blob: efb797e5b5ba7b1182a60d76e53e5b29dbba3c12 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#ifndef AOM_AV1_ENCODER_RDOPT_H_
#define AOM_AV1_ENCODER_RDOPT_H_
#include <stdbool.h>
#include "av1/common/blockd.h"
#include "av1/common/txb_common.h"
#include "av1/encoder/block.h"
#include "av1/encoder/context_tree.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/encodetxb.h"
#include "av1/encoder/rdopt_utils.h"
#ifdef __cplusplus
extern "C" {
#endif
#define COMP_TYPE_RD_THRESH_SCALE 11
#define COMP_TYPE_RD_THRESH_SHIFT 4
#define MAX_WINNER_MOTION_MODES 10
struct TileInfo;
struct macroblock;
struct RD_STATS;
/*!\brief AV1 intra mode selection for intra frames.
*
* \ingroup intra_mode_search
* \callgraph
* Top level function for rd-based intra mode selection during intra frame
* encoding. This function will first search for the best luma prediction by
* calling av1_rd_pick_intra_sby_mode, then it searches for chroma prediction
* with av1_rd_pick_intra_sbuv_mode. If applicable, this function ends the
* search with an evaluation for intrabc.
*
* \param[in] cpi Top-level encoder structure.
* \param[in] x Pointer to structure holding all the data for
the current macroblock.
* \param[in] rd_cost Struct to keep track of the RD information.
* \param[in] bsize Current block size.
* \param[in] ctx Structure to hold snapshot of coding context
during the mode picking process.
* \param[in] best_rd Best RD seen for this block so far.
*
* \remark Nothing is returned. Instead, the MB_MODE_INFO struct inside x
* is modified to store information about the best mode computed
* in this function. The rd_cost struct is also updated with the RD stats
* corresponding to the best mode found.
*/
void av1_rd_pick_intra_mode_sb(const struct AV1_COMP *cpi, struct macroblock *x,
struct RD_STATS *rd_cost, BLOCK_SIZE bsize,
PICK_MODE_CONTEXT *ctx, int64_t best_rd);
/*!\brief AV1 inter mode selection.
*
* \ingroup inter_mode_search
* \callgraph
* Top level function for inter mode selection. This function will loop over
* all possible inter modes and select the best one for the current block by
* computing the RD cost. The mode search and RD are computed in
* handle_inter_mode(), which is called from this function within the main
* loop.
*
* \param[in] cpi Top-level encoder structure
* \param[in] tile_data Pointer to struct holding adaptive
data/contexts/models for the tile during
encoding
* \param[in] x Pointer to structure holding all the data for
the current macroblock
* \param[in] rd_cost Struct to keep track of the RD information
* \param[in] bsize Current block size
* \param[in] ctx Structure to hold snapshot of coding context
during the mode picking process
* \param[in] best_rd_so_far Best RD seen for this block so far
*
* \remark Nothing is returned. Instead, the MB_MODE_INFO struct inside x
* is modified to store information about the best mode computed
* in this function. The rd_cost struct is also updated with the RD stats
* corresponding to the best mode found.
*/
void av1_rd_pick_inter_mode(struct AV1_COMP *cpi, struct TileDataEnc *tile_data,
struct macroblock *x, struct RD_STATS *rd_cost,
BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx,
int64_t best_rd_so_far);
/*!\brief AV1 intra mode selection based on Non-RD optimized model.
*
* \ingroup nonrd_mode_search
* \callgraph
* \callergraph
* Top level function for Non-RD optimized intra mode selection.
* This finction will loop over subset of intra modes and select the best one
* based on calculated modelled RD cost. Only 4 intra modes are checked as
* specified in \c intra_mode_list. When calculating RD cost Hadamard transform
* of residual is used to calculate rate. Estmation of RD cost is performed
* in \c av1_estimate_block_intra which is called from this function
*
* \param[in] cpi Top-level encoder structure
* \param[in] x Pointer to structure holding all the data for
the current macroblock
* \param[in] rd_cost Struct to keep track of the RD information
* \param[in] bsize Current block size
* \param[in] ctx Structure to hold snapshot of coding context
during the mode picking process
*
* \remark Nothing is returned. Instead, the MB_MODE_INFO struct inside x
* is modified to store information about the best mode computed
* in this function. The rd_cost struct is also updated with the RD stats
* corresponding to the best mode found.
*/
void av1_nonrd_pick_intra_mode(AV1_COMP *cpi, MACROBLOCK *x, RD_STATS *rd_cost,
BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx);
/*!\brief AV1 inter mode selection based on Non-RD optimized model.
*
* \ingroup nonrd_mode_search
* \callgraph
* Top level function for Non-RD optimized inter mode selection.
* This finction will loop over subset of inter modes and select the best one
* based on calculated modelled RD cost. While making decisions which modes to
* check, this function applies heuristics based on previously checked modes,
* block residual variance, block size, and other factors to prune certain
* modes and reference frames. Currently only single reference frame modes
* are checked. Additional heuristics are applied to decide if intra modes
* need to be checked.
* *
* \param[in] cpi Top-level encoder structure
* \param[in] tile_data Pointer to struct holding adaptive
data/contexts/models for the tile during
encoding
* \param[in] x Pointer to structure holding all the data for
the current macroblock
* \param[in] rd_cost Struct to keep track of the RD information
* \param[in] bsize Current block size
* \param[in] ctx Structure to hold snapshot of coding context
during the mode picking process
*
* \remark Nothing is returned. Instead, the MB_MODE_INFO struct inside x
* is modified to store information about the best mode computed
* in this function. The rd_cost struct is also updated with the RD stats
* corresponding to the best mode found.
*/
void av1_nonrd_pick_inter_mode_sb(struct AV1_COMP *cpi,
struct TileDataEnc *tile_data,
struct macroblock *x,
struct RD_STATS *rd_cost, BLOCK_SIZE bsize,
PICK_MODE_CONTEXT *ctx);
void av1_rd_pick_inter_mode_sb_seg_skip(
const struct AV1_COMP *cpi, struct TileDataEnc *tile_data,
struct macroblock *x, int mi_row, int mi_col, struct RD_STATS *rd_cost,
BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx, int64_t best_rd_so_far);
void av1_inter_mode_data_init(struct TileDataEnc *tile_data);
void av1_inter_mode_data_fit(TileDataEnc *tile_data, int rdmult);
static INLINE int coded_to_superres_mi(int mi_col, int denom) {
return (mi_col * denom + SCALE_NUMERATOR / 2) / SCALE_NUMERATOR;
}
static INLINE int av1_encoder_get_relative_dist(int a, int b) {
assert(a >= 0 && b >= 0);
return (a - b);
}
// This function will return number of mi's in a superblock.
static INLINE int av1_get_sb_mi_size(const AV1_COMMON *const cm) {
const int mi_alloc_size_1d = mi_size_wide[cm->mi_params.mi_alloc_bsize];
int sb_mi_rows =
(mi_size_wide[cm->seq_params->sb_size] + mi_alloc_size_1d - 1) /
mi_alloc_size_1d;
assert(mi_size_wide[cm->seq_params->sb_size] ==
mi_size_high[cm->seq_params->sb_size]);
int sb_mi_size = sb_mi_rows * sb_mi_rows;
return sb_mi_size;
}
// This function prunes the mode if either of the reference frame falls in the
// pruning list
static INLINE int prune_ref(const MV_REFERENCE_FRAME *const ref_frame,
const unsigned int *const ref_display_order_hint,
const unsigned int frame_display_order_hint,
const int *ref_frame_list) {
for (int i = 0; i < 2; i++) {
if (ref_frame_list[i] == NONE_FRAME) continue;
if (ref_frame[0] == ref_frame_list[i] ||
ref_frame[1] == ref_frame_list[i]) {
if (av1_encoder_get_relative_dist(
ref_display_order_hint[ref_frame_list[i] - LAST_FRAME],
frame_display_order_hint) < 0)
return 1;
}
}
return 0;
}
static INLINE int has_closest_ref_frames(const MV_REFERENCE_FRAME *ref_frame,
int8_t closest_past_ref,
int8_t closest_future_ref) {
int has_closest_past_ref =
(ref_frame[0] == closest_past_ref) || (ref_frame[1] == closest_past_ref);
int has_closest_future_ref = (ref_frame[0] == closest_future_ref) ||
(ref_frame[1] == closest_future_ref);
return (has_closest_past_ref && has_closest_future_ref);
}
static INLINE int has_best_pred_mv_sad(const MV_REFERENCE_FRAME *ref_frame,
const MACROBLOCK *const x) {
int has_best_past_pred_mv_sad = 0;
int has_best_future_pred_mv_sad = 0;
if (x->best_pred_mv_sad[0] < INT_MAX && x->best_pred_mv_sad[1] < INT_MAX) {
has_best_past_pred_mv_sad =
(x->pred_mv_sad[ref_frame[0]] == x->best_pred_mv_sad[0]) ||
(x->pred_mv_sad[ref_frame[1]] == x->best_pred_mv_sad[0]);
has_best_future_pred_mv_sad =
(x->pred_mv_sad[ref_frame[0]] == x->best_pred_mv_sad[1]) ||
(x->pred_mv_sad[ref_frame[1]] == x->best_pred_mv_sad[1]);
}
return (has_best_past_pred_mv_sad && has_best_future_pred_mv_sad);
}
static INLINE int prune_ref_by_selective_ref_frame(
const AV1_COMP *const cpi, const MACROBLOCK *const x,
const MV_REFERENCE_FRAME *const ref_frame,
const unsigned int *const ref_display_order_hint) {
const SPEED_FEATURES *const sf = &cpi->sf;
if (!sf->inter_sf.selective_ref_frame) return 0;
const int comp_pred = ref_frame[1] > INTRA_FRAME;
if (sf->inter_sf.selective_ref_frame >= 2 ||
(sf->inter_sf.selective_ref_frame == 1 && comp_pred)) {
int ref_frame_list[2] = { LAST3_FRAME, LAST2_FRAME };
if (x != NULL) {
// Disable pruning if either tpl suggests that we keep the frame or
// the pred_mv gives us the best sad
if (x->tpl_keep_ref_frame[LAST3_FRAME] ||
x->pred_mv_sad[LAST3_FRAME] == x->best_pred_mv_sad[0]) {
ref_frame_list[0] = NONE_FRAME;
}
if (x->tpl_keep_ref_frame[LAST2_FRAME] ||
x->pred_mv_sad[LAST2_FRAME] == x->best_pred_mv_sad[0]) {
ref_frame_list[1] = NONE_FRAME;
}
}
if (prune_ref(ref_frame, ref_display_order_hint,
ref_display_order_hint[GOLDEN_FRAME - LAST_FRAME],
ref_frame_list))
return 1;
}
if (sf->inter_sf.selective_ref_frame >= 3) {
int ref_frame_list[2] = { ALTREF2_FRAME, BWDREF_FRAME };
if (x != NULL) {
// Disable pruning if either tpl suggests that we keep the frame or
// the pred_mv gives us the best sad
if (x->tpl_keep_ref_frame[ALTREF2_FRAME] ||
x->pred_mv_sad[ALTREF2_FRAME] == x->best_pred_mv_sad[0]) {
ref_frame_list[0] = NONE_FRAME;
}
if (x->tpl_keep_ref_frame[BWDREF_FRAME] ||
x->pred_mv_sad[BWDREF_FRAME] == x->best_pred_mv_sad[0]) {
ref_frame_list[1] = NONE_FRAME;
}
}
if (prune_ref(ref_frame, ref_display_order_hint,
ref_display_order_hint[LAST_FRAME - LAST_FRAME],
ref_frame_list))
return 1;
}
if (x != NULL && sf->inter_sf.prune_comp_ref_frames && comp_pred) {
int closest_ref_frames = has_closest_ref_frames(
ref_frame, cpi->ref_frame_dist_info.nearest_past_ref,
cpi->ref_frame_dist_info.nearest_future_ref);
if (closest_ref_frames == 0) {
// Prune reference frames which are not the closest to the current frame.
if (sf->inter_sf.prune_comp_ref_frames >= 2) {
return 1;
} else if (sf->inter_sf.prune_comp_ref_frames == 1) {
// Prune reference frames with non minimum pred_mv_sad.
if (has_best_pred_mv_sad(ref_frame, x) == 0) return 1;
}
}
}
return 0;
}
// This function will copy the best reference mode information from
// MB_MODE_INFO_EXT to MB_MODE_INFO_EXT_FRAME.
static INLINE void av1_copy_mbmi_ext_to_mbmi_ext_frame(
MB_MODE_INFO_EXT_FRAME *mbmi_ext_best,
const MB_MODE_INFO_EXT *const mbmi_ext, uint8_t ref_frame_type) {
memcpy(mbmi_ext_best->ref_mv_stack, mbmi_ext->ref_mv_stack[ref_frame_type],
sizeof(mbmi_ext->ref_mv_stack[USABLE_REF_MV_STACK_SIZE]));
memcpy(mbmi_ext_best->weight, mbmi_ext->weight[ref_frame_type],
sizeof(mbmi_ext->weight[USABLE_REF_MV_STACK_SIZE]));
mbmi_ext_best->mode_context = mbmi_ext->mode_context[ref_frame_type];
mbmi_ext_best->ref_mv_count = mbmi_ext->ref_mv_count[ref_frame_type];
memcpy(mbmi_ext_best->global_mvs, mbmi_ext->global_mvs,
sizeof(mbmi_ext->global_mvs));
}
#ifdef __cplusplus
} // extern "C"
#endif
#endif // AOM_AV1_ENCODER_RDOPT_H_