| /* |
| * Copyright (c) 2018, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <immintrin.h> |
| #include <smmintrin.h> |
| |
| #include "aom_dsp/x86/synonyms.h" |
| #include "aom_dsp/x86/synonyms_avx2.h" |
| #include "aom_dsp/x86/sum_squares_sse2.h" |
| #include "config/aom_dsp_rtcd.h" |
| |
| static uint64_t aom_sum_squares_2d_i16_nxn_avx2(const int16_t *src, int stride, |
| int width, int height) { |
| uint64_t result; |
| __m256i v_acc_q = _mm256_setzero_si256(); |
| const __m256i v_zext_mask_q = yy_set1_64_from_32i(0xffffffff); |
| for (int col = 0; col < height; col += 4) { |
| __m256i v_acc_d = _mm256_setzero_si256(); |
| for (int row = 0; row < width; row += 16) { |
| const int16_t *tempsrc = src + row; |
| const __m256i v_val_0_w = |
| _mm256_loadu_si256((const __m256i *)(tempsrc + 0 * stride)); |
| const __m256i v_val_1_w = |
| _mm256_loadu_si256((const __m256i *)(tempsrc + 1 * stride)); |
| const __m256i v_val_2_w = |
| _mm256_loadu_si256((const __m256i *)(tempsrc + 2 * stride)); |
| const __m256i v_val_3_w = |
| _mm256_loadu_si256((const __m256i *)(tempsrc + 3 * stride)); |
| |
| const __m256i v_sq_0_d = _mm256_madd_epi16(v_val_0_w, v_val_0_w); |
| const __m256i v_sq_1_d = _mm256_madd_epi16(v_val_1_w, v_val_1_w); |
| const __m256i v_sq_2_d = _mm256_madd_epi16(v_val_2_w, v_val_2_w); |
| const __m256i v_sq_3_d = _mm256_madd_epi16(v_val_3_w, v_val_3_w); |
| |
| const __m256i v_sum_01_d = _mm256_add_epi32(v_sq_0_d, v_sq_1_d); |
| const __m256i v_sum_23_d = _mm256_add_epi32(v_sq_2_d, v_sq_3_d); |
| const __m256i v_sum_0123_d = _mm256_add_epi32(v_sum_01_d, v_sum_23_d); |
| |
| v_acc_d = _mm256_add_epi32(v_acc_d, v_sum_0123_d); |
| } |
| v_acc_q = |
| _mm256_add_epi64(v_acc_q, _mm256_and_si256(v_acc_d, v_zext_mask_q)); |
| v_acc_q = _mm256_add_epi64(v_acc_q, _mm256_srli_epi64(v_acc_d, 32)); |
| src += 4 * stride; |
| } |
| __m128i lower_64_2_Value = _mm256_castsi256_si128(v_acc_q); |
| __m128i higher_64_2_Value = _mm256_extracti128_si256(v_acc_q, 1); |
| __m128i result_64_2_int = _mm_add_epi64(lower_64_2_Value, higher_64_2_Value); |
| |
| result_64_2_int = _mm_add_epi64( |
| result_64_2_int, _mm_unpackhi_epi64(result_64_2_int, result_64_2_int)); |
| |
| xx_storel_64(&result, result_64_2_int); |
| |
| return result; |
| } |
| |
| uint64_t aom_sum_squares_2d_i16_avx2(const int16_t *src, int stride, int width, |
| int height) { |
| if (LIKELY(width == 4 && height == 4)) { |
| return aom_sum_squares_2d_i16_4x4_sse2(src, stride); |
| } else if (LIKELY(width == 4 && (height & 3) == 0)) { |
| return aom_sum_squares_2d_i16_4xn_sse2(src, stride, height); |
| } else if (LIKELY(width == 8 && (height & 3) == 0)) { |
| return aom_sum_squares_2d_i16_nxn_sse2(src, stride, width, height); |
| } else if (LIKELY(((width & 15) == 0) && ((height & 3) == 0))) { |
| return aom_sum_squares_2d_i16_nxn_avx2(src, stride, width, height); |
| } else { |
| return aom_sum_squares_2d_i16_c(src, stride, width, height); |
| } |
| } |
| |
| // Accumulate sum of 16-bit elements in the vector |
| static AOM_INLINE int32_t mm256_accumulate_epi16(__m256i vec_a) { |
| __m128i vtmp1 = _mm256_extracti128_si256(vec_a, 1); |
| __m128i vtmp2 = _mm256_castsi256_si128(vec_a); |
| vtmp1 = _mm_add_epi16(vtmp1, vtmp2); |
| vtmp2 = _mm_srli_si128(vtmp1, 8); |
| vtmp1 = _mm_add_epi16(vtmp1, vtmp2); |
| vtmp2 = _mm_srli_si128(vtmp1, 4); |
| vtmp1 = _mm_add_epi16(vtmp1, vtmp2); |
| vtmp2 = _mm_srli_si128(vtmp1, 2); |
| vtmp1 = _mm_add_epi16(vtmp1, vtmp2); |
| return _mm_extract_epi16(vtmp1, 0); |
| } |
| |
| // Accumulate sum of 32-bit elements in the vector |
| static AOM_INLINE int32_t mm256_accumulate_epi32(__m256i vec_a) { |
| __m128i vtmp1 = _mm256_extracti128_si256(vec_a, 1); |
| __m128i vtmp2 = _mm256_castsi256_si128(vec_a); |
| vtmp1 = _mm_add_epi32(vtmp1, vtmp2); |
| vtmp2 = _mm_srli_si128(vtmp1, 8); |
| vtmp1 = _mm_add_epi32(vtmp1, vtmp2); |
| vtmp2 = _mm_srli_si128(vtmp1, 4); |
| vtmp1 = _mm_add_epi32(vtmp1, vtmp2); |
| return _mm_cvtsi128_si32(vtmp1); |
| } |
| |
| uint64_t aom_var_2d_u8_avx2(uint8_t *src, int src_stride, int width, |
| int height) { |
| uint8_t *srcp; |
| uint64_t s = 0, ss = 0; |
| __m256i vzero = _mm256_setzero_si256(); |
| __m256i v_acc_sum = vzero; |
| __m256i v_acc_sqs = vzero; |
| int i, j; |
| |
| // Process 32 elements in a row |
| for (i = 0; i < width - 31; i += 32) { |
| srcp = src + i; |
| // Process 8 columns at a time |
| for (j = 0; j < height - 7; j += 8) { |
| __m256i vsrc[8]; |
| for (int k = 0; k < 8; k++) { |
| vsrc[k] = _mm256_loadu_si256((__m256i *)srcp); |
| srcp += src_stride; |
| } |
| for (int k = 0; k < 8; k++) { |
| __m256i vsrc0 = _mm256_unpacklo_epi8(vsrc[k], vzero); |
| __m256i vsrc1 = _mm256_unpackhi_epi8(vsrc[k], vzero); |
| v_acc_sum = _mm256_add_epi16(v_acc_sum, vsrc0); |
| v_acc_sum = _mm256_add_epi16(v_acc_sum, vsrc1); |
| |
| __m256i vsqs0 = _mm256_madd_epi16(vsrc0, vsrc0); |
| __m256i vsqs1 = _mm256_madd_epi16(vsrc1, vsrc1); |
| v_acc_sqs = _mm256_add_epi32(v_acc_sqs, vsqs0); |
| v_acc_sqs = _mm256_add_epi32(v_acc_sqs, vsqs1); |
| } |
| |
| // Update total sum and clear the vectors |
| s += mm256_accumulate_epi16(v_acc_sum); |
| ss += mm256_accumulate_epi32(v_acc_sqs); |
| v_acc_sum = vzero; |
| v_acc_sqs = vzero; |
| } |
| |
| // Process remaining rows (height not a multiple of 8) |
| for (; j < height; j++) { |
| __m256i vsrc = _mm256_loadu_si256((__m256i *)srcp); |
| __m256i vsrc0 = _mm256_unpacklo_epi8(vsrc, vzero); |
| __m256i vsrc1 = _mm256_unpackhi_epi8(vsrc, vzero); |
| v_acc_sum = _mm256_add_epi16(v_acc_sum, vsrc0); |
| v_acc_sum = _mm256_add_epi16(v_acc_sum, vsrc1); |
| |
| __m256i vsqs0 = _mm256_madd_epi16(vsrc0, vsrc0); |
| __m256i vsqs1 = _mm256_madd_epi16(vsrc1, vsrc1); |
| v_acc_sqs = _mm256_add_epi32(v_acc_sqs, vsqs0); |
| v_acc_sqs = _mm256_add_epi32(v_acc_sqs, vsqs1); |
| |
| srcp += src_stride; |
| } |
| |
| // Update total sum and clear the vectors |
| s += mm256_accumulate_epi16(v_acc_sum); |
| ss += mm256_accumulate_epi32(v_acc_sqs); |
| v_acc_sum = vzero; |
| v_acc_sqs = vzero; |
| } |
| |
| // Process the remaining area using C |
| srcp = src; |
| for (int k = 0; k < height; k++) { |
| for (int m = i; m < width; m++) { |
| uint8_t val = srcp[m]; |
| s += val; |
| ss += val * val; |
| } |
| srcp += src_stride; |
| } |
| return (ss - s * s / (width * height)); |
| } |
| |
| uint64_t aom_var_2d_u16_avx2(uint8_t *src, int src_stride, int width, |
| int height) { |
| uint16_t *srcp1 = CONVERT_TO_SHORTPTR(src), *srcp; |
| uint64_t s = 0, ss = 0; |
| __m256i vzero = _mm256_setzero_si256(); |
| __m256i v_acc_sum = vzero; |
| __m256i v_acc_sqs = vzero; |
| int i, j; |
| |
| // Process 16 elements in a row |
| for (i = 0; i < width - 15; i += 16) { |
| srcp = srcp1 + i; |
| // Process 8 columns at a time |
| for (j = 0; j < height - 8; j += 8) { |
| __m256i vsrc[8]; |
| for (int k = 0; k < 8; k++) { |
| vsrc[k] = _mm256_loadu_si256((__m256i *)srcp); |
| srcp += src_stride; |
| } |
| for (int k = 0; k < 8; k++) { |
| __m256i vsrc0 = _mm256_unpacklo_epi16(vsrc[k], vzero); |
| __m256i vsrc1 = _mm256_unpackhi_epi16(vsrc[k], vzero); |
| v_acc_sum = _mm256_add_epi32(vsrc0, v_acc_sum); |
| v_acc_sum = _mm256_add_epi32(vsrc1, v_acc_sum); |
| |
| __m256i vsqs0 = _mm256_madd_epi16(vsrc[k], vsrc[k]); |
| v_acc_sqs = _mm256_add_epi32(v_acc_sqs, vsqs0); |
| } |
| |
| // Update total sum and clear the vectors |
| s += mm256_accumulate_epi32(v_acc_sum); |
| ss += mm256_accumulate_epi32(v_acc_sqs); |
| v_acc_sum = vzero; |
| v_acc_sqs = vzero; |
| } |
| |
| // Process remaining rows (height not a multiple of 8) |
| for (; j < height; j++) { |
| __m256i vsrc = _mm256_loadu_si256((__m256i *)srcp); |
| __m256i vsrc0 = _mm256_unpacklo_epi16(vsrc, vzero); |
| __m256i vsrc1 = _mm256_unpackhi_epi16(vsrc, vzero); |
| v_acc_sum = _mm256_add_epi32(vsrc0, v_acc_sum); |
| v_acc_sum = _mm256_add_epi32(vsrc1, v_acc_sum); |
| |
| __m256i vsqs0 = _mm256_madd_epi16(vsrc, vsrc); |
| v_acc_sqs = _mm256_add_epi32(v_acc_sqs, vsqs0); |
| srcp += src_stride; |
| } |
| |
| // Update total sum and clear the vectors |
| s += mm256_accumulate_epi32(v_acc_sum); |
| ss += mm256_accumulate_epi32(v_acc_sqs); |
| v_acc_sum = vzero; |
| v_acc_sqs = vzero; |
| } |
| |
| // Process the remaining area using C |
| srcp = srcp1; |
| for (int k = 0; k < height; k++) { |
| for (int m = i; m < width; m++) { |
| uint16_t val = srcp[m]; |
| s += val; |
| ss += val * val; |
| } |
| srcp += src_stride; |
| } |
| return (ss - s * s / (width * height)); |
| } |