| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include "av1/common/cfl.h" |
| #include "av1/common/common_data.h" |
| #include "av1/common/onyxc_int.h" |
| |
| #include "aom/internal/aom_codec_internal.h" |
| |
| void cfl_init(CFL_CTX *cfl, AV1_COMMON *cm, int subsampling_x, |
| int subsampling_y) { |
| if (!((subsampling_x == 0 && subsampling_y == 0) || |
| (subsampling_x == 1 && subsampling_y == 1))) { |
| aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, |
| "Only 4:4:4 and 4:2:0 are currently supported by CfL"); |
| } |
| memset(&cfl->y_pix, 0, sizeof(uint8_t) * MAX_SB_SQUARE); |
| cfl->subsampling_x = subsampling_x; |
| cfl->subsampling_y = subsampling_y; |
| } |
| |
| // CfL computes its own block-level DC_PRED. This is required to compute both |
| // alpha_cb and alpha_cr before the prediction are computed. |
| void cfl_dc_pred(MACROBLOCKD *xd, BLOCK_SIZE plane_bsize, TX_SIZE tx_size) { |
| const struct macroblockd_plane *const pd_u = &xd->plane[AOM_PLANE_U]; |
| const struct macroblockd_plane *const pd_v = &xd->plane[AOM_PLANE_V]; |
| |
| const uint8_t *const dst_u = pd_u->dst.buf; |
| const uint8_t *const dst_v = pd_v->dst.buf; |
| |
| const int dst_u_stride = pd_u->dst.stride; |
| const int dst_v_stride = pd_v->dst.stride; |
| |
| const int block_width = (plane_bsize != BLOCK_INVALID) |
| ? block_size_wide[plane_bsize] |
| : tx_size_wide[tx_size]; |
| const int block_height = (plane_bsize != BLOCK_INVALID) |
| ? block_size_high[plane_bsize] |
| : tx_size_high[tx_size]; |
| |
| // Number of pixel on the top and left borders. |
| const double num_pel = block_width + block_height; |
| |
| int sum_u = 0; |
| int sum_v = 0; |
| |
| // Match behavior of build_intra_predictors (reconintra.c) at superblock |
| // boundaries: |
| // |
| // 127 127 127 .. 127 127 127 127 127 127 |
| // 129 A B .. Y Z |
| // 129 C D .. W X |
| // 129 E F .. U V |
| // 129 G H .. S T T T T T |
| // .. |
| |
| #if CONFIG_CHROMA_SUB8X8 |
| if (xd->chroma_up_available && xd->mb_to_right_edge >= 0) { |
| #else |
| if (xd->up_available && xd->mb_to_right_edge >= 0) { |
| #endif |
| // TODO(ltrudeau) replace this with DC_PRED assembly |
| for (int i = 0; i < block_width; i++) { |
| sum_u += dst_u[-dst_u_stride + i]; |
| sum_v += dst_v[-dst_v_stride + i]; |
| } |
| } else { |
| sum_u = block_width * 127; |
| sum_v = block_width * 127; |
| } |
| |
| #if CONFIG_CHROMA_SUB8X8 |
| if (xd->chroma_left_available && xd->mb_to_bottom_edge >= 0) { |
| #else |
| if (xd->left_available && xd->mb_to_bottom_edge >= 0) { |
| #endif |
| for (int i = 0; i < block_height; i++) { |
| sum_u += dst_u[i * dst_u_stride - 1]; |
| sum_v += dst_v[i * dst_v_stride - 1]; |
| } |
| } else { |
| sum_u += block_height * 129; |
| sum_v += block_height * 129; |
| } |
| |
| xd->cfl->dc_pred[CFL_PRED_U] = sum_u / num_pel; |
| xd->cfl->dc_pred[CFL_PRED_V] = sum_v / num_pel; |
| } |
| |
| // Predict the current transform block using CfL. |
| void cfl_predict_block(const CFL_CTX *cfl, uint8_t *dst, int dst_stride, |
| int row, int col, TX_SIZE tx_size, double dc_pred, |
| double alpha) { |
| const int width = tx_size_wide[tx_size]; |
| const int height = tx_size_high[tx_size]; |
| |
| const double y_avg = cfl_load(cfl, dst, dst_stride, row, col, width, height); |
| |
| for (int j = 0; j < height; j++) { |
| for (int i = 0; i < width; i++) { |
| dst[i] = (uint8_t)(alpha * (dst[i] - y_avg) + dc_pred + 0.5); |
| } |
| dst += dst_stride; |
| } |
| } |
| |
| void cfl_store(CFL_CTX *cfl, const uint8_t *input, int input_stride, int row, |
| int col, TX_SIZE tx_size) { |
| const int tx_width = tx_size_wide[tx_size]; |
| const int tx_height = tx_size_high[tx_size]; |
| const int tx_off_log2 = tx_size_wide_log2[0]; |
| |
| // Store the input into the CfL pixel buffer |
| uint8_t *y_pix = &cfl->y_pix[(row * MAX_SB_SIZE + col) << tx_off_log2]; |
| |
| // Check that we remain inside the pixel buffer. |
| assert(MAX_SB_SIZE * (row + tx_height - 1) + col + tx_width - 1 < |
| MAX_SB_SQUARE); |
| |
| for (int j = 0; j < tx_height; j++) { |
| for (int i = 0; i < tx_width; i++) { |
| y_pix[i] = input[i]; |
| } |
| y_pix += MAX_SB_SIZE; |
| input += input_stride; |
| } |
| |
| // Store the surface of the pixel buffer that was written to, this way we |
| // can manage chroma overrun (e.g. when the chroma surfaces goes beyond the |
| // frame boundary) |
| if (col == 0 && row == 0) { |
| cfl->y_width = tx_width; |
| cfl->y_height = tx_height; |
| } else { |
| cfl->y_width = OD_MAXI((col << tx_off_log2) + tx_width, cfl->y_width); |
| cfl->y_height = OD_MAXI((row << tx_off_log2) + tx_height, cfl->y_height); |
| } |
| } |
| |
| // Load from the CfL pixel buffer into output |
| double cfl_load(const CFL_CTX *cfl, uint8_t *output, int output_stride, int row, |
| int col, int width, int height) { |
| const int sub_x = cfl->subsampling_x; |
| const int sub_y = cfl->subsampling_y; |
| const int tx_off_log2 = tx_size_wide_log2[0]; |
| |
| const uint8_t *y_pix; |
| |
| int diff_width = 0; |
| int diff_height = 0; |
| |
| int pred_row_offset = 0; |
| int output_row_offset = 0; |
| int top_left, bot_left; |
| |
| // TODO(ltrudeau) add support for 4:2:2 |
| if (sub_y == 0 && sub_x == 0) { |
| y_pix = &cfl->y_pix[(row * MAX_SB_SIZE + col) << tx_off_log2]; |
| int uv_width = (col << tx_off_log2) + width; |
| diff_width = uv_width - cfl->y_width; |
| int uv_height = (row << tx_off_log2) + height; |
| diff_height = uv_height - cfl->y_height; |
| for (int j = 0; j < height; j++) { |
| for (int i = 0; i < width; i++) { |
| // In 4:4:4, pixels match 1 to 1 |
| output[output_row_offset + i] = y_pix[pred_row_offset + i]; |
| } |
| pred_row_offset += MAX_SB_SIZE; |
| output_row_offset += output_stride; |
| } |
| } else if (sub_y == 1 && sub_x == 1) { |
| y_pix = &cfl->y_pix[(row * MAX_SB_SIZE + col) << (tx_off_log2 + sub_y)]; |
| int uv_width = ((col << tx_off_log2) + width) << sub_x; |
| diff_width = (uv_width - cfl->y_width) >> sub_x; |
| int uv_height = ((row << tx_off_log2) + height) << sub_y; |
| diff_height = (uv_height - cfl->y_height) >> sub_y; |
| for (int j = 0; j < height; j++) { |
| for (int i = 0; i < width; i++) { |
| top_left = (pred_row_offset + i) << sub_y; |
| bot_left = top_left + MAX_SB_SIZE; |
| // In 4:2:0, average pixels in 2x2 grid |
| output[output_row_offset + i] = OD_SHR_ROUND( |
| y_pix[top_left] + y_pix[top_left + 1] // Top row |
| + y_pix[bot_left] + y_pix[bot_left + 1] // Bottom row |
| , |
| 2); |
| } |
| pred_row_offset += MAX_SB_SIZE; |
| output_row_offset += output_stride; |
| } |
| } else { |
| assert(0); // Unsupported chroma subsampling |
| } |
| // Due to frame boundary issues, it is possible that the total area of |
| // covered by Chroma exceeds that of Luma. When this happens, we write over |
| // the broken data by repeating the last columns and/or rows. |
| // |
| // Note that in order to manage the case where both rows and columns |
| // overrun, |
| // we apply rows first. This way, when the rows overrun the bottom of the |
| // frame, the columns will be copied over them. |
| if (diff_width > 0) { |
| int last_pixel; |
| output_row_offset = width - diff_width; |
| |
| for (int j = 0; j < height; j++) { |
| last_pixel = output_row_offset - 1; |
| for (int i = 0; i < diff_width; i++) { |
| output[output_row_offset + i] = output[last_pixel]; |
| } |
| output_row_offset += output_stride; |
| } |
| } |
| |
| if (diff_height > 0) { |
| output_row_offset = diff_height * output_stride; |
| const int last_row_offset = output_row_offset - output_stride; |
| for (int j = 0; j < diff_height; j++) { |
| for (int i = 0; i < width; i++) { |
| output[output_row_offset + i] = output[last_row_offset + i]; |
| } |
| output_row_offset += output_stride; |
| } |
| } |
| |
| int avg = 0; |
| output_row_offset = 0; |
| for (int j = 0; j < height; j++) { |
| for (int i = 0; i < width; i++) { |
| avg += output[output_row_offset + i]; |
| } |
| output_row_offset += output_stride; |
| } |
| return avg / (double)(width * height); |
| } |