blob: 7a541b26637c44c920d5300aac5dd44105bbc838 [file] [log] [blame]
/*
* Copyright (c) 2016 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "third_party/googletest/src/include/gtest/gtest.h"
#include "./vpx_config.h"
#include "./vpx_dsp_rtcd.h"
#include "./vp10_rtcd.h"
#include "vpx_dsp/vpx_dsp_common.h"
#include "vp10/common/enums.h"
#include "test/acm_random.h"
#include "test/function_equivalence_test.h"
#define WEDGE_WEIGHT_BITS 6
#define MAX_MASK_VALUE (1 << (WEDGE_WEIGHT_BITS))
using std::tr1::make_tuple;
using libvpx_test::ACMRandom;
using libvpx_test::FunctionEquivalenceTest;
namespace {
static const int16_t kInt13Max = (1 << 12) - 1;
//////////////////////////////////////////////////////////////////////////////
// vp10_wedge_sse_from_residuals - functionality
//////////////////////////////////////////////////////////////////////////////
class WedgeUtilsSSEFuncTest : public testing::Test {
protected:
WedgeUtilsSSEFuncTest() : rng_(ACMRandom::DeterministicSeed()) {}
static const int kIterations = 1000;
ACMRandom rng_;
};
static void equiv_blend_residuals(int16_t *r,
const int16_t *r0,
const int16_t *r1,
const uint8_t *m,
int N) {
for (int i = 0 ; i < N ; i++) {
const int32_t m0 = m[i];
const int32_t m1 = MAX_MASK_VALUE - m0;
const int16_t R = m0 * r0[i] + m1 * r1[i];
// Note that this rounding is designed to match the result
// you would get when actually blending the 2 predictors and computing
// the residuals.
r[i] = ROUND_POWER_OF_TWO(R - 1, WEDGE_WEIGHT_BITS);
}
}
static uint64_t equiv_sse_from_residuals(const int16_t *r0,
const int16_t *r1,
const uint8_t *m,
int N) {
uint64_t acc = 0;
for (int i = 0 ; i < N ; i++) {
const int32_t m0 = m[i];
const int32_t m1 = MAX_MASK_VALUE - m0;
const int16_t R = m0 * r0[i] + m1 * r1[i];
const int32_t r = ROUND_POWER_OF_TWO(R - 1, WEDGE_WEIGHT_BITS);
acc += r * r;
}
return acc;
}
TEST_F(WedgeUtilsSSEFuncTest, ResidualBlendingEquiv) {
DECLARE_ALIGNED(32, uint8_t, s[MAX_SB_SQUARE]);
DECLARE_ALIGNED(32, uint8_t, p0[MAX_SB_SQUARE]);
DECLARE_ALIGNED(32, uint8_t, p1[MAX_SB_SQUARE]);
DECLARE_ALIGNED(32, uint8_t, p[MAX_SB_SQUARE]);
DECLARE_ALIGNED(32, int16_t, r0[MAX_SB_SQUARE]);
DECLARE_ALIGNED(32, int16_t, r1[MAX_SB_SQUARE]);
DECLARE_ALIGNED(32, int16_t, r_ref[MAX_SB_SQUARE]);
DECLARE_ALIGNED(32, int16_t, r_tst[MAX_SB_SQUARE]);
DECLARE_ALIGNED(32, uint8_t, m[MAX_SB_SQUARE]);
for (int iter = 0 ; iter < kIterations && !HasFatalFailure(); ++iter) {
for (int i = 0 ; i < MAX_SB_SQUARE ; ++i) {
s[i] = rng_.Rand8();
m[i] = rng_(MAX_MASK_VALUE + 1);
}
const int w = 1 << (rng_(MAX_SB_SIZE_LOG2 + 1 - 3) + 3);
const int h = 1 << (rng_(MAX_SB_SIZE_LOG2 + 1 - 3) + 3);
const int N = w * h;
for (int j = 0 ; j < N ; j++) {
p0[j] = clamp(s[j] + rng_(33) - 16, 0, UINT8_MAX);
p1[j] = clamp(s[j] + rng_(33) - 16, 0, UINT8_MAX);
}
vpx_blend_a64_mask(p, w, p0, w, p1, w, m, w, h, w, 0, 0);
vpx_subtract_block(h, w, r0, w, s, w, p0, w);
vpx_subtract_block(h, w, r1, w, s, w, p1, w);
vpx_subtract_block(h, w, r_ref, w, s, w, p, w);
equiv_blend_residuals(r_tst, r0, r1, m, N);
for (int i = 0 ; i < N ; ++i)
ASSERT_EQ(r_ref[i], r_tst[i]);
uint64_t ref_sse = vpx_sum_squares_i16(r_ref, N);
uint64_t tst_sse = equiv_sse_from_residuals(r0, r1, m, N);
ASSERT_EQ(ref_sse, tst_sse);
}
}
static uint64_t sse_from_residuals(const int16_t *r0,
const int16_t *r1,
const uint8_t *m,
int N) {
uint64_t acc = 0;
for (int i = 0 ; i < N ; i++) {
const int32_t m0 = m[i];
const int32_t m1 = MAX_MASK_VALUE - m0;
const int32_t r = m0 * r0[i] + m1 * r1[i];
acc += r * r;
}
return ROUND_POWER_OF_TWO(acc, 2 * WEDGE_WEIGHT_BITS);
}
TEST_F(WedgeUtilsSSEFuncTest, ResidualBlendingMethod) {
DECLARE_ALIGNED(32, int16_t, r0[MAX_SB_SQUARE]);
DECLARE_ALIGNED(32, int16_t, r1[MAX_SB_SQUARE]);
DECLARE_ALIGNED(32, int16_t, d[MAX_SB_SQUARE]);
DECLARE_ALIGNED(32, uint8_t, m[MAX_SB_SQUARE]);
for (int iter = 0 ; iter < kIterations && !HasFatalFailure(); ++iter) {
for (int i = 0 ; i < MAX_SB_SQUARE ; ++i) {
r1[i] = rng_(2 * INT8_MAX - 2 * INT8_MIN + 1) + 2 * INT8_MIN;
d[i] = rng_(2 * INT8_MAX - 2 * INT8_MIN + 1) + 2 * INT8_MIN;
m[i] = rng_(MAX_MASK_VALUE + 1);
}
const int N = 64 * (rng_(MAX_SB_SQUARE/64) + 1);
for (int i = 0 ; i < N ; i++)
r0[i] = r1[i] + d[i];
uint64_t ref_res = sse_from_residuals(r0, r1, m, N);
uint64_t tst_res = vp10_wedge_sse_from_residuals(r1, d, m, N);
ASSERT_EQ(ref_res, tst_res);
}
}
//////////////////////////////////////////////////////////////////////////////
// vp10_wedge_sse_from_residuals - optimizations
//////////////////////////////////////////////////////////////////////////////
typedef uint64_t (*FSSE)(const int16_t *r1,
const int16_t *d,
const uint8_t *m,
int N);
class WedgeUtilsSSEOptTest : public FunctionEquivalenceTest<FSSE> {
protected:
WedgeUtilsSSEOptTest() : rng_(ACMRandom::DeterministicSeed()) {}
static const int kIterations = 10000;
ACMRandom rng_;
};
TEST_P(WedgeUtilsSSEOptTest, RandomValues) {
DECLARE_ALIGNED(32, int16_t, r1[MAX_SB_SQUARE]);
DECLARE_ALIGNED(32, int16_t, d[MAX_SB_SQUARE]);
DECLARE_ALIGNED(32, uint8_t, m[MAX_SB_SQUARE]);
for (int iter = 0 ; iter < kIterations && !HasFatalFailure(); ++iter) {
for (int i = 0 ; i < MAX_SB_SQUARE ; ++i) {
r1[i] = rng_(2 * kInt13Max + 1) - kInt13Max;
d[i] = rng_(2 * kInt13Max + 1) - kInt13Max;
m[i] = rng_(MAX_MASK_VALUE + 1);
}
const int N = 64 * (rng_(MAX_SB_SQUARE/64) + 1);
const uint64_t ref_res = ref_func_(r1, d, m, N);
const uint64_t tst_res = tst_func_(r1, d, m, N);
ASSERT_EQ(ref_res, tst_res);
}
}
TEST_P(WedgeUtilsSSEOptTest, ExtremeValues) {
DECLARE_ALIGNED(32, int16_t, r1[MAX_SB_SQUARE]);
DECLARE_ALIGNED(32, int16_t, d[MAX_SB_SQUARE]);
DECLARE_ALIGNED(32, uint8_t, m[MAX_SB_SQUARE]);
for (int iter = 0 ; iter < kIterations && !HasFatalFailure(); ++iter) {
if (rng_(2)) {
for (int i = 0 ; i < MAX_SB_SQUARE ; ++i)
r1[i] = kInt13Max;
} else {
for (int i = 0 ; i < MAX_SB_SQUARE ; ++i)
r1[i] = -kInt13Max;
}
if (rng_(2)) {
for (int i = 0 ; i < MAX_SB_SQUARE ; ++i)
d[i] = kInt13Max;
} else {
for (int i = 0 ; i < MAX_SB_SQUARE ; ++i)
d[i] = -kInt13Max;
}
for (int i = 0 ; i < MAX_SB_SQUARE ; ++i)
m[i] = MAX_MASK_VALUE;
const int N = 64 * (rng_(MAX_SB_SQUARE/64) + 1);
const uint64_t ref_res = ref_func_(r1, d, m, N);
const uint64_t tst_res = tst_func_(r1, d, m, N);
ASSERT_EQ(ref_res, tst_res);
}
}
#if HAVE_SSE2
INSTANTIATE_TEST_CASE_P(
SSE2, WedgeUtilsSSEOptTest,
::testing::Values(
make_tuple(&vp10_wedge_sse_from_residuals_c,
&vp10_wedge_sse_from_residuals_sse2)
)
);
#endif // HAVE_SSE2
//////////////////////////////////////////////////////////////////////////////
// vp10_wedge_sign_from_residuals
//////////////////////////////////////////////////////////////////////////////
typedef int (*FSign)(const int16_t *ds,
const uint8_t *m,
int N,
int64_t limit);
class WedgeUtilsSignOptTest : public FunctionEquivalenceTest<FSign> {
protected:
WedgeUtilsSignOptTest() : rng_(ACMRandom::DeterministicSeed()) {}
static const int kIterations = 10000;
static const int kMaxSize = 8196; // Size limited by SIMD implementation.
ACMRandom rng_;
};
TEST_P(WedgeUtilsSignOptTest, RandomValues) {
DECLARE_ALIGNED(32, int16_t, r0[MAX_SB_SQUARE]);
DECLARE_ALIGNED(32, int16_t, r1[MAX_SB_SQUARE]);
DECLARE_ALIGNED(32, int16_t, ds[MAX_SB_SQUARE]);
DECLARE_ALIGNED(32, uint8_t, m[MAX_SB_SQUARE]);
for (int iter = 0 ; iter < kIterations && !HasFatalFailure(); ++iter) {
for (int i = 0 ; i < MAX_SB_SQUARE ; ++i) {
r0[i] = rng_(2 * kInt13Max + 1) - kInt13Max;
r1[i] = rng_(2 * kInt13Max + 1) - kInt13Max;
m[i] = rng_(MAX_MASK_VALUE + 1);
}
const int maxN = VPXMIN(kMaxSize, MAX_SB_SQUARE);
const int N = 64 * (rng_(maxN/64 - 1) + 1);
int64_t limit;
limit = (int64_t)vpx_sum_squares_i16(r0, N);
limit -= (int64_t)vpx_sum_squares_i16(r1, N);
limit *= (1 << WEDGE_WEIGHT_BITS) / 2;
for (int i = 0 ; i < N ; i++)
ds[i] = clamp(r0[i]*r0[i] - r1[i]*r1[i], INT16_MIN, INT16_MAX);
const int ref_res = ref_func_(ds, m, N, limit);
const int tst_res = tst_func_(ds, m, N, limit);
ASSERT_EQ(ref_res, tst_res);
}
}
TEST_P(WedgeUtilsSignOptTest, ExtremeValues) {
DECLARE_ALIGNED(32, int16_t, r0[MAX_SB_SQUARE]);
DECLARE_ALIGNED(32, int16_t, r1[MAX_SB_SQUARE]);
DECLARE_ALIGNED(32, int16_t, ds[MAX_SB_SQUARE]);
DECLARE_ALIGNED(32, uint8_t, m[MAX_SB_SQUARE]);
for (int iter = 0 ; iter < kIterations && !HasFatalFailure(); ++iter) {
switch (rng_(4)) {
case 0:
for (int i = 0 ; i < MAX_SB_SQUARE ; ++i) {
r0[i] = 0;
r1[i] = kInt13Max;
}
break;
case 1:
for (int i = 0 ; i < MAX_SB_SQUARE ; ++i) {
r0[i] = kInt13Max;
r1[i] = 0;
}
break;
case 2:
for (int i = 0 ; i < MAX_SB_SQUARE ; ++i) {
r0[i] = 0;
r1[i] = -kInt13Max;
}
break;
default:
for (int i = 0 ; i < MAX_SB_SQUARE ; ++i) {
r0[i] = -kInt13Max;
r1[i] = 0;
}
break;
}
for (int i = 0 ; i < MAX_SB_SQUARE ; ++i)
m[i] = MAX_MASK_VALUE;
const int maxN = VPXMIN(kMaxSize, MAX_SB_SQUARE);
const int N = 64 * (rng_(maxN/64 - 1) + 1);
int64_t limit;
limit = (int64_t)vpx_sum_squares_i16(r0, N);
limit -= (int64_t)vpx_sum_squares_i16(r1, N);
limit *= (1 << WEDGE_WEIGHT_BITS) / 2;
for (int i = 0 ; i < N ; i++)
ds[i] = clamp(r0[i]*r0[i] - r1[i]*r1[i], INT16_MIN, INT16_MAX);
const int ref_res = ref_func_(ds, m, N, limit);
const int tst_res = tst_func_(ds, m, N, limit);
ASSERT_EQ(ref_res, tst_res);
}
}
#if HAVE_SSE2
INSTANTIATE_TEST_CASE_P(
SSE2, WedgeUtilsSignOptTest,
::testing::Values(
make_tuple(&vp10_wedge_sign_from_residuals_c,
&vp10_wedge_sign_from_residuals_sse2)
)
);
#endif // HAVE_SSE2
//////////////////////////////////////////////////////////////////////////////
// vp10_wedge_compute_delta_squares
//////////////////////////////////////////////////////////////////////////////
typedef void (*FDS)(int16_t *d,
const int16_t *a,
const int16_t *b,
int N);
class WedgeUtilsDeltaSquaresOptTest : public FunctionEquivalenceTest<FDS> {
protected:
WedgeUtilsDeltaSquaresOptTest() : rng_(ACMRandom::DeterministicSeed()) {}
static const int kIterations = 10000;
ACMRandom rng_;
};
TEST_P(WedgeUtilsDeltaSquaresOptTest, RandomValues) {
DECLARE_ALIGNED(32, int16_t, a[MAX_SB_SQUARE]);
DECLARE_ALIGNED(32, int16_t, b[MAX_SB_SQUARE]);
DECLARE_ALIGNED(32, int16_t, d_ref[MAX_SB_SQUARE]);
DECLARE_ALIGNED(32, int16_t, d_tst[MAX_SB_SQUARE]);
for (int iter = 0 ; iter < kIterations && !HasFatalFailure(); ++iter) {
for (int i = 0 ; i < MAX_SB_SQUARE ; ++i) {
a[i] = rng_.Rand16();
b[i] = rng_(2 * INT16_MAX + 1) - INT16_MAX;
}
const int N = 64 * (rng_(MAX_SB_SQUARE/64) + 1);
memset(&d_ref, INT16_MAX, sizeof(d_ref));
memset(&d_tst, INT16_MAX, sizeof(d_tst));
ref_func_(d_ref, a, b, N);
tst_func_(d_tst, a, b, N);
for (int i = 0 ; i < MAX_SB_SQUARE ; ++i)
ASSERT_EQ(d_ref[i], d_tst[i]);
}
}
#if HAVE_SSE2
INSTANTIATE_TEST_CASE_P(
SSE2, WedgeUtilsDeltaSquaresOptTest,
::testing::Values(
make_tuple(&vp10_wedge_compute_delta_squares_c,
&vp10_wedge_compute_delta_squares_sse2)
)
);
#endif // HAVE_SSE2
} // namespace