsize) { |
| joint_motion_search(cpi, x, bsize, frame_mv, |
| mi_row, mi_col, single_newmv, &rate_mv); |
| } else { |
| rate_mv = vp10_mv_bit_cost(&frame_mv[refs[0]].as_mv, |
| &x->mbmi_ext->ref_mvs[refs[0]][0].as_mv, |
| x->nmvjointcost, x->mvcost, MV_COST_WEIGHT); |
| rate_mv += vp10_mv_bit_cost(&frame_mv[refs[1]].as_mv, |
| &x->mbmi_ext->ref_mvs[refs[1]][0].as_mv, |
| x->nmvjointcost, x->mvcost, MV_COST_WEIGHT); |
| } |
| *rate2 += rate_mv; |
| } else { |
| int_mv tmp_mv; |
| single_motion_search(cpi, x, bsize, mi_row, mi_col, |
| &tmp_mv, &rate_mv); |
| if (tmp_mv.as_int == INVALID_MV) |
| return INT64_MAX; |
| |
| frame_mv[refs[0]].as_int = |
| xd->mi[0]->bmi[0].as_mv[0].as_int = tmp_mv.as_int; |
| single_newmv[refs[0]].as_int = tmp_mv.as_int; |
| |
| // Estimate the rate implications of a new mv but discount this |
| // under certain circumstances where we want to help initiate a weak |
| // motion field, where the distortion gain for a single block may not |
| // be enough to overcome the cost of a new mv. |
| if (discount_newmv_test(cpi, this_mode, tmp_mv, mode_mv, refs[0])) { |
| *rate2 += MAX((rate_mv / NEW_MV_DISCOUNT_FACTOR), 1); |
| } else { |
| *rate2 += rate_mv; |
| } |
| } |
| } |
| |
| for (i = 0; i < is_comp_pred + 1; ++i) { |
| cur_mv[i] = frame_mv[refs[i]]; |
| // Clip "next_nearest" so that it does not extend to far out of image |
| if (this_mode != NEWMV) |
| clamp_mv2(&cur_mv[i].as_mv, xd); |
| |
| if (mv_check_bounds(x, &cur_mv[i].as_mv)) |
| return INT64_MAX; |
| mbmi->mv[i].as_int = cur_mv[i].as_int; |
| } |
| |
| // do first prediction into the destination buffer. Do the next |
| // prediction into a temporary buffer. Then keep track of which one |
| // of these currently holds the best predictor, and use the other |
| // one for future predictions. In the end, copy from tmp_buf to |
| // dst if necessary. |
| for (i = 0; i < MAX_MB_PLANE; i++) { |
| orig_dst[i] = xd->plane[i].dst.buf; |
| orig_dst_stride[i] = xd->plane[i].dst.stride; |
| } |
| |
| // We don't include the cost of the second reference here, because there |
| // are only three options: Last/Golden, ARF/Last or Golden/ARF, or in other |
| // words if you present them in that order, the second one is always known |
| // if the first is known. |
| // |
| // Under some circumstances we discount the cost of new mv mode to encourage |
| // initiation of a motion field. |
| if (discount_newmv_test(cpi, this_mode, frame_mv[refs[0]], |
| mode_mv, refs[0])) { |
| *rate2 += MIN(cost_mv_ref(cpi, this_mode, |
| mbmi_ext->mode_context[refs[0]]), |
| cost_mv_ref(cpi, NEARESTMV, |
| mbmi_ext->mode_context[refs[0]])); |
| } else { |
| *rate2 += cost_mv_ref(cpi, this_mode, mbmi_ext->mode_context[refs[0]]); |
| } |
| |
| if (RDCOST(x->rdmult, x->rddiv, *rate2, 0) > ref_best_rd && |
| mbmi->mode != NEARESTMV) |
| return INT64_MAX; |
| |
| pred_exists = 0; |
| // Are all MVs integer pel for Y and UV |
| intpel_mv = !mv_has_subpel(&mbmi->mv[0].as_mv); |
| if (is_comp_pred) |
| intpel_mv &= !mv_has_subpel(&mbmi->mv[1].as_mv); |
| |
| // Search for best switchable filter by checking the variance of |
| // pred error irrespective of whether the filter will be used |
| for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i) |
| filter_cache[i] = INT64_MAX; |
| |
| if (cm->interp_filter != BILINEAR) { |
| if (x->source_variance < cpi->sf.disable_filter_search_var_thresh) { |
| best_filter = EIGHTTAP; |
| } else if (best_filter == SWITCHABLE) { |
| int newbest; |
| int tmp_rate_sum = 0; |
| int64_t tmp_dist_sum = 0; |
| |
| for (i = 0; i < SWITCHABLE_FILTERS; ++i) { |
| int j; |
| int64_t rs_rd; |
| int tmp_skip_sb = 0; |
| int64_t tmp_skip_sse = INT64_MAX; |
| |
| mbmi->interp_filter = i; |
| rs = vp10_get_switchable_rate(cpi, xd); |
| rs_rd = RDCOST(x->rdmult, x->rddiv, rs, 0); |
| |
| if (i > 0 && intpel_mv) { |
| rd = RDCOST(x->rdmult, x->rddiv, tmp_rate_sum, tmp_dist_sum); |
| filter_cache[i] = rd; |
| filter_cache[SWITCHABLE_FILTERS] = |
| MIN(filter_cache[SWITCHABLE_FILTERS], rd + rs_rd); |
| if (cm->interp_filter == SWITCHABLE) |
| rd += rs_rd; |
| *mask_filter = MAX(*mask_filter, rd); |
| } else { |
| int rate_sum = 0; |
| int64_t dist_sum = 0; |
| if (i > 0 && cpi->sf.adaptive_interp_filter_search && |
| (cpi->sf.interp_filter_search_mask & (1 << i))) { |
| rate_sum = INT_MAX; |
| dist_sum = INT64_MAX; |
| continue; |
| } |
| |
| if ((cm->interp_filter == SWITCHABLE && |
| (!i || best_needs_copy)) || |
| (cm->interp_filter != SWITCHABLE && |
| (cm->interp_filter == mbmi->interp_filter || |
| (i == 0 && intpel_mv)))) { |
| restore_dst_buf(xd, orig_dst, orig_dst_stride); |
| } else { |
| for (j = 0; j < MAX_MB_PLANE; j++) { |
| xd->plane[j].dst.buf = tmp_buf + j * 64 * 64; |
| xd->plane[j].dst.stride = 64; |
| } |
| } |
| vp10_build_inter_predictors_sb(xd, mi_row, mi_col, bsize); |
| model_rd_for_sb(cpi, bsize, x, xd, &rate_sum, &dist_sum, |
| &tmp_skip_sb, &tmp_skip_sse); |
| |
| rd = RDCOST(x->rdmult, x->rddiv, rate_sum, dist_sum); |
| filter_cache[i] = rd; |
| filter_cache[SWITCHABLE_FILTERS] = |
| MIN(filter_cache[SWITCHABLE_FILTERS], rd + rs_rd); |
| if (cm->interp_filter == SWITCHABLE) |
| rd += rs_rd; |
| *mask_filter = MAX(*mask_filter, rd); |
| |
| if (i == 0 && intpel_mv) { |
| tmp_rate_sum = rate_sum; |
| tmp_dist_sum = dist_sum; |
| } |
| } |
| |
| if (i == 0 && cpi->sf.use_rd_breakout && ref_best_rd < INT64_MAX) { |
| if (rd / 2 > ref_best_rd) { |
| restore_dst_buf(xd, orig_dst, orig_dst_stride); |
| return INT64_MAX; |
| } |
| } |
| newbest = i == 0 || rd < best_rd; |
| |
| if (newbest) { |
| best_rd = rd; |
| best_filter = mbmi->interp_filter; |
| if (cm->interp_filter == SWITCHABLE && i && !intpel_mv) |
| best_needs_copy = !best_needs_copy; |
| } |
| |
| if ((cm->interp_filter == SWITCHABLE && newbest) || |
| (cm->interp_filter != SWITCHABLE && |
| cm->interp_filter == mbmi->interp_filter)) { |
| pred_exists = 1; |
| tmp_rd = best_rd; |
| |
| skip_txfm_sb = tmp_skip_sb; |
| skip_sse_sb = tmp_skip_sse; |
| memcpy(skip_txfm, x->skip_txfm, sizeof(skip_txfm)); |
| memcpy(bsse, x->bsse, sizeof(bsse)); |
| } |
| } |
| restore_dst_buf(xd, orig_dst, orig_dst_stride); |
| } |
| } |
| // Set the appropriate filter |
| mbmi->interp_filter = cm->interp_filter != SWITCHABLE ? |
| cm->interp_filter : best_filter; |
| rs = cm->interp_filter == SWITCHABLE ? vp10_get_switchable_rate(cpi, xd) : 0; |
| |
| if (pred_exists) { |
| if (best_needs_copy) { |
| // again temporarily set the buffers to local memory to prevent a memcpy |
| for (i = 0; i < MAX_MB_PLANE; i++) { |
| xd->plane[i].dst.buf = tmp_buf + i * 64 * 64; |
| xd->plane[i].dst.stride = 64; |
| } |
| } |
| rd = tmp_rd + RDCOST(x->rdmult, x->rddiv, rs, 0); |
| } else { |
| int tmp_rate; |
| int64_t tmp_dist; |
| // Handles the special case when a filter that is not in the |
| // switchable list (ex. bilinear) is indicated at the frame level, or |
| // skip condition holds. |
| vp10_build_inter_predictors_sb(xd, mi_row, mi_col, bsize); |
| model_rd_for_sb(cpi, bsize, x, xd, &tmp_rate, &tmp_dist, |
| &skip_txfm_sb, &skip_sse_sb); |
| rd = RDCOST(x->rdmult, x->rddiv, rs + tmp_rate, tmp_dist); |
| memcpy(skip_txfm, x->skip_txfm, sizeof(skip_txfm)); |
| memcpy(bsse, x->bsse, sizeof(bsse)); |
| } |
| |
| if (!is_comp_pred) |
| single_filter[this_mode][refs[0]] = mbmi->interp_filter; |
| |
| if (cpi->sf.adaptive_mode_search) |
| if (is_comp_pred) |
| if (single_skippable[this_mode][refs[0]] && |
| single_skippable[this_mode][refs[1]]) |
| memset(skip_txfm, SKIP_TXFM_AC_DC, sizeof(skip_txfm)); |
| |
| if (cpi->sf.use_rd_breakout && ref_best_rd < INT64_MAX) { |
| // if current pred_error modeled rd is substantially more than the best |
| // so far, do not bother doing full rd |
| if (rd / 2 > ref_best_rd) { |
| restore_dst_buf(xd, orig_dst, orig_dst_stride); |
| return INT64_MAX; |
| } |
| } |
| |
| if (cm->interp_filter == SWITCHABLE) |
| *rate2 += rs; |
| |
| memcpy(x->skip_txfm, skip_txfm, sizeof(skip_txfm)); |
| memcpy(x->bsse, bsse, sizeof(bsse)); |
| |
| if (!skip_txfm_sb) { |
| int skippable_y, skippable_uv; |
| int64_t sseuv = INT64_MAX; |
| int64_t rdcosty = INT64_MAX; |
| |
| // Y cost and distortion |
| vp10_subtract_plane(x, bsize, 0); |
| super_block_yrd(cpi, x, rate_y, &distortion_y, &skippable_y, psse, |
| bsize, ref_best_rd); |
| |
| if (*rate_y == INT_MAX) { |
| *rate2 = INT_MAX; |
| *distortion = INT64_MAX; |
| restore_dst_buf(xd, orig_dst, orig_dst_stride); |
| return INT64_MAX; |
| } |
| |
| *rate2 += *rate_y; |
| *distortion += distortion_y; |
| |
| rdcosty = RDCOST(x->rdmult, x->rddiv, *rate2, *distortion); |
| rdcosty = MIN(rdcosty, RDCOST(x->rdmult, x->rddiv, 0, *psse)); |
| |
| if (!super_block_uvrd(cpi, x, rate_uv, &distortion_uv, &skippable_uv, |
| &sseuv, bsize, ref_best_rd - rdcosty)) { |
| *rate2 = INT_MAX; |
| *distortion = INT64_MAX; |
| restore_dst_buf(xd, orig_dst, orig_dst_stride); |
| return INT64_MAX; |
| } |
| |
| *psse += sseuv; |
| *rate2 += *rate_uv; |
| *distortion += distortion_uv; |
| *skippable = skippable_y && skippable_uv; |
| } else { |
| x->skip = 1; |
| *disable_skip = 1; |
| |
| // The cost of skip bit needs to be added. |
| *rate2 += vp10_cost_bit(vp10_get_skip_prob(cm, xd), 1); |
| |
| *distortion = skip_sse_sb; |
| } |
| |
| if (!is_comp_pred) |
| single_skippable[this_mode][refs[0]] = *skippable; |
| |
| restore_dst_buf(xd, orig_dst, orig_dst_stride); |
| return 0; // The rate-distortion cost will be re-calculated by caller. |
| } |
| |
| void vp10_rd_pick_intra_mode_sb(VP9_COMP *cpi, MACROBLOCK *x, |
| RD_COST *rd_cost, BLOCK_SIZE bsize, |
| PICK_MODE_CONTEXT *ctx, int64_t best_rd) { |
| VP10_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| struct macroblockd_plane *const pd = xd->plane; |
| int rate_y = 0, rate_uv = 0, rate_y_tokenonly = 0, rate_uv_tokenonly = 0; |
| int y_skip = 0, uv_skip = 0; |
| int64_t dist_y = 0, dist_uv = 0; |
| TX_SIZE max_uv_tx_size; |
| x->skip_encode = 0; |
| ctx->skip = 0; |
| xd->mi[0]->mbmi.ref_frame[0] = INTRA_FRAME; |
| xd->mi[0]->mbmi.ref_frame[1] = NONE; |
| |
| if (bsize >= BLOCK_8X8) { |
| if (rd_pick_intra_sby_mode(cpi, x, &rate_y, &rate_y_tokenonly, |
| &dist_y, &y_skip, bsize, |
| best_rd) >= best_rd) { |
| rd_cost->rate = INT_MAX; |
| return; |
| } |
| } else { |
| y_skip = 0; |
| if (rd_pick_intra_sub_8x8_y_mode(cpi, x, &rate_y, &rate_y_tokenonly, |
| &dist_y, best_rd) >= best_rd) { |
| rd_cost->rate = INT_MAX; |
| return; |
| } |
| } |
| max_uv_tx_size = get_uv_tx_size_impl(xd->mi[0]->mbmi.tx_size, bsize, |
| pd[1].subsampling_x, |
| pd[1].subsampling_y); |
| rd_pick_intra_sbuv_mode(cpi, x, ctx, &rate_uv, &rate_uv_tokenonly, |
| &dist_uv, &uv_skip, MAX(BLOCK_8X8, bsize), |
| max_uv_tx_size); |
| |
| if (y_skip && uv_skip) { |
| rd_cost->rate = rate_y + rate_uv - rate_y_tokenonly - rate_uv_tokenonly + |
| vp10_cost_bit(vp10_get_skip_prob(cm, xd), 1); |
| rd_cost->dist = dist_y + dist_uv; |
| } else { |
| rd_cost->rate = rate_y + rate_uv + |
| vp10_cost_bit(vp10_get_skip_prob(cm, xd), 0); |
| rd_cost->dist = dist_y + dist_uv; |
| } |
| |
| ctx->mic = *xd->mi[0]; |
| ctx->mbmi_ext = *x->mbmi_ext; |
| rd_cost->rdcost = RDCOST(x->rdmult, x->rddiv, rd_cost->rate, rd_cost->dist); |
| } |
| |
| // This function is designed to apply a bias or adjustment to an rd value based |
| // on the relative variance of the source and reconstruction. |
| #define LOW_VAR_THRESH 16 |
| #define VLOW_ADJ_MAX 25 |
| #define VHIGH_ADJ_MAX 8 |
| static void rd_variance_adjustment(VP9_COMP *cpi, |
| MACROBLOCK *x, |
| BLOCK_SIZE bsize, |
| int64_t *this_rd, |
| MV_REFERENCE_FRAME ref_frame, |
| unsigned int source_variance) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| unsigned int recon_variance; |
| unsigned int absvar_diff = 0; |
| int64_t var_error = 0; |
| int64_t var_factor = 0; |
| |
| if (*this_rd == INT64_MAX) |
| return; |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| recon_variance = |
| vp10_high_get_sby_perpixel_variance(cpi, &xd->plane[0].dst, bsize, xd->bd); |
| } else { |
| recon_variance = |
| vp10_get_sby_perpixel_variance(cpi, &xd->plane[0].dst, bsize); |
| } |
| #else |
| recon_variance = |
| vp10_get_sby_perpixel_variance(cpi, &xd->plane[0].dst, bsize); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| if ((source_variance + recon_variance) > LOW_VAR_THRESH) { |
| absvar_diff = (source_variance > recon_variance) |
| ? (source_variance - recon_variance) |
| : (recon_variance - source_variance); |
| |
| var_error = (200 * source_variance * recon_variance) / |
| ((source_variance * source_variance) + |
| (recon_variance * recon_variance)); |
| var_error = 100 - var_error; |
| } |
| |
| // Source variance above a threshold and ref frame is intra. |
| // This case is targeted mainly at discouraging intra modes that give rise |
| // to a predictor with a low spatial complexity compared to the source. |
| if ((source_variance > LOW_VAR_THRESH) && (ref_frame == INTRA_FRAME) && |
| (source_variance > recon_variance)) { |
| var_factor = MIN(absvar_diff, MIN(VLOW_ADJ_MAX, var_error)); |
| // A second possible case of interest is where the source variance |
| // is very low and we wish to discourage false texture or motion trails. |
| } else if ((source_variance < (LOW_VAR_THRESH >> 1)) && |
| (recon_variance > source_variance)) { |
| var_factor = MIN(absvar_diff, MIN(VHIGH_ADJ_MAX, var_error)); |
| } |
| *this_rd += (*this_rd * var_factor) / 100; |
| } |
| |
| |
| // Do we have an internal image edge (e.g. formatting bars). |
| int vp10_internal_image_edge(VP9_COMP *cpi) { |
| return (cpi->oxcf.pass == 2) && |
| ((cpi->twopass.this_frame_stats.inactive_zone_rows > 0) || |
| (cpi->twopass.this_frame_stats.inactive_zone_cols > 0)); |
| } |
| |
| // Checks to see if a super block is on a horizontal image edge. |
| // In most cases this is the "real" edge unless there are formatting |
| // bars embedded in the stream. |
| int vp10_active_h_edge(VP9_COMP *cpi, int mi_row, int mi_step) { |
| int top_edge = 0; |
| int bottom_edge = cpi->common.mi_rows; |
| int is_active_h_edge = 0; |
| |
| // For two pass account for any formatting bars detected. |
| if (cpi->oxcf.pass == 2) { |
| TWO_PASS *twopass = &cpi->twopass; |
| |
| // The inactive region is specified in MBs not mi units. |
| // The image edge is in the following MB row. |
| top_edge += (int)(twopass->this_frame_stats.inactive_zone_rows * 2); |
| |
| bottom_edge -= (int)(twopass->this_frame_stats.inactive_zone_rows * 2); |
| bottom_edge = MAX(top_edge, bottom_edge); |
| } |
| |
| if (((top_edge >= mi_row) && (top_edge < (mi_row + mi_step))) || |
| ((bottom_edge >= mi_row) && (bottom_edge < (mi_row + mi_step)))) { |
| is_active_h_edge = 1; |
| } |
| return is_active_h_edge; |
| } |
| |
| // Checks to see if a super block is on a vertical image edge. |
| // In most cases this is the "real" edge unless there are formatting |
| // bars embedded in the stream. |
| int vp10_active_v_edge(VP9_COMP *cpi, int mi_col, int mi_step) { |
| int left_edge = 0; |
| int right_edge = cpi->common.mi_cols; |
| int is_active_v_edge = 0; |
| |
| // For two pass account for any formatting bars detected. |
| if (cpi->oxcf.pass == 2) { |
| TWO_PASS *twopass = &cpi->twopass; |
| |
| // The inactive region is specified in MBs not mi units. |
| // The image edge is in the following MB row. |
| left_edge += (int)(twopass->this_frame_stats.inactive_zone_cols * 2); |
| |
| right_edge -= (int)(twopass->this_frame_stats.inactive_zone_cols * 2); |
| right_edge = MAX(left_edge, right_edge); |
| } |
| |
| if (((left_edge >= mi_col) && (left_edge < (mi_col + mi_step))) || |
| ((right_edge >= mi_col) && (right_edge < (mi_col + mi_step)))) { |
| is_active_v_edge = 1; |
| } |
| return is_active_v_edge; |
| } |
| |
| // Checks to see if a super block is at the edge of the active image. |
| // In most cases this is the "real" edge unless there are formatting |
| // bars embedded in the stream. |
| int vp10_active_edge_sb(VP9_COMP *cpi, |
| int mi_row, int mi_col) { |
| return vp10_active_h_edge(cpi, mi_row, MI_BLOCK_SIZE) || |
| vp10_active_v_edge(cpi, mi_col, MI_BLOCK_SIZE); |
| } |
| |
| void vp10_rd_pick_inter_mode_sb(VP9_COMP *cpi, |
| TileDataEnc *tile_data, |
| MACROBLOCK *x, |
| int mi_row, int mi_col, |
| RD_COST *rd_cost, BLOCK_SIZE bsize, |
| PICK_MODE_CONTEXT *ctx, |
| int64_t best_rd_so_far) { |
| VP10_COMMON *const cm = &cpi->common; |
| TileInfo *const tile_info = &tile_data->tile_info; |
| RD_OPT *const rd_opt = &cpi->rd; |
| SPEED_FEATURES *const sf = &cpi->sf; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; |
| const struct segmentation *const seg = &cm->seg; |
| PREDICTION_MODE this_mode; |
| MV_REFERENCE_FRAME ref_frame, second_ref_frame; |
| unsigned char segment_id = mbmi->segment_id; |
| int comp_pred, i, k; |
| int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES]; |
| struct buf_2d yv12_mb[4][MAX_MB_PLANE]; |
| int_mv single_newmv[MAX_REF_FRAMES] = { { 0 } }; |
| INTERP_FILTER single_inter_filter[MB_MODE_COUNT][MAX_REF_FRAMES]; |
| int single_skippable[MB_MODE_COUNT][MAX_REF_FRAMES]; |
| static const int flag_list[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG, |
| VP9_ALT_FLAG }; |
| int64_t best_rd = best_rd_so_far; |
| int64_t best_pred_diff[REFERENCE_MODES]; |
| int64_t best_pred_rd[REFERENCE_MODES]; |
| int64_t best_filter_rd[SWITCHABLE_FILTER_CONTEXTS]; |
| int64_t best_filter_diff[SWITCHABLE_FILTER_CONTEXTS]; |
| MB_MODE_INFO best_mbmode; |
| int best_mode_skippable = 0; |
| int midx, best_mode_index = -1; |
| unsigned int ref_costs_single[MAX_REF_FRAMES], ref_costs_comp[MAX_REF_FRAMES]; |
| vpx_prob comp_mode_p; |
| int64_t best_intra_rd = INT64_MAX; |
| unsigned int best_pred_sse = UINT_MAX; |
| PREDICTION_MODE best_intra_mode = DC_PRED; |
| int rate_uv_intra[TX_SIZES], rate_uv_tokenonly[TX_SIZES]; |
| int64_t dist_uv[TX_SIZES]; |
| int skip_uv[TX_SIZES]; |
| PREDICTION_MODE mode_uv[TX_SIZES]; |
| const int intra_cost_penalty = vp10_get_intra_cost_penalty( |
| cm->base_qindex, cm->y_dc_delta_q, cm->bit_depth); |
| int best_skip2 = 0; |
| uint8_t ref_frame_skip_mask[2] = { 0 }; |
| uint16_t mode_skip_mask[MAX_REF_FRAMES] = { 0 }; |
| int mode_skip_start = sf->mode_skip_start + 1; |
| const int *const rd_threshes = rd_opt->threshes[segment_id][bsize]; |
| const int *const rd_thresh_freq_fact = tile_data->thresh_freq_fact[bsize]; |
| int64_t mode_threshold[MAX_MODES]; |
| int *mode_map = tile_data->mode_map[bsize]; |
| const int mode_search_skip_flags = sf->mode_search_skip_flags; |
| int64_t mask_filter = 0; |
| int64_t filter_cache[SWITCHABLE_FILTER_CONTEXTS]; |
| |
| vp10_zero(best_mbmode); |
| |
| x->skip_encode = sf->skip_encode_frame && x->q_index < QIDX_SKIP_THRESH; |
| |
| for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i) |
| filter_cache[i] = INT64_MAX; |
| |
| estimate_ref_frame_costs(cm, xd, segment_id, ref_costs_single, ref_costs_comp, |
| &comp_mode_p); |
| |
| for (i = 0; i < REFERENCE_MODES; ++i) |
| best_pred_rd[i] = INT64_MAX; |
| for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) |
| best_filter_rd[i] = INT64_MAX; |
| for (i = 0; i < TX_SIZES; i++) |
| rate_uv_intra[i] = INT_MAX; |
| for (i = 0; i < MAX_REF_FRAMES; ++i) |
| x->pred_sse[i] = INT_MAX; |
| for (i = 0; i < MB_MODE_COUNT; ++i) { |
| for (k = 0; k < MAX_REF_FRAMES; ++k) { |
| single_inter_filter[i][k] = SWITCHABLE; |
| single_skippable[i][k] = 0; |
| } |
| } |
| |
| rd_cost->rate = INT_MAX; |
| |
| for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { |
| x->pred_mv_sad[ref_frame] = INT_MAX; |
| if (cpi->ref_frame_flags & flag_list[ref_frame]) { |
| assert(get_ref_frame_buffer(cpi, ref_frame) != NULL); |
| setup_buffer_inter(cpi, x, ref_frame, bsize, mi_row, mi_col, |
| frame_mv[NEARESTMV], frame_mv[NEARMV], yv12_mb); |
| } |
| frame_mv[NEWMV][ref_frame].as_int = INVALID_MV; |
| frame_mv[ZEROMV][ref_frame].as_int = 0; |
| } |
| |
| for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { |
| if (!(cpi->ref_frame_flags & flag_list[ref_frame])) { |
| // Skip checking missing references in both single and compound reference |
| // modes. Note that a mode will be skipped iff both reference frames |
| // are masked out. |
| ref_frame_skip_mask[0] |= (1 << ref_frame); |
| ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; |
| } else if (sf->reference_masking) { |
| for (i = LAST_FRAME; i <= ALTREF_FRAME; ++i) { |
| // Skip fixed mv modes for poor references |
| if ((x->pred_mv_sad[ref_frame] >> 2) > x->pred_mv_sad[i]) { |
| mode_skip_mask[ref_frame] |= INTER_NEAREST_NEAR_ZERO; |
| break; |
| } |
| } |
| } |
| // If the segment reference frame feature is enabled.... |
| // then do nothing if the current ref frame is not allowed.. |
| if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) && |
| get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame) { |
| ref_frame_skip_mask[0] |= (1 << ref_frame); |
| ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; |
| } |
| } |
| |
| // Disable this drop out case if the ref frame |
| // segment level feature is enabled for this segment. This is to |
| // prevent the possibility that we end up unable to pick any mode. |
| if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) { |
| // Only consider ZEROMV/ALTREF_FRAME for alt ref frame, |
| // unless ARNR filtering is enabled in which case we want |
| // an unfiltered alternative. We allow near/nearest as well |
| // because they may result in zero-zero MVs but be cheaper. |
| if (cpi->rc.is_src_frame_alt_ref && (cpi->oxcf.arnr_max_frames == 0)) { |
| ref_frame_skip_mask[0] = (1 << LAST_FRAME) | (1 << GOLDEN_FRAME); |
| ref_frame_skip_mask[1] = SECOND_REF_FRAME_MASK; |
| mode_skip_mask[ALTREF_FRAME] = ~INTER_NEAREST_NEAR_ZERO; |
| if (frame_mv[NEARMV][ALTREF_FRAME].as_int != 0) |
| mode_skip_mask[ALTREF_FRAME] |= (1 << NEARMV); |
| if (frame_mv[NEARESTMV][ALTREF_FRAME].as_int != 0) |
| mode_skip_mask[ALTREF_FRAME] |= (1 << NEARESTMV); |
| } |
| } |
| |
| if (cpi->rc.is_src_frame_alt_ref) { |
| if (sf->alt_ref_search_fp) { |
| mode_skip_mask[ALTREF_FRAME] = 0; |
| ref_frame_skip_mask[0] = ~(1 << ALTREF_FRAME); |
| ref_frame_skip_mask[1] = SECOND_REF_FRAME_MASK; |
| } |
| } |
| |
| if (sf->alt_ref_search_fp) |
| if (!cm->show_frame && x->pred_mv_sad[GOLDEN_FRAME] < INT_MAX) |
| if (x->pred_mv_sad[ALTREF_FRAME] > (x->pred_mv_sad[GOLDEN_FRAME] << 1)) |
| mode_skip_mask[ALTREF_FRAME] |= INTER_ALL; |
| |
| if (sf->adaptive_mode_search) { |
| if (cm->show_frame && !cpi->rc.is_src_frame_alt_ref && |
| cpi->rc.frames_since_golden >= 3) |
| if (x->pred_mv_sad[GOLDEN_FRAME] > (x->pred_mv_sad[LAST_FRAME] << 1)) |
| mode_skip_mask[GOLDEN_FRAME] |= INTER_ALL; |
| } |
| |
| if (bsize > sf->max_intra_bsize) { |
| ref_frame_skip_mask[0] |= (1 << INTRA_FRAME); |
| ref_frame_skip_mask[1] |= (1 << INTRA_FRAME); |
| } |
| |
| mode_skip_mask[INTRA_FRAME] |= |
| ~(sf->intra_y_mode_mask[max_txsize_lookup[bsize]]); |
| |
| for (i = 0; i <= LAST_NEW_MV_INDEX; ++i) |
| mode_threshold[i] = 0; |
| for (i = LAST_NEW_MV_INDEX + 1; i < MAX_MODES; ++i) |
| mode_threshold[i] = ((int64_t)rd_threshes[i] * rd_thresh_freq_fact[i]) >> 5; |
| |
| midx = sf->schedule_mode_search ? mode_skip_start : 0; |
| while (midx > 4) { |
| uint8_t end_pos = 0; |
| for (i = 5; i < midx; ++i) { |
| if (mode_threshold[mode_map[i - 1]] > mode_threshold[mode_map[i]]) { |
| uint8_t tmp = mode_map[i]; |
| mode_map[i] = mode_map[i - 1]; |
| mode_map[i - 1] = tmp; |
| end_pos = i; |
| } |
| } |
| midx = end_pos; |
| } |
| |
| for (midx = 0; midx < MAX_MODES; ++midx) { |
| int mode_index = mode_map[midx]; |
| int mode_excluded = 0; |
| int64_t this_rd = INT64_MAX; |
| int disable_skip = 0; |
| int compmode_cost = 0; |
| int rate2 = 0, rate_y = 0, rate_uv = 0; |
| int64_t distortion2 = 0, distortion_y = 0, distortion_uv = 0; |
| int skippable = 0; |
| int this_skip2 = 0; |
| int64_t total_sse = INT64_MAX; |
| int early_term = 0; |
| |
| this_mode = vp10_mode_order[mode_index].mode; |
| ref_frame = vp10_mode_order[mode_index].ref_frame[0]; |
| second_ref_frame = vp10_mode_order[mode_index].ref_frame[1]; |
| |
| // Look at the reference frame of the best mode so far and set the |
| // skip mask to look at a subset of the remaining modes. |
| if (midx == mode_skip_start && best_mode_index >= 0) { |
| switch (best_mbmode.ref_frame[0]) { |
| case INTRA_FRAME: |
| break; |
| case LAST_FRAME: |
| ref_frame_skip_mask[0] |= LAST_FRAME_MODE_MASK; |
| ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; |
| break; |
| case GOLDEN_FRAME: |
| ref_frame_skip_mask[0] |= GOLDEN_FRAME_MODE_MASK; |
| ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; |
| break; |
| case ALTREF_FRAME: |
| ref_frame_skip_mask[0] |= ALT_REF_MODE_MASK; |
| break; |
| case NONE: |
| case MAX_REF_FRAMES: |
| assert(0 && "Invalid Reference frame"); |
| break; |
| } |
| } |
| |
| if ((ref_frame_skip_mask[0] & (1 << ref_frame)) && |
| (ref_frame_skip_mask[1] & (1 << MAX(0, second_ref_frame)))) |
| continue; |
| |
| if (mode_skip_mask[ref_frame] & (1 << this_mode)) |
| continue; |
| |
| // Test best rd so far against threshold for trying this mode. |
| if (best_mode_skippable && sf->schedule_mode_search) |
| mode_threshold[mode_index] <<= 1; |
| |
| if (best_rd < mode_threshold[mode_index]) |
| continue; |
| |
| if (sf->motion_field_mode_search) { |
| const int mi_width = MIN(num_8x8_blocks_wide_lookup[bsize], |
| tile_info->mi_col_end - mi_col); |
| const int mi_height = MIN(num_8x8_blocks_high_lookup[bsize], |
| tile_info->mi_row_end - mi_row); |
| const int bsl = mi_width_log2_lookup[bsize]; |
| int cb_partition_search_ctrl = (((mi_row + mi_col) >> bsl) |
| + get_chessboard_index(cm->current_video_frame)) & 0x1; |
| MB_MODE_INFO *ref_mbmi; |
| int const_motion = 1; |
| int skip_ref_frame = !cb_partition_search_ctrl; |
| MV_REFERENCE_FRAME rf = NONE; |
| int_mv ref_mv; |
| ref_mv.as_int = INVALID_MV; |
| |
| if ((mi_row - 1) >= tile_info->mi_row_start) { |
| ref_mv = xd->mi[-xd->mi_stride]->mbmi.mv[0]; |
| rf = xd->mi[-xd->mi_stride]->mbmi.ref_frame[0]; |
| for (i = 0; i < mi_width; ++i) { |
| ref_mbmi = &xd->mi[-xd->mi_stride + i]->mbmi; |
| const_motion &= (ref_mv.as_int == ref_mbmi->mv[0].as_int) && |
| (ref_frame == ref_mbmi->ref_frame[0]); |
| skip_ref_frame &= (rf == ref_mbmi->ref_frame[0]); |
| } |
| } |
| |
| if ((mi_col - 1) >= tile_info->mi_col_start) { |
| if (ref_mv.as_int == INVALID_MV) |
| ref_mv = xd->mi[-1]->mbmi.mv[0]; |
| if (rf == NONE) |
| rf = xd->mi[-1]->mbmi.ref_frame[0]; |
| for (i = 0; i < mi_height; ++i) { |
| ref_mbmi = &xd->mi[i * xd->mi_stride - 1]->mbmi; |
| const_motion &= (ref_mv.as_int == ref_mbmi->mv[0].as_int) && |
| (ref_frame == ref_mbmi->ref_frame[0]); |
| skip_ref_frame &= (rf == ref_mbmi->ref_frame[0]); |
| } |
| } |
| |
| if (skip_ref_frame && this_mode != NEARESTMV && this_mode != NEWMV) |
| if (rf > INTRA_FRAME) |
| if (ref_frame != rf) |
| continue; |
| |
| if (const_motion) |
| if (this_mode == NEARMV || this_mode == ZEROMV) |
| continue; |
| } |
| |
| comp_pred = second_ref_frame > INTRA_FRAME; |
| if (comp_pred) { |
| if (!cpi->allow_comp_inter_inter) |
| continue; |
| |
| // Skip compound inter modes if ARF is not available. |
| if (!(cpi->ref_frame_flags & flag_list[second_ref_frame])) |
| continue; |
| |
| // Do not allow compound prediction if the segment level reference frame |
| // feature is in use as in this case there can only be one reference. |
| if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) |
| continue; |
| |
| if ((mode_search_skip_flags & FLAG_SKIP_COMP_BESTINTRA) && |
| best_mode_index >= 0 && best_mbmode.ref_frame[0] == INTRA_FRAME) |
| continue; |
| |
| mode_excluded = cm->reference_mode == SINGLE_REFERENCE; |
| } else { |
| if (ref_frame != INTRA_FRAME) |
| mode_excluded = cm->reference_mode == COMPOUND_REFERENCE; |
| } |
| |
| if (ref_frame == INTRA_FRAME) { |
| if (sf->adaptive_mode_search) |
| if ((x->source_variance << num_pels_log2_lookup[bsize]) > best_pred_sse) |
| continue; |
| |
| if (this_mode != DC_PRED) { |
| // Disable intra modes other than DC_PRED for blocks with low variance |
| // Threshold for intra skipping based on source variance |
| // TODO(debargha): Specialize the threshold for super block sizes |
| const unsigned int skip_intra_var_thresh = 64; |
| if ((mode_search_skip_flags & FLAG_SKIP_INTRA_LOWVAR) && |
| x->source_variance < skip_intra_var_thresh) |
| continue; |
| // Only search the oblique modes if the best so far is |
| // one of the neighboring directional modes |
| if ((mode_search_skip_flags & FLAG_SKIP_INTRA_BESTINTER) && |
| (this_mode >= D45_PRED && this_mode <= TM_PRED)) { |
| if (best_mode_index >= 0 && |
| best_mbmode.ref_frame[0] > INTRA_FRAME) |
| continue; |
| } |
| if (mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) { |
| if (conditional_skipintra(this_mode, best_intra_mode)) |
| continue; |
| } |
| } |
| } else { |
| const MV_REFERENCE_FRAME ref_frames[2] = {ref_frame, second_ref_frame}; |
| if (!check_best_zero_mv(cpi, mbmi_ext->mode_context, frame_mv, |
| this_mode, ref_frames)) |
| continue; |
| } |
| |
| mbmi->mode = this_mode; |
| mbmi->uv_mode = DC_PRED; |
| mbmi->ref_frame[0] = ref_frame; |
| mbmi->ref_frame[1] = second_ref_frame; |
| // Evaluate all sub-pel filters irrespective of whether we can use |
| // them for this frame. |
| mbmi->interp_filter = cm->interp_filter == SWITCHABLE ? EIGHTTAP |
| : cm->interp_filter; |
| mbmi->mv[0].as_int = mbmi->mv[1].as_int = 0; |
| |
| x->skip = 0; |
| set_ref_ptrs(cm, xd, ref_frame, second_ref_frame); |
| |
| // Select prediction reference frames. |
| for (i = 0; i < MAX_MB_PLANE; i++) { |
| xd->plane[i].pre[0] = yv12_mb[ref_frame][i]; |
| if (comp_pred) |
| xd->plane[i].pre[1] = yv12_mb[second_ref_frame][i]; |
| } |
| |
| if (ref_frame == INTRA_FRAME) { |
| TX_SIZE uv_tx; |
| struct macroblockd_plane *const pd = &xd->plane[1]; |
| memset(x->skip_txfm, 0, sizeof(x->skip_txfm)); |
| super_block_yrd(cpi, x, &rate_y, &distortion_y, &skippable, |
| NULL, bsize, best_rd); |
| if (rate_y == INT_MAX) |
| continue; |
| |
| uv_tx = get_uv_tx_size_impl(mbmi->tx_size, bsize, pd->subsampling_x, |
| pd->subsampling_y); |
| if (rate_uv_intra[uv_tx] == INT_MAX) { |
| choose_intra_uv_mode(cpi, x, ctx, bsize, uv_tx, |
| &rate_uv_intra[uv_tx], &rate_uv_tokenonly[uv_tx], |
| &dist_uv[uv_tx], &skip_uv[uv_tx], &mode_uv[uv_tx]); |
| } |
| |
| rate_uv = rate_uv_tokenonly[uv_tx]; |
| distortion_uv = dist_uv[uv_tx]; |
| skippable = skippable && skip_uv[uv_tx]; |
| mbmi->uv_mode = mode_uv[uv_tx]; |
| |
| rate2 = rate_y + cpi->mbmode_cost[mbmi->mode] + rate_uv_intra[uv_tx]; |
| if (this_mode != DC_PRED && this_mode != TM_PRED) |
| rate2 += intra_cost_penalty; |
| distortion2 = distortion_y + distortion_uv; |
| } else { |
| this_rd = handle_inter_mode(cpi, x, bsize, |
| &rate2, &distortion2, &skippable, |
| &rate_y, &rate_uv, |
| &disable_skip, frame_mv, |
| mi_row, mi_col, |
| single_newmv, single_inter_filter, |
| single_skippable, &total_sse, best_rd, |
| &mask_filter, filter_cache); |
| if (this_rd == INT64_MAX) |
| continue; |
| |
| compmode_cost = vp10_cost_bit(comp_mode_p, comp_pred); |
| |
| if (cm->reference_mode == REFERENCE_MODE_SELECT) |
| rate2 += compmode_cost; |
| } |
| |
| // Estimate the reference frame signaling cost and add it |
| // to the rolling cost variable. |
| if (comp_pred) { |
| rate2 += ref_costs_comp[ref_frame]; |
| } else { |
| rate2 += ref_costs_single[ref_frame]; |
| } |
| |
| if (!disable_skip) { |
| if (skippable) { |
| // Back out the coefficient coding costs |
| rate2 -= (rate_y + rate_uv); |
| |
| // Cost the skip mb case |
| rate2 += vp10_cost_bit(vp10_get_skip_prob(cm, xd), 1); |
| } else if (ref_frame != INTRA_FRAME && !xd->lossless) { |
| if (RDCOST(x->rdmult, x->rddiv, rate_y + rate_uv, distortion2) < |
| RDCOST(x->rdmult, x->rddiv, 0, total_sse)) { |
| // Add in the cost of the no skip flag. |
| rate2 += vp10_cost_bit(vp10_get_skip_prob(cm, xd), 0); |
| } else { |
| // FIXME(rbultje) make this work for splitmv also |
| rate2 += vp10_cost_bit(vp10_get_skip_prob(cm, xd), 1); |
| distortion2 = total_sse; |
| assert(total_sse >= 0); |
| rate2 -= (rate_y + rate_uv); |
| this_skip2 = 1; |
| } |
| } else { |
| // Add in the cost of the no skip flag. |
| rate2 += vp10_cost_bit(vp10_get_skip_prob(cm, xd), 0); |
| } |
| |
| // Calculate the final RD estimate for this mode. |
| this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2); |
| } |
| |
| // Apply an adjustment to the rd value based on the similarity of the |
| // source variance and reconstructed variance. |
| rd_variance_adjustment(cpi, x, bsize, &this_rd, |
| ref_frame, x->source_variance); |
| |
| if (ref_frame == INTRA_FRAME) { |
| // Keep record of best intra rd |
| if (this_rd < best_intra_rd) { |
| best_intra_rd = this_rd; |
| best_intra_mode = mbmi->mode; |
| } |
| } |
| |
| if (!disable_skip && ref_frame == INTRA_FRAME) { |
| for (i = 0; i < REFERENCE_MODES; ++i) |
| best_pred_rd[i] = MIN(best_pred_rd[i], this_rd); |
| for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) |
| best_filter_rd[i] = MIN(best_filter_rd[i], this_rd); |
| } |
| |
| // Did this mode help.. i.e. is it the new best mode |
| if (this_rd < best_rd || x->skip) { |
| int max_plane = MAX_MB_PLANE; |
| if (!mode_excluded) { |
| // Note index of best mode so far |
| best_mode_index = mode_index; |
| |
| if (ref_frame == INTRA_FRAME) { |
| /* required for left and above block mv */ |
| mbmi->mv[0].as_int = 0; |
| max_plane = 1; |
| } else { |
| best_pred_sse = x->pred_sse[ref_frame]; |
| } |
| |
| rd_cost->rate = rate2; |
| rd_cost->dist = distortion2; |
| rd_cost->rdcost = this_rd; |
| best_rd = this_rd; |
| best_mbmode = *mbmi; |
| best_skip2 = this_skip2; |
| best_mode_skippable = skippable; |
| |
| if (!x->select_tx_size) |
| swap_block_ptr(x, ctx, 1, 0, 0, max_plane); |
| memcpy(ctx->zcoeff_blk, x->zcoeff_blk[mbmi->tx_size], |
| sizeof(ctx->zcoeff_blk[0]) * ctx->num_4x4_blk); |
| |
| // TODO(debargha): enhance this test with a better distortion prediction |
| // based on qp, activity mask and history |
| if ((mode_search_skip_flags & FLAG_EARLY_TERMINATE) && |
| (mode_index > MIN_EARLY_TERM_INDEX)) { |
| int qstep = xd->plane[0].dequant[1]; |
| // TODO(debargha): Enhance this by specializing for each mode_index |
| int scale = 4; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| qstep >>= (xd->bd - 8); |
| } |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| if (x->source_variance < UINT_MAX) { |
| const int var_adjust = (x->source_variance < 16); |
| scale -= var_adjust; |
| } |
| if (ref_frame > INTRA_FRAME && |
| distortion2 * scale < qstep * qstep) { |
| early_term = 1; |
| } |
| } |
| } |
| } |
| |
| /* keep record of best compound/single-only prediction */ |
| if (!disable_skip && ref_frame != INTRA_FRAME) { |
| int64_t single_rd, hybrid_rd, single_rate, hybrid_rate; |
| |
| if (cm->reference_mode == REFERENCE_MODE_SELECT) { |
| single_rate = rate2 - compmode_cost; |
| hybrid_rate = rate2; |
| } else { |
| single_rate = rate2; |
| hybrid_rate = rate2 + compmode_cost; |
| } |
| |
| single_rd = RDCOST(x->rdmult, x->rddiv, single_rate, distortion2); |
| hybrid_rd = RDCOST(x->rdmult, x->rddiv, hybrid_rate, distortion2); |
| |
| if (!comp_pred) { |
| if (single_rd < best_pred_rd[SINGLE_REFERENCE]) |
| best_pred_rd[SINGLE_REFERENCE] = single_rd; |
| } else { |
| if (single_rd < best_pred_rd[COMPOUND_REFERENCE]) |
| best_pred_rd[COMPOUND_REFERENCE] = single_rd; |
| } |
| if (hybrid_rd < best_pred_rd[REFERENCE_MODE_SELECT]) |
| best_pred_rd[REFERENCE_MODE_SELECT] = hybrid_rd; |
| |
| /* keep record of best filter type */ |
| if (!mode_excluded && cm->interp_filter != BILINEAR) { |
| int64_t ref = filter_cache[cm->interp_filter == SWITCHABLE ? |
| SWITCHABLE_FILTERS : cm->interp_filter]; |
| |
| for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) { |
| int64_t adj_rd; |
| if (ref == INT64_MAX) |
| adj_rd = 0; |
| else if (filter_cache[i] == INT64_MAX) |
| // when early termination is triggered, the encoder does not have |
| // access to the rate-distortion cost. it only knows that the cost |
| // should be above the maximum valid value. hence it takes the known |
| // maximum plus an arbitrary constant as the rate-distortion cost. |
| adj_rd = mask_filter - ref + 10; |
| else |
| adj_rd = filter_cache[i] - ref; |
| |
| adj_rd += this_rd; |
| best_filter_rd[i] = MIN(best_filter_rd[i], adj_rd); |
| } |
| } |
| } |
| |
| if (early_term) |
| break; |
| |
| if (x->skip && !comp_pred) |
| break; |
| } |
| |
| // The inter modes' rate costs are not calculated precisely in some cases. |
| // Therefore, sometimes, NEWMV is chosen instead of NEARESTMV, NEARMV, and |
| // ZEROMV. Here, checks are added for those cases, and the mode decisions |
| // are corrected. |
| if (best_mbmode.mode == NEWMV) { |
| const MV_REFERENCE_FRAME refs[2] = {best_mbmode.ref_frame[0], |
| best_mbmode.ref_frame[1]}; |
| int comp_pred_mode = refs[1] > INTRA_FRAME; |
| |
| if (frame_mv[NEARESTMV][refs[0]].as_int == best_mbmode.mv[0].as_int && |
| ((comp_pred_mode && frame_mv[NEARESTMV][refs[1]].as_int == |
| best_mbmode.mv[1].as_int) || !comp_pred_mode)) |
| best_mbmode.mode = NEARESTMV; |
| else if (frame_mv[NEARMV][refs[0]].as_int == best_mbmode.mv[0].as_int && |
| ((comp_pred_mode && frame_mv[NEARMV][refs[1]].as_int == |
| best_mbmode.mv[1].as_int) || !comp_pred_mode)) |
| best_mbmode.mode = NEARMV; |
| else if (best_mbmode.mv[0].as_int == 0 && |
| ((comp_pred_mode && best_mbmode.mv[1].as_int == 0) || !comp_pred_mode)) |
| best_mbmode.mode = ZEROMV; |
| } |
| |
| if (best_mode_index < 0 || best_rd >= best_rd_so_far) { |
| rd_cost->rate = INT_MAX; |
| rd_cost->rdcost = INT64_MAX; |
| return; |
| } |
| |
| // If we used an estimate for the uv intra rd in the loop above... |
| if (sf->use_uv_intra_rd_estimate) { |
| // Do Intra UV best rd mode selection if best mode choice above was intra. |
| if (best_mbmode.ref_frame[0] == INTRA_FRAME) { |
| TX_SIZE uv_tx_size; |
| *mbmi = best_mbmode; |
| uv_tx_size = get_uv_tx_size(mbmi, &xd->plane[1]); |
| rd_pick_intra_sbuv_mode(cpi, x, ctx, &rate_uv_intra[uv_tx_size], |
| &rate_uv_tokenonly[uv_tx_size], |
| &dist_uv[uv_tx_size], |
| &skip_uv[uv_tx_size], |
| bsize < BLOCK_8X8 ? BLOCK_8X8 : bsize, |
| uv_tx_size); |
| } |
| } |
| |
| assert((cm->interp_filter == SWITCHABLE) || |
| (cm->interp_filter == best_mbmode.interp_filter) || |
| !is_inter_block(&best_mbmode)); |
| |
| if (!cpi->rc.is_src_frame_alt_ref) |
| vp10_update_rd_thresh_fact(tile_data->thresh_freq_fact, |
| sf->adaptive_rd_thresh, bsize, best_mode_index); |
| |
| // macroblock modes |
| *mbmi = best_mbmode; |
| x->skip |= best_skip2; |
| |
| for (i = 0; i < REFERENCE_MODES; ++i) { |
| if (best_pred_rd[i] == INT64_MAX) |
| best_pred_diff[i] = INT_MIN; |
| else |
| best_pred_diff[i] = best_rd - best_pred_rd[i]; |
| } |
| |
| if (!x->skip) { |
| for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) { |
| if (best_filter_rd[i] == INT64_MAX) |
| best_filter_diff[i] = 0; |
| else |
| best_filter_diff[i] = best_rd - best_filter_rd[i]; |
| } |
| if (cm->interp_filter == SWITCHABLE) |
| assert(best_filter_diff[SWITCHABLE_FILTERS] == 0); |
| } else { |
| vp10_zero(best_filter_diff); |
| } |
| |
| // TODO(yunqingwang): Moving this line in front of the above best_filter_diff |
| // updating code causes PSNR loss. Need to figure out the confliction. |
| x->skip |= best_mode_skippable; |
| |
| if (!x->skip && !x->select_tx_size) { |
| int has_high_freq_coeff = 0; |
| int plane; |
| int max_plane = is_inter_block(&xd->mi[0]->mbmi) |
| ? MAX_MB_PLANE : 1; |
| for (plane = 0; plane < max_plane; ++plane) { |
| x->plane[plane].eobs = ctx->eobs_pbuf[plane][1]; |
| has_high_freq_coeff |= vp10_has_high_freq_in_plane(x, bsize, plane); |
| } |
| |
| for (plane = max_plane; plane < MAX_MB_PLANE; ++plane) { |
| x->plane[plane].eobs = ctx->eobs_pbuf[plane][2]; |
| has_high_freq_coeff |= vp10_has_high_freq_in_plane(x, bsize, plane); |
| } |
| |
| best_mode_skippable |= !has_high_freq_coeff; |
| } |
| |
| assert(best_mode_index >= 0); |
| |
| store_coding_context(x, ctx, best_mode_index, best_pred_diff, |
| best_filter_diff, best_mode_skippable); |
| } |
| |
| void vp10_rd_pick_inter_mode_sb_seg_skip(VP9_COMP *cpi, |
| TileDataEnc *tile_data, |
| MACROBLOCK *x, |
| RD_COST *rd_cost, |
| BLOCK_SIZE bsize, |
| PICK_MODE_CONTEXT *ctx, |
| int64_t best_rd_so_far) { |
| VP10_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| unsigned char segment_id = mbmi->segment_id; |
| const int comp_pred = 0; |
| int i; |
| int64_t best_pred_diff[REFERENCE_MODES]; |
| int64_t best_filter_diff[SWITCHABLE_FILTER_CONTEXTS]; |
| unsigned int ref_costs_single[MAX_REF_FRAMES], ref_costs_comp[MAX_REF_FRAMES]; |
| vpx_prob comp_mode_p; |
| INTERP_FILTER best_filter = SWITCHABLE; |
| int64_t this_rd = INT64_MAX; |
| int rate2 = 0; |
| const int64_t distortion2 = 0; |
| |
| x->skip_encode = cpi->sf.skip_encode_frame && x->q_index < QIDX_SKIP_THRESH; |
| |
| estimate_ref_frame_costs(cm, xd, segment_id, ref_costs_single, ref_costs_comp, |
| &comp_mode_p); |
| |
| for (i = 0; i < MAX_REF_FRAMES; ++i) |
| x->pred_sse[i] = INT_MAX; |
| for (i = LAST_FRAME; i < MAX_REF_FRAMES; ++i) |
| x->pred_mv_sad[i] = INT_MAX; |
| |
| rd_cost->rate = INT_MAX; |
| |
| assert(segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)); |
| |
| mbmi->mode = ZEROMV; |
| mbmi->uv_mode = DC_PRED; |
| mbmi->ref_frame[0] = LAST_FRAME; |
| mbmi->ref_frame[1] = NONE; |
| mbmi->mv[0].as_int = 0; |
| x->skip = 1; |
| |
| if (cm->interp_filter != BILINEAR) { |
| best_filter = EIGHTTAP; |
| if (cm->interp_filter == SWITCHABLE && |
| x->source_variance >= cpi->sf.disable_filter_search_var_thresh) { |
| int rs; |
| int best_rs = INT_MAX; |
| for (i = 0; i < SWITCHABLE_FILTERS; ++i) { |
| mbmi->interp_filter = i; |
| rs = vp10_get_switchable_rate(cpi, xd); |
| if (rs < best_rs) { |
| best_rs = rs; |
| best_filter = mbmi->interp_filter; |
| } |
| } |
| } |
| } |
| // Set the appropriate filter |
| if (cm->interp_filter == SWITCHABLE) { |
| mbmi->interp_filter = best_filter; |
| rate2 += vp10_get_switchable_rate(cpi, xd); |
| } else { |
| mbmi->interp_filter = cm->interp_filter; |
| } |
| |
| if (cm->reference_mode == REFERENCE_MODE_SELECT) |
| rate2 += vp10_cost_bit(comp_mode_p, comp_pred); |
| |
| // Estimate the reference frame signaling cost and add it |
| // to the rolling cost variable. |
| rate2 += ref_costs_single[LAST_FRAME]; |
| this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2); |
| |
| rd_cost->rate = rate2; |
| rd_cost->dist = distortion2; |
| rd_cost->rdcost = this_rd; |
| |
| if (this_rd >= best_rd_so_far) { |
| rd_cost->rate = INT_MAX; |
| rd_cost->rdcost = INT64_MAX; |
| return; |
| } |
| |
| assert((cm->interp_filter == SWITCHABLE) || |
| (cm->interp_filter == mbmi->interp_filter)); |
| |
| vp10_update_rd_thresh_fact(tile_data->thresh_freq_fact, |
| cpi->sf.adaptive_rd_thresh, bsize, THR_ZEROMV); |
| |
| vp10_zero(best_pred_diff); |
| vp10_zero(best_filter_diff); |
| |
| if (!x->select_tx_size) |
| swap_block_ptr(x, ctx, 1, 0, 0, MAX_MB_PLANE); |
| store_coding_context(x, ctx, THR_ZEROMV, |
| best_pred_diff, best_filter_diff, 0); |
| } |
| |
| void vp10_rd_pick_inter_mode_sub8x8(VP9_COMP *cpi, |
| TileDataEnc *tile_data, |
| MACROBLOCK *x, |
| int mi_row, int mi_col, |
| RD_COST *rd_cost, |
| BLOCK_SIZE bsize, |
| PICK_MODE_CONTEXT *ctx, |
| int64_t best_rd_so_far) { |
| VP10_COMMON *const cm = &cpi->common; |
| RD_OPT *const rd_opt = &cpi->rd; |
| SPEED_FEATURES *const sf = &cpi->sf; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| const struct segmentation *const seg = &cm->seg; |
| MV_REFERENCE_FRAME ref_frame, second_ref_frame; |
| unsigned char segment_id = mbmi->segment_id; |
| int comp_pred, i; |
| int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES]; |
| struct buf_2d yv12_mb[4][MAX_MB_PLANE]; |
| static const int flag_list[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG, |
| VP9_ALT_FLAG }; |
| int64_t best_rd = best_rd_so_far; |
| int64_t best_yrd = best_rd_so_far; // FIXME(rbultje) more precise |
| int64_t best_pred_diff[REFERENCE_MODES]; |
| int64_t best_pred_rd[REFERENCE_MODES]; |
| int64_t best_filter_rd[SWITCHABLE_FILTER_CONTEXTS]; |
| int64_t best_filter_diff[SWITCHABLE_FILTER_CONTEXTS]; |
| MB_MODE_INFO best_mbmode; |
| int ref_index, best_ref_index = 0; |
| unsigned int ref_costs_single[MAX_REF_FRAMES], ref_costs_comp[MAX_REF_FRAMES]; |
| vpx_prob comp_mode_p; |
| INTERP_FILTER tmp_best_filter = SWITCHABLE; |
| int rate_uv_intra, rate_uv_tokenonly; |
| int64_t dist_uv; |
| int skip_uv; |
| PREDICTION_MODE mode_uv = DC_PRED; |
| const int intra_cost_penalty = vp10_get_intra_cost_penalty( |
| cm->base_qindex, cm->y_dc_delta_q, cm->bit_depth); |
| int_mv seg_mvs[4][MAX_REF_FRAMES]; |
| b_mode_info best_bmodes[4]; |
| int best_skip2 = 0; |
| int ref_frame_skip_mask[2] = { 0 }; |
| int64_t mask_filter = 0; |
| int64_t filter_cache[SWITCHABLE_FILTER_CONTEXTS]; |
| int internal_active_edge = |
| vp10_active_edge_sb(cpi, mi_row, mi_col) && vp10_internal_image_edge(cpi); |
| |
| x->skip_encode = sf->skip_encode_frame && x->q_index < QIDX_SKIP_THRESH; |
| memset(x->zcoeff_blk[TX_4X4], 0, 4); |
| vp10_zero(best_mbmode); |
| |
| for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i) |
| filter_cache[i] = INT64_MAX; |
| |
| for (i = 0; i < 4; i++) { |
| int j; |
| for (j = 0; j < MAX_REF_FRAMES; j++) |
| seg_mvs[i][j].as_int = INVALID_MV; |
| } |
| |
| estimate_ref_frame_costs(cm, xd, segment_id, ref_costs_single, ref_costs_comp, |
| &comp_mode_p); |
| |
| for (i = 0; i < REFERENCE_MODES; ++i) |
| best_pred_rd[i] = INT64_MAX; |
| for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) |
| best_filter_rd[i] = INT64_MAX; |
| rate_uv_intra = INT_MAX; |
| |
| rd_cost->rate = INT_MAX; |
| |
| for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ref_frame++) { |
| if (cpi->ref_frame_flags & flag_list[ref_frame]) { |
| setup_buffer_inter(cpi, x, ref_frame, bsize, mi_row, mi_col, |
| frame_mv[NEARESTMV], frame_mv[NEARMV], |
| yv12_mb); |
| } else { |
| ref_frame_skip_mask[0] |= (1 << ref_frame); |
| ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; |
| } |
| frame_mv[NEWMV][ref_frame].as_int = INVALID_MV; |
| frame_mv[ZEROMV][ref_frame].as_int = 0; |
| } |
| |
| for (ref_index = 0; ref_index < MAX_REFS; ++ref_index) { |
| int mode_excluded = 0; |
| int64_t this_rd = INT64_MAX; |
| int disable_skip = 0; |
| int compmode_cost = 0; |
| int rate2 = 0, rate_y = 0, rate_uv = 0; |
| int64_t distortion2 = 0, distortion_y = 0, distortion_uv = 0; |
| int skippable = 0; |
| int i; |
| int this_skip2 = 0; |
| int64_t total_sse = INT_MAX; |
| int early_term = 0; |
| |
| ref_frame = vp10_ref_order[ref_index].ref_frame[0]; |
| second_ref_frame = vp10_ref_order[ref_index].ref_frame[1]; |
| |
| // Look at the reference frame of the best mode so far and set the |
| // skip mask to look at a subset of the remaining modes. |
| if (ref_index > 2 && sf->mode_skip_start < MAX_MODES) { |
| if (ref_index == 3) { |
| switch (best_mbmode.ref_frame[0]) { |
| case INTRA_FRAME: |
| break; |
| case LAST_FRAME: |
| ref_frame_skip_mask[0] |= (1 << GOLDEN_FRAME) | (1 << ALTREF_FRAME); |
| ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; |
| break; |
| case GOLDEN_FRAME: |
| ref_frame_skip_mask[0] |= (1 << LAST_FRAME) | (1 << ALTREF_FRAME); |
| ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; |
| break; |
| case ALTREF_FRAME: |
| ref_frame_skip_mask[0] |= (1 << GOLDEN_FRAME) | (1 << LAST_FRAME); |
| break; |
| case NONE: |
| case MAX_REF_FRAMES: |
| assert(0 && "Invalid Reference frame"); |
| break; |
| } |
| } |
| } |
| |
| if ((ref_frame_skip_mask[0] & (1 << ref_frame)) && |
| (ref_frame_skip_mask[1] & (1 << MAX(0, second_ref_frame)))) |
| continue; |
| |
| // Test best rd so far against threshold for trying this mode. |
| if (!internal_active_edge && |
| rd_less_than_thresh(best_rd, |
| rd_opt->threshes[segment_id][bsize][ref_index], |
| tile_data->thresh_freq_fact[bsize][ref_index])) |
| continue; |
| |
| comp_pred = second_ref_frame > INTRA_FRAME; |
| if (comp_pred) { |
| if (!cpi->allow_comp_inter_inter) |
| continue; |
| if (!(cpi->ref_frame_flags & flag_list[second_ref_frame])) |
| continue; |
| // Do not allow compound prediction if the segment level reference frame |
| // feature is in use as in this case there can only be one reference. |
| if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) |
| continue; |
| |
| if ((sf->mode_search_skip_flags & FLAG_SKIP_COMP_BESTINTRA) && |
| best_mbmode.ref_frame[0] == INTRA_FRAME) |
| continue; |
| } |
| |
| // TODO(jingning, jkoleszar): scaling reference frame not supported for |
| // sub8x8 blocks. |
| if (ref_frame > INTRA_FRAME && |
| vp10_is_scaled(&cm->frame_refs[ref_frame - 1].sf)) |
| continue; |
| |
| if (second_ref_frame > INTRA_FRAME && |
| vp10_is_scaled(&cm->frame_refs[second_ref_frame - 1].sf)) |
| continue; |
| |
| if (comp_pred) |
| mode_excluded = cm->reference_mode == SINGLE_REFERENCE; |
| else if (ref_frame != INTRA_FRAME) |
| mode_excluded = cm->reference_mode == COMPOUND_REFERENCE; |
| |
| // If the segment reference frame feature is enabled.... |
| // then do nothing if the current ref frame is not allowed.. |
| if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) && |
| get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame) { |
| continue; |
| // Disable this drop out case if the ref frame |
| // segment level feature is enabled for this segment. This is to |
| // prevent the possibility that we end up unable to pick any mode. |
| } else if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) { |
| // Only consider ZEROMV/ALTREF_FRAME for alt ref frame, |
| // unless ARNR filtering is enabled in which case we want |
| // an unfiltered alternative. We allow near/nearest as well |
| // because they may result in zero-zero MVs but be cheaper. |
| if (cpi->rc.is_src_frame_alt_ref && (cpi->oxcf.arnr_max_frames == 0)) |
| continue; |
| } |
| |
| mbmi->tx_size = TX_4X4; |
| mbmi->uv_mode = DC_PRED; |
| mbmi->ref_frame[0] = ref_frame; |
| mbmi->ref_frame[1] = second_ref_frame; |
| // Evaluate all sub-pel filters irrespective of whether we can use |
| // them for this frame. |
| mbmi->interp_filter = cm->interp_filter == SWITCHABLE ? EIGHTTAP |
| : cm->interp_filter; |
| x->skip = 0; |
| set_ref_ptrs(cm, xd, ref_frame, second_ref_frame); |
| |
| // Select prediction reference frames. |
| for (i = 0; i < MAX_MB_PLANE; i++) { |
| xd->plane[i].pre[0] = yv12_mb[ref_frame][i]; |
| if (comp_pred) |
| xd->plane[i].pre[1] = yv12_mb[second_ref_frame][i]; |
| } |
| |
| if (ref_frame == INTRA_FRAME) { |
| int rate; |
| if (rd_pick_intra_sub_8x8_y_mode(cpi, x, &rate, &rate_y, |
| &distortion_y, best_rd) >= best_rd) |
| continue; |
| rate2 += rate; |
| rate2 += intra_cost_penalty; |
| distortion2 += distortion_y; |
| |
| if (rate_uv_intra == INT_MAX) { |
| choose_intra_uv_mode(cpi, x, ctx, bsize, TX_4X4, |
| &rate_uv_intra, |
| &rate_uv_tokenonly, |
| &dist_uv, &skip_uv, |
| &mode_uv); |
| } |
| rate2 += rate_uv_intra; |
| rate_uv = rate_uv_tokenonly; |
| distortion2 += dist_uv; |
| distortion_uv = dist_uv; |
| mbmi->uv_mode = mode_uv; |
| } else { |
| int rate; |
| int64_t distortion; |
| int64_t this_rd_thresh; |
| int64_t tmp_rd, tmp_best_rd = INT64_MAX, tmp_best_rdu = INT64_MAX; |
| int tmp_best_rate = INT_MAX, tmp_best_ratey = INT_MAX; |
| int64_t tmp_best_distortion = INT_MAX, tmp_best_sse, uv_sse; |
| int tmp_best_skippable = 0; |
| int switchable_filter_index; |
| int_mv *second_ref = comp_pred ? |
| &x->mbmi_ext->ref_mvs[second_ref_frame][0] : NULL; |
| b_mode_info tmp_best_bmodes[16]; |
| MB_MODE_INFO tmp_best_mbmode; |
| BEST_SEG_INFO bsi[SWITCHABLE_FILTERS]; |
| int pred_exists = 0; |
| int uv_skippable; |
| |
| this_rd_thresh = (ref_frame == LAST_FRAME) ? |
| rd_opt->threshes[segment_id][bsize][THR_LAST] : |
| rd_opt->threshes[segment_id][bsize][THR_ALTR]; |
| this_rd_thresh = (ref_frame == GOLDEN_FRAME) ? |
| rd_opt->threshes[segment_id][bsize][THR_GOLD] : this_rd_thresh; |
| for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i) |
| filter_cache[i] = INT64_MAX; |
| |
| if (cm->interp_filter != BILINEAR) { |
| tmp_best_filter = EIGHTTAP; |
| if (x->source_variance < sf->disable_filter_search_var_thresh) { |
| tmp_best_filter = EIGHTTAP; |
| } else if (sf->adaptive_pred_interp_filter == 1 && |
| ctx->pred_interp_filter < SWITCHABLE) { |
| tmp_best_filter = ctx->pred_interp_filter; |
| } else if (sf->adaptive_pred_interp_filter == 2) { |
| tmp_best_filter = ctx->pred_interp_filter < SWITCHABLE ? |
| ctx->pred_interp_filter : 0; |
| } else { |
| for (switchable_filter_index = 0; |
| switchable_filter_index < SWITCHABLE_FILTERS; |
| ++switchable_filter_index) { |
| int newbest, rs; |
| int64_t rs_rd; |
| MB_MODE_INFO_EXT *mbmi_ext = x->mbmi_ext; |
| mbmi->interp_filter = switchable_filter_index; |
| tmp_rd = rd_pick_best_sub8x8_mode(cpi, x, |
| &mbmi_ext->ref_mvs[ref_frame][0], |
| second_ref, best_yrd, &rate, |
| &rate_y, &distortion, |
| &skippable, &total_sse, |
| (int) this_rd_thresh, seg_mvs, |
| bsi, switchable_filter_index, |
| mi_row, mi_col); |
| |
| if (tmp_rd == INT64_MAX) |
| continue; |
| rs = vp10_get_switchable_rate(cpi, xd); |
| rs_rd = RDCOST(x->rdmult, x->rddiv, rs, 0); |
| filter_cache[switchable_filter_index] = tmp_rd; |
| filter_cache[SWITCHABLE_FILTERS] = |
| MIN(filter_cache[SWITCHABLE_FILTERS], |
| tmp_rd + rs_rd); |
| if (cm->interp_filter == SWITCHABLE) |
| tmp_rd += rs_rd; |
| |
| mask_filter = MAX(mask_filter, tmp_rd); |
| |
| newbest = (tmp_rd < tmp_best_rd); |
| if (newbest) { |
| tmp_best_filter = mbmi->interp_filter; |
| tmp_best_rd = tmp_rd; |
| } |
| if ((newbest && cm->interp_filter == SWITCHABLE) || |
| (mbmi->interp_filter == cm->interp_filter && |
| cm->interp_filter != SWITCHABLE)) { |
| tmp_best_rdu = tmp_rd; |
| tmp_best_rate = rate; |
| tmp_best_ratey = rate_y; |
| tmp_best_distortion = distortion; |
| tmp_best_sse = total_sse; |
| tmp_best_skippable = skippable; |
| tmp_best_mbmode = *mbmi; |
| for (i = 0; i < 4; i++) { |
| tmp_best_bmodes[i] = xd->mi[0]->bmi[i]; |
| x->zcoeff_blk[TX_4X4][i] = !x->plane[0].eobs[i]; |
| } |
| pred_exists = 1; |
| if (switchable_filter_index == 0 && |
| sf->use_rd_breakout && |
| best_rd < INT64_MAX) { |
| if (tmp_best_rdu / 2 > best_rd) { |
| // skip searching the other filters if the first is |
| // already substantially larger than the best so far |
| tmp_best_filter = mbmi->interp_filter; |
| tmp_best_rdu = INT64_MAX; |
| break; |
| } |
| } |
| } |
| } // switchable_filter_index loop |
| } |
| } |
| |
| if (tmp_best_rdu == INT64_MAX && pred_exists) |
| continue; |
| |
| mbmi->interp_filter = (cm->interp_filter == SWITCHABLE ? |
| tmp_best_filter : cm->interp_filter); |
| if (!pred_exists) { |
| // Handles the special case when a filter that is not in the |
| // switchable list (bilinear, 6-tap) is indicated at the frame level |
| tmp_rd = rd_pick_best_sub8x8_mode(cpi, x, |
| &x->mbmi_ext->ref_mvs[ref_frame][0], |
| second_ref, best_yrd, &rate, &rate_y, |
| &distortion, &skippable, &total_sse, |
| (int) this_rd_thresh, seg_mvs, bsi, 0, |
| mi_row, mi_col); |
| if (tmp_rd == INT64_MAX) |
| continue; |
| } else { |
| total_sse = tmp_best_sse; |
| rate = tmp_best_rate; |
| rate_y = tmp_best_ratey; |
| distortion = tmp_best_distortion; |
| skippable = tmp_best_skippable; |
| *mbmi = tmp_best_mbmode; |
| for (i = 0; i < 4; i++) |
| xd->mi[0]->bmi[i] = tmp_best_bmodes[i]; |
| } |
| |
| rate2 += rate; |
| distortion2 += distortion; |
| |
| if (cm->interp_filter == SWITCHABLE) |
| rate2 += vp10_get_switchable_rate(cpi, xd); |
| |
| if (!mode_excluded) |
| mode_excluded = comp_pred ? cm->reference_mode == SINGLE_REFERENCE |
| : cm->reference_mode == COMPOUND_REFERENCE; |
| |
| compmode_cost = vp10_cost_bit(comp_mode_p, comp_pred); |
| |
| tmp_best_rdu = best_rd - |
| MIN(RDCOST(x->rdmult, x->rddiv, rate2, distortion2), |
| RDCOST(x->rdmult, x->rddiv, 0, total_sse)); |
| |
| if (tmp_best_rdu > 0) { |
| // If even the 'Y' rd value of split is higher than best so far |
| // then dont bother looking at UV |
| vp10_build_inter_predictors_sbuv(&x->e_mbd, mi_row, mi_col, |
| BLOCK_8X8); |
| memset(x->skip_txfm, SKIP_TXFM_NONE, sizeof(x->skip_txfm)); |
| if (!super_block_uvrd(cpi, x, &rate_uv, &distortion_uv, &uv_skippable, |
| &uv_sse, BLOCK_8X8, tmp_best_rdu)) |
| continue; |
| |
| rate2 += rate_uv; |
| distortion2 += distortion_uv; |
| skippable = skippable && uv_skippable; |
| total_sse += uv_sse; |
| } |
| } |
| |
| if (cm->reference_mode == REFERENCE_MODE_SELECT) |
| rate2 += compmode_cost; |
| |
| // Estimate the reference frame signaling cost and add it |
| // to the rolling cost variable. |
| if (second_ref_frame > INTRA_FRAME) { |
| rate2 += ref_costs_comp[ref_frame]; |
| } else { |
| rate2 += ref_costs_single[ref_frame]; |
| } |
| |
| if (!disable_skip) { |
| // Skip is never coded at the segment level for sub8x8 blocks and instead |
| // always coded in the bitstream at the mode info level. |
| |
| if (ref_frame != INTRA_FRAME && !xd->lossless) { |
| if (RDCOST(x->rdmult, x->rddiv, rate_y + rate_uv, distortion2) < |
| RDCOST(x->rdmult, x->rddiv, 0, total_sse)) { |
| // Add in the cost of the no skip flag. |
| rate2 += vp10_cost_bit(vp10_get_skip_prob(cm, xd), 0); |
| } else { |
| // FIXME(rbultje) make this work for splitmv also |
| rate2 += vp10_cost_bit(vp10_get_skip_prob(cm, xd), 1); |
| distortion2 = total_sse; |
| assert(total_sse >= 0); |
| rate2 -= (rate_y + rate_uv); |
| rate_y = 0; |
| rate_uv = 0; |
| this_skip2 = 1; |
| } |
| } else { |
| // Add in the cost of the no skip flag. |
| rate2 += vp10_cost_bit(vp10_get_skip_prob(cm, xd), 0); |
| } |
| |
| // Calculate the final RD estimate for this mode. |
| this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2); |
| } |
| |
| if (!disable_skip && ref_frame == INTRA_FRAME) { |
| for (i = 0; i < REFERENCE_MODES; ++i) |
| best_pred_rd[i] = MIN(best_pred_rd[i], this_rd); |
| for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) |
| best_filter_rd[i] = MIN(best_filter_rd[i], this_rd); |
| } |
| |
| // Did this mode help.. i.e. is it the new best mode |
| if (this_rd < best_rd || x->skip) { |
| if (!mode_excluded) { |
| int max_plane = MAX_MB_PLANE; |
| // Note index of best mode so far |
| best_ref_index = ref_index; |
| |
| if (ref_frame == INTRA_FRAME) { |
| /* required for left and above block mv */ |
| mbmi->mv[0].as_int = 0; |
| max_plane = 1; |
| } |
| |
| rd_cost->rate = rate2; |
| rd_cost->dist = distortion2; |
| rd_cost->rdcost = this_rd; |
| best_rd = this_rd; |
| best_yrd = best_rd - |
| RDCOST(x->rdmult, x->rddiv, rate_uv, distortion_uv); |
| best_mbmode = *mbmi; |
| best_skip2 = this_skip2; |
| if (!x->select_tx_size) |
| swap_block_ptr(x, ctx, 1, 0, 0, max_plane); |
| memcpy(ctx->zcoeff_blk, x->zcoeff_blk[TX_4X4], |
| sizeof(ctx->zcoeff_blk[0]) * ctx->num_4x4_blk); |
| |
| for (i = 0; i < 4; i++) |
| best_bmodes[i] = xd->mi[0]->bmi[i]; |
| |
| // TODO(debargha): enhance this test with a better distortion prediction |
| // based on qp, activity mask and history |
| if ((sf->mode_search_skip_flags & FLAG_EARLY_TERMINATE) && |
| (ref_index > MIN_EARLY_TERM_INDEX)) { |
| int qstep = xd->plane[0].dequant[1]; |
| // TODO(debargha): Enhance this by specializing for each mode_index |
| int scale = 4; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| qstep >>= (xd->bd - 8); |
| } |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| if (x->source_variance < UINT_MAX) { |
| const int var_adjust = (x->source_variance < 16); |
| scale -= var_adjust; |
| } |
| if (ref_frame > INTRA_FRAME && |
| distortion2 * scale < qstep * qstep) { |
| early_term = 1; |
| } |
| } |
| } |
| } |
| |
| /* keep record of best compound/single-only prediction */ |
| if (!disable_skip && ref_frame != INTRA_FRAME) { |
| int64_t single_rd, hybrid_rd, single_rate, hybrid_rate; |
| |
| if (cm->reference_mode == REFERENCE_MODE_SELECT) { |
| single_rate = rate2 - compmode_cost; |
| hybrid_rate = rate2; |
| } else { |
| single_rate = rate2; |
| hybrid_rate = rate2 + compmode_cost; |
| } |
| |
| single_rd = RDCOST(x->rdmult, x->rddiv, single_rate, distortion2); |
| hybrid_rd = RDCOST(x->rdmult, x->rddiv, hybrid_rate, distortion2); |
| |
| if (!comp_pred && single_rd < best_pred_rd[SINGLE_REFERENCE]) |
| best_pred_rd[SINGLE_REFERENCE] = single_rd; |
| else if (comp_pred && single_rd < best_pred_rd[COMPOUND_REFERENCE]) |
| best_pred_rd[COMPOUND_REFERENCE] = single_rd; |
| |
| if (hybrid_rd < best_pred_rd[REFERENCE_MODE_SELECT]) |
| best_pred_rd[REFERENCE_MODE_SELECT] = hybrid_rd; |
| } |
| |
| /* keep record of best filter type */ |
| if (!mode_excluded && !disable_skip && ref_frame != INTRA_FRAME && |
| cm->interp_filter != BILINEAR) { |
| int64_t ref = filter_cache[cm->interp_filter == SWITCHABLE ? |
| SWITCHABLE_FILTERS : cm->interp_filter]; |
| int64_t adj_rd; |
| for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) { |
| if (ref == INT64_MAX) |
| adj_rd = 0; |
| else if (filter_cache[i] == INT64_MAX) |
| // when early termination is triggered, the encoder does not have |
| // access to the rate-distortion cost. it only knows that the cost |
| // should be above the maximum valid value. hence it takes the known |
| // maximum plus an arbitrary constant as the rate-distortion cost. |
| adj_rd = mask_filter - ref + 10; |
| else |
| adj_rd = filter_cache[i] - ref; |
| |
| adj_rd += this_rd; |
| best_filter_rd[i] = MIN(best_filter_rd[i], adj_rd); |
| } |
| } |
| |
| if (early_term) |
| break; |
| |
| if (x->skip && !comp_pred) |
| break; |
| } |
| |
| if (best_rd >= best_rd_so_far) { |
| rd_cost->rate = INT_MAX; |
| rd_cost->rdcost = INT64_MAX; |
| return; |
| } |
| |
| // If we used an estimate for the uv intra rd in the loop above... |
| if (sf->use_uv_intra_rd_estimate) { |
| // Do Intra UV best rd mode selection if best mode choice above was intra. |
| if (best_mbmode.ref_frame[0] == INTRA_FRAME) { |
| *mbmi = best_mbmode; |
| rd_pick_intra_sbuv_mode(cpi, x, ctx, &rate_uv_intra, |
| &rate_uv_tokenonly, |
| &dist_uv, |
| &skip_uv, |
| BLOCK_8X8, TX_4X4); |
| } |
| } |
| |
| if (best_rd == INT64_MAX) { |
| rd_cost->rate = INT_MAX; |
| rd_cost->dist = INT64_MAX; |
| rd_cost->rdcost = INT64_MAX; |
| return; |
| } |
| |
| assert((cm->interp_filter == SWITCHABLE) || |
| (cm->interp_filter == best_mbmode.interp_filter) || |
| !is_inter_block(&best_mbmode)); |
| |
| vp10_update_rd_thresh_fact(tile_data->thresh_freq_fact, |
| sf->adaptive_rd_thresh, bsize, best_ref_index); |
| |
| // macroblock modes |
| *mbmi = best_mbmode; |
| x->skip |= best_skip2; |
| if (!is_inter_block(&best_mbmode)) { |
| for (i = 0; i < 4; i++) |
| xd->mi[0]->bmi[i].as_mode = best_bmodes[i].as_mode; |
| } else { |
| for (i = 0; i < 4; ++i) |
| memcpy(&xd->mi[0]->bmi[i], &best_bmodes[i], sizeof(b_mode_info)); |
| |
| mbmi->mv[0].as_int = xd->mi[0]->bmi[3].as_mv[0].as_int; |
| mbmi->mv[1].as_int = xd->mi[0]->bmi[3].as_mv[1].as_int; |
| } |
| |
| for (i = 0; i < REFERENCE_MODES; ++i) { |
| if (best_pred_rd[i] == INT64_MAX) |
| best_pred_diff[i] = INT_MIN; |
| else |
| best_pred_diff[i] = best_rd - best_pred_rd[i]; |
| } |
| |
| if (!x->skip) { |
| for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) { |
| if (best_filter_rd[i] == INT64_MAX) |
| best_filter_diff[i] = 0; |
| else |
| best_filter_diff[i] = best_rd - best_filter_rd[i]; |
| } |
| if (cm->interp_filter == SWITCHABLE) |
| assert(best_filter_diff[SWITCHABLE_FILTERS] == 0); |
| } else { |
| vp10_zero(best_filter_diff); |
| } |
| |
| store_coding_context(x, ctx, best_ref_index, |
| best_pred_diff, best_filter_diff, 0); |
| } |