| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <math.h> |
| |
| #include "av1/common/common.h" |
| #include "av1/common/entropymode.h" |
| |
| #include "av1/encoder/cost.h" |
| #include "av1/encoder/encodemv.h" |
| |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "aom_ports/bitops.h" |
| |
| static void update_mv_component_stats(int comp, nmv_component *mvcomp, |
| MvSubpelPrecision precision) { |
| assert(comp != 0); |
| int offset; |
| const int sign = comp < 0; |
| const int mag = sign ? -comp : comp; |
| const int mv_class = av1_get_mv_class(mag - 1, &offset); |
| const int d = offset >> 3; // int mv data |
| const int fr = (offset >> 1) & 3; // fractional mv data |
| const int hp = offset & 1; // high precision mv data |
| |
| // Sign |
| update_cdf(mvcomp->sign_cdf, sign, 2); |
| |
| // Class |
| update_cdf(mvcomp->classes_cdf, mv_class, MV_CLASSES); |
| |
| // Integer bits |
| if (mv_class == MV_CLASS_0) { |
| update_cdf(mvcomp->class0_cdf, d, CLASS0_SIZE); |
| } else { |
| const int n = mv_class + CLASS0_BITS - 1; // number of bits |
| for (int i = 0; i < n; ++i) |
| update_cdf(mvcomp->bits_cdf[i], (d >> i) & 1, 2); |
| } |
| // Fractional bits |
| if (precision > MV_SUBPEL_NONE) { |
| aom_cdf_prob *fp_cdf = |
| mv_class == MV_CLASS_0 ? mvcomp->class0_fp_cdf[d] : mvcomp->fp_cdf; |
| update_cdf(fp_cdf, fr, MV_FP_SIZE); |
| } |
| |
| // High precision bit |
| if (precision > MV_SUBPEL_LOW_PRECISION) { |
| aom_cdf_prob *hp_cdf = |
| mv_class == MV_CLASS_0 ? mvcomp->class0_hp_cdf : mvcomp->hp_cdf; |
| update_cdf(hp_cdf, hp, 2); |
| } |
| } |
| |
| void av1_update_mv_stats(const MV *mv, const MV *ref, nmv_context *mvctx, |
| MvSubpelPrecision precision) { |
| const MV diff = { mv->row - ref->row, mv->col - ref->col }; |
| const MV_JOINT_TYPE j = av1_get_mv_joint(&diff); |
| |
| update_cdf(mvctx->joints_cdf, j, MV_JOINTS); |
| |
| if (mv_joint_vertical(j)) |
| update_mv_component_stats(diff.row, &mvctx->comps[0], precision); |
| |
| if (mv_joint_horizontal(j)) |
| update_mv_component_stats(diff.col, &mvctx->comps[1], precision); |
| } |
| |
| static void encode_mv_component(aom_writer *w, int comp, nmv_component *mvcomp, |
| MvSubpelPrecision precision) { |
| assert(comp != 0); |
| int offset; |
| const int sign = comp < 0; |
| const int mag = sign ? -comp : comp; |
| const int mv_class = av1_get_mv_class(mag - 1, &offset); |
| const int d = offset >> 3; // int mv data |
| const int fr = (offset >> 1) & 3; // fractional mv data |
| const int hp = offset & 1; // high precision mv data |
| |
| // Sign |
| aom_write_symbol(w, sign, mvcomp->sign_cdf, 2); |
| |
| // Class |
| aom_write_symbol(w, mv_class, mvcomp->classes_cdf, MV_CLASSES); |
| |
| // Integer bits |
| if (mv_class == MV_CLASS_0) { |
| aom_write_symbol(w, d, mvcomp->class0_cdf, CLASS0_SIZE); |
| } else { |
| int i; |
| const int n = mv_class + CLASS0_BITS - 1; // number of bits |
| for (i = 0; i < n; ++i) |
| aom_write_symbol(w, (d >> i) & 1, mvcomp->bits_cdf[i], 2); |
| } |
| // Fractional bits |
| if (precision > MV_SUBPEL_NONE) { |
| aom_write_symbol( |
| w, fr, |
| mv_class == MV_CLASS_0 ? mvcomp->class0_fp_cdf[d] : mvcomp->fp_cdf, |
| MV_FP_SIZE); |
| } |
| |
| // High precision bit |
| if (precision > MV_SUBPEL_LOW_PRECISION) |
| aom_write_symbol( |
| w, hp, mv_class == MV_CLASS_0 ? mvcomp->class0_hp_cdf : mvcomp->hp_cdf, |
| 2); |
| } |
| |
| /* TODO(siekyleb@amazon.com): This function writes MV_VALS ints or 128 KiB. This |
| * is more than most L1D caches and is a significant chunk of L2. Write |
| * SIMD that uses streaming writes to avoid loading all of that into L1, or |
| * just don't update the larger component costs every time this called |
| * (or both). |
| */ |
| void av1_build_nmv_component_cost_table(int *mvcost, |
| const nmv_component *const mvcomp, |
| MvSubpelPrecision precision) { |
| int i, j, v, o, mantissa; |
| int sign_cost[2], class_cost[MV_CLASSES], class0_cost[CLASS0_SIZE]; |
| int bits_cost[MV_OFFSET_BITS][2]; |
| int class0_fp_cost[CLASS0_SIZE][MV_FP_SIZE] = { 0 }, |
| fp_cost[MV_FP_SIZE] = { 0 }; |
| int class0_hp_cost[2] = { 0 }, hp_cost[2] = { 0 }; |
| |
| av1_cost_tokens_from_cdf(sign_cost, mvcomp->sign_cdf, NULL); |
| av1_cost_tokens_from_cdf(class_cost, mvcomp->classes_cdf, NULL); |
| av1_cost_tokens_from_cdf(class0_cost, mvcomp->class0_cdf, NULL); |
| for (i = 0; i < MV_OFFSET_BITS; ++i) { |
| av1_cost_tokens_from_cdf(bits_cost[i], mvcomp->bits_cdf[i], NULL); |
| } |
| |
| if (precision > MV_SUBPEL_NONE) { |
| for (i = 0; i < CLASS0_SIZE; ++i) |
| av1_cost_tokens_from_cdf(class0_fp_cost[i], mvcomp->class0_fp_cdf[i], |
| NULL); |
| av1_cost_tokens_from_cdf(fp_cost, mvcomp->fp_cdf, NULL); |
| } |
| |
| if (precision > MV_SUBPEL_LOW_PRECISION) { |
| av1_cost_tokens_from_cdf(class0_hp_cost, mvcomp->class0_hp_cdf, NULL); |
| av1_cost_tokens_from_cdf(hp_cost, mvcomp->hp_cdf, NULL); |
| } |
| |
| // Instead of accumulating the cost of each vector component's bits |
| // individually, compute the costs based on smaller vectors. Costs for |
| // [2^exp, 2 * 2^exp - 1] are calculated based on [0, 2^exp - 1] |
| // respectively. Offsets are maintained to swap both 1) class costs when |
| // treated as a complete vector component with the highest set bit when |
| // treated as a mantissa (significand) and 2) leading zeros to account for |
| // the current exponent. |
| |
| // Cost offsets |
| int cost_swap[MV_OFFSET_BITS] = { 0 }; |
| // Delta to convert positive vector to negative vector costs |
| int negate_sign = sign_cost[1] - sign_cost[0]; |
| |
| // Initialize with offsets to swap the class costs with the costs of the |
| // highest set bit. |
| for (i = 1; i < MV_OFFSET_BITS; ++i) { |
| cost_swap[i] = bits_cost[i - 1][1]; |
| if (i > CLASS0_BITS) cost_swap[i] -= class_cost[i - CLASS0_BITS]; |
| } |
| |
| // Seed the fractional costs onto the output (overwritten latter). |
| for (o = 0; o < MV_FP_SIZE; ++o) { |
| int hp; |
| for (hp = 0; hp < 2; ++hp) { |
| v = 2 * o + hp + 1; |
| mvcost[v] = fp_cost[o] + hp_cost[hp] + sign_cost[0]; |
| } |
| } |
| |
| mvcost[0] = 0; |
| // Fill the costs for each exponent's vectors, using the costs set in the |
| // previous exponents. |
| for (i = 0; i < MV_OFFSET_BITS; ++i) { |
| const int exponent = (2 * MV_FP_SIZE) << i; |
| |
| int class = 0; |
| if (i >= CLASS0_BITS) { |
| class = class_cost[i - CLASS0_BITS + 1]; |
| } |
| |
| // Iterate through mantissas, keeping track of the location |
| // of the highest set bit for the mantissa. |
| // To be clear: in the outer loop, the position of the highest set bit |
| // (exponent) is tracked and, in this loop, the highest set bit of the |
| // mantissa is tracked. |
| mantissa = 0; |
| for (j = 0; j <= i; ++j) { |
| for (; mantissa < (2 * MV_FP_SIZE) << j; ++mantissa) { |
| int cost = mvcost[mantissa + 1] + class + cost_swap[j]; |
| v = exponent + mantissa + 1; |
| mvcost[v] = cost; |
| mvcost[-v] = cost + negate_sign; |
| } |
| cost_swap[j] += bits_cost[i][0]; |
| } |
| } |
| |
| // Special case to avoid buffer overrun |
| { |
| int exponent = (2 * MV_FP_SIZE) << MV_OFFSET_BITS; |
| int class = class_cost[MV_CLASSES - 1]; |
| mantissa = 0; |
| for (j = 0; j < MV_OFFSET_BITS; ++j) { |
| for (; mantissa < (2 * MV_FP_SIZE) << j; ++mantissa) { |
| int cost = mvcost[mantissa + 1] + class + cost_swap[j]; |
| v = exponent + mantissa + 1; |
| mvcost[v] = cost; |
| mvcost[-v] = cost + negate_sign; |
| } |
| } |
| // At this point: mantissa = exponent >> 1 |
| |
| // Manually calculate the final cost offset |
| int cost_swap_hi = |
| bits_cost[MV_OFFSET_BITS - 1][1] - class_cost[MV_CLASSES - 2]; |
| for (; mantissa < exponent - 1; ++mantissa) { |
| int cost = mvcost[mantissa + 1] + class + cost_swap_hi; |
| v = exponent + mantissa + 1; |
| mvcost[v] = cost; |
| mvcost[-v] = cost + negate_sign; |
| } |
| } |
| |
| // Fill costs for class0 vectors, overwriting previous placeholder values |
| // used for calculating the costs of the larger vectors. |
| for (i = 0; i < CLASS0_SIZE; ++i) { |
| const int top = i * 2 * MV_FP_SIZE; |
| for (o = 0; o < MV_FP_SIZE; ++o) { |
| int hp; |
| int cost = class0_fp_cost[i][o] + class_cost[0] + class0_cost[i]; |
| for (hp = 0; hp < 2; ++hp) { |
| v = top + 2 * o + hp + 1; |
| mvcost[v] = cost + class0_hp_cost[hp] + sign_cost[0]; |
| mvcost[-v] = cost + class0_hp_cost[hp] + sign_cost[1]; |
| } |
| } |
| } |
| } |
| |
| void av1_encode_mv(AV1_COMP *cpi, aom_writer *w, ThreadData *td, const MV *mv, |
| const MV *ref, nmv_context *mvctx, int usehp) { |
| const MV diff = { mv->row - ref->row, mv->col - ref->col }; |
| const MV_JOINT_TYPE j = av1_get_mv_joint(&diff); |
| // If the mv_diff is zero, then we should have used near or nearest instead. |
| assert(j != MV_JOINT_ZERO); |
| if (cpi->common.features.cur_frame_force_integer_mv) { |
| usehp = MV_SUBPEL_NONE; |
| } |
| aom_write_symbol(w, j, mvctx->joints_cdf, MV_JOINTS); |
| if (mv_joint_vertical(j)) |
| encode_mv_component(w, diff.row, &mvctx->comps[0], usehp); |
| |
| if (mv_joint_horizontal(j)) |
| encode_mv_component(w, diff.col, &mvctx->comps[1], usehp); |
| |
| // If auto_mv_step_size is enabled then keep track of the largest |
| // motion vector component used. |
| if (cpi->sf.mv_sf.auto_mv_step_size) { |
| int maxv = AOMMAX(abs(mv->row), abs(mv->col)) >> 3; |
| td->max_mv_magnitude = AOMMAX(maxv, td->max_mv_magnitude); |
| } |
| } |
| |
| void av1_encode_dv(aom_writer *w, const MV *mv, const MV *ref, |
| nmv_context *mvctx) { |
| // DV and ref DV should not have sub-pel. |
| assert((mv->col & 7) == 0); |
| assert((mv->row & 7) == 0); |
| assert((ref->col & 7) == 0); |
| assert((ref->row & 7) == 0); |
| const MV diff = { mv->row - ref->row, mv->col - ref->col }; |
| const MV_JOINT_TYPE j = av1_get_mv_joint(&diff); |
| |
| aom_write_symbol(w, j, mvctx->joints_cdf, MV_JOINTS); |
| if (mv_joint_vertical(j)) |
| encode_mv_component(w, diff.row, &mvctx->comps[0], MV_SUBPEL_NONE); |
| |
| if (mv_joint_horizontal(j)) |
| encode_mv_component(w, diff.col, &mvctx->comps[1], MV_SUBPEL_NONE); |
| } |
| |
| void av1_build_nmv_cost_table(int *mvjoint, int *mvcost[2], |
| const nmv_context *ctx, |
| MvSubpelPrecision precision) { |
| av1_cost_tokens_from_cdf(mvjoint, ctx->joints_cdf, NULL); |
| av1_build_nmv_component_cost_table(mvcost[0], &ctx->comps[0], precision); |
| av1_build_nmv_component_cost_table(mvcost[1], &ctx->comps[1], precision); |
| } |
| |
| int_mv av1_get_ref_mv_from_stack(int ref_idx, |
| const MV_REFERENCE_FRAME *ref_frame, |
| int ref_mv_idx, |
| const MB_MODE_INFO_EXT *mbmi_ext) { |
| const int8_t ref_frame_type = av1_ref_frame_type(ref_frame); |
| const CANDIDATE_MV *curr_ref_mv_stack = |
| mbmi_ext->ref_mv_stack[ref_frame_type]; |
| |
| if (ref_frame[1] > INTRA_FRAME) { |
| assert(ref_idx == 0 || ref_idx == 1); |
| return ref_idx ? curr_ref_mv_stack[ref_mv_idx].comp_mv |
| : curr_ref_mv_stack[ref_mv_idx].this_mv; |
| } |
| |
| assert(ref_idx == 0); |
| return ref_mv_idx < mbmi_ext->ref_mv_count[ref_frame_type] |
| ? curr_ref_mv_stack[ref_mv_idx].this_mv |
| : mbmi_ext->global_mvs[ref_frame_type]; |
| } |
| |
| int_mv av1_get_ref_mv(const MACROBLOCK *x, int ref_idx) { |
| const MACROBLOCKD *xd = &x->e_mbd; |
| const MB_MODE_INFO *mbmi = xd->mi[0]; |
| int ref_mv_idx = mbmi->ref_mv_idx; |
| if (mbmi->mode == NEAR_NEWMV || mbmi->mode == NEW_NEARMV) { |
| assert(has_second_ref(mbmi)); |
| ref_mv_idx += 1; |
| } |
| return av1_get_ref_mv_from_stack(ref_idx, mbmi->ref_frame, ref_mv_idx, |
| &x->mbmi_ext); |
| } |
| |
| void av1_find_best_ref_mvs_from_stack(int allow_hp, |
| const MB_MODE_INFO_EXT *mbmi_ext, |
| MV_REFERENCE_FRAME ref_frame, |
| int_mv *nearest_mv, int_mv *near_mv, |
| int is_integer) { |
| const int ref_idx = 0; |
| MV_REFERENCE_FRAME ref_frames[2] = { ref_frame, NONE_FRAME }; |
| *nearest_mv = av1_get_ref_mv_from_stack(ref_idx, ref_frames, 0, mbmi_ext); |
| lower_mv_precision(&nearest_mv->as_mv, allow_hp, is_integer); |
| *near_mv = av1_get_ref_mv_from_stack(ref_idx, ref_frames, 1, mbmi_ext); |
| lower_mv_precision(&near_mv->as_mv, allow_hp, is_integer); |
| } |