| /* |
| * Copyright (c) 2010 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| |
| #include <math.h> |
| #include "vpx_ports/config.h" |
| #include "vp8/common/idct.h" |
| |
| #if CONFIG_HYBRIDTRANSFORM |
| |
| #include "vp8/common/blockd.h" |
| |
| // TODO: these transforms can be converted into integer forms to reduce |
| // the complexity |
| float dct_4[16] = { |
| 0.500000000000000, 0.500000000000000, 0.500000000000000, 0.500000000000000, |
| 0.653281482438188, 0.270598050073099, -0.270598050073099, -0.653281482438188, |
| 0.500000000000000, -0.500000000000000, -0.500000000000000, 0.500000000000000, |
| 0.270598050073099, -0.653281482438188, 0.653281482438188, -0.270598050073099 |
| }; |
| |
| float adst_4[16] = { |
| 0.228013428883779, 0.428525073124360, 0.577350269189626, 0.656538502008139, |
| 0.577350269189626, 0.577350269189626, 0.000000000000000, -0.577350269189626, |
| 0.656538502008139, -0.228013428883779, -0.577350269189626, 0.428525073124359, |
| 0.428525073124360, -0.656538502008139, 0.577350269189626, -0.228013428883779 |
| }; |
| #endif |
| |
| #if CONFIG_HYBRIDTRANSFORM8X8 |
| float dct_8[64] = { |
| 0.353553390593274, 0.353553390593274, 0.353553390593274, 0.353553390593274, |
| 0.353553390593274, 0.353553390593274, 0.353553390593274, 0.353553390593274, |
| 0.490392640201615, 0.415734806151273, 0.277785116509801, 0.097545161008064, |
| -0.097545161008064, -0.277785116509801, -0.415734806151273, -0.490392640201615, |
| 0.461939766255643, 0.191341716182545, -0.191341716182545, -0.461939766255643, |
| -0.461939766255643, -0.191341716182545, 0.191341716182545, 0.461939766255643, |
| 0.415734806151273, -0.097545161008064, -0.490392640201615, -0.277785116509801, |
| 0.277785116509801, 0.490392640201615, 0.097545161008064, -0.415734806151273, |
| 0.353553390593274, -0.353553390593274, -0.353553390593274, 0.353553390593274, |
| 0.353553390593274, -0.353553390593274, -0.353553390593274, 0.353553390593274, |
| 0.277785116509801, -0.490392640201615, 0.097545161008064, 0.415734806151273, |
| -0.415734806151273, -0.097545161008064, 0.490392640201615, -0.277785116509801, |
| 0.191341716182545, -0.461939766255643, 0.461939766255643, -0.191341716182545, |
| -0.191341716182545, 0.461939766255643, -0.461939766255643, 0.191341716182545, |
| 0.097545161008064, -0.277785116509801, 0.415734806151273, -0.490392640201615, |
| 0.490392640201615, -0.415734806151273, 0.277785116509801, -0.097545161008064 |
| }; |
| |
| float adst_8[64] = { |
| 0.089131608307533, 0.175227946595735, 0.255357107325376, 0.326790388032145, |
| 0.387095214016349, 0.434217976756762, 0.466553967085785, 0.483002021635509, |
| 0.255357107325376, 0.434217976756762, 0.483002021635509, 0.387095214016349, |
| 0.175227946595735, -0.089131608307533, -0.326790388032145, -0.466553967085785, |
| 0.387095214016349, 0.466553967085785, 0.175227946595735, -0.255357107325376, |
| -0.483002021635509, -0.326790388032145, 0.089131608307533, 0.434217976756762, |
| 0.466553967085785, 0.255357107325376, -0.326790388032145, -0.434217976756762, |
| 0.089131608307533, 0.483002021635509, 0.175227946595735, -0.387095214016348, |
| 0.483002021635509, -0.089131608307533, -0.466553967085785, 0.175227946595735, |
| 0.434217976756762, -0.255357107325376, -0.387095214016348, 0.326790388032145, |
| 0.434217976756762, -0.387095214016348, -0.089131608307533, 0.466553967085786, |
| -0.326790388032145, -0.175227946595735, 0.483002021635509, -0.255357107325375, |
| 0.326790388032145, -0.483002021635509, 0.387095214016349, -0.089131608307534, |
| -0.255357107325377, 0.466553967085785, -0.434217976756762, 0.175227946595736, |
| 0.175227946595735, -0.326790388032145, 0.434217976756762, -0.483002021635509, |
| 0.466553967085785, -0.387095214016348, 0.255357107325376, -0.089131608307532 |
| }; |
| #endif |
| |
| static const int xC1S7 = 16069; |
| static const int xC2S6 = 15137; |
| static const int xC3S5 = 13623; |
| static const int xC4S4 = 11585; |
| static const int xC5S3 = 9102; |
| static const int xC6S2 = 6270; |
| static const int xC7S1 = 3196; |
| |
| #define SHIFT_BITS 14 |
| #define DOROUND(X) X += (1<<(SHIFT_BITS-1)); |
| |
| #define FINAL_SHIFT 3 |
| #define FINAL_ROUNDING (1<<(FINAL_SHIFT -1)) |
| #define IN_SHIFT (FINAL_SHIFT+1) |
| |
| |
| void vp8_short_fdct8x8_c(short *InputData, short *OutputData, int pitch) { |
| int loop; |
| int short_pitch = pitch >> 1; |
| int is07, is12, is34, is56; |
| int is0734, is1256; |
| int id07, id12, id34, id56; |
| int irot_input_x, irot_input_y; |
| int icommon_product1; // Re-used product (c4s4 * (s12 - s56)) |
| int icommon_product2; // Re-used product (c4s4 * (d12 + d56)) |
| int temp1, temp2; // intermediate variable for computation |
| |
| int InterData[64]; |
| int *ip = InterData; |
| short *op = OutputData; |
| |
| for (loop = 0; loop < 8; loop++) { |
| // Pre calculate some common sums and differences. |
| is07 = (InputData[0] + InputData[7]) << IN_SHIFT; |
| is12 = (InputData[1] + InputData[2]) << IN_SHIFT; |
| is34 = (InputData[3] + InputData[4]) << IN_SHIFT; |
| is56 = (InputData[5] + InputData[6]) << IN_SHIFT; |
| id07 = (InputData[0] - InputData[7]) << IN_SHIFT; |
| id12 = (InputData[1] - InputData[2]) << IN_SHIFT; |
| id34 = (InputData[3] - InputData[4]) << IN_SHIFT; |
| id56 = (InputData[5] - InputData[6]) << IN_SHIFT; |
| |
| is0734 = is07 + is34; |
| is1256 = is12 + is56; |
| |
| // Pre-Calculate some common product terms. |
| icommon_product1 = xC4S4 * (is12 - is56); |
| DOROUND(icommon_product1) |
| icommon_product1 >>= SHIFT_BITS; |
| |
| icommon_product2 = xC4S4 * (id12 + id56); |
| DOROUND(icommon_product2) |
| icommon_product2 >>= SHIFT_BITS; |
| |
| |
| ip[0] = (xC4S4 * (is0734 + is1256)); |
| DOROUND(ip[0]); |
| ip[0] >>= SHIFT_BITS; |
| |
| ip[4] = (xC4S4 * (is0734 - is1256)); |
| DOROUND(ip[4]); |
| ip[4] >>= SHIFT_BITS; |
| |
| // Define inputs to rotation for outputs 2 and 6 |
| irot_input_x = id12 - id56; |
| irot_input_y = is07 - is34; |
| |
| // Apply rotation for outputs 2 and 6. |
| temp1 = xC6S2 * irot_input_x; |
| DOROUND(temp1); |
| temp1 >>= SHIFT_BITS; |
| temp2 = xC2S6 * irot_input_y; |
| DOROUND(temp2); |
| temp2 >>= SHIFT_BITS; |
| ip[2] = temp1 + temp2; |
| |
| temp1 = xC6S2 * irot_input_y; |
| DOROUND(temp1); |
| temp1 >>= SHIFT_BITS; |
| temp2 = xC2S6 * irot_input_x; |
| DOROUND(temp2); |
| temp2 >>= SHIFT_BITS; |
| ip[6] = temp1 - temp2; |
| |
| // Define inputs to rotation for outputs 1 and 7 |
| irot_input_x = icommon_product1 + id07; |
| irot_input_y = -(id34 + icommon_product2); |
| |
| // Apply rotation for outputs 1 and 7. |
| temp1 = xC1S7 * irot_input_x; |
| DOROUND(temp1); |
| temp1 >>= SHIFT_BITS; |
| temp2 = xC7S1 * irot_input_y; |
| DOROUND(temp2); |
| temp2 >>= SHIFT_BITS; |
| ip[1] = temp1 - temp2; |
| |
| temp1 = xC7S1 * irot_input_x; |
| DOROUND(temp1); |
| temp1 >>= SHIFT_BITS; |
| temp2 = xC1S7 * irot_input_y; |
| DOROUND(temp2); |
| temp2 >>= SHIFT_BITS; |
| ip[7] = temp1 + temp2; |
| |
| // Define inputs to rotation for outputs 3 and 5 |
| irot_input_x = id07 - icommon_product1; |
| irot_input_y = id34 - icommon_product2; |
| |
| // Apply rotation for outputs 3 and 5. |
| temp1 = xC3S5 * irot_input_x; |
| DOROUND(temp1); |
| temp1 >>= SHIFT_BITS; |
| temp2 = xC5S3 * irot_input_y; |
| DOROUND(temp2); |
| temp2 >>= SHIFT_BITS; |
| ip[3] = temp1 - temp2; |
| |
| |
| temp1 = xC5S3 * irot_input_x; |
| DOROUND(temp1); |
| temp1 >>= SHIFT_BITS; |
| temp2 = xC3S5 * irot_input_y; |
| DOROUND(temp2); |
| temp2 >>= SHIFT_BITS; |
| ip[5] = temp1 + temp2; |
| |
| // Increment data pointer for next row |
| InputData += short_pitch; |
| ip += 8; |
| } |
| |
| // Performed DCT on rows, now transform the columns |
| ip = InterData; |
| for (loop = 0; loop < 8; loop++) { |
| // Pre calculate some common sums and differences. |
| is07 = ip[0 * 8] + ip[7 * 8]; |
| is12 = ip[1 * 8] + ip[2 * 8]; |
| is34 = ip[3 * 8] + ip[4 * 8]; |
| is56 = ip[5 * 8] + ip[6 * 8]; |
| |
| id07 = ip[0 * 8] - ip[7 * 8]; |
| id12 = ip[1 * 8] - ip[2 * 8]; |
| id34 = ip[3 * 8] - ip[4 * 8]; |
| id56 = ip[5 * 8] - ip[6 * 8]; |
| |
| is0734 = is07 + is34; |
| is1256 = is12 + is56; |
| |
| // Pre-Calculate some common product terms |
| icommon_product1 = xC4S4 * (is12 - is56); |
| icommon_product2 = xC4S4 * (id12 + id56); |
| DOROUND(icommon_product1) |
| DOROUND(icommon_product2) |
| icommon_product1 >>= SHIFT_BITS; |
| icommon_product2 >>= SHIFT_BITS; |
| |
| |
| temp1 = xC4S4 * (is0734 + is1256); |
| temp2 = xC4S4 * (is0734 - is1256); |
| DOROUND(temp1); |
| DOROUND(temp2); |
| temp1 >>= SHIFT_BITS; |
| |
| temp2 >>= SHIFT_BITS; |
| op[0 * 8] = (temp1 + FINAL_ROUNDING) >> FINAL_SHIFT; |
| op[4 * 8] = (temp2 + FINAL_ROUNDING) >> FINAL_SHIFT; |
| |
| // Define inputs to rotation for outputs 2 and 6 |
| irot_input_x = id12 - id56; |
| irot_input_y = is07 - is34; |
| |
| // Apply rotation for outputs 2 and 6. |
| temp1 = xC6S2 * irot_input_x; |
| DOROUND(temp1); |
| temp1 >>= SHIFT_BITS; |
| temp2 = xC2S6 * irot_input_y; |
| DOROUND(temp2); |
| temp2 >>= SHIFT_BITS; |
| op[2 * 8] = (temp1 + temp2 + FINAL_ROUNDING) >> FINAL_SHIFT; |
| |
| temp1 = xC6S2 * irot_input_y; |
| DOROUND(temp1); |
| temp1 >>= SHIFT_BITS; |
| temp2 = xC2S6 * irot_input_x; |
| DOROUND(temp2); |
| temp2 >>= SHIFT_BITS; |
| op[6 * 8] = (temp1 - temp2 + FINAL_ROUNDING) >> FINAL_SHIFT; |
| |
| // Define inputs to rotation for outputs 1 and 7 |
| irot_input_x = icommon_product1 + id07; |
| irot_input_y = -(id34 + icommon_product2); |
| |
| // Apply rotation for outputs 1 and 7. |
| temp1 = xC1S7 * irot_input_x; |
| DOROUND(temp1); |
| temp1 >>= SHIFT_BITS; |
| temp2 = xC7S1 * irot_input_y; |
| DOROUND(temp2); |
| temp2 >>= SHIFT_BITS; |
| op[1 * 8] = (temp1 - temp2 + FINAL_ROUNDING) >> FINAL_SHIFT; |
| |
| temp1 = xC7S1 * irot_input_x; |
| DOROUND(temp1); |
| temp1 >>= SHIFT_BITS; |
| temp2 = xC1S7 * irot_input_y; |
| DOROUND(temp2); |
| temp2 >>= SHIFT_BITS; |
| op[7 * 8] = (temp1 + temp2 + FINAL_ROUNDING) >> FINAL_SHIFT; |
| |
| // Define inputs to rotation for outputs 3 and 5 |
| irot_input_x = id07 - icommon_product1; |
| irot_input_y = id34 - icommon_product2; |
| |
| // Apply rotation for outputs 3 and 5. |
| temp1 = xC3S5 * irot_input_x; |
| DOROUND(temp1); |
| temp1 >>= SHIFT_BITS; |
| temp2 = xC5S3 * irot_input_y; |
| DOROUND(temp2); |
| temp2 >>= SHIFT_BITS; |
| op[3 * 8] = (temp1 - temp2 + FINAL_ROUNDING) >> FINAL_SHIFT; |
| |
| |
| temp1 = xC5S3 * irot_input_x; |
| DOROUND(temp1); |
| temp1 >>= SHIFT_BITS; |
| temp2 = xC3S5 * irot_input_y; |
| DOROUND(temp2); |
| temp2 >>= SHIFT_BITS; |
| op[5 * 8] = (temp1 + temp2 + FINAL_ROUNDING) >> FINAL_SHIFT; |
| |
| // Increment data pointer for next column. |
| ip++; |
| op++; |
| } |
| } |
| |
| void vp8_short_fhaar2x2_c(short *input, short *output, int pitch) { // pitch = 8 |
| /* [1 1; 1 -1] orthogonal transform */ |
| /* use position: 0,1, 4, 8 */ |
| int i; |
| short *ip1 = input; |
| short *op1 = output; |
| for (i = 0; i < 16; i++) { |
| op1[i] = 0; |
| } |
| |
| op1[0] = (ip1[0] + ip1[1] + ip1[4] + ip1[8] + 1) >> 1; |
| op1[1] = (ip1[0] - ip1[1] + ip1[4] - ip1[8]) >> 1; |
| op1[4] = (ip1[0] + ip1[1] - ip1[4] - ip1[8]) >> 1; |
| op1[8] = (ip1[0] - ip1[1] - ip1[4] + ip1[8]) >> 1; |
| |
| } |
| |
| #if CONFIG_HYBRIDTRANSFORM |
| void vp8_fht4x4_c(short *input, short *output, int pitch, TX_TYPE tx_type) { |
| int i, j, k; |
| float bufa[16], bufb[16]; // buffers are for floating-point test purpose |
| // the implementation could be simplified in |
| // conjunction with integer transform |
| short *ip = input; |
| short *op = output; |
| |
| float *pfa = &bufa[0]; |
| float *pfb = &bufb[0]; |
| |
| // pointers to vertical and horizontal transforms |
| float *ptv, *pth; |
| |
| // load and convert residual array into floating-point |
| for(j = 0; j < 4; j++) { |
| for(i = 0; i < 4; i++) { |
| pfa[i] = (float)ip[i]; |
| } |
| pfa += 4; |
| ip += pitch / 2; |
| } |
| |
| // vertical transformation |
| pfa = &bufa[0]; |
| pfb = &bufb[0]; |
| |
| switch(tx_type) { |
| case ADST_ADST : |
| case ADST_DCT : |
| ptv = &adst_4[0]; |
| break; |
| |
| default : |
| ptv = &dct_4[0]; |
| break; |
| } |
| |
| for(j = 0; j < 4; j++) { |
| for(i = 0; i < 4; i++) { |
| pfb[i] = 0; |
| for(k = 0; k < 4; k++) { |
| pfb[i] += ptv[k] * pfa[(k<<2)]; |
| } |
| pfa += 1; |
| } |
| pfb += 4; |
| ptv += 4; |
| pfa = &bufa[0]; |
| } |
| |
| // horizontal transformation |
| pfa = &bufa[0]; |
| pfb = &bufb[0]; |
| |
| switch(tx_type) { |
| case ADST_ADST : |
| case DCT_ADST : |
| pth = &adst_4[0]; |
| break; |
| |
| default : |
| pth = &dct_4[0]; |
| break; |
| } |
| |
| for(j = 0; j < 4; j++) { |
| for(i = 0; i < 4; i++) { |
| pfa[i] = 0; |
| for(k = 0; k < 4; k++) { |
| pfa[i] += pfb[k] * pth[k]; |
| } |
| pth += 4; |
| } |
| |
| pfa += 4; |
| pfb += 4; |
| |
| switch(tx_type) { |
| case ADST_ADST : |
| case DCT_ADST : |
| pth = &adst_4[0]; |
| break; |
| |
| default : |
| pth = &dct_4[0]; |
| break; |
| } |
| } |
| |
| // convert to short integer format and load BLOCKD buffer |
| op = output ; |
| pfa = &bufa[0] ; |
| |
| for(j = 0; j < 4; j++) { |
| for(i = 0; i < 4; i++) { |
| op[i] = (pfa[i] > 0 ) ? (short)( 8 * pfa[i] + 0.49) : |
| -(short)(- 8 * pfa[i] + 0.49); |
| } |
| op += 4; |
| pfa += 4; |
| } |
| } |
| #endif |
| |
| #if CONFIG_HYBRIDTRANSFORM8X8 |
| void vp8_fht8x8_c(short *input, short *output, int pitch, TX_TYPE tx_type) { |
| int i, j, k; |
| float bufa[64], bufb[64]; // buffers are for floating-point test purpose |
| // the implementation could be simplified in |
| // conjunction with integer transform |
| short *ip = input; |
| short *op = output; |
| |
| float *pfa = &bufa[0]; |
| float *pfb = &bufb[0]; |
| |
| // pointers to vertical and horizontal transforms |
| float *ptv, *pth; |
| |
| // load and convert residual array into floating-point |
| for(j = 0; j < 8; j++) { |
| for(i = 0; i < 8; i++) { |
| pfa[i] = (float)ip[i]; |
| } |
| pfa += 8; |
| ip += pitch / 2; |
| } |
| |
| // vertical transformation |
| pfa = &bufa[0]; |
| pfb = &bufb[0]; |
| |
| switch(tx_type) { |
| case ADST_ADST : |
| case ADST_DCT : |
| ptv = &adst_8[0]; |
| break; |
| |
| default : |
| ptv = &dct_8[0]; |
| break; |
| } |
| |
| for(j = 0; j < 8; j++) { |
| for(i = 0; i < 8; i++) { |
| pfb[i] = 0; |
| for(k = 0; k < 8; k++) { |
| pfb[i] += ptv[k] * pfa[(k<<3)]; |
| } |
| pfa += 1; |
| } |
| pfb += 8; |
| ptv += 8; |
| pfa = &bufa[0]; |
| } |
| |
| // horizontal transformation |
| pfa = &bufa[0]; |
| pfb = &bufb[0]; |
| |
| switch(tx_type) { |
| case ADST_ADST : |
| case DCT_ADST : |
| pth = &adst_8[0]; |
| break; |
| |
| default : |
| pth = &dct_8[0]; |
| break; |
| } |
| |
| for(j = 0; j < 8; j++) { |
| for(i = 0; i < 8; i++) { |
| pfa[i] = 0; |
| for(k = 0; k < 8; k++) { |
| pfa[i] += pfb[k] * pth[k]; |
| } |
| pth += 8; |
| } |
| |
| pfa += 8; |
| pfb += 8; |
| |
| switch(tx_type) { |
| case ADST_ADST : |
| case DCT_ADST : |
| pth = &adst_8[0]; |
| break; |
| |
| default : |
| pth = &dct_8[0]; |
| break; |
| } |
| } |
| |
| // convert to short integer format and load BLOCKD buffer |
| op = output ; |
| pfa = &bufa[0] ; |
| |
| for(j = 0; j < 8; j++) { |
| for(i = 0; i < 8; i++) { |
| op[i] = (pfa[i] > 0 ) ? (short)( 8 * pfa[i] + 0.49) : |
| -(short)(- 8 * pfa[i] + 0.49); |
| } |
| op += 8; |
| pfa += 8; |
| } |
| } |
| #endif |
| |
| void vp8_short_fdct4x4_c(short *input, short *output, int pitch) { |
| int i; |
| int a1, b1, c1, d1; |
| short *ip = input; |
| short *op = output; |
| |
| for (i = 0; i < 4; i++) { |
| a1 = ((ip[0] + ip[3]) << 5); |
| b1 = ((ip[1] + ip[2]) << 5); |
| c1 = ((ip[1] - ip[2]) << 5); |
| d1 = ((ip[0] - ip[3]) << 5); |
| |
| op[0] = a1 + b1; |
| op[2] = a1 - b1; |
| |
| op[1] = (c1 * 2217 + d1 * 5352 + 14500) >> 12; |
| op[3] = (d1 * 2217 - c1 * 5352 + 7500) >> 12; |
| |
| ip += pitch / 2; |
| op += 4; |
| |
| } |
| ip = output; |
| op = output; |
| for (i = 0; i < 4; i++) { |
| a1 = ip[0] + ip[12]; |
| b1 = ip[4] + ip[8]; |
| c1 = ip[4] - ip[8]; |
| d1 = ip[0] - ip[12]; |
| |
| op[0] = (a1 + b1 + 7) >> 4; |
| op[8] = (a1 - b1 + 7) >> 4; |
| |
| op[4] = ((c1 * 2217 + d1 * 5352 + 12000) >> 16) + (d1 != 0); |
| op[12] = (d1 * 2217 - c1 * 5352 + 51000) >> 16; |
| |
| ip++; |
| op++; |
| } |
| } |
| |
| #if CONFIG_HYBRIDTRANSFORM |
| void vp8_fht8x4_c(short *input, short *output, int pitch, |
| TX_TYPE tx_type) { |
| vp8_fht4x4_c(input, output, pitch, tx_type); |
| vp8_fht4x4_c(input + 4, output + 16, pitch, tx_type); |
| } |
| #endif |
| |
| void vp8_short_fdct8x4_c(short *input, short *output, int pitch) |
| { |
| vp8_short_fdct4x4_c(input, output, pitch); |
| vp8_short_fdct4x4_c(input + 4, output + 16, pitch); |
| } |
| |
| void vp8_short_walsh4x4_c(short *input, short *output, int pitch) { |
| int i; |
| int a1, b1, c1, d1; |
| short *ip = input; |
| short *op = output; |
| int pitch_short = pitch >> 1; |
| |
| for (i = 0; i < 4; i++) { |
| a1 = ip[0 * pitch_short] + ip[3 * pitch_short]; |
| b1 = ip[1 * pitch_short] + ip[2 * pitch_short]; |
| c1 = ip[1 * pitch_short] - ip[2 * pitch_short]; |
| d1 = ip[0 * pitch_short] - ip[3 * pitch_short]; |
| |
| op[0] = (a1 + b1 + 1) >> 1; |
| op[4] = (c1 + d1) >> 1; |
| op[8] = (a1 - b1) >> 1; |
| op[12] = (d1 - c1) >> 1; |
| |
| ip++; |
| op++; |
| } |
| ip = output; |
| op = output; |
| |
| for (i = 0; i < 4; i++) { |
| a1 = ip[0] + ip[3]; |
| b1 = ip[1] + ip[2]; |
| c1 = ip[1] - ip[2]; |
| d1 = ip[0] - ip[3]; |
| |
| op[0] = (a1 + b1 + 1) >> 1; |
| op[1] = (c1 + d1) >> 1; |
| op[2] = (a1 - b1) >> 1; |
| op[3] = (d1 - c1) >> 1; |
| |
| ip += 4; |
| op += 4; |
| } |
| } |
| |
| #if CONFIG_LOSSLESS |
| void vp8_short_walsh4x4_lossless_c(short *input, short *output, int pitch) { |
| int i; |
| int a1, b1, c1, d1; |
| short *ip = input; |
| short *op = output; |
| int pitch_short = pitch >> 1; |
| |
| for (i = 0; i < 4; i++) { |
| a1 = (ip[0 * pitch_short] + ip[3 * pitch_short]) >> Y2_WHT_UPSCALE_FACTOR; |
| b1 = (ip[1 * pitch_short] + ip[2 * pitch_short]) >> Y2_WHT_UPSCALE_FACTOR; |
| c1 = (ip[1 * pitch_short] - ip[2 * pitch_short]) >> Y2_WHT_UPSCALE_FACTOR; |
| d1 = (ip[0 * pitch_short] - ip[3 * pitch_short]) >> Y2_WHT_UPSCALE_FACTOR; |
| |
| op[0] = (a1 + b1 + 1) >> 1; |
| op[4] = (c1 + d1) >> 1; |
| op[8] = (a1 - b1) >> 1; |
| op[12] = (d1 - c1) >> 1; |
| |
| ip++; |
| op++; |
| } |
| ip = output; |
| op = output; |
| |
| for (i = 0; i < 4; i++) { |
| a1 = ip[0] + ip[3]; |
| b1 = ip[1] + ip[2]; |
| c1 = ip[1] - ip[2]; |
| d1 = ip[0] - ip[3]; |
| |
| op[0] = ((a1 + b1 + 1) >> 1) << Y2_WHT_UPSCALE_FACTOR; |
| op[1] = ((c1 + d1) >> 1) << Y2_WHT_UPSCALE_FACTOR; |
| op[2] = ((a1 - b1) >> 1) << Y2_WHT_UPSCALE_FACTOR; |
| op[3] = ((d1 - c1) >> 1) << Y2_WHT_UPSCALE_FACTOR; |
| |
| ip += 4; |
| op += 4; |
| } |
| } |
| |
| void vp8_short_walsh4x4_x8_c(short *input, short *output, int pitch) { |
| int i; |
| int a1, b1, c1, d1; |
| short *ip = input; |
| short *op = output; |
| int pitch_short = pitch >> 1; |
| |
| for (i = 0; i < 4; i++) { |
| a1 = ip[0 * pitch_short] + ip[3 * pitch_short]; |
| b1 = ip[1 * pitch_short] + ip[2 * pitch_short]; |
| c1 = ip[1 * pitch_short] - ip[2 * pitch_short]; |
| d1 = ip[0 * pitch_short] - ip[3 * pitch_short]; |
| |
| op[0] = (a1 + b1 + 1) >> 1; |
| op[4] = (c1 + d1) >> 1; |
| op[8] = (a1 - b1) >> 1; |
| op[12] = (d1 - c1) >> 1; |
| |
| ip++; |
| op++; |
| } |
| ip = output; |
| op = output; |
| |
| for (i = 0; i < 4; i++) { |
| a1 = ip[0] + ip[3]; |
| b1 = ip[1] + ip[2]; |
| c1 = ip[1] - ip[2]; |
| d1 = ip[0] - ip[3]; |
| |
| op[0] = ((a1 + b1 + 1) >> 1) << WHT_UPSCALE_FACTOR; |
| op[1] = ((c1 + d1) >> 1) << WHT_UPSCALE_FACTOR; |
| op[2] = ((a1 - b1) >> 1) << WHT_UPSCALE_FACTOR; |
| op[3] = ((d1 - c1) >> 1) << WHT_UPSCALE_FACTOR; |
| |
| ip += 4; |
| op += 4; |
| } |
| } |
| |
| void vp8_short_walsh8x4_x8_c(short *input, short *output, int pitch) { |
| vp8_short_walsh4x4_x8_c(input, output, pitch); |
| vp8_short_walsh4x4_x8_c(input + 4, output + 16, pitch); |
| } |
| #endif |
| |
| #if CONFIG_TX16X16 |
| static void dct16x16_1d(double input[16], double output[16]) { |
| double step[16]; |
| double intermediate[16]; |
| double temp1, temp2; |
| |
| const double PI = 3.1415926535898; |
| const double C1 = cos(1*PI/(double)32); |
| const double C2 = cos(2*PI/(double)32); |
| const double C3 = cos(3*PI/(double)32); |
| const double C4 = cos(4*PI/(double)32); |
| const double C5 = cos(5*PI/(double)32); |
| const double C6 = cos(6*PI/(double)32); |
| const double C7 = cos(7*PI/(double)32); |
| const double C8 = cos(8*PI/(double)32); |
| const double C9 = cos(9*PI/(double)32); |
| const double C10 = cos(10*PI/(double)32); |
| const double C11 = cos(11*PI/(double)32); |
| const double C12 = cos(12*PI/(double)32); |
| const double C13 = cos(13*PI/(double)32); |
| const double C14 = cos(14*PI/(double)32); |
| const double C15 = cos(15*PI/(double)32); |
| |
| // step 1 |
| step[ 0] = input[0] + input[15]; |
| step[ 1] = input[1] + input[14]; |
| step[ 2] = input[2] + input[13]; |
| step[ 3] = input[3] + input[12]; |
| step[ 4] = input[4] + input[11]; |
| step[ 5] = input[5] + input[10]; |
| step[ 6] = input[6] + input[ 9]; |
| step[ 7] = input[7] + input[ 8]; |
| step[ 8] = input[7] - input[ 8]; |
| step[ 9] = input[6] - input[ 9]; |
| step[10] = input[5] - input[10]; |
| step[11] = input[4] - input[11]; |
| step[12] = input[3] - input[12]; |
| step[13] = input[2] - input[13]; |
| step[14] = input[1] - input[14]; |
| step[15] = input[0] - input[15]; |
| |
| // step 2 |
| output[0] = step[0] + step[7]; |
| output[1] = step[1] + step[6]; |
| output[2] = step[2] + step[5]; |
| output[3] = step[3] + step[4]; |
| output[4] = step[3] - step[4]; |
| output[5] = step[2] - step[5]; |
| output[6] = step[1] - step[6]; |
| output[7] = step[0] - step[7]; |
| |
| temp1 = step[ 8]*C7; |
| temp2 = step[15]*C9; |
| output[ 8] = temp1 + temp2; |
| |
| temp1 = step[ 9]*C11; |
| temp2 = step[14]*C5; |
| output[ 9] = temp1 - temp2; |
| |
| temp1 = step[10]*C3; |
| temp2 = step[13]*C13; |
| output[10] = temp1 + temp2; |
| |
| temp1 = step[11]*C15; |
| temp2 = step[12]*C1; |
| output[11] = temp1 - temp2; |
| |
| temp1 = step[11]*C1; |
| temp2 = step[12]*C15; |
| output[12] = temp2 + temp1; |
| |
| temp1 = step[10]*C13; |
| temp2 = step[13]*C3; |
| output[13] = temp2 - temp1; |
| |
| temp1 = step[ 9]*C5; |
| temp2 = step[14]*C11; |
| output[14] = temp2 + temp1; |
| |
| temp1 = step[ 8]*C9; |
| temp2 = step[15]*C7; |
| output[15] = temp2 - temp1; |
| |
| // step 3 |
| step[ 0] = output[0] + output[3]; |
| step[ 1] = output[1] + output[2]; |
| step[ 2] = output[1] - output[2]; |
| step[ 3] = output[0] - output[3]; |
| |
| temp1 = output[4]*C14; |
| temp2 = output[7]*C2; |
| step[ 4] = temp1 + temp2; |
| |
| temp1 = output[5]*C10; |
| temp2 = output[6]*C6; |
| step[ 5] = temp1 + temp2; |
| |
| temp1 = output[5]*C6; |
| temp2 = output[6]*C10; |
| step[ 6] = temp2 - temp1; |
| |
| temp1 = output[4]*C2; |
| temp2 = output[7]*C14; |
| step[ 7] = temp2 - temp1; |
| |
| step[ 8] = output[ 8] + output[11]; |
| step[ 9] = output[ 9] + output[10]; |
| step[10] = output[ 9] - output[10]; |
| step[11] = output[ 8] - output[11]; |
| |
| step[12] = output[12] + output[15]; |
| step[13] = output[13] + output[14]; |
| step[14] = output[13] - output[14]; |
| step[15] = output[12] - output[15]; |
| |
| // step 4 |
| output[ 0] = (step[ 0] + step[ 1]); |
| output[ 8] = (step[ 0] - step[ 1]); |
| |
| temp1 = step[2]*C12; |
| temp2 = step[3]*C4; |
| temp1 = temp1 + temp2; |
| output[ 4] = 2*(temp1*C8); |
| |
| temp1 = step[2]*C4; |
| temp2 = step[3]*C12; |
| temp1 = temp2 - temp1; |
| output[12] = 2*(temp1*C8); |
| |
| output[ 2] = 2*((step[4] + step[ 5])*C8); |
| output[14] = 2*((step[7] - step[ 6])*C8); |
| |
| temp1 = step[4] - step[5]; |
| temp2 = step[6] + step[7]; |
| output[ 6] = (temp1 + temp2); |
| output[10] = (temp1 - temp2); |
| |
| intermediate[8] = step[8] + step[14]; |
| intermediate[9] = step[9] + step[15]; |
| |
| temp1 = intermediate[8]*C12; |
| temp2 = intermediate[9]*C4; |
| temp1 = temp1 - temp2; |
| output[3] = 2*(temp1*C8); |
| |
| temp1 = intermediate[8]*C4; |
| temp2 = intermediate[9]*C12; |
| temp1 = temp2 + temp1; |
| output[13] = 2*(temp1*C8); |
| |
| output[ 9] = 2*((step[10] + step[11])*C8); |
| |
| intermediate[11] = step[10] - step[11]; |
| intermediate[12] = step[12] + step[13]; |
| intermediate[13] = step[12] - step[13]; |
| intermediate[14] = step[ 8] - step[14]; |
| intermediate[15] = step[ 9] - step[15]; |
| |
| output[15] = (intermediate[11] + intermediate[12]); |
| output[ 1] = -(intermediate[11] - intermediate[12]); |
| |
| output[ 7] = 2*(intermediate[13]*C8); |
| |
| temp1 = intermediate[14]*C12; |
| temp2 = intermediate[15]*C4; |
| temp1 = temp1 - temp2; |
| output[11] = -2*(temp1*C8); |
| |
| temp1 = intermediate[14]*C4; |
| temp2 = intermediate[15]*C12; |
| temp1 = temp2 + temp1; |
| output[ 5] = 2*(temp1*C8); |
| } |
| |
| void vp8_short_fdct16x16_c(short *input, short *out, int pitch) { |
| int shortpitch = pitch >> 1; |
| int i, j; |
| double output[256]; |
| // First transform columns |
| for (i = 0; i < 16; i++) { |
| double temp_in[16], temp_out[16]; |
| for (j = 0; j < 16; j++) |
| temp_in[j] = input[j*shortpitch + i]; |
| dct16x16_1d(temp_in, temp_out); |
| for (j = 0; j < 16; j++) |
| output[j*16 + i] = temp_out[j]; |
| } |
| // Then transform rows |
| for (i = 0; i < 16; ++i) { |
| double temp_in[16], temp_out[16]; |
| for (j = 0; j < 16; ++j) |
| temp_in[j] = output[j + i*16]; |
| dct16x16_1d(temp_in, temp_out); |
| for (j = 0; j < 16; ++j) |
| output[j + i*16] = temp_out[j]; |
| } |
| // Scale by some magic number |
| for (i = 0; i < 256; i++) |
| out[i] = (short)round(output[i]/2); |
| } |
| #endif |