blob: cbca376211ac16f34755f055c84fbfa1e0586fd9 [file] [log] [blame]
/*
* Copyright (c) 2018, Alliance for Open Media. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef AOM_AV1_COMMON_ARM_CONVOLVE_NEON_H_
#define AOM_AV1_COMMON_ARM_CONVOLVE_NEON_H_
#include <arm_neon.h>
#define HORIZ_EXTRA_ROWS ((SUBPEL_TAPS + 7) & ~0x07)
static INLINE int16x4_t convolve8_4(const int16x4_t s0, const int16x4_t s1,
const int16x4_t s2, const int16x4_t s3,
const int16x4_t s4, const int16x4_t s5,
const int16x4_t s6, const int16x4_t s7,
const int16x8_t filter) {
const int16x4_t filter_lo = vget_low_s16(filter);
const int16x4_t filter_hi = vget_high_s16(filter);
int16x4_t sum;
sum = vmul_lane_s16(s0, filter_lo, 0);
sum = vmla_lane_s16(sum, s1, filter_lo, 1);
sum = vmla_lane_s16(sum, s2, filter_lo, 2);
sum = vmla_lane_s16(sum, s5, filter_hi, 1);
sum = vmla_lane_s16(sum, s6, filter_hi, 2);
sum = vmla_lane_s16(sum, s7, filter_hi, 3);
sum = vqadd_s16(sum, vmul_lane_s16(s3, filter_lo, 3));
sum = vqadd_s16(sum, vmul_lane_s16(s4, filter_hi, 0));
return sum;
}
static INLINE uint8x8_t convolve8_8(const int16x8_t s0, const int16x8_t s1,
const int16x8_t s2, const int16x8_t s3,
const int16x8_t s4, const int16x8_t s5,
const int16x8_t s6, const int16x8_t s7,
const int16x8_t filter) {
const int16x4_t filter_lo = vget_low_s16(filter);
const int16x4_t filter_hi = vget_high_s16(filter);
int16x8_t sum;
sum = vmulq_lane_s16(s0, filter_lo, 0);
sum = vmlaq_lane_s16(sum, s1, filter_lo, 1);
sum = vmlaq_lane_s16(sum, s2, filter_lo, 2);
sum = vmlaq_lane_s16(sum, s5, filter_hi, 1);
sum = vmlaq_lane_s16(sum, s6, filter_hi, 2);
sum = vmlaq_lane_s16(sum, s7, filter_hi, 3);
sum = vqaddq_s16(sum, vmulq_lane_s16(s3, filter_lo, 3));
sum = vqaddq_s16(sum, vmulq_lane_s16(s4, filter_hi, 0));
return vqrshrun_n_s16(sum, 7);
}
static INLINE uint8x8_t scale_filter_8(const uint8x8_t *const s,
const int16x8_t filter) {
int16x8_t ss[8];
ss[0] = vreinterpretq_s16_u16(vmovl_u8(s[0]));
ss[1] = vreinterpretq_s16_u16(vmovl_u8(s[1]));
ss[2] = vreinterpretq_s16_u16(vmovl_u8(s[2]));
ss[3] = vreinterpretq_s16_u16(vmovl_u8(s[3]));
ss[4] = vreinterpretq_s16_u16(vmovl_u8(s[4]));
ss[5] = vreinterpretq_s16_u16(vmovl_u8(s[5]));
ss[6] = vreinterpretq_s16_u16(vmovl_u8(s[6]));
ss[7] = vreinterpretq_s16_u16(vmovl_u8(s[7]));
return convolve8_8(ss[0], ss[1], ss[2], ss[3], ss[4], ss[5], ss[6], ss[7],
filter);
}
static INLINE uint8x8_t wiener_convolve8_vert_4x8(
const int16x8_t s0, const int16x8_t s1, const int16x8_t s2,
const int16x8_t s3, const int16x8_t s4, const int16x8_t s5,
const int16x8_t s6, int16_t *filter_y, const int bd,
const int round1_bits) {
int16x8_t ss0, ss1, ss2;
int32x4_t sum0, sum1;
int16x8_t tmp;
uint8x8_t res;
const int32_t round_const = (1 << (bd + round1_bits - 1));
const int32x4_t round_bits = vdupq_n_s32(-round1_bits);
const int32x4_t round_vec = vdupq_n_s32(round_const);
const int16x4_t filter = vld1_s16(filter_y);
ss0 = vaddq_s16(s0, s6);
ss1 = vaddq_s16(s1, s5);
ss2 = vaddq_s16(s2, s4);
sum0 = vmull_lane_s16(vget_low_s16(ss0), filter, 0);
sum0 = vmlal_lane_s16(sum0, vget_low_s16(ss1), filter, 1);
sum0 = vmlal_lane_s16(sum0, vget_low_s16(ss2), filter, 2);
sum0 = vmlal_lane_s16(sum0, vget_low_s16(s3), filter, 3);
sum1 = vmull_lane_s16(vget_high_s16(ss0), filter, 0);
sum1 = vmlal_lane_s16(sum1, vget_high_s16(ss1), filter, 1);
sum1 = vmlal_lane_s16(sum1, vget_high_s16(ss2), filter, 2);
sum1 = vmlal_lane_s16(sum1, vget_high_s16(s3), filter, 3);
sum0 = vsubq_s32(sum0, round_vec);
sum1 = vsubq_s32(sum1, round_vec);
/* right shift & rounding */
sum0 = vrshlq_s32(sum0, round_bits);
sum1 = vrshlq_s32(sum1, round_bits);
/* from int32x4_t to uint8x8_t */
tmp = vcombine_s16(vmovn_s32(sum0), vmovn_s32(sum1));
res = vqmovun_s16(tmp);
return res;
}
static INLINE uint16x8_t wiener_convolve8_horiz_8x8(
const int16x8_t s0, const int16x8_t s1, const int16x8_t s2,
const int16x8_t s3, int16_t *filter_x, const int bd,
const int round0_bits) {
int16x8_t sum;
uint16x8_t res;
int32x4_t sum_0, sum_1;
int32x4_t s3_0, s3_1;
const int32_t round_const_0 = (1 << (bd + FILTER_BITS - 1));
const int32_t round_const_1 = (1 << (bd + 1 + FILTER_BITS - round0_bits)) - 1;
/* for the purpose of right shift by { conv_params->round_0 } */
const int32x4_t round_bits = vdupq_n_s32(-round0_bits);
const int32x4_t round_vec_0 = vdupq_n_s32(round_const_0);
const int32x4_t round_vec_1 = vdupq_n_s32(round_const_1);
const int16x4_t filter = vld1_s16(filter_x);
sum = vmulq_lane_s16(s0, filter, 0);
sum = vmlaq_lane_s16(sum, s1, filter, 1);
sum = vmlaq_lane_s16(sum, s2, filter, 2);
/* sum from 16x8 to 2 32x4 registers */
sum_0 = vmovl_s16(vget_low_s16(sum));
sum_1 = vmovl_s16(vget_high_s16(sum));
/* s[3]*128 -- and filter coef max can be 128
* then max value possible = 128*128*255 exceeding 16 bit
*/
s3_0 = vmull_lane_s16(vget_low_s16(s3), filter, 3);
s3_1 = vmull_lane_s16(vget_high_s16(s3), filter, 3);
sum_0 = vaddq_s32(sum_0, s3_0);
sum_1 = vaddq_s32(sum_1, s3_1);
/* Add the constant value */
sum_0 = vaddq_s32(sum_0, round_vec_0);
sum_1 = vaddq_s32(sum_1, round_vec_0);
/* right shift & rounding & saturating */
sum_0 = vqrshlq_s32(sum_0, round_bits);
sum_1 = vqrshlq_s32(sum_1, round_bits);
/* Clipping to max value */
sum_0 = vminq_s32(sum_0, round_vec_1);
sum_1 = vminq_s32(sum_1, round_vec_1);
res = vcombine_u16(vqmovun_s32(sum_0), vqmovun_s32(sum_1));
return res;
}
static INLINE uint16x4_t wiener_convolve8_horiz_4x8(
const int16x4_t s0, const int16x4_t s1, const int16x4_t s2,
const int16x4_t s3, const int16x4_t s4, const int16x4_t s5,
const int16x4_t s6, int16_t *filter_x, const int bd,
const int round0_bits) {
uint16x4_t res;
int32x4_t sum_0, s3_0;
int16x4_t sum, temp0, temp1, temp2;
const int32_t round_const_0 = (1 << (bd + FILTER_BITS - 1));
const int32_t round_const_1 = (1 << (bd + 1 + FILTER_BITS - round0_bits)) - 1;
const int32x4_t round_bits = vdupq_n_s32(-round0_bits);
const int32x4_t round_vec_0 = vdupq_n_s32(round_const_0);
const int32x4_t round_vec_1 = vdupq_n_s32(round_const_1);
const int16x4_t filter = vld1_s16(filter_x);
temp0 = vadd_s16(s0, s6);
temp1 = vadd_s16(s1, s5);
temp2 = vadd_s16(s2, s4);
sum = vmul_lane_s16(temp0, filter, 0);
sum = vmla_lane_s16(sum, temp1, filter, 1);
sum = vmla_lane_s16(sum, temp2, filter, 2);
sum_0 = vmovl_s16(sum);
/* s[3]*128 -- and filter coff max can be 128.
* then max value possible = 128*128*255 Therefore, 32 bits are required to
* hold the result.
*/
s3_0 = vmull_lane_s16(s3, filter, 3);
sum_0 = vaddq_s32(sum_0, s3_0);
sum_0 = vaddq_s32(sum_0, round_vec_0);
sum_0 = vrshlq_s32(sum_0, round_bits);
sum_0 = vminq_s32(sum_0, round_vec_1);
res = vqmovun_s32(sum_0);
return res;
}
static INLINE int16x8_t convolve8_8x8_s16(
const int16x8_t s0, const int16x8_t s1, const int16x8_t s2,
const int16x8_t s3, const int16x8_t s4, const int16x8_t s5,
const int16x8_t s6, const int16x8_t s7, const int16x8_t filter,
const int16x8_t horiz_const, const int16x8_t shift_round_0) {
const int16x4_t filter_lo = vget_low_s16(filter);
const int16x4_t filter_hi = vget_high_s16(filter);
int16x8_t sum;
sum = horiz_const;
sum = vmlaq_lane_s16(sum, s0, filter_lo, 0);
sum = vmlaq_lane_s16(sum, s1, filter_lo, 1);
sum = vmlaq_lane_s16(sum, s2, filter_lo, 2);
sum = vmlaq_lane_s16(sum, s3, filter_lo, 3);
sum = vmlaq_lane_s16(sum, s4, filter_hi, 0);
sum = vmlaq_lane_s16(sum, s5, filter_hi, 1);
sum = vmlaq_lane_s16(sum, s6, filter_hi, 2);
sum = vmlaq_lane_s16(sum, s7, filter_hi, 3);
sum = vqrshlq_s16(sum, shift_round_0);
return sum;
}
// clang versions < 16 did not include the dotprod feature for Arm architecture
// versions that should have it by default, e.g., armv8.6-a.
#if defined(__aarch64__) && \
(defined(__ARM_FEATURE_DOTPROD) || defined(__ARM_FEATURE_MATMUL_INT8))
DECLARE_ALIGNED(16, static const uint8_t, dot_prod_permute_tbl[48]) = {
0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6,
4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10,
8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14
};
#endif // defined(__aarch64__) && defined(__ARM_FEATURE_DOTPROD)
#if defined(__aarch64__) && defined(__ARM_FEATURE_MATMUL_INT8)
static INLINE int16x8_t convolve8_x_8_usdot(uint8x16_t samples,
const int8x8_t filters,
const uint8x16x3_t permute_tbl,
const int32x4_t horiz_const) {
uint8x16_t permuted_samples[3];
int32x4_t sum[2];
/* Permute samples ready for dot product. */
/* { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } */
permuted_samples[0] = vqtbl1q_u8(samples, permute_tbl.val[0]);
/* { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 } */
permuted_samples[1] = vqtbl1q_u8(samples, permute_tbl.val[1]);
/* { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 } */
permuted_samples[2] = vqtbl1q_u8(samples, permute_tbl.val[2]);
/* First 4 output values. */
sum[0] = vusdotq_lane_s32(horiz_const, permuted_samples[0], filters, 0);
sum[0] = vusdotq_lane_s32(sum[0], permuted_samples[1], filters, 1);
/* Second 4 output values. */
sum[1] = vusdotq_lane_s32(horiz_const, permuted_samples[1], filters, 0);
sum[1] = vusdotq_lane_s32(sum[1], permuted_samples[2], filters, 1);
return vcombine_s16(vmovn_s32(sum[0]), vmovn_s32(sum[1]));
}
static INLINE int16x8_t convolve8_horiz_8_usdot(uint8x16_t samples,
const int8x8_t filters,
const uint8x16x3_t permute_tbl,
const int32x4_t horiz_const) {
uint8x16_t permuted_samples[3];
int32x4_t sum[2];
/* Permute samples ready for dot product. */
/* { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } */
permuted_samples[0] = vqtbl1q_u8(samples, permute_tbl.val[0]);
/* { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 } */
permuted_samples[1] = vqtbl1q_u8(samples, permute_tbl.val[1]);
/* { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 } */
permuted_samples[2] = vqtbl1q_u8(samples, permute_tbl.val[2]);
/* First 4 output values. */
sum[0] = vusdotq_lane_s32(horiz_const, permuted_samples[0], filters, 0);
sum[0] = vusdotq_lane_s32(sum[0], permuted_samples[1], filters, 1);
/* Second 4 output values. */
sum[1] = vusdotq_lane_s32(horiz_const, permuted_samples[1], filters, 0);
sum[1] = vusdotq_lane_s32(sum[1], permuted_samples[2], filters, 1);
/* Narrow and re-pack. */
// We halved the convolution filter values so -1 from the right shift.
return vcombine_s16(vshrn_n_s32(sum[0], ROUND0_BITS - 1),
vshrn_n_s32(sum[1], ROUND0_BITS - 1));
}
static INLINE int32x4_t convolve8_4_usdot(uint8x16_t samples,
const int8x8_t filters,
const uint8x16x2_t permute_tbl,
const int32x4_t horiz_const) {
uint8x16_t permuted_samples[2];
int32x4_t sum;
/* Permute samples ready for dot product. */
/* { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } */
permuted_samples[0] = vqtbl1q_u8(samples, permute_tbl.val[0]);
/* { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 } */
permuted_samples[1] = vqtbl1q_u8(samples, permute_tbl.val[1]);
/* First 4 output values. */
sum = vusdotq_lane_s32(horiz_const, permuted_samples[0], filters, 0);
sum = vusdotq_lane_s32(sum, permuted_samples[1], filters, 1);
/* Narrowing and packing is performed by the caller. */
return sum;
}
#elif defined(__aarch64__) && defined(__ARM_FEATURE_DOTPROD)
static INLINE int16x8_t convolve8_horiz_8_sdot(uint8x16_t samples,
const int8x8_t filters,
const int32x4_t correction,
const uint8x16_t range_limit,
const uint8x16x3_t permute_tbl) {
int8x16_t clamped_samples, permuted_samples[3];
int32x4_t sum[2];
/* Clamp sample range to [-128, 127] for 8-bit signed dot product. */
clamped_samples = vreinterpretq_s8_u8(vsubq_u8(samples, range_limit));
/* Permute samples ready for dot product. */
/* { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } */
permuted_samples[0] = vqtbl1q_s8(clamped_samples, permute_tbl.val[0]);
/* { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 } */
permuted_samples[1] = vqtbl1q_s8(clamped_samples, permute_tbl.val[1]);
/* { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 } */
permuted_samples[2] = vqtbl1q_s8(clamped_samples, permute_tbl.val[2]);
/* Accumulate dot product into 'correction' to account for range clamp. */
/* First 4 output values. */
sum[0] = vdotq_lane_s32(correction, permuted_samples[0], filters, 0);
sum[0] = vdotq_lane_s32(sum[0], permuted_samples[1], filters, 1);
/* Second 4 output values. */
sum[1] = vdotq_lane_s32(correction, permuted_samples[1], filters, 0);
sum[1] = vdotq_lane_s32(sum[1], permuted_samples[2], filters, 1);
/* Narrow and re-pack. */
/* We halved the convolution filter values so -1 from the right shift. */
return vcombine_s16(vshrn_n_s32(sum[0], ROUND0_BITS - 1),
vshrn_n_s32(sum[1], ROUND0_BITS - 1));
}
static INLINE int32x4_t convolve8_4_sdot(uint8x16_t samples,
const int8x8_t filters,
const int32x4_t correction,
const uint8x16_t range_limit,
const uint8x16x2_t permute_tbl) {
int8x16_t clamped_samples, permuted_samples[2];
int32x4_t sum;
/* Clamp sample range to [-128, 127] for 8-bit signed dot product. */
clamped_samples = vreinterpretq_s8_u8(vsubq_u8(samples, range_limit));
/* Permute samples ready for dot product. */
/* { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } */
permuted_samples[0] = vqtbl1q_s8(clamped_samples, permute_tbl.val[0]);
/* { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 } */
permuted_samples[1] = vqtbl1q_s8(clamped_samples, permute_tbl.val[1]);
/* Accumulate dot product into 'correction' to account for range clamp. */
sum = vdotq_lane_s32(correction, permuted_samples[0], filters, 0);
sum = vdotq_lane_s32(sum, permuted_samples[1], filters, 1);
/* Narrowing and packing is performed by the caller. */
return sum;
}
static INLINE int16x8_t convolve8_8_sdot(uint8x16_t samples,
const int8x8_t filters,
const int32x4_t correction,
const uint8x16_t range_limit,
const uint8x16x3_t permute_tbl,
const int16x8_t shift_round_0) {
int8x16_t clamped_samples, permuted_samples[3];
int32x4_t sum0, sum1;
int16x8_t sum;
/* Clamp sample range to [-128, 127] for 8-bit signed dot product. */
clamped_samples = vreinterpretq_s8_u8(vsubq_u8(samples, range_limit));
/* Permute samples ready for dot product. */
/* { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } */
permuted_samples[0] = vqtbl1q_s8(clamped_samples, permute_tbl.val[0]);
/* { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 } */
permuted_samples[1] = vqtbl1q_s8(clamped_samples, permute_tbl.val[1]);
/* { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 } */
permuted_samples[2] = vqtbl1q_s8(clamped_samples, permute_tbl.val[2]);
/* Accumulate dot product into 'correction' to account for range clamp. */
/* First 4 output values. */
sum0 = vdotq_lane_s32(correction, permuted_samples[0], filters, 0);
sum0 = vdotq_lane_s32(sum0, permuted_samples[1], filters, 1);
/* Second 4 output values. */
sum1 = vdotq_lane_s32(correction, permuted_samples[1], filters, 0);
sum1 = vdotq_lane_s32(sum1, permuted_samples[2], filters, 1);
/* Narrow and re-pack. */
sum = vcombine_s16(vmovn_s32(sum0), vmovn_s32(sum1));
return vqrshlq_s16(sum, shift_round_0);
}
static INLINE int16x8_t convolve8_x_8_sdot(uint8x16_t samples,
const int8x8_t filters,
const int32x4_t correction,
const uint8x16_t range_limit,
const uint8x16x3_t permute_tbl) {
int8x16_t clamped_samples, permuted_samples[3];
int32x4_t sum[2];
/* Clamp sample range to [-128, 127] for 8-bit signed dot product. */
clamped_samples = vreinterpretq_s8_u8(vsubq_u8(samples, range_limit));
/* Permute samples ready for dot product. */
/* { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } */
permuted_samples[0] = vqtbl1q_s8(clamped_samples, permute_tbl.val[0]);
/* { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 } */
permuted_samples[1] = vqtbl1q_s8(clamped_samples, permute_tbl.val[1]);
/* { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 } */
permuted_samples[2] = vqtbl1q_s8(clamped_samples, permute_tbl.val[2]);
/* Accumulate dot product into 'correction' to account for range clamp. */
/* First 4 output values. */
sum[0] = vdotq_lane_s32(correction, permuted_samples[0], filters, 0);
sum[0] = vdotq_lane_s32(sum[0], permuted_samples[1], filters, 1);
/* Second 4 output values. */
sum[1] = vdotq_lane_s32(correction, permuted_samples[1], filters, 0);
sum[1] = vdotq_lane_s32(sum[1], permuted_samples[2], filters, 1);
/* Narrow and re-pack. */
return vcombine_s16(vmovn_s32(sum[0]), vmovn_s32(sum[1]));
}
#endif // defined(__aarch64__) && defined(__ARM_FEATURE_DOTPROD)
static INLINE int16x4_t convolve8_4x4_s16(
const int16x4_t s0, const int16x4_t s1, const int16x4_t s2,
const int16x4_t s3, const int16x4_t s4, const int16x4_t s5,
const int16x4_t s6, const int16x4_t s7, const int16x8_t filter,
const int16x4_t horiz_const, const int16x4_t shift_round_0) {
const int16x4_t filter_lo = vget_low_s16(filter);
const int16x4_t filter_hi = vget_high_s16(filter);
int16x4_t sum;
sum = horiz_const;
sum = vmla_lane_s16(sum, s0, filter_lo, 0);
sum = vmla_lane_s16(sum, s1, filter_lo, 1);
sum = vmla_lane_s16(sum, s2, filter_lo, 2);
sum = vmla_lane_s16(sum, s3, filter_lo, 3);
sum = vmla_lane_s16(sum, s4, filter_hi, 0);
sum = vmla_lane_s16(sum, s5, filter_hi, 1);
sum = vmla_lane_s16(sum, s6, filter_hi, 2);
sum = vmla_lane_s16(sum, s7, filter_hi, 3);
sum = vqrshl_s16(sum, shift_round_0);
return sum;
}
static INLINE int16x4_t convolve6_4x4(const int16x4_t s0, const int16x4_t s1,
const int16x4_t s2, const int16x4_t s3,
const int16x4_t s4, const int16x4_t s5,
const int16x8_t y_filter_0_7) {
const int16x4_t y_filter_0_3 = vget_low_s16(y_filter_0_7);
const int16x4_t y_filter_4_7 = vget_high_s16(y_filter_0_7);
int16x4_t sum;
// Filter values at indices 0 and 7 are 0.
sum = vmul_lane_s16(s0, y_filter_0_3, 1);
sum = vmla_lane_s16(sum, s1, y_filter_0_3, 2);
sum = vmla_lane_s16(sum, s2, y_filter_0_3, 3);
sum = vmla_lane_s16(sum, s3, y_filter_4_7, 0);
sum = vmla_lane_s16(sum, s4, y_filter_4_7, 1);
sum = vmla_lane_s16(sum, s5, y_filter_4_7, 2);
return sum;
}
static INLINE int16x8_t convolve6_8x4(const int16x8_t s0, const int16x8_t s1,
const int16x8_t s2, const int16x8_t s3,
const int16x8_t s4, const int16x8_t s5,
const int16x8_t y_filters) {
const int16x4_t y_filter_lo = vget_low_s16(y_filters);
const int16x4_t y_filter_hi = vget_high_s16(y_filters);
int16x8_t sum;
// Filter values at indices 0 and 7 are 0.
sum = vmulq_lane_s16(s0, y_filter_lo, 1);
sum = vmlaq_lane_s16(sum, s1, y_filter_lo, 2);
sum = vmlaq_lane_s16(sum, s2, y_filter_lo, 3);
sum = vmlaq_lane_s16(sum, s3, y_filter_hi, 0);
sum = vmlaq_lane_s16(sum, s4, y_filter_hi, 1);
sum = vmlaq_lane_s16(sum, s5, y_filter_hi, 2);
return sum;
}
#if !(defined(__aarch64__) && defined(__ARM_FEATURE_DOTPROD))
static INLINE int16x4_t convolve8_horiz_4x4_s16(
const int16x4_t s0, const int16x4_t s1, const int16x4_t s2,
const int16x4_t s3, const int16x4_t s4, const int16x4_t s5,
const int16x4_t s6, const int16x4_t s7, const int16x8_t filter,
const int16x4_t horiz_const) {
const int16x4_t filter_lo = vget_low_s16(filter);
const int16x4_t filter_hi = vget_high_s16(filter);
int16x4_t sum;
sum = horiz_const;
sum = vmla_lane_s16(sum, s0, filter_lo, 0);
sum = vmla_lane_s16(sum, s1, filter_lo, 1);
sum = vmla_lane_s16(sum, s2, filter_lo, 2);
sum = vmla_lane_s16(sum, s3, filter_lo, 3);
sum = vmla_lane_s16(sum, s4, filter_hi, 0);
sum = vmla_lane_s16(sum, s5, filter_hi, 1);
sum = vmla_lane_s16(sum, s6, filter_hi, 2);
sum = vmla_lane_s16(sum, s7, filter_hi, 3);
// We halved the convolution filter values so -1 from the right shift.
return vshr_n_s16(sum, ROUND0_BITS - 1);
}
static INLINE int16x8_t convolve8_horiz_8x8_s16(
const int16x8_t s0, const int16x8_t s1, const int16x8_t s2,
const int16x8_t s3, const int16x8_t s4, const int16x8_t s5,
const int16x8_t s6, const int16x8_t s7, const int16x8_t filter,
const int16x8_t horiz_const) {
const int16x4_t filter_lo = vget_low_s16(filter);
const int16x4_t filter_hi = vget_high_s16(filter);
int16x8_t sum;
sum = horiz_const;
sum = vmlaq_lane_s16(sum, s0, filter_lo, 0);
sum = vmlaq_lane_s16(sum, s1, filter_lo, 1);
sum = vmlaq_lane_s16(sum, s2, filter_lo, 2);
sum = vmlaq_lane_s16(sum, s3, filter_lo, 3);
sum = vmlaq_lane_s16(sum, s4, filter_hi, 0);
sum = vmlaq_lane_s16(sum, s5, filter_hi, 1);
sum = vmlaq_lane_s16(sum, s6, filter_hi, 2);
sum = vmlaq_lane_s16(sum, s7, filter_hi, 3);
// We halved the convolution filter values so -1 from the right shift.
return vshrq_n_s16(sum, ROUND0_BITS - 1);
}
#endif // !(defined(__aarch64__) && defined(__ARM_FEATURE_DOTPROD))
#endif // AOM_AV1_COMMON_ARM_CONVOLVE_NEON_H_