| /* |
| * Copyright (c) 2016 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "third_party/googletest/src/include/gtest/gtest.h" |
| |
| #include "./vpx_config.h" |
| |
| #include "./vpx_dsp_rtcd.h" |
| #include "./vp10_rtcd.h" |
| |
| #include "vpx_dsp/vpx_dsp_common.h" |
| |
| #include "vp10/common/enums.h" |
| |
| #include "test/acm_random.h" |
| #include "test/function_equivalence_test.h" |
| |
| #define WEDGE_WEIGHT_BITS 6 |
| #define MAX_MASK_VALUE (1 << (WEDGE_WEIGHT_BITS)) |
| |
| using std::tr1::make_tuple; |
| using libvpx_test::ACMRandom; |
| using libvpx_test::FunctionEquivalenceTest; |
| |
| namespace { |
| |
| static const int16_t kInt13Max = (1 << 12) - 1; |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| // vp10_wedge_sse_from_residuals - functionality |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| class WedgeUtilsSSEFuncTest : public testing::Test { |
| protected: |
| WedgeUtilsSSEFuncTest() : rng_(ACMRandom::DeterministicSeed()) {} |
| |
| static const int kIterations = 1000; |
| |
| ACMRandom rng_; |
| }; |
| |
| static void equiv_blend_residuals(int16_t *r, |
| const int16_t *r0, |
| const int16_t *r1, |
| const uint8_t *m, |
| int N) { |
| for (int i = 0 ; i < N ; i++) { |
| const int32_t m0 = m[i]; |
| const int32_t m1 = MAX_MASK_VALUE - m0; |
| const int16_t R = m0 * r0[i] + m1 * r1[i]; |
| // Note that this rounding is designed to match the result |
| // you would get when actually blending the 2 predictors and computing |
| // the residuals. |
| r[i] = ROUND_POWER_OF_TWO(R - 1, WEDGE_WEIGHT_BITS); |
| } |
| } |
| |
| static uint64_t equiv_sse_from_residuals(const int16_t *r0, |
| const int16_t *r1, |
| const uint8_t *m, |
| int N) { |
| uint64_t acc = 0; |
| for (int i = 0 ; i < N ; i++) { |
| const int32_t m0 = m[i]; |
| const int32_t m1 = MAX_MASK_VALUE - m0; |
| const int16_t R = m0 * r0[i] + m1 * r1[i]; |
| const int32_t r = ROUND_POWER_OF_TWO(R - 1, WEDGE_WEIGHT_BITS); |
| acc += r * r; |
| } |
| return acc; |
| } |
| |
| TEST_F(WedgeUtilsSSEFuncTest, ResidualBlendingEquiv) { |
| DECLARE_ALIGNED(32, uint8_t, s[MAX_SB_SQUARE]); |
| DECLARE_ALIGNED(32, uint8_t, p0[MAX_SB_SQUARE]); |
| DECLARE_ALIGNED(32, uint8_t, p1[MAX_SB_SQUARE]); |
| DECLARE_ALIGNED(32, uint8_t, p[MAX_SB_SQUARE]); |
| |
| DECLARE_ALIGNED(32, int16_t, r0[MAX_SB_SQUARE]); |
| DECLARE_ALIGNED(32, int16_t, r1[MAX_SB_SQUARE]); |
| DECLARE_ALIGNED(32, int16_t, r_ref[MAX_SB_SQUARE]); |
| DECLARE_ALIGNED(32, int16_t, r_tst[MAX_SB_SQUARE]); |
| DECLARE_ALIGNED(32, uint8_t, m[MAX_SB_SQUARE]); |
| |
| for (int iter = 0 ; iter < kIterations && !HasFatalFailure(); ++iter) { |
| for (int i = 0 ; i < MAX_SB_SQUARE ; ++i) { |
| s[i] = rng_.Rand8(); |
| m[i] = rng_(MAX_MASK_VALUE + 1); |
| } |
| |
| const int w = 1 << (rng_(MAX_SB_SIZE_LOG2 + 1 - 3) + 3); |
| const int h = 1 << (rng_(MAX_SB_SIZE_LOG2 + 1 - 3) + 3); |
| const int N = w * h; |
| |
| for (int j = 0 ; j < N ; j++) { |
| p0[j] = clamp(s[j] + rng_(33) - 16, 0, UINT8_MAX); |
| p1[j] = clamp(s[j] + rng_(33) - 16, 0, UINT8_MAX); |
| } |
| |
| vpx_blend_a64_mask(p, w, p0, w, p1, w, m, w, h, w, 0, 0); |
| |
| vpx_subtract_block(h, w, r0, w, s, w, p0, w); |
| vpx_subtract_block(h, w, r1, w, s, w, p1, w); |
| |
| vpx_subtract_block(h, w, r_ref, w, s, w, p, w); |
| equiv_blend_residuals(r_tst, r0, r1, m, N); |
| |
| for (int i = 0 ; i < N ; ++i) |
| ASSERT_EQ(r_ref[i], r_tst[i]); |
| |
| uint64_t ref_sse = vpx_sum_squares_i16(r_ref, N); |
| uint64_t tst_sse = equiv_sse_from_residuals(r0, r1, m, N); |
| |
| ASSERT_EQ(ref_sse, tst_sse); |
| } |
| } |
| |
| static uint64_t sse_from_residuals(const int16_t *r0, |
| const int16_t *r1, |
| const uint8_t *m, |
| int N) { |
| uint64_t acc = 0; |
| for (int i = 0 ; i < N ; i++) { |
| const int32_t m0 = m[i]; |
| const int32_t m1 = MAX_MASK_VALUE - m0; |
| const int32_t r = m0 * r0[i] + m1 * r1[i]; |
| acc += r * r; |
| } |
| return ROUND_POWER_OF_TWO(acc, 2 * WEDGE_WEIGHT_BITS); |
| } |
| |
| TEST_F(WedgeUtilsSSEFuncTest, ResidualBlendingMethod) { |
| DECLARE_ALIGNED(32, int16_t, r0[MAX_SB_SQUARE]); |
| DECLARE_ALIGNED(32, int16_t, r1[MAX_SB_SQUARE]); |
| DECLARE_ALIGNED(32, int16_t, d[MAX_SB_SQUARE]); |
| DECLARE_ALIGNED(32, uint8_t, m[MAX_SB_SQUARE]); |
| |
| for (int iter = 0 ; iter < kIterations && !HasFatalFailure(); ++iter) { |
| for (int i = 0 ; i < MAX_SB_SQUARE ; ++i) { |
| r1[i] = rng_(2 * INT8_MAX - 2 * INT8_MIN + 1) + 2 * INT8_MIN; |
| d[i] = rng_(2 * INT8_MAX - 2 * INT8_MIN + 1) + 2 * INT8_MIN; |
| m[i] = rng_(MAX_MASK_VALUE + 1); |
| } |
| |
| const int N = 64 * (rng_(MAX_SB_SQUARE/64) + 1); |
| |
| for (int i = 0 ; i < N ; i++) |
| r0[i] = r1[i] + d[i]; |
| |
| uint64_t ref_res = sse_from_residuals(r0, r1, m, N); |
| uint64_t tst_res = vp10_wedge_sse_from_residuals(r1, d, m, N); |
| |
| ASSERT_EQ(ref_res, tst_res); |
| } |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| // vp10_wedge_sse_from_residuals - optimizations |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| typedef uint64_t (*FSSE)(const int16_t *r1, |
| const int16_t *d, |
| const uint8_t *m, |
| int N); |
| |
| class WedgeUtilsSSEOptTest : public FunctionEquivalenceTest<FSSE> { |
| protected: |
| WedgeUtilsSSEOptTest() : rng_(ACMRandom::DeterministicSeed()) {} |
| |
| static const int kIterations = 10000; |
| |
| ACMRandom rng_; |
| }; |
| |
| TEST_P(WedgeUtilsSSEOptTest, RandomValues) { |
| DECLARE_ALIGNED(32, int16_t, r1[MAX_SB_SQUARE]); |
| DECLARE_ALIGNED(32, int16_t, d[MAX_SB_SQUARE]); |
| DECLARE_ALIGNED(32, uint8_t, m[MAX_SB_SQUARE]); |
| |
| for (int iter = 0 ; iter < kIterations && !HasFatalFailure(); ++iter) { |
| for (int i = 0 ; i < MAX_SB_SQUARE ; ++i) { |
| r1[i] = rng_(2 * kInt13Max + 1) - kInt13Max; |
| d[i] = rng_(2 * kInt13Max + 1) - kInt13Max; |
| m[i] = rng_(MAX_MASK_VALUE + 1); |
| } |
| |
| const int N = 64 * (rng_(MAX_SB_SQUARE/64) + 1); |
| |
| const uint64_t ref_res = ref_func_(r1, d, m, N); |
| const uint64_t tst_res = tst_func_(r1, d, m, N); |
| |
| ASSERT_EQ(ref_res, tst_res); |
| } |
| } |
| |
| TEST_P(WedgeUtilsSSEOptTest, ExtremeValues) { |
| DECLARE_ALIGNED(32, int16_t, r1[MAX_SB_SQUARE]); |
| DECLARE_ALIGNED(32, int16_t, d[MAX_SB_SQUARE]); |
| DECLARE_ALIGNED(32, uint8_t, m[MAX_SB_SQUARE]); |
| |
| for (int iter = 0 ; iter < kIterations && !HasFatalFailure(); ++iter) { |
| if (rng_(2)) { |
| for (int i = 0 ; i < MAX_SB_SQUARE ; ++i) |
| r1[i] = kInt13Max; |
| } else { |
| for (int i = 0 ; i < MAX_SB_SQUARE ; ++i) |
| r1[i] = -kInt13Max; |
| } |
| |
| if (rng_(2)) { |
| for (int i = 0 ; i < MAX_SB_SQUARE ; ++i) |
| d[i] = kInt13Max; |
| } else { |
| for (int i = 0 ; i < MAX_SB_SQUARE ; ++i) |
| d[i] = -kInt13Max; |
| } |
| |
| for (int i = 0 ; i < MAX_SB_SQUARE ; ++i) |
| m[i] = MAX_MASK_VALUE; |
| |
| const int N = 64 * (rng_(MAX_SB_SQUARE/64) + 1); |
| |
| const uint64_t ref_res = ref_func_(r1, d, m, N); |
| const uint64_t tst_res = tst_func_(r1, d, m, N); |
| |
| ASSERT_EQ(ref_res, tst_res); |
| } |
| } |
| |
| #if HAVE_SSE2 |
| INSTANTIATE_TEST_CASE_P( |
| SSE2, WedgeUtilsSSEOptTest, |
| ::testing::Values( |
| make_tuple(&vp10_wedge_sse_from_residuals_c, |
| &vp10_wedge_sse_from_residuals_sse2) |
| ) |
| ); |
| #endif // HAVE_SSE2 |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| // vp10_wedge_sign_from_residuals |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| typedef int (*FSign)(const int16_t *ds, |
| const uint8_t *m, |
| int N, |
| int64_t limit); |
| |
| class WedgeUtilsSignOptTest : public FunctionEquivalenceTest<FSign> { |
| protected: |
| WedgeUtilsSignOptTest() : rng_(ACMRandom::DeterministicSeed()) {} |
| |
| static const int kIterations = 10000; |
| static const int kMaxSize = 8196; // Size limited by SIMD implementation. |
| |
| ACMRandom rng_; |
| }; |
| |
| TEST_P(WedgeUtilsSignOptTest, RandomValues) { |
| DECLARE_ALIGNED(32, int16_t, r0[MAX_SB_SQUARE]); |
| DECLARE_ALIGNED(32, int16_t, r1[MAX_SB_SQUARE]); |
| DECLARE_ALIGNED(32, int16_t, ds[MAX_SB_SQUARE]); |
| DECLARE_ALIGNED(32, uint8_t, m[MAX_SB_SQUARE]); |
| |
| for (int iter = 0 ; iter < kIterations && !HasFatalFailure(); ++iter) { |
| for (int i = 0 ; i < MAX_SB_SQUARE ; ++i) { |
| r0[i] = rng_(2 * kInt13Max + 1) - kInt13Max; |
| r1[i] = rng_(2 * kInt13Max + 1) - kInt13Max; |
| m[i] = rng_(MAX_MASK_VALUE + 1); |
| } |
| |
| const int maxN = VPXMIN(kMaxSize, MAX_SB_SQUARE); |
| const int N = 64 * (rng_(maxN/64 - 1) + 1); |
| |
| int64_t limit; |
| limit = (int64_t)vpx_sum_squares_i16(r0, N); |
| limit -= (int64_t)vpx_sum_squares_i16(r1, N); |
| limit *= (1 << WEDGE_WEIGHT_BITS) / 2; |
| |
| for (int i = 0 ; i < N ; i++) |
| ds[i] = clamp(r0[i]*r0[i] - r1[i]*r1[i], INT16_MIN, INT16_MAX); |
| |
| const int ref_res = ref_func_(ds, m, N, limit); |
| const int tst_res = tst_func_(ds, m, N, limit); |
| |
| ASSERT_EQ(ref_res, tst_res); |
| } |
| } |
| |
| TEST_P(WedgeUtilsSignOptTest, ExtremeValues) { |
| DECLARE_ALIGNED(32, int16_t, r0[MAX_SB_SQUARE]); |
| DECLARE_ALIGNED(32, int16_t, r1[MAX_SB_SQUARE]); |
| DECLARE_ALIGNED(32, int16_t, ds[MAX_SB_SQUARE]); |
| DECLARE_ALIGNED(32, uint8_t, m[MAX_SB_SQUARE]); |
| |
| for (int iter = 0 ; iter < kIterations && !HasFatalFailure(); ++iter) { |
| switch (rng_(4)) { |
| case 0: |
| for (int i = 0 ; i < MAX_SB_SQUARE ; ++i) { |
| r0[i] = 0; |
| r1[i] = kInt13Max; |
| } |
| break; |
| case 1: |
| for (int i = 0 ; i < MAX_SB_SQUARE ; ++i) { |
| r0[i] = kInt13Max; |
| r1[i] = 0; |
| } |
| break; |
| case 2: |
| for (int i = 0 ; i < MAX_SB_SQUARE ; ++i) { |
| r0[i] = 0; |
| r1[i] = -kInt13Max; |
| } |
| break; |
| default: |
| for (int i = 0 ; i < MAX_SB_SQUARE ; ++i) { |
| r0[i] = -kInt13Max; |
| r1[i] = 0; |
| } |
| break; |
| } |
| |
| for (int i = 0 ; i < MAX_SB_SQUARE ; ++i) |
| m[i] = MAX_MASK_VALUE; |
| |
| const int maxN = VPXMIN(kMaxSize, MAX_SB_SQUARE); |
| const int N = 64 * (rng_(maxN/64 - 1) + 1); |
| |
| int64_t limit; |
| limit = (int64_t)vpx_sum_squares_i16(r0, N); |
| limit -= (int64_t)vpx_sum_squares_i16(r1, N); |
| limit *= (1 << WEDGE_WEIGHT_BITS) / 2; |
| |
| for (int i = 0 ; i < N ; i++) |
| ds[i] = clamp(r0[i]*r0[i] - r1[i]*r1[i], INT16_MIN, INT16_MAX); |
| |
| const int ref_res = ref_func_(ds, m, N, limit); |
| const int tst_res = tst_func_(ds, m, N, limit); |
| |
| ASSERT_EQ(ref_res, tst_res); |
| } |
| } |
| |
| #if HAVE_SSE2 |
| INSTANTIATE_TEST_CASE_P( |
| SSE2, WedgeUtilsSignOptTest, |
| ::testing::Values( |
| make_tuple(&vp10_wedge_sign_from_residuals_c, |
| &vp10_wedge_sign_from_residuals_sse2) |
| ) |
| ); |
| #endif // HAVE_SSE2 |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| // vp10_wedge_compute_delta_squares |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| typedef void (*FDS)(int16_t *d, |
| const int16_t *a, |
| const int16_t *b, |
| int N); |
| |
| class WedgeUtilsDeltaSquaresOptTest : public FunctionEquivalenceTest<FDS> { |
| protected: |
| WedgeUtilsDeltaSquaresOptTest() : rng_(ACMRandom::DeterministicSeed()) {} |
| |
| static const int kIterations = 10000; |
| |
| ACMRandom rng_; |
| }; |
| |
| TEST_P(WedgeUtilsDeltaSquaresOptTest, RandomValues) { |
| DECLARE_ALIGNED(32, int16_t, a[MAX_SB_SQUARE]); |
| DECLARE_ALIGNED(32, int16_t, b[MAX_SB_SQUARE]); |
| DECLARE_ALIGNED(32, int16_t, d_ref[MAX_SB_SQUARE]); |
| DECLARE_ALIGNED(32, int16_t, d_tst[MAX_SB_SQUARE]); |
| |
| for (int iter = 0 ; iter < kIterations && !HasFatalFailure(); ++iter) { |
| for (int i = 0 ; i < MAX_SB_SQUARE ; ++i) { |
| a[i] = rng_.Rand16(); |
| b[i] = rng_(2 * INT16_MAX + 1) - INT16_MAX; |
| } |
| |
| const int N = 64 * (rng_(MAX_SB_SQUARE/64) + 1); |
| |
| memset(&d_ref, INT16_MAX, sizeof(d_ref)); |
| memset(&d_tst, INT16_MAX, sizeof(d_tst)); |
| |
| ref_func_(d_ref, a, b, N); |
| tst_func_(d_tst, a, b, N); |
| |
| for (int i = 0 ; i < MAX_SB_SQUARE ; ++i) |
| ASSERT_EQ(d_ref[i], d_tst[i]); |
| } |
| } |
| |
| #if HAVE_SSE2 |
| INSTANTIATE_TEST_CASE_P( |
| SSE2, WedgeUtilsDeltaSquaresOptTest, |
| ::testing::Values( |
| make_tuple(&vp10_wedge_compute_delta_squares_c, |
| &vp10_wedge_compute_delta_squares_sse2) |
| ) |
| ); |
| #endif // HAVE_SSE2 |
| |
| } // namespace |