blob: ec92c1f0bcc10e7b30f7ee3a1dd0bccac4c8bb40 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <math.h>
#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/mem.h"
#include "av1/common/av1_common_int.h"
#include "av1/common/av1_loopfilter.h"
#include "av1/common/reconinter.h"
#include "av1/common/seg_common.h"
static const SEG_LVL_FEATURES seg_lvl_lf_lut[MAX_MB_PLANE][2] = {
{ SEG_LVL_ALT_LF_Y_V, SEG_LVL_ALT_LF_Y_H },
{ SEG_LVL_ALT_LF_U, SEG_LVL_ALT_LF_U },
{ SEG_LVL_ALT_LF_V, SEG_LVL_ALT_LF_V }
};
static const int delta_lf_id_lut[MAX_MB_PLANE][2] = { { 0, 1 },
{ 2, 2 },
{ 3, 3 } };
static const int mode_lf_lut[] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // INTRA_MODES
1, 1, 0, 1, // INTER_MODES (GLOBALMV == 0)
1, 1, 1, 1, 1, 1, 0, 1 // INTER_COMPOUND_MODES (GLOBAL_GLOBALMV == 0)
};
static void update_sharpness(loop_filter_info_n *lfi, int sharpness_lvl) {
int lvl;
// For each possible value for the loop filter fill out limits
for (lvl = 0; lvl <= MAX_LOOP_FILTER; lvl++) {
// Set loop filter parameters that control sharpness.
int block_inside_limit = lvl >> ((sharpness_lvl > 0) + (sharpness_lvl > 4));
if (sharpness_lvl > 0) {
if (block_inside_limit > (9 - sharpness_lvl))
block_inside_limit = (9 - sharpness_lvl);
}
if (block_inside_limit < 1) block_inside_limit = 1;
memset(lfi->lfthr[lvl].lim, block_inside_limit, SIMD_WIDTH);
memset(lfi->lfthr[lvl].mblim, (2 * (lvl + 2) + block_inside_limit),
SIMD_WIDTH);
}
}
uint8_t av1_get_filter_level(const AV1_COMMON *cm,
const loop_filter_info_n *lfi_n, const int dir_idx,
int plane, const MB_MODE_INFO *mbmi) {
const int segment_id = mbmi->segment_id;
if (cm->delta_q_info.delta_lf_present_flag) {
int8_t delta_lf;
if (cm->delta_q_info.delta_lf_multi) {
const int delta_lf_idx = delta_lf_id_lut[plane][dir_idx];
delta_lf = mbmi->delta_lf[delta_lf_idx];
} else {
delta_lf = mbmi->delta_lf_from_base;
}
int base_level;
if (plane == 0)
base_level = cm->lf.filter_level[dir_idx];
else if (plane == 1)
base_level = cm->lf.filter_level_u;
else
base_level = cm->lf.filter_level_v;
int lvl_seg = clamp(delta_lf + base_level, 0, MAX_LOOP_FILTER);
assert(plane >= 0 && plane <= 2);
const int seg_lf_feature_id = seg_lvl_lf_lut[plane][dir_idx];
if (segfeature_active(&cm->seg, segment_id, seg_lf_feature_id)) {
const int data = get_segdata(&cm->seg, segment_id, seg_lf_feature_id);
lvl_seg = clamp(lvl_seg + data, 0, MAX_LOOP_FILTER);
}
if (cm->lf.mode_ref_delta_enabled) {
const int scale = 1 << (lvl_seg >> 5);
lvl_seg += cm->lf.ref_deltas[mbmi->ref_frame[0]] * scale;
if (mbmi->ref_frame[0] > INTRA_FRAME)
lvl_seg += cm->lf.mode_deltas[mode_lf_lut[mbmi->mode]] * scale;
lvl_seg = clamp(lvl_seg, 0, MAX_LOOP_FILTER);
}
return lvl_seg;
} else {
return lfi_n->lvl[plane][segment_id][dir_idx][mbmi->ref_frame[0]]
[mode_lf_lut[mbmi->mode]];
}
}
void av1_loop_filter_init(AV1_COMMON *cm) {
assert(MB_MODE_COUNT == NELEMENTS(mode_lf_lut));
loop_filter_info_n *lfi = &cm->lf_info;
struct loopfilter *lf = &cm->lf;
int lvl;
lf->combine_vert_horz_lf = 1;
// init limits for given sharpness
update_sharpness(lfi, lf->sharpness_level);
// init hev threshold const vectors
for (lvl = 0; lvl <= MAX_LOOP_FILTER; lvl++)
memset(lfi->lfthr[lvl].hev_thr, (lvl >> 4), SIMD_WIDTH);
}
// Update the loop filter for the current frame.
// This should be called before loop_filter_rows(),
// av1_loop_filter_frame() calls this function directly.
void av1_loop_filter_frame_init(AV1_COMMON *cm, int plane_start,
int plane_end) {
int filt_lvl[MAX_MB_PLANE], filt_lvl_r[MAX_MB_PLANE];
int plane;
int seg_id;
// n_shift is the multiplier for lf_deltas
// the multiplier is 1 for when filter_lvl is between 0 and 31;
// 2 when filter_lvl is between 32 and 63
loop_filter_info_n *const lfi = &cm->lf_info;
struct loopfilter *const lf = &cm->lf;
const struct segmentation *const seg = &cm->seg;
// update sharpness limits
update_sharpness(lfi, lf->sharpness_level);
filt_lvl[0] = cm->lf.filter_level[0];
filt_lvl[1] = cm->lf.filter_level_u;
filt_lvl[2] = cm->lf.filter_level_v;
filt_lvl_r[0] = cm->lf.filter_level[1];
filt_lvl_r[1] = cm->lf.filter_level_u;
filt_lvl_r[2] = cm->lf.filter_level_v;
assert(plane_start >= AOM_PLANE_Y);
assert(plane_end <= MAX_MB_PLANE);
for (plane = plane_start; plane < plane_end; plane++) {
if (plane == 0 && !filt_lvl[0] && !filt_lvl_r[0])
break;
else if (plane == 1 && !filt_lvl[1])
continue;
else if (plane == 2 && !filt_lvl[2])
continue;
for (seg_id = 0; seg_id < MAX_SEGMENTS; seg_id++) {
for (int dir = 0; dir < 2; ++dir) {
int lvl_seg = (dir == 0) ? filt_lvl[plane] : filt_lvl_r[plane];
const int seg_lf_feature_id = seg_lvl_lf_lut[plane][dir];
if (segfeature_active(seg, seg_id, seg_lf_feature_id)) {
const int data = get_segdata(&cm->seg, seg_id, seg_lf_feature_id);
lvl_seg = clamp(lvl_seg + data, 0, MAX_LOOP_FILTER);
}
if (!lf->mode_ref_delta_enabled) {
// we could get rid of this if we assume that deltas are set to
// zero when not in use; encoder always uses deltas
memset(lfi->lvl[plane][seg_id][dir], lvl_seg,
sizeof(lfi->lvl[plane][seg_id][dir]));
} else {
int ref, mode;
const int scale = 1 << (lvl_seg >> 5);
const int intra_lvl = lvl_seg + lf->ref_deltas[INTRA_FRAME] * scale;
lfi->lvl[plane][seg_id][dir][INTRA_FRAME][0] =
clamp(intra_lvl, 0, MAX_LOOP_FILTER);
for (ref = LAST_FRAME; ref < REF_FRAMES; ++ref) {
for (mode = 0; mode < MAX_MODE_LF_DELTAS; ++mode) {
const int inter_lvl = lvl_seg + lf->ref_deltas[ref] * scale +
lf->mode_deltas[mode] * scale;
lfi->lvl[plane][seg_id][dir][ref][mode] =
clamp(inter_lvl, 0, MAX_LOOP_FILTER);
}
}
}
}
}
}
}
static TX_SIZE get_transform_size(const MACROBLOCKD *const xd,
const MB_MODE_INFO *const mbmi,
const EDGE_DIR edge_dir, const int mi_row,
const int mi_col, const int plane,
const struct macroblockd_plane *plane_ptr) {
assert(mbmi != NULL);
if (xd && xd->lossless[mbmi->segment_id]) return TX_4X4;
TX_SIZE tx_size =
(plane == AOM_PLANE_Y)
? mbmi->tx_size
: av1_get_max_uv_txsize(mbmi->sb_type, plane_ptr->subsampling_x,
plane_ptr->subsampling_y);
assert(tx_size < TX_SIZES_ALL);
if ((plane == AOM_PLANE_Y) && is_inter_block(mbmi) && !mbmi->skip_txfm) {
const BLOCK_SIZE sb_type = mbmi->sb_type;
const int blk_row = mi_row & (mi_size_high[sb_type] - 1);
const int blk_col = mi_col & (mi_size_wide[sb_type] - 1);
const TX_SIZE mb_tx_size =
mbmi->inter_tx_size[av1_get_txb_size_index(sb_type, blk_row, blk_col)];
assert(mb_tx_size < TX_SIZES_ALL);
tx_size = mb_tx_size;
}
// since in case of chrominance or non-square transform need to convert
// transform size into transform size in particular direction.
// for vertical edge, filter direction is horizontal, for horizontal
// edge, filter direction is vertical.
tx_size = (VERT_EDGE == edge_dir) ? txsize_horz_map[tx_size]
: txsize_vert_map[tx_size];
return tx_size;
}
typedef struct AV1_DEBLOCKING_PARAMETERS {
// length of the filter applied to the outer edge
uint32_t filter_length;
// deblocking limits
const uint8_t *lim;
const uint8_t *mblim;
const uint8_t *hev_thr;
} AV1_DEBLOCKING_PARAMETERS;
// Return TX_SIZE from get_transform_size(), so it is plane and direction
// aware
static TX_SIZE set_lpf_parameters(
AV1_DEBLOCKING_PARAMETERS *const params, const ptrdiff_t mode_step,
const AV1_COMMON *const cm, const MACROBLOCKD *const xd,
const EDGE_DIR edge_dir, const uint32_t x, const uint32_t y,
const int plane, const struct macroblockd_plane *const plane_ptr) {
// reset to initial values
params->filter_length = 0;
// no deblocking is required
const uint32_t width = plane_ptr->dst.width;
const uint32_t height = plane_ptr->dst.height;
if ((width <= x) || (height <= y)) {
// just return the smallest transform unit size
return TX_4X4;
}
const uint32_t scale_horz = plane_ptr->subsampling_x;
const uint32_t scale_vert = plane_ptr->subsampling_y;
// for sub8x8 block, chroma prediction mode is obtained from the bottom/right
// mi structure of the co-located 8x8 luma block. so for chroma plane, mi_row
// and mi_col should map to the bottom/right mi structure, i.e, both mi_row
// and mi_col should be odd number for chroma plane.
const int mi_row = scale_vert | ((y << scale_vert) >> MI_SIZE_LOG2);
const int mi_col = scale_horz | ((x << scale_horz) >> MI_SIZE_LOG2);
MB_MODE_INFO **mi =
cm->mi_params.mi_grid_base + mi_row * cm->mi_params.mi_stride + mi_col;
const MB_MODE_INFO *mbmi = mi[0];
// If current mbmi is not correctly setup, return an invalid value to stop
// filtering. One example is that if this tile is not coded, then its mbmi
// it not set up.
if (mbmi == NULL) return TX_INVALID;
const TX_SIZE ts =
get_transform_size(xd, mi[0], edge_dir, mi_row, mi_col, plane, plane_ptr);
{
const uint32_t coord = (VERT_EDGE == edge_dir) ? (x) : (y);
const uint32_t transform_masks =
edge_dir == VERT_EDGE ? tx_size_wide[ts] - 1 : tx_size_high[ts] - 1;
const int32_t tu_edge = (coord & transform_masks) ? (0) : (1);
if (!tu_edge) return ts;
// prepare outer edge parameters. deblock the edge if it's an edge of a TU
{
const uint32_t curr_level =
av1_get_filter_level(cm, &cm->lf_info, edge_dir, plane, mbmi);
const int curr_skipped = mbmi->skip_txfm && is_inter_block(mbmi);
uint32_t level = curr_level;
if (coord) {
{
const MB_MODE_INFO *const mi_prev = *(mi - mode_step);
if (mi_prev == NULL) return TX_INVALID;
const int pv_row =
(VERT_EDGE == edge_dir) ? (mi_row) : (mi_row - (1 << scale_vert));
const int pv_col =
(VERT_EDGE == edge_dir) ? (mi_col - (1 << scale_horz)) : (mi_col);
const TX_SIZE pv_ts = get_transform_size(
xd, mi_prev, edge_dir, pv_row, pv_col, plane, plane_ptr);
const uint32_t pv_lvl =
av1_get_filter_level(cm, &cm->lf_info, edge_dir, plane, mi_prev);
const int pv_skip_txfm =
mi_prev->skip_txfm && is_inter_block(mi_prev);
const BLOCK_SIZE bsize =
get_plane_block_size(mbmi->sb_type, plane_ptr->subsampling_x,
plane_ptr->subsampling_y);
assert(bsize < BLOCK_SIZES_ALL);
const int prediction_masks = edge_dir == VERT_EDGE
? block_size_wide[bsize] - 1
: block_size_high[bsize] - 1;
const int32_t pu_edge = !(coord & prediction_masks);
// if the current and the previous blocks are skipped,
// deblock the edge if the edge belongs to a PU's edge only.
if ((curr_level || pv_lvl) &&
(!pv_skip_txfm || !curr_skipped || pu_edge)) {
const TX_SIZE min_ts = AOMMIN(ts, pv_ts);
if (TX_4X4 >= min_ts) {
params->filter_length = 4;
} else if (TX_8X8 == min_ts) {
if (plane != 0)
params->filter_length = 6;
else
params->filter_length = 8;
} else {
params->filter_length = 14;
// No wide filtering for chroma plane
if (plane != 0) {
params->filter_length = 6;
}
}
// update the level if the current block is skipped,
// but the previous one is not
level = (curr_level) ? (curr_level) : (pv_lvl);
}
}
}
// prepare common parameters
if (params->filter_length) {
const loop_filter_thresh *const limits = cm->lf_info.lfthr + level;
params->lim = limits->lim;
params->mblim = limits->mblim;
params->hev_thr = limits->hev_thr;
}
}
}
return ts;
}
void av1_filter_block_plane_vert(const AV1_COMMON *const cm,
const MACROBLOCKD *const xd, const int plane,
const MACROBLOCKD_PLANE *const plane_ptr,
const uint32_t mi_row, const uint32_t mi_col) {
const uint32_t scale_horz = plane_ptr->subsampling_x;
const uint32_t scale_vert = plane_ptr->subsampling_y;
uint8_t *const dst_ptr = plane_ptr->dst.buf;
const int dst_stride = plane_ptr->dst.stride;
const int y_range = (MAX_MIB_SIZE >> scale_vert);
const int x_range = (MAX_MIB_SIZE >> scale_horz);
for (int y = 0; y < y_range; y++) {
uint8_t *p = dst_ptr + y * MI_SIZE * dst_stride;
for (int x = 0; x < x_range;) {
// inner loop always filter vertical edges in a MI block. If MI size
// is 8x8, it will filter the vertical edge aligned with a 8x8 block.
// If 4x4 transform is used, it will then filter the internal edge
// aligned with a 4x4 block
const uint32_t curr_x = ((mi_col * MI_SIZE) >> scale_horz) + x * MI_SIZE;
const uint32_t curr_y = ((mi_row * MI_SIZE) >> scale_vert) + y * MI_SIZE;
uint32_t advance_units;
TX_SIZE tx_size;
AV1_DEBLOCKING_PARAMETERS params;
memset(&params, 0, sizeof(params));
tx_size =
set_lpf_parameters(&params, ((ptrdiff_t)1 << scale_horz), cm, xd,
VERT_EDGE, curr_x, curr_y, plane, plane_ptr);
if (tx_size == TX_INVALID) {
params.filter_length = 0;
tx_size = TX_4X4;
}
#if CONFIG_AV1_HIGHBITDEPTH
const int use_highbitdepth = cm->seq_params.use_highbitdepth;
const aom_bit_depth_t bit_depth = cm->seq_params.bit_depth;
switch (params.filter_length) {
// apply 4-tap filtering
case 4:
if (use_highbitdepth)
aom_highbd_lpf_vertical_4(CONVERT_TO_SHORTPTR(p), dst_stride,
params.mblim, params.lim, params.hev_thr,
bit_depth);
else
aom_lpf_vertical_4(p, dst_stride, params.mblim, params.lim,
params.hev_thr);
break;
case 6: // apply 6-tap filter for chroma plane only
assert(plane != 0);
if (use_highbitdepth)
aom_highbd_lpf_vertical_6(CONVERT_TO_SHORTPTR(p), dst_stride,
params.mblim, params.lim, params.hev_thr,
bit_depth);
else
aom_lpf_vertical_6(p, dst_stride, params.mblim, params.lim,
params.hev_thr);
break;
// apply 8-tap filtering
case 8:
if (use_highbitdepth)
aom_highbd_lpf_vertical_8(CONVERT_TO_SHORTPTR(p), dst_stride,
params.mblim, params.lim, params.hev_thr,
bit_depth);
else
aom_lpf_vertical_8(p, dst_stride, params.mblim, params.lim,
params.hev_thr);
break;
// apply 14-tap filtering
case 14:
if (use_highbitdepth)
aom_highbd_lpf_vertical_14(CONVERT_TO_SHORTPTR(p), dst_stride,
params.mblim, params.lim, params.hev_thr,
bit_depth);
else
aom_lpf_vertical_14(p, dst_stride, params.mblim, params.lim,
params.hev_thr);
break;
// no filtering
default: break;
}
#else
switch (params.filter_length) {
// apply 4-tap filtering
case 4:
aom_lpf_vertical_4(p, dst_stride, params.mblim, params.lim,
params.hev_thr);
break;
case 6: // apply 6-tap filter for chroma plane only
assert(plane != 0);
aom_lpf_vertical_6(p, dst_stride, params.mblim, params.lim,
params.hev_thr);
break;
// apply 8-tap filtering
case 8:
aom_lpf_vertical_8(p, dst_stride, params.mblim, params.lim,
params.hev_thr);
break;
// apply 14-tap filtering
case 14:
aom_lpf_vertical_14(p, dst_stride, params.mblim, params.lim,
params.hev_thr);
break;
// no filtering
default: break;
}
#endif // CONFIG_AV1_HIGHBITDEPTH
// advance the destination pointer
advance_units = tx_size_wide_unit[tx_size];
x += advance_units;
p += advance_units * MI_SIZE;
}
}
}
void av1_filter_block_plane_horz(const AV1_COMMON *const cm,
const MACROBLOCKD *const xd, const int plane,
const MACROBLOCKD_PLANE *const plane_ptr,
const uint32_t mi_row, const uint32_t mi_col) {
const uint32_t scale_horz = plane_ptr->subsampling_x;
const uint32_t scale_vert = plane_ptr->subsampling_y;
uint8_t *const dst_ptr = plane_ptr->dst.buf;
const int dst_stride = plane_ptr->dst.stride;
const int y_range = (MAX_MIB_SIZE >> scale_vert);
const int x_range = (MAX_MIB_SIZE >> scale_horz);
for (int x = 0; x < x_range; x++) {
uint8_t *p = dst_ptr + x * MI_SIZE;
for (int y = 0; y < y_range;) {
// inner loop always filter vertical edges in a MI block. If MI size
// is 8x8, it will first filter the vertical edge aligned with a 8x8
// block. If 4x4 transform is used, it will then filter the internal
// edge aligned with a 4x4 block
const uint32_t curr_x = ((mi_col * MI_SIZE) >> scale_horz) + x * MI_SIZE;
const uint32_t curr_y = ((mi_row * MI_SIZE) >> scale_vert) + y * MI_SIZE;
uint32_t advance_units;
TX_SIZE tx_size;
AV1_DEBLOCKING_PARAMETERS params;
memset(&params, 0, sizeof(params));
tx_size = set_lpf_parameters(
&params, (cm->mi_params.mi_stride << scale_vert), cm, xd, HORZ_EDGE,
curr_x, curr_y, plane, plane_ptr);
if (tx_size == TX_INVALID) {
params.filter_length = 0;
tx_size = TX_4X4;
}
#if CONFIG_AV1_HIGHBITDEPTH
const int use_highbitdepth = cm->seq_params.use_highbitdepth;
const aom_bit_depth_t bit_depth = cm->seq_params.bit_depth;
switch (params.filter_length) {
// apply 4-tap filtering
case 4:
if (use_highbitdepth)
aom_highbd_lpf_horizontal_4(CONVERT_TO_SHORTPTR(p), dst_stride,
params.mblim, params.lim,
params.hev_thr, bit_depth);
else
aom_lpf_horizontal_4(p, dst_stride, params.mblim, params.lim,
params.hev_thr);
break;
// apply 6-tap filtering
case 6:
assert(plane != 0);
if (use_highbitdepth)
aom_highbd_lpf_horizontal_6(CONVERT_TO_SHORTPTR(p), dst_stride,
params.mblim, params.lim,
params.hev_thr, bit_depth);
else
aom_lpf_horizontal_6(p, dst_stride, params.mblim, params.lim,
params.hev_thr);
break;
// apply 8-tap filtering
case 8:
if (use_highbitdepth)
aom_highbd_lpf_horizontal_8(CONVERT_TO_SHORTPTR(p), dst_stride,
params.mblim, params.lim,
params.hev_thr, bit_depth);
else
aom_lpf_horizontal_8(p, dst_stride, params.mblim, params.lim,
params.hev_thr);
break;
// apply 14-tap filtering
case 14:
if (use_highbitdepth)
aom_highbd_lpf_horizontal_14(CONVERT_TO_SHORTPTR(p), dst_stride,
params.mblim, params.lim,
params.hev_thr, bit_depth);
else
aom_lpf_horizontal_14(p, dst_stride, params.mblim, params.lim,
params.hev_thr);
break;
// no filtering
default: break;
}
#else
switch (params.filter_length) {
// apply 4-tap filtering
case 4:
aom_lpf_horizontal_4(p, dst_stride, params.mblim, params.lim,
params.hev_thr);
break;
// apply 6-tap filtering
case 6:
assert(plane != 0);
aom_lpf_horizontal_6(p, dst_stride, params.mblim, params.lim,
params.hev_thr);
break;
// apply 8-tap filtering
case 8:
aom_lpf_horizontal_8(p, dst_stride, params.mblim, params.lim,
params.hev_thr);
break;
// apply 14-tap filtering
case 14:
aom_lpf_horizontal_14(p, dst_stride, params.mblim, params.lim,
params.hev_thr);
break;
// no filtering
default: break;
}
#endif // CONFIG_AV1_HIGHBITDEPTH
// advance the destination pointer
advance_units = tx_size_high_unit[tx_size];
y += advance_units;
p += advance_units * dst_stride * MI_SIZE;
}
}
}
void av1_filter_block_plane_vert_test(const AV1_COMMON *const cm,
const MACROBLOCKD *const xd,
const int plane,
const MACROBLOCKD_PLANE *const plane_ptr,
const uint32_t mi_row,
const uint32_t mi_col) {
const uint32_t scale_horz = plane_ptr->subsampling_x;
const uint32_t scale_vert = plane_ptr->subsampling_y;
uint8_t *const dst_ptr = plane_ptr->dst.buf;
const int dst_stride = plane_ptr->dst.stride;
const int y_range = cm->mi_params.mi_rows >> scale_vert;
const int x_range = cm->mi_params.mi_cols >> scale_horz;
for (int y = 0; y < y_range; y++) {
uint8_t *p = dst_ptr + y * MI_SIZE * dst_stride;
for (int x = 0; x < x_range;) {
// inner loop always filter vertical edges in a MI block. If MI size
// is 8x8, it will filter the vertical edge aligned with a 8x8 block.
// If 4x4 transform is used, it will then filter the internal edge
// aligned with a 4x4 block
const uint32_t curr_x = ((mi_col * MI_SIZE) >> scale_horz) + x * MI_SIZE;
const uint32_t curr_y = ((mi_row * MI_SIZE) >> scale_vert) + y * MI_SIZE;
uint32_t advance_units;
TX_SIZE tx_size;
AV1_DEBLOCKING_PARAMETERS params;
memset(&params, 0, sizeof(params));
tx_size =
set_lpf_parameters(&params, ((ptrdiff_t)1 << scale_horz), cm, xd,
VERT_EDGE, curr_x, curr_y, plane, plane_ptr);
if (tx_size == TX_INVALID) {
params.filter_length = 0;
tx_size = TX_4X4;
}
// advance the destination pointer
advance_units = tx_size_wide_unit[tx_size];
x += advance_units;
p += advance_units * MI_SIZE;
}
}
}
void av1_filter_block_plane_horz_test(const AV1_COMMON *const cm,
const MACROBLOCKD *const xd,
const int plane,
const MACROBLOCKD_PLANE *const plane_ptr,
const uint32_t mi_row,
const uint32_t mi_col) {
const uint32_t scale_horz = plane_ptr->subsampling_x;
const uint32_t scale_vert = plane_ptr->subsampling_y;
uint8_t *const dst_ptr = plane_ptr->dst.buf;
const int dst_stride = plane_ptr->dst.stride;
const int y_range = cm->mi_params.mi_rows >> scale_vert;
const int x_range = cm->mi_params.mi_cols >> scale_horz;
for (int x = 0; x < x_range; x++) {
uint8_t *p = dst_ptr + x * MI_SIZE;
for (int y = 0; y < y_range;) {
// inner loop always filter vertical edges in a MI block. If MI size
// is 8x8, it will first filter the vertical edge aligned with a 8x8
// block. If 4x4 transform is used, it will then filter the internal
// edge aligned with a 4x4 block
const uint32_t curr_x = ((mi_col * MI_SIZE) >> scale_horz) + x * MI_SIZE;
const uint32_t curr_y = ((mi_row * MI_SIZE) >> scale_vert) + y * MI_SIZE;
uint32_t advance_units;
TX_SIZE tx_size;
AV1_DEBLOCKING_PARAMETERS params;
memset(&params, 0, sizeof(params));
tx_size = set_lpf_parameters(
&params, (cm->mi_params.mi_stride << scale_vert), cm, xd, HORZ_EDGE,
curr_x, curr_y, plane, plane_ptr);
if (tx_size == TX_INVALID) {
params.filter_length = 0;
tx_size = TX_4X4;
}
// advance the destination pointer
advance_units = tx_size_high_unit[tx_size];
y += advance_units;
p += advance_units * dst_stride * MI_SIZE;
}
}
}
static void loop_filter_rows(YV12_BUFFER_CONFIG *frame_buffer, AV1_COMMON *cm,
MACROBLOCKD *xd, int start, int stop,
#if CONFIG_LPF_MASK
int is_decoding,
#endif
int plane_start, int plane_end) {
struct macroblockd_plane *pd = xd->plane;
const int col_start = 0;
const int col_end = cm->mi_params.mi_cols;
int mi_row, mi_col;
int plane;
#if CONFIG_LPF_MASK
if (is_decoding) {
cm->is_decoding = is_decoding;
for (plane = plane_start; plane < plane_end; plane++) {
if (plane == 0 && !(cm->lf.filter_level[0]) && !(cm->lf.filter_level[1]))
break;
else if (plane == 1 && !(cm->lf.filter_level_u))
continue;
else if (plane == 2 && !(cm->lf.filter_level_v))
continue;
av1_setup_dst_planes(pd, cm->seq_params.sb_size, frame_buffer, 0, 0,
plane, plane + 1);
av1_build_bitmask_vert_info(cm, &pd[plane], plane);
av1_build_bitmask_horz_info(cm, &pd[plane], plane);
// apply loop filtering which only goes through buffer once
for (mi_row = start; mi_row < stop; mi_row += MI_SIZE_64X64) {
for (mi_col = col_start; mi_col < col_end; mi_col += MI_SIZE_64X64) {
av1_setup_dst_planes(pd, BLOCK_64X64, frame_buffer, mi_row, mi_col,
plane, plane + 1);
av1_filter_block_plane_bitmask_vert(cm, &pd[plane], plane, mi_row,
mi_col);
if (mi_col - MI_SIZE_64X64 >= 0) {
av1_setup_dst_planes(pd, BLOCK_64X64, frame_buffer, mi_row,
mi_col - MI_SIZE_64X64, plane, plane + 1);
av1_filter_block_plane_bitmask_horz(cm, &pd[plane], plane, mi_row,
mi_col - MI_SIZE_64X64);
}
}
av1_setup_dst_planes(pd, BLOCK_64X64, frame_buffer, mi_row,
mi_col - MI_SIZE_64X64, plane, plane + 1);
av1_filter_block_plane_bitmask_horz(cm, &pd[plane], plane, mi_row,
mi_col - MI_SIZE_64X64);
}
}
return;
}
#endif
for (plane = plane_start; plane < plane_end; plane++) {
if (plane == 0 && !(cm->lf.filter_level[0]) && !(cm->lf.filter_level[1]))
break;
else if (plane == 1 && !(cm->lf.filter_level_u))
continue;
else if (plane == 2 && !(cm->lf.filter_level_v))
continue;
if (cm->lf.combine_vert_horz_lf) {
// filter all vertical and horizontal edges in every 128x128 super block
for (mi_row = start; mi_row < stop; mi_row += MAX_MIB_SIZE) {
for (mi_col = col_start; mi_col < col_end; mi_col += MAX_MIB_SIZE) {
// filter vertical edges
av1_setup_dst_planes(pd, cm->seq_params.sb_size, frame_buffer, mi_row,
mi_col, plane, plane + 1);
av1_filter_block_plane_vert(cm, xd, plane, &pd[plane], mi_row,
mi_col);
// filter horizontal edges
if (mi_col - MAX_MIB_SIZE >= 0) {
av1_setup_dst_planes(pd, cm->seq_params.sb_size, frame_buffer,
mi_row, mi_col - MAX_MIB_SIZE, plane,
plane + 1);
av1_filter_block_plane_horz(cm, xd, plane, &pd[plane], mi_row,
mi_col - MAX_MIB_SIZE);
}
}
// filter horizontal edges
av1_setup_dst_planes(pd, cm->seq_params.sb_size, frame_buffer, mi_row,
mi_col - MAX_MIB_SIZE, plane, plane + 1);
av1_filter_block_plane_horz(cm, xd, plane, &pd[plane], mi_row,
mi_col - MAX_MIB_SIZE);
}
} else {
// filter all vertical edges in every 128x128 super block
for (mi_row = start; mi_row < stop; mi_row += MAX_MIB_SIZE) {
for (mi_col = col_start; mi_col < col_end; mi_col += MAX_MIB_SIZE) {
av1_setup_dst_planes(pd, cm->seq_params.sb_size, frame_buffer, mi_row,
mi_col, plane, plane + 1);
av1_filter_block_plane_vert(cm, xd, plane, &pd[plane], mi_row,
mi_col);
}
}
// filter all horizontal edges in every 128x128 super block
for (mi_row = start; mi_row < stop; mi_row += MAX_MIB_SIZE) {
for (mi_col = col_start; mi_col < col_end; mi_col += MAX_MIB_SIZE) {
av1_setup_dst_planes(pd, cm->seq_params.sb_size, frame_buffer, mi_row,
mi_col, plane, plane + 1);
av1_filter_block_plane_horz(cm, xd, plane, &pd[plane], mi_row,
mi_col);
}
}
}
}
}
void av1_loop_filter_frame(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm,
MACROBLOCKD *xd,
#if CONFIG_LPF_MASK
int is_decoding,
#endif
int plane_start, int plane_end, int partial_frame) {
int start_mi_row, end_mi_row, mi_rows_to_filter;
start_mi_row = 0;
mi_rows_to_filter = cm->mi_params.mi_rows;
if (partial_frame && cm->mi_params.mi_rows > 8) {
start_mi_row = cm->mi_params.mi_rows >> 1;
start_mi_row &= 0xfffffff8;
mi_rows_to_filter = AOMMAX(cm->mi_params.mi_rows / 8, 8);
}
end_mi_row = start_mi_row + mi_rows_to_filter;
av1_loop_filter_frame_init(cm, plane_start, plane_end);
loop_filter_rows(frame, cm, xd, start_mi_row, end_mi_row,
#if CONFIG_LPF_MASK
is_decoding,
#endif
plane_start, plane_end);
}