| /* |
| * Copyright (c) 2017, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| #include <immintrin.h> |
| |
| #include "config/av1_rtcd.h" |
| |
| #include "av1/common/cfl.h" |
| |
| #include "av1/common/x86/cfl_simd.h" |
| |
| #define CFL_GET_SUBSAMPLE_FUNCTION_AVX2(sub, bd) \ |
| CFL_SUBSAMPLE(avx2, sub, bd, 32, 32) \ |
| CFL_SUBSAMPLE(avx2, sub, bd, 32, 16) \ |
| CFL_SUBSAMPLE(avx2, sub, bd, 32, 8) \ |
| cfl_subsample_##bd##_fn cfl_get_luma_subsampling_##sub##_##bd##_avx2( \ |
| TX_SIZE tx_size) { \ |
| static const cfl_subsample_##bd##_fn subfn_##sub[TX_SIZES_ALL] = { \ |
| cfl_subsample_##bd##_##sub##_4x4_ssse3, /* 4x4 */ \ |
| cfl_subsample_##bd##_##sub##_8x8_ssse3, /* 8x8 */ \ |
| cfl_subsample_##bd##_##sub##_16x16_ssse3, /* 16x16 */ \ |
| cfl_subsample_##bd##_##sub##_32x32_avx2, /* 32x32 */ \ |
| NULL, /* 64x64 (invalid CFL size) */ \ |
| cfl_subsample_##bd##_##sub##_4x8_ssse3, /* 4x8 */ \ |
| cfl_subsample_##bd##_##sub##_8x4_ssse3, /* 8x4 */ \ |
| cfl_subsample_##bd##_##sub##_8x16_ssse3, /* 8x16 */ \ |
| cfl_subsample_##bd##_##sub##_16x8_ssse3, /* 16x8 */ \ |
| cfl_subsample_##bd##_##sub##_16x32_ssse3, /* 16x32 */ \ |
| cfl_subsample_##bd##_##sub##_32x16_avx2, /* 32x16 */ \ |
| NULL, /* 32x64 (invalid CFL size) */ \ |
| NULL, /* 64x32 (invalid CFL size) */ \ |
| cfl_subsample_##bd##_##sub##_4x16_ssse3, /* 4x16 */ \ |
| cfl_subsample_##bd##_##sub##_16x4_ssse3, /* 16x4 */ \ |
| cfl_subsample_##bd##_##sub##_8x32_ssse3, /* 8x32 */ \ |
| cfl_subsample_##bd##_##sub##_32x8_avx2, /* 32x8 */ \ |
| NULL, /* 16x64 (invalid CFL size) */ \ |
| NULL, /* 64x16 (invalid CFL size) */ \ |
| }; \ |
| return subfn_##sub[tx_size]; \ |
| } |
| |
| /** |
| * Adds 4 pixels (in a 2x2 grid) and multiplies them by 2. Resulting in a more |
| * precise version of a box filter 4:2:0 pixel subsampling in Q3. |
| * |
| * The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the |
| * active area is specified using width and height. |
| * |
| * Note: We don't need to worry about going over the active area, as long as we |
| * stay inside the CfL prediction buffer. |
| * |
| * Note: For 4:2:0 luma subsampling, the width will never be greater than 16. |
| */ |
| static void cfl_luma_subsampling_420_lbd_avx2(const uint8_t *input, |
| int input_stride, |
| uint16_t *pred_buf_q3, int width, |
| int height) { |
| (void)width; // Forever 32 |
| const __m256i twos = _mm256_set1_epi8(2); // Thirty two twos |
| const int luma_stride = input_stride << 1; |
| __m256i *row = (__m256i *)pred_buf_q3; |
| const __m256i *row_end = row + (height >> 1) * CFL_BUF_LINE_I256; |
| do { |
| __m256i top = _mm256_loadu_si256((__m256i *)input); |
| __m256i bot = _mm256_loadu_si256((__m256i *)(input + input_stride)); |
| |
| __m256i top_16x16 = _mm256_maddubs_epi16(top, twos); |
| __m256i bot_16x16 = _mm256_maddubs_epi16(bot, twos); |
| __m256i sum_16x16 = _mm256_add_epi16(top_16x16, bot_16x16); |
| |
| _mm256_storeu_si256(row, sum_16x16); |
| |
| input += luma_stride; |
| } while ((row += CFL_BUF_LINE_I256) < row_end); |
| } |
| |
| CFL_GET_SUBSAMPLE_FUNCTION_AVX2(420, lbd) |
| |
| /** |
| * Adds 2 pixels (in a 2x1 grid) and multiplies them by 4. Resulting in a more |
| * precise version of a box filter 4:2:2 pixel subsampling in Q3. |
| * |
| * The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the |
| * active area is specified using width and height. |
| * |
| * Note: We don't need to worry about going over the active area, as long as we |
| * stay inside the CfL prediction buffer. |
| */ |
| static void cfl_luma_subsampling_422_lbd_avx2(const uint8_t *input, |
| int input_stride, |
| uint16_t *pred_buf_q3, int width, |
| int height) { |
| (void)width; // Forever 32 |
| const __m256i fours = _mm256_set1_epi8(4); // Thirty two fours |
| __m256i *row = (__m256i *)pred_buf_q3; |
| const __m256i *row_end = row + height * CFL_BUF_LINE_I256; |
| do { |
| __m256i top = _mm256_loadu_si256((__m256i *)input); |
| __m256i top_16x16 = _mm256_maddubs_epi16(top, fours); |
| _mm256_storeu_si256(row, top_16x16); |
| input += input_stride; |
| } while ((row += CFL_BUF_LINE_I256) < row_end); |
| } |
| |
| CFL_GET_SUBSAMPLE_FUNCTION_AVX2(422, lbd) |
| |
| /** |
| * Multiplies the pixels by 8 (scaling in Q3). The AVX2 subsampling is only |
| * performed on block of width 32. |
| * |
| * The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the |
| * active area is specified using width and height. |
| * |
| * Note: We don't need to worry about going over the active area, as long as we |
| * stay inside the CfL prediction buffer. |
| */ |
| static void cfl_luma_subsampling_444_lbd_avx2(const uint8_t *input, |
| int input_stride, |
| uint16_t *pred_buf_q3, int width, |
| int height) { |
| (void)width; // Forever 32 |
| __m256i *row = (__m256i *)pred_buf_q3; |
| const __m256i *row_end = row + height * CFL_BUF_LINE_I256; |
| const __m256i zeros = _mm256_setzero_si256(); |
| do { |
| __m256i top = _mm256_loadu_si256((__m256i *)input); |
| top = _mm256_permute4x64_epi64(top, _MM_SHUFFLE(3, 1, 2, 0)); |
| |
| __m256i row_lo = _mm256_unpacklo_epi8(top, zeros); |
| row_lo = _mm256_slli_epi16(row_lo, 3); |
| __m256i row_hi = _mm256_unpackhi_epi8(top, zeros); |
| row_hi = _mm256_slli_epi16(row_hi, 3); |
| |
| _mm256_storeu_si256(row, row_lo); |
| _mm256_storeu_si256(row + 1, row_hi); |
| |
| input += input_stride; |
| } while ((row += CFL_BUF_LINE_I256) < row_end); |
| } |
| |
| CFL_GET_SUBSAMPLE_FUNCTION_AVX2(444, lbd) |
| |
| #if CONFIG_AV1_HIGHBITDEPTH |
| /** |
| * Adds 4 pixels (in a 2x2 grid) and multiplies them by 2. Resulting in a more |
| * precise version of a box filter 4:2:0 pixel subsampling in Q3. |
| * |
| * The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the |
| * active area is specified using width and height. |
| * |
| * Note: We don't need to worry about going over the active area, as long as we |
| * stay inside the CfL prediction buffer. |
| * |
| * Note: For 4:2:0 luma subsampling, the width will never be greater than 16. |
| */ |
| static void cfl_luma_subsampling_420_hbd_avx2(const uint16_t *input, |
| int input_stride, |
| uint16_t *pred_buf_q3, int width, |
| int height) { |
| (void)width; // Forever 32 |
| const int luma_stride = input_stride << 1; |
| __m256i *row = (__m256i *)pred_buf_q3; |
| const __m256i *row_end = row + (height >> 1) * CFL_BUF_LINE_I256; |
| do { |
| __m256i top = _mm256_loadu_si256((__m256i *)input); |
| __m256i bot = _mm256_loadu_si256((__m256i *)(input + input_stride)); |
| __m256i sum = _mm256_add_epi16(top, bot); |
| |
| __m256i top_1 = _mm256_loadu_si256((__m256i *)(input + 16)); |
| __m256i bot_1 = _mm256_loadu_si256((__m256i *)(input + 16 + input_stride)); |
| __m256i sum_1 = _mm256_add_epi16(top_1, bot_1); |
| |
| __m256i hsum = _mm256_hadd_epi16(sum, sum_1); |
| hsum = _mm256_permute4x64_epi64(hsum, _MM_SHUFFLE(3, 1, 2, 0)); |
| hsum = _mm256_add_epi16(hsum, hsum); |
| |
| _mm256_storeu_si256(row, hsum); |
| |
| input += luma_stride; |
| } while ((row += CFL_BUF_LINE_I256) < row_end); |
| } |
| |
| CFL_GET_SUBSAMPLE_FUNCTION_AVX2(420, hbd) |
| |
| /** |
| * Adds 2 pixels (in a 2x1 grid) and multiplies them by 4. Resulting in a more |
| * precise version of a box filter 4:2:2 pixel subsampling in Q3. |
| * |
| * The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the |
| * active area is specified using width and height. |
| * |
| * Note: We don't need to worry about going over the active area, as long as we |
| * stay inside the CfL prediction buffer. |
| * |
| */ |
| static void cfl_luma_subsampling_422_hbd_avx2(const uint16_t *input, |
| int input_stride, |
| uint16_t *pred_buf_q3, int width, |
| int height) { |
| (void)width; // Forever 32 |
| __m256i *row = (__m256i *)pred_buf_q3; |
| const __m256i *row_end = row + height * CFL_BUF_LINE_I256; |
| do { |
| __m256i top = _mm256_loadu_si256((__m256i *)input); |
| __m256i top_1 = _mm256_loadu_si256((__m256i *)(input + 16)); |
| __m256i hsum = _mm256_hadd_epi16(top, top_1); |
| hsum = _mm256_permute4x64_epi64(hsum, _MM_SHUFFLE(3, 1, 2, 0)); |
| hsum = _mm256_slli_epi16(hsum, 2); |
| |
| _mm256_storeu_si256(row, hsum); |
| |
| input += input_stride; |
| } while ((row += CFL_BUF_LINE_I256) < row_end); |
| } |
| |
| CFL_GET_SUBSAMPLE_FUNCTION_AVX2(422, hbd) |
| |
| static void cfl_luma_subsampling_444_hbd_avx2(const uint16_t *input, |
| int input_stride, |
| uint16_t *pred_buf_q3, int width, |
| int height) { |
| (void)width; // Forever 32 |
| __m256i *row = (__m256i *)pred_buf_q3; |
| const __m256i *row_end = row + height * CFL_BUF_LINE_I256; |
| do { |
| __m256i top = _mm256_loadu_si256((__m256i *)input); |
| __m256i top_1 = _mm256_loadu_si256((__m256i *)(input + 16)); |
| _mm256_storeu_si256(row, _mm256_slli_epi16(top, 3)); |
| _mm256_storeu_si256(row + 1, _mm256_slli_epi16(top_1, 3)); |
| input += input_stride; |
| } while ((row += CFL_BUF_LINE_I256) < row_end); |
| } |
| |
| CFL_GET_SUBSAMPLE_FUNCTION_AVX2(444, hbd) |
| #endif // CONFIG_AV1_HIGHBITDEPTH |
| |
| static INLINE __m256i predict_unclipped(const __m256i *input, __m256i alpha_q12, |
| __m256i alpha_sign, __m256i dc_q0) { |
| __m256i ac_q3 = _mm256_loadu_si256(input); |
| __m256i ac_sign = _mm256_sign_epi16(alpha_sign, ac_q3); |
| __m256i scaled_luma_q0 = |
| _mm256_mulhrs_epi16(_mm256_abs_epi16(ac_q3), alpha_q12); |
| scaled_luma_q0 = _mm256_sign_epi16(scaled_luma_q0, ac_sign); |
| return _mm256_add_epi16(scaled_luma_q0, dc_q0); |
| } |
| |
| static INLINE void cfl_predict_lbd_avx2(const int16_t *pred_buf_q3, |
| uint8_t *dst, int dst_stride, |
| int alpha_q3, int width, int height) { |
| (void)width; |
| const __m256i alpha_sign = _mm256_set1_epi16(alpha_q3); |
| const __m256i alpha_q12 = _mm256_slli_epi16(_mm256_abs_epi16(alpha_sign), 9); |
| const __m256i dc_q0 = _mm256_set1_epi16(*dst); |
| __m256i *row = (__m256i *)pred_buf_q3; |
| const __m256i *row_end = row + height * CFL_BUF_LINE_I256; |
| |
| do { |
| __m256i res = predict_unclipped(row, alpha_q12, alpha_sign, dc_q0); |
| __m256i next = predict_unclipped(row + 1, alpha_q12, alpha_sign, dc_q0); |
| res = _mm256_packus_epi16(res, next); |
| res = _mm256_permute4x64_epi64(res, _MM_SHUFFLE(3, 1, 2, 0)); |
| _mm256_storeu_si256((__m256i *)dst, res); |
| dst += dst_stride; |
| } while ((row += CFL_BUF_LINE_I256) < row_end); |
| } |
| |
| CFL_PREDICT_X(avx2, 32, 8, lbd); |
| CFL_PREDICT_X(avx2, 32, 16, lbd); |
| CFL_PREDICT_X(avx2, 32, 32, lbd); |
| |
| cfl_predict_lbd_fn cfl_get_predict_lbd_fn_avx2(TX_SIZE tx_size) { |
| static const cfl_predict_lbd_fn pred[TX_SIZES_ALL] = { |
| cfl_predict_lbd_4x4_ssse3, /* 4x4 */ |
| cfl_predict_lbd_8x8_ssse3, /* 8x8 */ |
| cfl_predict_lbd_16x16_ssse3, /* 16x16 */ |
| cfl_predict_lbd_32x32_avx2, /* 32x32 */ |
| NULL, /* 64x64 (invalid CFL size) */ |
| cfl_predict_lbd_4x8_ssse3, /* 4x8 */ |
| cfl_predict_lbd_8x4_ssse3, /* 8x4 */ |
| cfl_predict_lbd_8x16_ssse3, /* 8x16 */ |
| cfl_predict_lbd_16x8_ssse3, /* 16x8 */ |
| cfl_predict_lbd_16x32_ssse3, /* 16x32 */ |
| cfl_predict_lbd_32x16_avx2, /* 32x16 */ |
| NULL, /* 32x64 (invalid CFL size) */ |
| NULL, /* 64x32 (invalid CFL size) */ |
| cfl_predict_lbd_4x16_ssse3, /* 4x16 */ |
| cfl_predict_lbd_16x4_ssse3, /* 16x4 */ |
| cfl_predict_lbd_8x32_ssse3, /* 8x32 */ |
| cfl_predict_lbd_32x8_avx2, /* 32x8 */ |
| NULL, /* 16x64 (invalid CFL size) */ |
| NULL, /* 64x16 (invalid CFL size) */ |
| }; |
| // Modulo TX_SIZES_ALL to ensure that an attacker won't be able to index the |
| // function pointer array out of bounds. |
| return pred[tx_size % TX_SIZES_ALL]; |
| } |
| |
| #if CONFIG_AV1_HIGHBITDEPTH |
| static __m256i highbd_max_epi16(int bd) { |
| const __m256i neg_one = _mm256_set1_epi16(-1); |
| // (1 << bd) - 1 => -(-1 << bd) -1 => -1 - (-1 << bd) => -1 ^ (-1 << bd) |
| return _mm256_xor_si256(_mm256_slli_epi16(neg_one, bd), neg_one); |
| } |
| |
| static __m256i highbd_clamp_epi16(__m256i u, __m256i zero, __m256i max) { |
| return _mm256_max_epi16(_mm256_min_epi16(u, max), zero); |
| } |
| |
| static INLINE void cfl_predict_hbd_avx2(const int16_t *pred_buf_q3, |
| uint16_t *dst, int dst_stride, |
| int alpha_q3, int bd, int width, |
| int height) { |
| // Use SSSE3 version for smaller widths |
| assert(width == 16 || width == 32); |
| const __m256i alpha_sign = _mm256_set1_epi16(alpha_q3); |
| const __m256i alpha_q12 = _mm256_slli_epi16(_mm256_abs_epi16(alpha_sign), 9); |
| const __m256i dc_q0 = _mm256_loadu_si256((__m256i *)dst); |
| const __m256i max = highbd_max_epi16(bd); |
| |
| __m256i *row = (__m256i *)pred_buf_q3; |
| const __m256i *row_end = row + height * CFL_BUF_LINE_I256; |
| do { |
| const __m256i res = predict_unclipped(row, alpha_q12, alpha_sign, dc_q0); |
| _mm256_storeu_si256((__m256i *)dst, |
| highbd_clamp_epi16(res, _mm256_setzero_si256(), max)); |
| if (width == 32) { |
| const __m256i res_1 = |
| predict_unclipped(row + 1, alpha_q12, alpha_sign, dc_q0); |
| _mm256_storeu_si256( |
| (__m256i *)(dst + 16), |
| highbd_clamp_epi16(res_1, _mm256_setzero_si256(), max)); |
| } |
| dst += dst_stride; |
| } while ((row += CFL_BUF_LINE_I256) < row_end); |
| } |
| |
| CFL_PREDICT_X(avx2, 16, 4, hbd) |
| CFL_PREDICT_X(avx2, 16, 8, hbd) |
| CFL_PREDICT_X(avx2, 16, 16, hbd) |
| CFL_PREDICT_X(avx2, 16, 32, hbd) |
| CFL_PREDICT_X(avx2, 32, 8, hbd) |
| CFL_PREDICT_X(avx2, 32, 16, hbd) |
| CFL_PREDICT_X(avx2, 32, 32, hbd) |
| |
| cfl_predict_hbd_fn cfl_get_predict_hbd_fn_avx2(TX_SIZE tx_size) { |
| static const cfl_predict_hbd_fn pred[TX_SIZES_ALL] = { |
| cfl_predict_hbd_4x4_ssse3, /* 4x4 */ |
| cfl_predict_hbd_8x8_ssse3, /* 8x8 */ |
| cfl_predict_hbd_16x16_avx2, /* 16x16 */ |
| cfl_predict_hbd_32x32_avx2, /* 32x32 */ |
| NULL, /* 64x64 (invalid CFL size) */ |
| cfl_predict_hbd_4x8_ssse3, /* 4x8 */ |
| cfl_predict_hbd_8x4_ssse3, /* 8x4 */ |
| cfl_predict_hbd_8x16_ssse3, /* 8x16 */ |
| cfl_predict_hbd_16x8_avx2, /* 16x8 */ |
| cfl_predict_hbd_16x32_avx2, /* 16x32 */ |
| cfl_predict_hbd_32x16_avx2, /* 32x16 */ |
| NULL, /* 32x64 (invalid CFL size) */ |
| NULL, /* 64x32 (invalid CFL size) */ |
| cfl_predict_hbd_4x16_ssse3, /* 4x16 */ |
| cfl_predict_hbd_16x4_avx2, /* 16x4 */ |
| cfl_predict_hbd_8x32_ssse3, /* 8x32 */ |
| cfl_predict_hbd_32x8_avx2, /* 32x8 */ |
| NULL, /* 16x64 (invalid CFL size) */ |
| NULL, /* 64x16 (invalid CFL size) */ |
| }; |
| // Modulo TX_SIZES_ALL to ensure that an attacker won't be able to index the |
| // function pointer array out of bounds. |
| return pred[tx_size % TX_SIZES_ALL]; |
| } |
| #endif // CONFIG_AV1_HIGHBITDEPTH |
| |
| // Returns a vector where all the (32-bits) elements are the sum of all the |
| // lanes in a. |
| static INLINE __m256i fill_sum_epi32(__m256i a) { |
| // Given that a == [A, B, C, D, E, F, G, H] |
| a = _mm256_hadd_epi32(a, a); |
| // Given that A' == A + B, C' == C + D, E' == E + F, G' == G + H |
| // a == [A', C', A', C', E', G', E', G'] |
| a = _mm256_permute4x64_epi64(a, _MM_SHUFFLE(3, 1, 2, 0)); |
| // a == [A', C', E', G', A', C', E', G'] |
| a = _mm256_hadd_epi32(a, a); |
| // Given that A'' == A' + C' and E'' == E' + G' |
| // a == [A'', E'', A'', E'', A'', E'', A'', E''] |
| return _mm256_hadd_epi32(a, a); |
| // Given that A''' == A'' + E'' |
| // a == [A''', A''', A''', A''', A''', A''', A''', A'''] |
| } |
| |
| static INLINE __m256i _mm256_addl_epi16(__m256i a) { |
| return _mm256_add_epi32(_mm256_unpacklo_epi16(a, _mm256_setzero_si256()), |
| _mm256_unpackhi_epi16(a, _mm256_setzero_si256())); |
| } |
| |
| static INLINE void subtract_average_avx2(const uint16_t *src_ptr, |
| int16_t *dst_ptr, int width, |
| int height, int round_offset, |
| int num_pel_log2) { |
| // Use SSE2 version for smaller widths |
| assert(width == 16 || width == 32); |
| |
| const __m256i *src = (__m256i *)src_ptr; |
| const __m256i *const end = src + height * CFL_BUF_LINE_I256; |
| // To maximize usage of the AVX2 registers, we sum two rows per loop |
| // iteration |
| const int step = 2 * CFL_BUF_LINE_I256; |
| |
| __m256i sum = _mm256_setzero_si256(); |
| // For width 32, we use a second sum accumulator to reduce accumulator |
| // dependencies in the loop. |
| __m256i sum2; |
| if (width == 32) sum2 = _mm256_setzero_si256(); |
| |
| do { |
| // Add top row to the bottom row |
| __m256i l0 = _mm256_add_epi16(_mm256_loadu_si256(src), |
| _mm256_loadu_si256(src + CFL_BUF_LINE_I256)); |
| sum = _mm256_add_epi32(sum, _mm256_addl_epi16(l0)); |
| if (width == 32) { /* Don't worry, this if it gets optimized out. */ |
| // Add the second part of the top row to the second part of the bottom row |
| __m256i l1 = |
| _mm256_add_epi16(_mm256_loadu_si256(src + 1), |
| _mm256_loadu_si256(src + 1 + CFL_BUF_LINE_I256)); |
| sum2 = _mm256_add_epi32(sum2, _mm256_addl_epi16(l1)); |
| } |
| src += step; |
| } while (src < end); |
| // Combine both sum accumulators |
| if (width == 32) sum = _mm256_add_epi32(sum, sum2); |
| |
| __m256i fill = fill_sum_epi32(sum); |
| |
| __m256i avg_epi16 = _mm256_srli_epi32( |
| _mm256_add_epi32(fill, _mm256_set1_epi32(round_offset)), num_pel_log2); |
| avg_epi16 = _mm256_packs_epi32(avg_epi16, avg_epi16); |
| |
| // Store and subtract loop |
| src = (__m256i *)src_ptr; |
| __m256i *dst = (__m256i *)dst_ptr; |
| do { |
| _mm256_storeu_si256(dst, |
| _mm256_sub_epi16(_mm256_loadu_si256(src), avg_epi16)); |
| if (width == 32) { |
| _mm256_storeu_si256( |
| dst + 1, _mm256_sub_epi16(_mm256_loadu_si256(src + 1), avg_epi16)); |
| } |
| src += CFL_BUF_LINE_I256; |
| dst += CFL_BUF_LINE_I256; |
| } while (src < end); |
| } |
| |
| // Declare wrappers for AVX2 sizes |
| CFL_SUB_AVG_X(avx2, 16, 4, 32, 6) |
| CFL_SUB_AVG_X(avx2, 16, 8, 64, 7) |
| CFL_SUB_AVG_X(avx2, 16, 16, 128, 8) |
| CFL_SUB_AVG_X(avx2, 16, 32, 256, 9) |
| CFL_SUB_AVG_X(avx2, 32, 8, 128, 8) |
| CFL_SUB_AVG_X(avx2, 32, 16, 256, 9) |
| CFL_SUB_AVG_X(avx2, 32, 32, 512, 10) |
| |
| // Based on the observation that for small blocks AVX2 does not outperform |
| // SSE2, we call the SSE2 code for block widths 4 and 8. |
| cfl_subtract_average_fn cfl_get_subtract_average_fn_avx2(TX_SIZE tx_size) { |
| static const cfl_subtract_average_fn sub_avg[TX_SIZES_ALL] = { |
| cfl_subtract_average_4x4_sse2, /* 4x4 */ |
| cfl_subtract_average_8x8_sse2, /* 8x8 */ |
| cfl_subtract_average_16x16_avx2, /* 16x16 */ |
| cfl_subtract_average_32x32_avx2, /* 32x32 */ |
| NULL, /* 64x64 (invalid CFL size) */ |
| cfl_subtract_average_4x8_sse2, /* 4x8 */ |
| cfl_subtract_average_8x4_sse2, /* 8x4 */ |
| cfl_subtract_average_8x16_sse2, /* 8x16 */ |
| cfl_subtract_average_16x8_avx2, /* 16x8 */ |
| cfl_subtract_average_16x32_avx2, /* 16x32 */ |
| cfl_subtract_average_32x16_avx2, /* 32x16 */ |
| NULL, /* 32x64 (invalid CFL size) */ |
| NULL, /* 64x32 (invalid CFL size) */ |
| cfl_subtract_average_4x16_sse2, /* 4x16 */ |
| cfl_subtract_average_16x4_avx2, /* 16x4 */ |
| cfl_subtract_average_8x32_sse2, /* 8x32 */ |
| cfl_subtract_average_32x8_avx2, /* 32x8 */ |
| NULL, /* 16x64 (invalid CFL size) */ |
| NULL, /* 64x16 (invalid CFL size) */ |
| }; |
| // Modulo TX_SIZES_ALL to ensure that an attacker won't be able to |
| // index the function pointer array out of bounds. |
| return sub_avg[tx_size % TX_SIZES_ALL]; |
| } |