blob: 702987c158290abb6a49b469a54796335ee317eb [file] [log] [blame] [edit]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include "config/aom_dsp_rtcd.h"
#include "config/av1_rtcd.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/blend.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/aom_timer.h"
#include "aom_ports/mem.h"
#include "aom_ports/system_state.h"
#include "av1/encoder/model_rd.h"
#include "av1/common/mvref_common.h"
#include "av1/common/pred_common.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#include "av1/encoder/encodemv.h"
#include "av1/encoder/rdopt.h"
#include "av1/encoder/reconinter_enc.h"
extern int g_pick_inter_mode_cnt;
/*!\cond */
typedef struct {
uint8_t *data;
int stride;
int in_use;
} PRED_BUFFER;
typedef struct {
PRED_BUFFER *best_pred;
PREDICTION_MODE best_mode;
TX_SIZE best_tx_size;
MV_REFERENCE_FRAME best_ref_frame;
uint8_t best_mode_skip_txfm;
uint8_t best_mode_initial_skip_flag;
int_interpfilters best_pred_filter;
} BEST_PICKMODE;
typedef struct {
MV_REFERENCE_FRAME ref_frame;
PREDICTION_MODE pred_mode;
} REF_MODE;
/*!\endcond */
static const int pos_shift_16x16[4][4] = {
{ 9, 10, 13, 14 }, { 11, 12, 15, 16 }, { 17, 18, 21, 22 }, { 19, 20, 23, 24 }
};
#define NUM_INTER_MODES_RT 9
#define NUM_INTER_MODES_REDUCED 8
static const REF_MODE ref_mode_set_rt[NUM_INTER_MODES_RT] = {
{ LAST_FRAME, NEARESTMV }, { LAST_FRAME, NEARMV },
{ LAST_FRAME, NEWMV }, { GOLDEN_FRAME, NEARESTMV },
{ GOLDEN_FRAME, NEARMV }, { GOLDEN_FRAME, NEWMV },
{ ALTREF_FRAME, NEARESTMV }, { ALTREF_FRAME, NEARMV },
{ ALTREF_FRAME, NEWMV }
};
// GLOBALMV in the set below is in fact ZEROMV as we don't do global ME in RT
// mode
static const REF_MODE ref_mode_set_reduced[NUM_INTER_MODES_REDUCED] = {
{ LAST_FRAME, GLOBALMV }, { LAST_FRAME, NEARESTMV },
{ GOLDEN_FRAME, GLOBALMV }, { LAST_FRAME, NEARMV },
{ LAST_FRAME, NEWMV }, { GOLDEN_FRAME, NEARESTMV },
{ GOLDEN_FRAME, NEARMV }, { GOLDEN_FRAME, NEWMV }
};
static const THR_MODES mode_idx[REF_FRAMES][4] = {
{ THR_DC, THR_V_PRED, THR_H_PRED, THR_SMOOTH },
{ THR_NEARESTMV, THR_NEARMV, THR_GLOBALMV, THR_NEWMV },
{ THR_NEARESTL2, THR_NEARL2, THR_GLOBALL2, THR_NEWL2 },
{ THR_NEARESTL3, THR_NEARL3, THR_GLOBALL3, THR_NEWL3 },
{ THR_NEARESTG, THR_NEARG, THR_GLOBALMV, THR_NEWG },
};
static const PREDICTION_MODE intra_mode_list[] = { DC_PRED, V_PRED, H_PRED,
SMOOTH_PRED };
static INLINE int mode_offset(const PREDICTION_MODE mode) {
if (mode >= NEARESTMV) {
return INTER_OFFSET(mode);
} else {
switch (mode) {
case DC_PRED: return 0;
case V_PRED: return 1;
case H_PRED: return 2;
case SMOOTH_PRED: return 3;
default: assert(0); return -1;
}
}
}
enum {
// INTER_ALL = (1 << NEARESTMV) | (1 << NEARMV) | (1 << NEWMV),
INTER_NEAREST = (1 << NEARESTMV),
INTER_NEAREST_NEW = (1 << NEARESTMV) | (1 << NEWMV),
INTER_NEAREST_NEAR = (1 << NEARESTMV) | (1 << NEARMV),
INTER_NEAR_NEW = (1 << NEARMV) | (1 << NEWMV),
};
static INLINE void init_best_pickmode(BEST_PICKMODE *bp) {
bp->best_mode = NEARESTMV;
bp->best_ref_frame = LAST_FRAME;
bp->best_tx_size = TX_8X8;
bp->best_pred_filter = av1_broadcast_interp_filter(EIGHTTAP_REGULAR);
bp->best_mode_skip_txfm = 0;
bp->best_mode_initial_skip_flag = 0;
bp->best_pred = NULL;
}
/*!\brief Runs Motion Estimation for a specific block and specific ref frame.
*
* \ingroup nonrd_mode_search
* \callgraph
* \callergraph
* Finds the best Motion Vector by running Motion Estimation for a specific
* block and a specific reference frame. Exits early if RDCost of Full Pel part
* exceeds best RD Cost fund so far
* \param[in] cpi Top-level encoder structure
* \param[in] x Pointer to structure holding all the
* data for the current macroblock
* \param[in] bsize Current block size
* \param[in] mi_row Row index in 4x4 units
* \param[in] mi_col Column index in 4x4 units
* \param[in] tmp_mv Pointer to best found New MV
* \param[in] rate_mv Pointer to Rate of the best new MV
* \param[in] best_rd_sofar RD Cost of the best mode found so far
* \param[in] use_base_mv Flag, indicating that tmp_mv holds
* specific MV to start the search with
*
* \return Returns 0 if ME was terminated after Full Pel Search because too
* high RD Cost. Otherwise returns 1. Best New MV is placed into \c tmp_mv.
* Rate estimation for this vector is placed to \c rate_mv
*/
static int combined_motion_search(AV1_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE bsize, int mi_row, int mi_col,
int_mv *tmp_mv, int *rate_mv,
int64_t best_rd_sofar, int use_base_mv) {
MACROBLOCKD *xd = &x->e_mbd;
const AV1_COMMON *cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
MB_MODE_INFO *mi = xd->mi[0];
struct buf_2d backup_yv12[MAX_MB_PLANE] = { { 0, 0, 0, 0, 0 } };
int step_param = (cpi->sf.rt_sf.fullpel_search_step_param)
? cpi->sf.rt_sf.fullpel_search_step_param
: cpi->mv_search_params.mv_step_param;
FULLPEL_MV start_mv;
const int ref = mi->ref_frame[0];
const MV ref_mv = av1_get_ref_mv(x, mi->ref_mv_idx).as_mv;
MV center_mv;
int dis;
int rv = 0;
int cost_list[5];
int search_subpel = 1;
const YV12_BUFFER_CONFIG *scaled_ref_frame =
av1_get_scaled_ref_frame(cpi, ref);
if (scaled_ref_frame) {
int i;
// Swap out the reference frame for a version that's been scaled to
// match the resolution of the current frame, allowing the existing
// motion search code to be used without additional modifications.
for (i = 0; i < MAX_MB_PLANE; i++) backup_yv12[i] = xd->plane[i].pre[0];
av1_setup_pre_planes(xd, 0, scaled_ref_frame, mi_row, mi_col, NULL,
num_planes);
}
start_mv = get_fullmv_from_mv(&ref_mv);
if (!use_base_mv)
center_mv = ref_mv;
else
center_mv = tmp_mv->as_mv;
const search_site_config *src_search_sites =
cpi->mv_search_params.search_site_cfg[SS_CFG_SRC];
FULLPEL_MOTION_SEARCH_PARAMS full_ms_params;
av1_make_default_fullpel_ms_params(&full_ms_params, cpi, x, bsize, &center_mv,
src_search_sites,
/*fine_search_interval=*/0);
av1_full_pixel_search(start_mv, &full_ms_params, step_param,
cond_cost_list(cpi, cost_list), &tmp_mv->as_fullmv,
NULL);
// calculate the bit cost on motion vector
MV mvp_full = get_mv_from_fullmv(&tmp_mv->as_fullmv);
*rate_mv = av1_mv_bit_cost(&mvp_full, &ref_mv, x->mv_costs->nmv_joint_cost,
x->mv_costs->mv_cost_stack, MV_COST_WEIGHT);
// TODO(kyslov) Account for Rate Mode!
rv = !(RDCOST(x->rdmult, (*rate_mv), 0) > best_rd_sofar);
if (rv && search_subpel) {
SUBPEL_MOTION_SEARCH_PARAMS ms_params;
av1_make_default_subpel_ms_params(&ms_params, cpi, x, bsize, &ref_mv,
cost_list);
MV subpel_start_mv = get_mv_from_fullmv(&tmp_mv->as_fullmv);
cpi->mv_search_params.find_fractional_mv_step(
xd, cm, &ms_params, subpel_start_mv, &tmp_mv->as_mv, &dis,
&x->pred_sse[ref], NULL);
*rate_mv =
av1_mv_bit_cost(&tmp_mv->as_mv, &ref_mv, x->mv_costs->nmv_joint_cost,
x->mv_costs->mv_cost_stack, MV_COST_WEIGHT);
}
if (scaled_ref_frame) {
int i;
for (i = 0; i < MAX_MB_PLANE; i++) xd->plane[i].pre[0] = backup_yv12[i];
}
// Final MV can not be equal to referance MV as this will trigger assert
// later. This can happen if both NEAREST and NEAR modes were skipped
rv = (tmp_mv->as_mv.col != ref_mv.col || tmp_mv->as_mv.row != ref_mv.row);
return rv;
}
/*!\brief Searches for the best New Motion Vector.
*
* \ingroup nonrd_mode_search
* \callgraph
* \callergraph
* Finds the best Motion Vector by doing Motion Estimation. Uses reduced
* complexity ME for non-LAST frames or calls \c combined_motion_search
* for LAST reference frame
* \param[in] cpi Top-level encoder structure
* \param[in] x Pointer to structure holding all the
* data for the current macroblock
* \param[in] frame_mv Array that holds MVs for all modes
* and ref frames
* \param[in] ref_frame Reference freme for which to find
* the best New MVs
* \param[in] gf_temporal_ref Flag, indicating temporal reference
* for GOLDEN frame
* \param[in] bsize Current block size
* \param[in] mi_row Row index in 4x4 units
* \param[in] mi_col Column index in 4x4 units
* \param[in] rate_mv Pointer to Rate of the best new MV
* \param[in] best_rdc Pointer to the RD Cost for the best
* mode found so far
*
* \return Returns -1 if the search was not done, otherwise returns 0.
* Best New MV is placed into \c frame_mv array, Rate estimation for this
* vector is placed to \c rate_mv
*/
static int search_new_mv(AV1_COMP *cpi, MACROBLOCK *x,
int_mv frame_mv[][REF_FRAMES],
MV_REFERENCE_FRAME ref_frame, int gf_temporal_ref,
BLOCK_SIZE bsize, int mi_row, int mi_col, int *rate_mv,
RD_STATS *best_rdc) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mi = xd->mi[0];
AV1_COMMON *cm = &cpi->common;
if (ref_frame > LAST_FRAME && cpi->oxcf.rc_cfg.mode == AOM_CBR &&
gf_temporal_ref) {
int tmp_sad;
int dis;
int cost_list[5] = { INT_MAX, INT_MAX, INT_MAX, INT_MAX, INT_MAX };
if (bsize < BLOCK_16X16) return -1;
tmp_sad = av1_int_pro_motion_estimation(
cpi, x, bsize, mi_row, mi_col,
&x->mbmi_ext.ref_mv_stack[ref_frame][0].this_mv.as_mv);
if (tmp_sad > x->pred_mv_sad[LAST_FRAME]) return -1;
frame_mv[NEWMV][ref_frame].as_int = mi->mv[0].as_int;
int_mv best_mv = mi->mv[0];
best_mv.as_mv.row >>= 3;
best_mv.as_mv.col >>= 3;
MV ref_mv = av1_get_ref_mv(x, 0).as_mv;
*rate_mv = av1_mv_bit_cost(&frame_mv[NEWMV][ref_frame].as_mv, &ref_mv,
x->mv_costs->nmv_joint_cost,
x->mv_costs->mv_cost_stack, MV_COST_WEIGHT);
frame_mv[NEWMV][ref_frame].as_mv.row >>= 3;
frame_mv[NEWMV][ref_frame].as_mv.col >>= 3;
SUBPEL_MOTION_SEARCH_PARAMS ms_params;
av1_make_default_subpel_ms_params(&ms_params, cpi, x, bsize, &ref_mv,
cost_list);
MV start_mv = get_mv_from_fullmv(&best_mv.as_fullmv);
cpi->mv_search_params.find_fractional_mv_step(
xd, cm, &ms_params, start_mv, &best_mv.as_mv, &dis,
&x->pred_sse[ref_frame], NULL);
frame_mv[NEWMV][ref_frame].as_int = best_mv.as_int;
} else if (!combined_motion_search(cpi, x, bsize, mi_row, mi_col,
&frame_mv[NEWMV][ref_frame], rate_mv,
best_rdc->rdcost, 0)) {
return -1;
}
return 0;
}
/*!\brief Finds predicted motion vectors for a block.
*
* \ingroup nonrd_mode_search
* \callgraph
* \callergraph
* Finds predicted motion vectors for a block from a certain reference frame.
* First, it fills reference MV stack, then picks the test from the stack and
* predicts the final MV for a block for each mode.
* \param[in] cpi Top-level encoder structure
* \param[in] x Pointer to structure holding all the
* data for the current macroblock
* \param[in] ref_frame Reference freme for which to find
* ref MVs
* \param[in] frame_mv Predicted MVs for a block
* \param[in] tile_data Pointer to struct holding adaptive
* data/contexts/models for the tile
* during encoding
* \param[in] yv12_mb Buffer to hold predicted block
* \param[in] bsize Current block size
* \param[in] force_skip_low_temp_var Flag indicating possible mode search
* prune for low temporal variace block
*
* \return Nothing is returned. Instead, predicted MVs are placed into
* \c frame_mv array
*/
static INLINE void find_predictors(AV1_COMP *cpi, MACROBLOCK *x,
MV_REFERENCE_FRAME ref_frame,
int_mv frame_mv[MB_MODE_COUNT][REF_FRAMES],
TileDataEnc *tile_data,
struct buf_2d yv12_mb[8][MAX_MB_PLANE],
BLOCK_SIZE bsize,
int force_skip_low_temp_var) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext;
const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_yv12_buf(cm, ref_frame);
const int num_planes = av1_num_planes(cm);
(void)tile_data;
x->pred_mv_sad[ref_frame] = INT_MAX;
frame_mv[NEWMV][ref_frame].as_int = INVALID_MV;
// TODO(kyslov) this needs various further optimizations. to be continued..
assert(yv12 != NULL);
if (yv12 != NULL) {
const struct scale_factors *const sf =
get_ref_scale_factors_const(cm, ref_frame);
av1_setup_pred_block(xd, yv12_mb[ref_frame], yv12, sf, sf, num_planes);
av1_find_mv_refs(cm, xd, mbmi, ref_frame, mbmi_ext->ref_mv_count,
xd->ref_mv_stack, xd->weight, NULL, mbmi_ext->global_mvs,
mbmi_ext->mode_context);
// TODO(Ravi): Populate mbmi_ext->ref_mv_stack[ref_frame][4] and
// mbmi_ext->weight[ref_frame][4] inside av1_find_mv_refs.
av1_copy_usable_ref_mv_stack_and_weight(xd, mbmi_ext, ref_frame);
av1_find_best_ref_mvs_from_stack(
cm->features.allow_high_precision_mv, mbmi_ext, ref_frame,
&frame_mv[NEARESTMV][ref_frame], &frame_mv[NEARMV][ref_frame], 0);
frame_mv[GLOBALMV][ref_frame] = mbmi_ext->global_mvs[ref_frame];
// Early exit for non-LAST frame if force_skip_low_temp_var is set.
if (!av1_is_scaled(sf) && bsize >= BLOCK_8X8 &&
!(force_skip_low_temp_var && ref_frame != LAST_FRAME)) {
av1_mv_pred(cpi, x, yv12_mb[ref_frame][0].buf, yv12->y_stride, ref_frame,
bsize);
}
}
av1_count_overlappable_neighbors(cm, xd);
mbmi->num_proj_ref = 1;
}
static void estimate_single_ref_frame_costs(const AV1_COMMON *cm,
const MACROBLOCKD *xd,
const ModeCosts *mode_costs,
int segment_id,
unsigned int *ref_costs_single) {
int seg_ref_active =
segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME);
if (seg_ref_active) {
memset(ref_costs_single, 0, REF_FRAMES * sizeof(*ref_costs_single));
} else {
int intra_inter_ctx = av1_get_intra_inter_context(xd);
ref_costs_single[INTRA_FRAME] =
mode_costs->intra_inter_cost[intra_inter_ctx][0];
unsigned int base_cost = mode_costs->intra_inter_cost[intra_inter_ctx][1];
ref_costs_single[LAST_FRAME] = base_cost;
ref_costs_single[GOLDEN_FRAME] = base_cost;
ref_costs_single[ALTREF_FRAME] = base_cost;
// add cost for last, golden, altref
ref_costs_single[LAST_FRAME] += mode_costs->single_ref_cost[0][0][0];
ref_costs_single[GOLDEN_FRAME] += mode_costs->single_ref_cost[0][0][1];
ref_costs_single[GOLDEN_FRAME] += mode_costs->single_ref_cost[0][1][0];
ref_costs_single[ALTREF_FRAME] += mode_costs->single_ref_cost[0][0][1];
ref_costs_single[ALTREF_FRAME] += mode_costs->single_ref_cost[0][2][0];
}
}
static void estimate_comp_ref_frame_costs(
const AV1_COMMON *cm, const MACROBLOCKD *xd, const ModeCosts *mode_costs,
int segment_id, unsigned int (*ref_costs_comp)[REF_FRAMES]) {
if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
for (int ref_frame = 0; ref_frame < REF_FRAMES; ++ref_frame)
memset(ref_costs_comp[ref_frame], 0,
REF_FRAMES * sizeof((*ref_costs_comp)[0]));
} else {
int intra_inter_ctx = av1_get_intra_inter_context(xd);
unsigned int base_cost = mode_costs->intra_inter_cost[intra_inter_ctx][1];
if (cm->current_frame.reference_mode != SINGLE_REFERENCE) {
// Similar to single ref, determine cost of compound ref frames.
// cost_compound_refs = cost_first_ref + cost_second_ref
const int bwdref_comp_ctx_p = av1_get_pred_context_comp_bwdref_p(xd);
const int bwdref_comp_ctx_p1 = av1_get_pred_context_comp_bwdref_p1(xd);
const int ref_comp_ctx_p = av1_get_pred_context_comp_ref_p(xd);
const int ref_comp_ctx_p1 = av1_get_pred_context_comp_ref_p1(xd);
const int ref_comp_ctx_p2 = av1_get_pred_context_comp_ref_p2(xd);
const int comp_ref_type_ctx = av1_get_comp_reference_type_context(xd);
unsigned int ref_bicomp_costs[REF_FRAMES] = { 0 };
ref_bicomp_costs[LAST_FRAME] = ref_bicomp_costs[LAST2_FRAME] =
ref_bicomp_costs[LAST3_FRAME] = ref_bicomp_costs[GOLDEN_FRAME] =
base_cost + mode_costs->comp_ref_type_cost[comp_ref_type_ctx][1];
ref_bicomp_costs[BWDREF_FRAME] = ref_bicomp_costs[ALTREF2_FRAME] = 0;
ref_bicomp_costs[ALTREF_FRAME] = 0;
// cost of first ref frame
ref_bicomp_costs[LAST_FRAME] +=
mode_costs->comp_ref_cost[ref_comp_ctx_p][0][0];
ref_bicomp_costs[LAST2_FRAME] +=
mode_costs->comp_ref_cost[ref_comp_ctx_p][0][0];
ref_bicomp_costs[LAST3_FRAME] +=
mode_costs->comp_ref_cost[ref_comp_ctx_p][0][1];
ref_bicomp_costs[GOLDEN_FRAME] +=
mode_costs->comp_ref_cost[ref_comp_ctx_p][0][1];
ref_bicomp_costs[LAST_FRAME] +=
mode_costs->comp_ref_cost[ref_comp_ctx_p1][1][0];
ref_bicomp_costs[LAST2_FRAME] +=
mode_costs->comp_ref_cost[ref_comp_ctx_p1][1][1];
ref_bicomp_costs[LAST3_FRAME] +=
mode_costs->comp_ref_cost[ref_comp_ctx_p2][2][0];
ref_bicomp_costs[GOLDEN_FRAME] +=
mode_costs->comp_ref_cost[ref_comp_ctx_p2][2][1];
// cost of second ref frame
ref_bicomp_costs[BWDREF_FRAME] +=
mode_costs->comp_bwdref_cost[bwdref_comp_ctx_p][0][0];
ref_bicomp_costs[ALTREF2_FRAME] +=
mode_costs->comp_bwdref_cost[bwdref_comp_ctx_p][0][0];
ref_bicomp_costs[ALTREF_FRAME] +=
mode_costs->comp_bwdref_cost[bwdref_comp_ctx_p][0][1];
ref_bicomp_costs[BWDREF_FRAME] +=
mode_costs->comp_bwdref_cost[bwdref_comp_ctx_p1][1][0];
ref_bicomp_costs[ALTREF2_FRAME] +=
mode_costs->comp_bwdref_cost[bwdref_comp_ctx_p1][1][1];
// cost: if one ref frame is forward ref, the other ref is backward ref
for (int ref0 = LAST_FRAME; ref0 <= GOLDEN_FRAME; ++ref0) {
for (int ref1 = BWDREF_FRAME; ref1 <= ALTREF_FRAME; ++ref1) {
ref_costs_comp[ref0][ref1] =
ref_bicomp_costs[ref0] + ref_bicomp_costs[ref1];
}
}
// cost: if both ref frames are the same side.
const int uni_comp_ref_ctx_p = av1_get_pred_context_uni_comp_ref_p(xd);
const int uni_comp_ref_ctx_p1 = av1_get_pred_context_uni_comp_ref_p1(xd);
const int uni_comp_ref_ctx_p2 = av1_get_pred_context_uni_comp_ref_p2(xd);
ref_costs_comp[LAST_FRAME][LAST2_FRAME] =
base_cost + mode_costs->comp_ref_type_cost[comp_ref_type_ctx][0] +
mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][0] +
mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p1][1][0];
ref_costs_comp[LAST_FRAME][LAST3_FRAME] =
base_cost + mode_costs->comp_ref_type_cost[comp_ref_type_ctx][0] +
mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][0] +
mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p1][1][1] +
mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p2][2][0];
ref_costs_comp[LAST_FRAME][GOLDEN_FRAME] =
base_cost + mode_costs->comp_ref_type_cost[comp_ref_type_ctx][0] +
mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][0] +
mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p1][1][1] +
mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p2][2][1];
ref_costs_comp[BWDREF_FRAME][ALTREF_FRAME] =
base_cost + mode_costs->comp_ref_type_cost[comp_ref_type_ctx][0] +
mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][1];
} else {
for (int ref0 = LAST_FRAME; ref0 <= GOLDEN_FRAME; ++ref0) {
for (int ref1 = BWDREF_FRAME; ref1 <= ALTREF_FRAME; ++ref1)
ref_costs_comp[ref0][ref1] = 512;
}
ref_costs_comp[LAST_FRAME][LAST2_FRAME] = 512;
ref_costs_comp[LAST_FRAME][LAST3_FRAME] = 512;
ref_costs_comp[LAST_FRAME][GOLDEN_FRAME] = 512;
ref_costs_comp[BWDREF_FRAME][ALTREF_FRAME] = 512;
}
}
}
static TX_SIZE calculate_tx_size(const AV1_COMP *const cpi, BLOCK_SIZE bsize,
MACROBLOCK *const x, unsigned int var,
unsigned int sse) {
MACROBLOCKD *const xd = &x->e_mbd;
TX_SIZE tx_size;
const TxfmSearchParams *txfm_params = &x->txfm_search_params;
if (txfm_params->tx_mode_search_type == TX_MODE_SELECT) {
if (sse > (var << 2))
tx_size =
AOMMIN(max_txsize_lookup[bsize],
tx_mode_to_biggest_tx_size[txfm_params->tx_mode_search_type]);
else
tx_size = TX_8X8;
if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ &&
cyclic_refresh_segment_id_boosted(xd->mi[0]->segment_id))
tx_size = TX_8X8;
else if (tx_size > TX_16X16)
tx_size = TX_16X16;
} else {
tx_size =
AOMMIN(max_txsize_lookup[bsize],
tx_mode_to_biggest_tx_size[txfm_params->tx_mode_search_type]);
}
if (txfm_params->tx_mode_search_type != ONLY_4X4 && bsize > BLOCK_32X32)
tx_size = TX_16X16;
return AOMMIN(tx_size, TX_16X16);
}
static const uint8_t b_width_log2_lookup[BLOCK_SIZES] = { 0, 0, 1, 1, 1, 2,
2, 2, 3, 3, 3, 4,
4, 4, 5, 5 };
static const uint8_t b_height_log2_lookup[BLOCK_SIZES] = { 0, 1, 0, 1, 2, 1,
2, 3, 2, 3, 4, 3,
4, 5, 4, 5 };
static void block_variance(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride, int w, int h,
unsigned int *sse, int *sum, int block_size,
uint32_t *sse8x8, int *sum8x8, uint32_t *var8x8) {
int i, j, k = 0;
*sse = 0;
*sum = 0;
for (i = 0; i < h; i += block_size) {
for (j = 0; j < w; j += block_size) {
aom_get8x8var(src + src_stride * i + j, src_stride,
ref + ref_stride * i + j, ref_stride, &sse8x8[k],
&sum8x8[k]);
*sse += sse8x8[k];
*sum += sum8x8[k];
var8x8[k] = sse8x8[k] - (uint32_t)(((int64_t)sum8x8[k] * sum8x8[k]) >> 6);
k++;
}
}
}
static void calculate_variance(int bw, int bh, TX_SIZE tx_size,
unsigned int *sse_i, int *sum_i,
unsigned int *var_o, unsigned int *sse_o,
int *sum_o) {
const BLOCK_SIZE unit_size = txsize_to_bsize[tx_size];
const int nw = 1 << (bw - b_width_log2_lookup[unit_size]);
const int nh = 1 << (bh - b_height_log2_lookup[unit_size]);
int i, j, k = 0;
for (i = 0; i < nh; i += 2) {
for (j = 0; j < nw; j += 2) {
sse_o[k] = sse_i[i * nw + j] + sse_i[i * nw + j + 1] +
sse_i[(i + 1) * nw + j] + sse_i[(i + 1) * nw + j + 1];
sum_o[k] = sum_i[i * nw + j] + sum_i[i * nw + j + 1] +
sum_i[(i + 1) * nw + j] + sum_i[(i + 1) * nw + j + 1];
var_o[k] = sse_o[k] - (uint32_t)(((int64_t)sum_o[k] * sum_o[k]) >>
(b_width_log2_lookup[unit_size] +
b_height_log2_lookup[unit_size] + 6));
k++;
}
}
}
// Adjust the ac_thr according to speed, width, height and normalized sum
static int ac_thr_factor(const int speed, const int width, const int height,
const int norm_sum) {
if (speed >= 8 && norm_sum < 5) {
if (width <= 640 && height <= 480)
return 4;
else
return 2;
}
return 1;
}
static void model_skip_for_sb_y_large(AV1_COMP *cpi, BLOCK_SIZE bsize,
int mi_row, int mi_col, MACROBLOCK *x,
MACROBLOCKD *xd, RD_STATS *rd_stats,
int *early_term, int calculate_rd) {
// Note our transform coeffs are 8 times an orthogonal transform.
// Hence quantizer step is also 8 times. To get effective quantizer
// we need to divide by 8 before sending to modeling function.
unsigned int sse;
struct macroblock_plane *const p = &x->plane[0];
struct macroblockd_plane *const pd = &xd->plane[0];
const uint32_t dc_quant = p->dequant_QTX[0];
const uint32_t ac_quant = p->dequant_QTX[1];
const int64_t dc_thr = dc_quant * dc_quant >> 6;
int64_t ac_thr = ac_quant * ac_quant >> 6;
unsigned int var;
int sum;
const int bw = b_width_log2_lookup[bsize];
const int bh = b_height_log2_lookup[bsize];
const int num8x8 = 1 << (bw + bh - 2);
unsigned int sse8x8[256] = { 0 };
int sum8x8[256] = { 0 };
unsigned int var8x8[256] = { 0 };
TX_SIZE tx_size;
int k;
// Calculate variance for whole partition, and also save 8x8 blocks' variance
// to be used in following transform skipping test.
block_variance(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride,
4 << bw, 4 << bh, &sse, &sum, 8, sse8x8, sum8x8, var8x8);
var = sse - (unsigned int)(((int64_t)sum * sum) >> (bw + bh + 4));
rd_stats->sse = sse;
#if CONFIG_AV1_TEMPORAL_DENOISING
if (cpi->oxcf.noise_sensitivity > 0 && denoise_svc(cpi) &&
cpi->oxcf.speed > 5)
ac_thr = av1_scale_acskip_thresh(ac_thr, cpi->denoiser.denoising_level,
(abs(sum) >> (bw + bh)),
cpi->svc.temporal_layer_id);
else
ac_thr *= ac_thr_factor(cpi->oxcf.speed, cpi->common.width,
cpi->common.height, abs(sum) >> (bw + bh));
#else
ac_thr *= ac_thr_factor(cpi->oxcf.speed, cpi->common.width,
cpi->common.height, abs(sum) >> (bw + bh));
#endif
tx_size = calculate_tx_size(cpi, bsize, x, var, sse);
// The code below for setting skip flag assumes tranform size of at least 8x8,
// so force this lower limit on transform.
if (tx_size < TX_8X8) tx_size = TX_8X8;
xd->mi[0]->tx_size = tx_size;
// Evaluate if the partition block is a skippable block in Y plane.
{
unsigned int sse16x16[64] = { 0 };
int sum16x16[64] = { 0 };
unsigned int var16x16[64] = { 0 };
const int num16x16 = num8x8 >> 2;
unsigned int sse32x32[16] = { 0 };
int sum32x32[16] = { 0 };
unsigned int var32x32[16] = { 0 };
const int num32x32 = num8x8 >> 4;
int ac_test = 1;
int dc_test = 1;
const int num = (tx_size == TX_8X8)
? num8x8
: ((tx_size == TX_16X16) ? num16x16 : num32x32);
const unsigned int *sse_tx =
(tx_size == TX_8X8) ? sse8x8
: ((tx_size == TX_16X16) ? sse16x16 : sse32x32);
const unsigned int *var_tx =
(tx_size == TX_8X8) ? var8x8
: ((tx_size == TX_16X16) ? var16x16 : var32x32);
// Calculate variance if tx_size > TX_8X8
if (tx_size >= TX_16X16)
calculate_variance(bw, bh, TX_8X8, sse8x8, sum8x8, var16x16, sse16x16,
sum16x16);
if (tx_size == TX_32X32)
calculate_variance(bw, bh, TX_16X16, sse16x16, sum16x16, var32x32,
sse32x32, sum32x32);
// Skipping test
*early_term = 0;
for (k = 0; k < num; k++)
// Check if all ac coefficients can be quantized to zero.
if (!(var_tx[k] < ac_thr || var == 0)) {
ac_test = 0;
break;
}
for (k = 0; k < num; k++)
// Check if dc coefficient can be quantized to zero.
if (!(sse_tx[k] - var_tx[k] < dc_thr || sse == var)) {
dc_test = 0;
break;
}
if (ac_test && dc_test) {
int skip_uv[2] = { 0 };
unsigned int var_uv[2];
unsigned int sse_uv[2];
AV1_COMMON *const cm = &cpi->common;
// Transform skipping test in UV planes.
for (int i = 1; i <= 2; i++) {
int j = i - 1;
skip_uv[j] = 1;
if (x->color_sensitivity[j]) {
skip_uv[j] = 0;
struct macroblock_plane *const puv = &x->plane[i];
struct macroblockd_plane *const puvd = &xd->plane[i];
const BLOCK_SIZE uv_bsize = get_plane_block_size(
bsize, puvd->subsampling_x, puvd->subsampling_y);
// Adjust these thresholds for UV.
const int64_t uv_dc_thr =
(puv->dequant_QTX[0] * puv->dequant_QTX[0]) >> 3;
const int64_t uv_ac_thr =
(puv->dequant_QTX[1] * puv->dequant_QTX[1]) >> 3;
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, i,
i);
var_uv[j] = cpi->fn_ptr[uv_bsize].vf(puv->src.buf, puv->src.stride,
puvd->dst.buf, puvd->dst.stride,
&sse_uv[j]);
if ((var_uv[j] < uv_ac_thr || var_uv[j] == 0) &&
(sse_uv[j] - var_uv[j] < uv_dc_thr || sse_uv[j] == var_uv[j]))
skip_uv[j] = 1;
else
break;
}
}
if (skip_uv[0] & skip_uv[1]) {
*early_term = 1;
}
}
}
if (calculate_rd) {
if (!*early_term) {
const int bwide = block_size_wide[bsize];
const int bhigh = block_size_high[bsize];
model_rd_with_curvfit(cpi, x, bsize, AOM_PLANE_Y, sse, bwide * bhigh,
&rd_stats->rate, &rd_stats->dist);
}
if (*early_term) {
rd_stats->rate = 0;
rd_stats->dist = sse << 4;
}
}
}
static void model_rd_for_sb_y(const AV1_COMP *const cpi, BLOCK_SIZE bsize,
MACROBLOCK *x, MACROBLOCKD *xd,
RD_STATS *rd_stats, int calculate_rd) {
// Note our transform coeffs are 8 times an orthogonal transform.
// Hence quantizer step is also 8 times. To get effective quantizer
// we need to divide by 8 before sending to modeling function.
const int ref = xd->mi[0]->ref_frame[0];
assert(bsize < BLOCK_SIZES_ALL);
struct macroblock_plane *const p = &x->plane[0];
struct macroblockd_plane *const pd = &xd->plane[0];
unsigned int sse;
int rate;
int64_t dist;
unsigned int var = cpi->fn_ptr[bsize].vf(p->src.buf, p->src.stride,
pd->dst.buf, pd->dst.stride, &sse);
xd->mi[0]->tx_size = calculate_tx_size(cpi, bsize, x, var, sse);
if (calculate_rd) {
const int bwide = block_size_wide[bsize];
const int bhigh = block_size_high[bsize];
model_rd_with_curvfit(cpi, x, bsize, AOM_PLANE_Y, sse, bwide * bhigh, &rate,
&dist);
} else {
rate = INT_MAX; // this will be overwritten later with block_yrd
dist = INT_MAX;
}
rd_stats->sse = sse;
x->pred_sse[ref] = (unsigned int)AOMMIN(sse, UINT_MAX);
assert(rate >= 0);
rd_stats->skip_txfm = (rate == 0);
rate = AOMMIN(rate, INT_MAX);
rd_stats->rate = rate;
rd_stats->dist = dist;
}
/*!\brief Calculates RD Cost using Hadamard transform.
*
* \ingroup nonrd_mode_search
* \callgraph
* \callergraph
* Calculates RD Cost using Hadamard transform. For low bit depth this function
* uses low-precision set of functions (16-bit) and 32 bit for high bit depth
* \param[in] cpi Top-level encoder structure
* \param[in] x Pointer to structure holding all the data for
the current macroblock
* \param[in] mi_row Row index in 4x4 units
* \param[in] mi_col Column index in 4x4 units
* \param[in] this_rdc Pointer to calculated RD Cost
* \param[in] skippable Pointer to a flag indicating possible tx skip
* \param[in] bsize Current block size
* \param[in] tx_size Transform size
*
* \return Nothing is returned. Instead, calculated RD cost is placed to
* \c this_rdc. \c skippable flag is set if there is no non-zero quantized
* coefficients for Hadamard transform
*/
static void block_yrd(AV1_COMP *cpi, MACROBLOCK *x, int mi_row, int mi_col,
RD_STATS *this_rdc, int *skippable, BLOCK_SIZE bsize,
TX_SIZE tx_size) {
MACROBLOCKD *xd = &x->e_mbd;
const struct macroblockd_plane *pd = &xd->plane[0];
struct macroblock_plane *const p = &x->plane[0];
const int num_4x4_w = mi_size_wide[bsize];
const int num_4x4_h = mi_size_high[bsize];
const int step = 1 << (tx_size << 1);
const int block_step = (1 << tx_size);
int block = 0;
const int max_blocks_wide =
num_4x4_w + (xd->mb_to_right_edge >= 0 ? 0 : xd->mb_to_right_edge >> 5);
const int max_blocks_high =
num_4x4_h + (xd->mb_to_bottom_edge >= 0 ? 0 : xd->mb_to_bottom_edge >> 5);
int eob_cost = 0;
const int bw = 4 * num_4x4_w;
const int bh = 4 * num_4x4_h;
(void)mi_row;
(void)mi_col;
(void)cpi;
#if CONFIG_AV1_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
aom_highbd_subtract_block(bh, bw, p->src_diff, bw, p->src.buf,
p->src.stride, pd->dst.buf, pd->dst.stride,
x->e_mbd.bd);
} else {
aom_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride,
pd->dst.buf, pd->dst.stride);
}
#else
aom_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride,
pd->dst.buf, pd->dst.stride);
#endif
*skippable = 1;
// Keep track of the row and column of the blocks we use so that we know
// if we are in the unrestricted motion border.
for (int r = 0; r < max_blocks_high; r += block_step) {
for (int c = 0; c < num_4x4_w; c += block_step) {
if (c < max_blocks_wide) {
const SCAN_ORDER *const scan_order = &av1_scan_orders[tx_size][DCT_DCT];
const int block_offset = BLOCK_OFFSET(block);
#if CONFIG_AV1_HIGHBITDEPTH
tran_low_t *const coeff = p->coeff + block_offset;
tran_low_t *const qcoeff = p->qcoeff + block_offset;
tran_low_t *const dqcoeff = p->dqcoeff + block_offset;
#else
int16_t *const low_coeff = (int16_t *)p->coeff + block_offset;
int16_t *const low_qcoeff = (int16_t *)p->qcoeff + block_offset;
int16_t *const low_dqcoeff = (int16_t *)p->dqcoeff + block_offset;
#endif
uint16_t *const eob = &p->eobs[block];
const int diff_stride = bw;
const int16_t *src_diff;
src_diff = &p->src_diff[(r * diff_stride + c) << 2];
switch (tx_size) {
case TX_64X64:
assert(0); // Not implemented
break;
case TX_32X32:
assert(0); // Not used
break;
#if CONFIG_AV1_HIGHBITDEPTH
case TX_16X16:
aom_hadamard_16x16(src_diff, diff_stride, coeff);
av1_quantize_fp(coeff, 16 * 16, p->zbin_QTX, p->round_fp_QTX,
p->quant_fp_QTX, p->quant_shift_QTX, qcoeff,
dqcoeff, p->dequant_QTX, eob, scan_order->scan,
scan_order->iscan);
break;
case TX_8X8:
aom_hadamard_8x8(src_diff, diff_stride, coeff);
av1_quantize_fp(coeff, 8 * 8, p->zbin_QTX, p->round_fp_QTX,
p->quant_fp_QTX, p->quant_shift_QTX, qcoeff,
dqcoeff, p->dequant_QTX, eob, scan_order->scan,
scan_order->iscan);
break;
default:
assert(tx_size == TX_4X4);
aom_fdct4x4(src_diff, coeff, diff_stride);
av1_quantize_fp(coeff, 4 * 4, p->zbin_QTX, p->round_fp_QTX,
p->quant_fp_QTX, p->quant_shift_QTX, qcoeff,
dqcoeff, p->dequant_QTX, eob, scan_order->scan,
scan_order->iscan);
break;
#else
case TX_16X16:
aom_hadamard_lp_16x16(src_diff, diff_stride, low_coeff);
av1_quantize_lp(low_coeff, 16 * 16, p->round_fp_QTX,
p->quant_fp_QTX, low_qcoeff, low_dqcoeff,
p->dequant_QTX, eob, scan_order->scan);
break;
case TX_8X8:
aom_hadamard_lp_8x8(src_diff, diff_stride, low_coeff);
av1_quantize_lp(low_coeff, 8 * 8, p->round_fp_QTX, p->quant_fp_QTX,
low_qcoeff, low_dqcoeff, p->dequant_QTX, eob,
scan_order->scan);
break;
default:
assert(tx_size == TX_4X4);
aom_fdct4x4_lp(src_diff, low_coeff, diff_stride);
av1_quantize_lp(low_coeff, 4 * 4, p->round_fp_QTX, p->quant_fp_QTX,
low_qcoeff, low_dqcoeff, p->dequant_QTX, eob,
scan_order->scan);
break;
#endif
}
assert(*eob <= 1024);
*skippable &= (*eob == 0);
eob_cost += 1;
}
block += step;
}
}
this_rdc->skip_txfm = *skippable;
this_rdc->rate = 0;
if (this_rdc->sse < INT64_MAX) {
this_rdc->sse = (this_rdc->sse << 6) >> 2;
if (*skippable) {
this_rdc->dist = this_rdc->sse;
return;
}
}
block = 0;
this_rdc->dist = 0;
for (int r = 0; r < max_blocks_high; r += block_step) {
for (int c = 0; c < num_4x4_w; c += block_step) {
if (c < max_blocks_wide) {
const int block_offset = BLOCK_OFFSET(block);
uint16_t *const eob = &p->eobs[block];
#if CONFIG_AV1_HIGHBITDEPTH
int64_t dummy;
tran_low_t *const coeff = p->coeff + block_offset;
tran_low_t *const qcoeff = p->qcoeff + block_offset;
tran_low_t *const dqcoeff = p->dqcoeff + block_offset;
if (*eob == 1)
this_rdc->rate += (int)abs(qcoeff[0]);
else if (*eob > 1)
this_rdc->rate += aom_satd(qcoeff, step << 4);
this_rdc->dist +=
av1_block_error(coeff, dqcoeff, step << 4, &dummy) >> 2;
#else
int16_t *const low_coeff = (int16_t *)p->coeff + block_offset;
int16_t *const low_qcoeff = (int16_t *)p->qcoeff + block_offset;
int16_t *const low_dqcoeff = (int16_t *)p->dqcoeff + block_offset;
if (*eob == 1)
this_rdc->rate += (int)abs(low_qcoeff[0]);
else if (*eob > 1)
this_rdc->rate += aom_satd_lp(low_qcoeff, step << 4);
this_rdc->dist +=
av1_block_error_lp(low_coeff, low_dqcoeff, step << 4) >> 2;
#endif
}
block += step;
}
}
// If skippable is set, rate gets clobbered later.
this_rdc->rate <<= (2 + AV1_PROB_COST_SHIFT);
this_rdc->rate += (eob_cost << AV1_PROB_COST_SHIFT);
}
static INLINE void init_mbmi(MB_MODE_INFO *mbmi, PREDICTION_MODE pred_mode,
MV_REFERENCE_FRAME ref_frame0,
MV_REFERENCE_FRAME ref_frame1,
const AV1_COMMON *cm) {
PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
mbmi->ref_mv_idx = 0;
mbmi->mode = pred_mode;
mbmi->uv_mode = UV_DC_PRED;
mbmi->ref_frame[0] = ref_frame0;
mbmi->ref_frame[1] = ref_frame1;
pmi->palette_size[0] = 0;
pmi->palette_size[1] = 0;
mbmi->filter_intra_mode_info.use_filter_intra = 0;
mbmi->mv[0].as_int = mbmi->mv[1].as_int = 0;
mbmi->motion_mode = SIMPLE_TRANSLATION;
mbmi->num_proj_ref = 1;
mbmi->interintra_mode = 0;
set_default_interp_filters(mbmi, cm->features.interp_filter);
}
#if CONFIG_INTERNAL_STATS
static void store_coding_context(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx,
int mode_index) {
#else
static void store_coding_context(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) {
#endif // CONFIG_INTERNAL_STATS
MACROBLOCKD *const xd = &x->e_mbd;
TxfmSearchInfo *txfm_info = &x->txfm_search_info;
// Take a snapshot of the coding context so it can be
// restored if we decide to encode this way
ctx->rd_stats.skip_txfm = txfm_info->skip_txfm;
memset(ctx->blk_skip, 0, sizeof(ctx->blk_skip[0]) * ctx->num_4x4_blk);
memset(ctx->tx_type_map, DCT_DCT,
sizeof(ctx->tx_type_map[0]) * ctx->num_4x4_blk);
ctx->skippable = txfm_info->skip_txfm;
#if CONFIG_INTERNAL_STATS
ctx->best_mode_index = mode_index;
#endif // CONFIG_INTERNAL_STATS
ctx->mic = *xd->mi[0];
ctx->skippable = txfm_info->skip_txfm;
av1_copy_mbmi_ext_to_mbmi_ext_frame(&ctx->mbmi_ext_best, &x->mbmi_ext,
av1_ref_frame_type(xd->mi[0]->ref_frame));
ctx->comp_pred_diff = 0;
ctx->hybrid_pred_diff = 0;
ctx->single_pred_diff = 0;
}
static int get_pred_buffer(PRED_BUFFER *p, int len) {
for (int i = 0; i < len; i++) {
if (!p[i].in_use) {
p[i].in_use = 1;
return i;
}
}
return -1;
}
static void free_pred_buffer(PRED_BUFFER *p) {
if (p != NULL) p->in_use = 0;
}
static int cost_mv_ref(const ModeCosts *const mode_costs, PREDICTION_MODE mode,
int16_t mode_context) {
if (is_inter_compound_mode(mode)) {
return mode_costs
->inter_compound_mode_cost[mode_context][INTER_COMPOUND_OFFSET(mode)];
}
int mode_cost = 0;
int16_t mode_ctx = mode_context & NEWMV_CTX_MASK;
assert(is_inter_mode(mode));
if (mode == NEWMV) {
mode_cost = mode_costs->newmv_mode_cost[mode_ctx][0];
return mode_cost;
} else {
mode_cost = mode_costs->newmv_mode_cost[mode_ctx][1];
mode_ctx = (mode_context >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK;
if (mode == GLOBALMV) {
mode_cost += mode_costs->zeromv_mode_cost[mode_ctx][0];
return mode_cost;
} else {
mode_cost += mode_costs->zeromv_mode_cost[mode_ctx][1];
mode_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK;
mode_cost += mode_costs->refmv_mode_cost[mode_ctx][mode != NEARESTMV];
return mode_cost;
}
}
}
static void newmv_diff_bias(MACROBLOCKD *xd, PREDICTION_MODE this_mode,
RD_STATS *this_rdc, BLOCK_SIZE bsize, int mv_row,
int mv_col, int speed, uint32_t spatial_variance,
CONTENT_STATE_SB content_state_sb) {
// Bias against MVs associated with NEWMV mode that are very different from
// top/left neighbors.
if (this_mode == NEWMV) {
int al_mv_average_row;
int al_mv_average_col;
int left_row, left_col;
int row_diff, col_diff;
int above_mv_valid = 0;
int left_mv_valid = 0;
int above_row = 0;
int above_col = 0;
if (bsize >= BLOCK_64X64 && content_state_sb.source_sad != kHighSad &&
spatial_variance < 300 &&
(mv_row > 16 || mv_row < -16 || mv_col > 16 || mv_col < -16)) {
this_rdc->rdcost = this_rdc->rdcost << 2;
return;
}
if (xd->above_mbmi) {
above_mv_valid = xd->above_mbmi->mv[0].as_int != INVALID_MV;
above_row = xd->above_mbmi->mv[0].as_mv.row;
above_col = xd->above_mbmi->mv[0].as_mv.col;
}
if (xd->left_mbmi) {
left_mv_valid = xd->left_mbmi->mv[0].as_int != INVALID_MV;
left_row = xd->left_mbmi->mv[0].as_mv.row;
left_col = xd->left_mbmi->mv[0].as_mv.col;
}
if (above_mv_valid && left_mv_valid) {
al_mv_average_row = (above_row + left_row + 1) >> 1;
al_mv_average_col = (above_col + left_col + 1) >> 1;
} else if (above_mv_valid) {
al_mv_average_row = above_row;
al_mv_average_col = above_col;
} else if (left_mv_valid) {
al_mv_average_row = left_row;
al_mv_average_col = left_col;
} else {
al_mv_average_row = al_mv_average_col = 0;
}
row_diff = al_mv_average_row - mv_row;
col_diff = al_mv_average_col - mv_col;
if (row_diff > 80 || row_diff < -80 || col_diff > 80 || col_diff < -80) {
if (bsize >= BLOCK_32X32)
this_rdc->rdcost = this_rdc->rdcost << 1;
else
this_rdc->rdcost = 5 * this_rdc->rdcost >> 2;
}
} else {
// Bias for speed >= 8 for low spatial variance.
if (speed >= 8 && spatial_variance < 150 &&
(mv_row > 64 || mv_row < -64 || mv_col > 64 || mv_col < -64))
this_rdc->rdcost = 5 * this_rdc->rdcost >> 2;
}
}
static void model_rd_for_sb_uv(AV1_COMP *cpi, BLOCK_SIZE plane_bsize,
MACROBLOCK *x, MACROBLOCKD *xd,
RD_STATS *this_rdc, int64_t *sse_y,
int start_plane, int stop_plane) {
// Note our transform coeffs are 8 times an orthogonal transform.
// Hence quantizer step is also 8 times. To get effective quantizer
// we need to divide by 8 before sending to modeling function.
unsigned int sse;
int rate;
int64_t dist;
int i;
int64_t tot_sse = *sse_y;
this_rdc->rate = 0;
this_rdc->dist = 0;
this_rdc->skip_txfm = 0;
for (i = start_plane; i <= stop_plane; ++i) {
struct macroblock_plane *const p = &x->plane[i];
struct macroblockd_plane *const pd = &xd->plane[i];
const uint32_t dc_quant = p->dequant_QTX[0];
const uint32_t ac_quant = p->dequant_QTX[1];
const BLOCK_SIZE bs = plane_bsize;
unsigned int var;
if (!x->color_sensitivity[i - 1]) continue;
var = cpi->fn_ptr[bs].vf(p->src.buf, p->src.stride, pd->dst.buf,
pd->dst.stride, &sse);
assert(sse >= var);
tot_sse += sse;
av1_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bs],
dc_quant >> 3, &rate, &dist);
this_rdc->rate += rate >> 1;
this_rdc->dist += dist << 3;
av1_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bs], ac_quant >> 3,
&rate, &dist);
this_rdc->rate += rate;
this_rdc->dist += dist << 4;
}
if (this_rdc->rate == 0) {
this_rdc->skip_txfm = 1;
}
if (RDCOST(x->rdmult, this_rdc->rate, this_rdc->dist) >=
RDCOST(x->rdmult, 0, tot_sse << 4)) {
this_rdc->rate = 0;
this_rdc->dist = tot_sse << 4;
this_rdc->skip_txfm = 1;
}
*sse_y = tot_sse;
}
/*!\cond */
struct estimate_block_intra_args {
AV1_COMP *cpi;
MACROBLOCK *x;
PREDICTION_MODE mode;
int skippable;
RD_STATS *rdc;
};
/*!\endcond */
/*!\brief Estimation of RD cost of an intra mode for Non-RD optimized case.
*
* \ingroup nonrd_mode_search
* \callgraph
* \callergraph
* Calculates RD Cost for an intra mode for a single TX block using Hadamard
* transform.
* \param[in] plane Color plane
* \param[in] block Index of a TX block in a prediction block
* \param[in] row Row of a current TX block
* \param[in] col Column of a current TX block
* \param[in] plane_bsize Block size of a current prediction block
* \param[in] tx_size Transform size
* \param[in] arg Pointer to a structure that holds paramaters
* for intra mode search
*
* \return Nothing is returned. Instead, best mode and RD Cost of the best mode
* are set in \c args->rdc and \c args->mode
*/
static void estimate_block_intra(int plane, int block, int row, int col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
void *arg) {
struct estimate_block_intra_args *const args = arg;
AV1_COMP *const cpi = args->cpi;
AV1_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
const BLOCK_SIZE bsize_tx = txsize_to_bsize[tx_size];
uint8_t *const src_buf_base = p->src.buf;
uint8_t *const dst_buf_base = pd->dst.buf;
const int64_t src_stride = p->src.stride;
const int64_t dst_stride = pd->dst.stride;
RD_STATS this_rdc;
(void)block;
p->src.buf = &src_buf_base[4 * (row * src_stride + col)];
pd->dst.buf = &dst_buf_base[4 * (row * dst_stride + col)];
av1_predict_intra_block_facade(cm, xd, plane, col, row, tx_size);
av1_invalid_rd_stats(&this_rdc);
if (plane == 0) {
block_yrd(cpi, x, 0, 0, &this_rdc, &args->skippable, bsize_tx,
AOMMIN(tx_size, TX_16X16));
} else {
int64_t sse = 0;
model_rd_for_sb_uv(cpi, plane_bsize, x, xd, &this_rdc, &sse, plane, plane);
}
p->src.buf = src_buf_base;
pd->dst.buf = dst_buf_base;
args->rdc->rate += this_rdc.rate;
args->rdc->dist += this_rdc.dist;
}
static INLINE void update_thresh_freq_fact(AV1_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE bsize,
MV_REFERENCE_FRAME ref_frame,
THR_MODES best_mode_idx,
PREDICTION_MODE mode) {
const THR_MODES thr_mode_idx = mode_idx[ref_frame][mode_offset(mode)];
const BLOCK_SIZE min_size = AOMMAX(bsize - 3, BLOCK_4X4);
const BLOCK_SIZE max_size = AOMMIN(bsize + 6, BLOCK_128X128);
for (BLOCK_SIZE bs = min_size; bs <= max_size; bs += 3) {
int *freq_fact = &x->thresh_freq_fact[bs][thr_mode_idx];
if (thr_mode_idx == best_mode_idx) {
*freq_fact -= (*freq_fact >> 4);
} else {
*freq_fact =
AOMMIN(*freq_fact + RD_THRESH_INC,
cpi->sf.inter_sf.adaptive_rd_thresh * RD_THRESH_MAX_FACT);
}
}
}
#if CONFIG_AV1_TEMPORAL_DENOISING
static void av1_pickmode_ctx_den_update(
AV1_PICKMODE_CTX_DEN *ctx_den, int64_t zero_last_cost_orig,
unsigned int ref_frame_cost[REF_FRAMES],
int_mv frame_mv[MB_MODE_COUNT][REF_FRAMES], int reuse_inter_pred,
BEST_PICKMODE *bp) {
ctx_den->zero_last_cost_orig = zero_last_cost_orig;
ctx_den->ref_frame_cost = ref_frame_cost;
ctx_den->frame_mv = frame_mv;
ctx_den->reuse_inter_pred = reuse_inter_pred;
ctx_den->best_tx_size = bp->best_tx_size;
ctx_den->best_mode = bp->best_mode;
ctx_den->best_ref_frame = bp->best_ref_frame;
ctx_den->best_pred_filter = bp->best_pred_filter;
ctx_den->best_mode_skip_txfm = bp->best_mode_skip_txfm;
}
static void recheck_zeromv_after_denoising(
AV1_COMP *cpi, MB_MODE_INFO *const mi, MACROBLOCK *x, MACROBLOCKD *const xd,
AV1_DENOISER_DECISION decision, AV1_PICKMODE_CTX_DEN *ctx_den,
struct buf_2d yv12_mb[4][MAX_MB_PLANE], RD_STATS *best_rdc,
BEST_PICKMODE *best_pickmode, BLOCK_SIZE bsize, int mi_row, int mi_col) {
// If INTRA or GOLDEN reference was selected, re-evaluate ZEROMV on
// denoised result. Only do this under noise conditions, and if rdcost of
// ZEROMV onoriginal source is not significantly higher than rdcost of best
// mode.
if (cpi->noise_estimate.enabled && cpi->noise_estimate.level > kLow &&
ctx_den->zero_last_cost_orig < (best_rdc->rdcost << 3) &&
((ctx_den->best_ref_frame == INTRA_FRAME && decision >= FILTER_BLOCK) ||
(ctx_den->best_ref_frame == GOLDEN_FRAME &&
cpi->svc.number_spatial_layers == 1 &&
decision == FILTER_ZEROMV_BLOCK))) {
// Check if we should pick ZEROMV on denoised signal.
AV1_COMMON *const cm = &cpi->common;
RD_STATS this_rdc;
const ModeCosts *mode_costs = &x->mode_costs;
TxfmSearchInfo *txfm_info = &x->txfm_search_info;
MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext;
mi->mode = GLOBALMV;
mi->ref_frame[0] = LAST_FRAME;
mi->ref_frame[1] = NONE_FRAME;
set_ref_ptrs(cm, xd, mi->ref_frame[0], NONE_FRAME);
mi->mv[0].as_int = 0;
mi->interp_filters = av1_broadcast_interp_filter(EIGHTTAP_REGULAR);
xd->plane[0].pre[0] = yv12_mb[LAST_FRAME][0];
av1_enc_build_inter_predictor_y(xd, mi_row, mi_col);
model_rd_for_sb_y(cpi, bsize, x, xd, &this_rdc, 1);
const int16_t mode_ctx =
av1_mode_context_analyzer(mbmi_ext->mode_context, mi->ref_frame);
this_rdc.rate += cost_mv_ref(mode_costs, GLOBALMV, mode_ctx);
this_rdc.rate += ctx_den->ref_frame_cost[LAST_FRAME];
this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist);
txfm_info->skip_txfm = this_rdc.skip_txfm;
// Don't switch to ZEROMV if the rdcost for ZEROMV on denoised source
// is higher than best_ref mode (on original source).
if (this_rdc.rdcost > best_rdc->rdcost) {
this_rdc = *best_rdc;
mi->mode = best_pickmode->best_mode;
mi->ref_frame[0] = best_pickmode->best_ref_frame;
set_ref_ptrs(cm, xd, mi->ref_frame[0], NONE_FRAME);
mi->interp_filters = best_pickmode->best_pred_filter;
if (best_pickmode->best_ref_frame == INTRA_FRAME) {
mi->mv[0].as_int = INVALID_MV;
} else {
mi->mv[0].as_int = ctx_den
->frame_mv[best_pickmode->best_mode]
[best_pickmode->best_ref_frame]
.as_int;
if (ctx_den->reuse_inter_pred) {
xd->plane[0].pre[0] = yv12_mb[GOLDEN_FRAME][0];
av1_enc_build_inter_predictor_y(xd, mi_row, mi_col);
}
}
mi->tx_size = best_pickmode->best_tx_size;
txfm_info->skip_txfm = best_pickmode->best_mode_skip_txfm;
} else {
ctx_den->best_ref_frame = LAST_FRAME;
*best_rdc = this_rdc;
}
}
}
#endif // CONFIG_AV1_TEMPORAL_DENOISING
static INLINE int get_force_skip_low_temp_var_small_sb(uint8_t *variance_low,
int mi_row, int mi_col,
BLOCK_SIZE bsize) {
// Relative indices of MB inside the superblock.
const int mi_x = mi_row & 0xF;
const int mi_y = mi_col & 0xF;
// Relative indices of 16x16 block inside the superblock.
const int i = mi_x >> 2;
const int j = mi_y >> 2;
int force_skip_low_temp_var = 0;
// Set force_skip_low_temp_var based on the block size and block offset.
switch (bsize) {
case BLOCK_64X64: force_skip_low_temp_var = variance_low[0]; break;
case BLOCK_64X32:
if (!mi_y && !mi_x) {
force_skip_low_temp_var = variance_low[1];
} else if (!mi_y && mi_x) {
force_skip_low_temp_var = variance_low[2];
}
break;
case BLOCK_32X64:
if (!mi_y && !mi_x) {
force_skip_low_temp_var = variance_low[3];
} else if (mi_y && !mi_x) {
force_skip_low_temp_var = variance_low[4];
}
break;
case BLOCK_32X32:
if (!mi_y && !mi_x) {
force_skip_low_temp_var = variance_low[5];
} else if (mi_y && !mi_x) {
force_skip_low_temp_var = variance_low[6];
} else if (!mi_y && mi_x) {
force_skip_low_temp_var = variance_low[7];
} else if (mi_y && mi_x) {
force_skip_low_temp_var = variance_low[8];
}
break;
case BLOCK_32X16:
case BLOCK_16X32:
case BLOCK_16X16:
force_skip_low_temp_var = variance_low[pos_shift_16x16[i][j]];
break;
default: break;
}
return force_skip_low_temp_var;
}
static INLINE int get_force_skip_low_temp_var(uint8_t *variance_low, int mi_row,
int mi_col, BLOCK_SIZE bsize) {
int force_skip_low_temp_var = 0;
int x, y;
x = (mi_col & 0x1F) >> 4;
// y = (mi_row & 0x1F) >> 4;
// const int idx64 = (y << 1) + x;
y = (mi_row & 0x17) >> 3;
const int idx64 = y + x;
x = (mi_col & 0xF) >> 3;
// y = (mi_row & 0xF) >> 3;
// const int idx32 = (y << 1) + x;
y = (mi_row & 0xB) >> 2;
const int idx32 = y + x;
x = (mi_col & 0x7) >> 2;
// y = (mi_row & 0x7) >> 2;
// const int idx16 = (y << 1) + x;
y = (mi_row & 0x5) >> 1;
const int idx16 = y + x;
// Set force_skip_low_temp_var based on the block size and block offset.
switch (bsize) {
case BLOCK_128X128: force_skip_low_temp_var = variance_low[0]; break;
case BLOCK_128X64:
assert((mi_col & 0x1F) == 0);
force_skip_low_temp_var = variance_low[1 + ((mi_row & 0x1F) != 0)];
break;
case BLOCK_64X128:
assert((mi_row & 0x1F) == 0);
force_skip_low_temp_var = variance_low[3 + ((mi_col & 0x1F) != 0)];
break;
case BLOCK_64X64:
// Location of this 64x64 block inside the 128x128 superblock
force_skip_low_temp_var = variance_low[5 + idx64];
break;
case BLOCK_64X32:
x = (mi_col & 0x1F) >> 4;
y = (mi_row & 0x1F) >> 3;
/*
.---------------.---------------.
| x=0,y=0,idx=0 | x=0,y=0,idx=2 |
:---------------+---------------:
| x=0,y=1,idx=1 | x=1,y=1,idx=3 |
:---------------+---------------:
| x=0,y=2,idx=4 | x=1,y=2,idx=6 |
:---------------+---------------:
| x=0,y=3,idx=5 | x=1,y=3,idx=7 |
'---------------'---------------'
*/
const int idx64x32 = (x << 1) + (y % 2) + ((y >> 1) << 2);
force_skip_low_temp_var = variance_low[9 + idx64x32];
break;
case BLOCK_32X64:
x = (mi_col & 0x1F) >> 3;
y = (mi_row & 0x1F) >> 4;
const int idx32x64 = (y << 2) + x;
force_skip_low_temp_var = variance_low[17 + idx32x64];
break;
case BLOCK_32X32:
force_skip_low_temp_var = variance_low[25 + (idx64 << 2) + idx32];
break;
case BLOCK_32X16:
case BLOCK_16X32:
case BLOCK_16X16:
force_skip_low_temp_var =
variance_low[41 + (idx64 << 4) + (idx32 << 2) + idx16];
break;
default: break;
}
return force_skip_low_temp_var;
}
#define FILTER_SEARCH_SIZE 2
/*!\brief Searches for the best intrpolation filter
*
* \ingroup nonrd_mode_search
* \callgraph
* \callergraph
* Iterates through subset of possible interpolation filters (currently
* only EIGHTTAP_REGULAR and EIGTHTAP_SMOOTH in both directions) and selects
* the one that gives lowest RD cost. RD cost is calculated using curvfit model
*
* \param[in] cpi Top-level encoder structure
* \param[in] x Pointer to structure holding all the
* data for the current macroblock
* \param[in] this_rdc Pointer to calculated RD Cost
* \param[in] mi_row Row index in 4x4 units
* \param[in] mi_col Column index in 4x4 units
* \param[in] tmp Pointer to a temporary buffer for
* prediction re-use
* \param[in] bsize Current block size
* \param[in] reuse_inter_pred Flag, indicating prediction re-use
* \param[out] this_mode_pred Pointer to store prediction buffer
* for prediction re-use
* \param[out] this_early_term Flag, indicating that transform can be
* skipped
* \param[in] use_model_yrd_large Flag, indicating special logic to handle
* large blocks
*
* \return Nothing is returned. Instead, calculated RD cost is placed to
* \c this_rdc and best filter is placed to \c mi->interp_filters. In case
* \c reuse_inter_pred flag is set, this function also ouputs
* \c this_mode_pred. Also \c this_early_temp is set if transform can be
* skipped
*/
static void search_filter_ref(AV1_COMP *cpi, MACROBLOCK *x, RD_STATS *this_rdc,
int mi_row, int mi_col, PRED_BUFFER *tmp,
BLOCK_SIZE bsize, int reuse_inter_pred,
PRED_BUFFER **this_mode_pred,
int *this_early_term, int use_model_yrd_large) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblockd_plane *const pd = &xd->plane[0];
MB_MODE_INFO *const mi = xd->mi[0];
const int bw = block_size_wide[bsize];
RD_STATS pf_rd_stats[FILTER_SEARCH_SIZE] = { 0 };
TX_SIZE pf_tx_size[FILTER_SEARCH_SIZE] = { 0 };
PRED_BUFFER *current_pred = *this_mode_pred;
int best_skip = 0;
int best_early_term = 0;
int64_t best_cost = INT64_MAX;
int best_filter_index = -1;
InterpFilter filters[FILTER_SEARCH_SIZE] = { EIGHTTAP_REGULAR,
EIGHTTAP_SMOOTH };
for (int i = 0; i < FILTER_SEARCH_SIZE; ++i) {
int64_t cost;
InterpFilter filter = filters[i];
mi->interp_filters = av1_broadcast_interp_filter(filter);
av1_enc_build_inter_predictor_y(xd, mi_row, mi_col);
if (use_model_yrd_large)
model_skip_for_sb_y_large(cpi, bsize, mi_row, mi_col, x, xd,
&pf_rd_stats[i], this_early_term, 1);
else
model_rd_for_sb_y(cpi, bsize, x, xd, &pf_rd_stats[i], 1);
pf_rd_stats[i].rate += av1_get_switchable_rate(
x, xd, cm->features.interp_filter, cm->seq_params.enable_dual_filter);
cost = RDCOST(x->rdmult, pf_rd_stats[i].rate, pf_rd_stats[i].dist);
pf_tx_size[i] = mi->tx_size;
if (cost < best_cost) {
best_filter_index = i;
best_cost = cost;
best_skip = pf_rd_stats[i].skip_txfm;
best_early_term = *this_early_term;
if (reuse_inter_pred) {
if (*this_mode_pred != current_pred) {
free_pred_buffer(*this_mode_pred);
*this_mode_pred = current_pred;
}
current_pred = &tmp[get_pred_buffer(tmp, 3)];
pd->dst.buf = current_pred->data;
pd->dst.stride = bw;
}
}
}
assert(best_filter_index >= 0 && best_filter_index < FILTER_SEARCH_SIZE);
if (reuse_inter_pred && *this_mode_pred != current_pred)
free_pred_buffer(current_pred);
mi->interp_filters = av1_broadcast_interp_filter(filters[best_filter_index]);
mi->tx_size = pf_tx_size[best_filter_index];
this_rdc->rate = pf_rd_stats[best_filter_index].rate;
this_rdc->dist = pf_rd_stats[best_filter_index].dist;
this_rdc->sse = pf_rd_stats[best_filter_index].sse;
this_rdc->skip_txfm = (best_skip || best_early_term);
*this_early_term = best_early_term;
if (reuse_inter_pred) {
pd->dst.buf = (*this_mode_pred)->data;
pd->dst.stride = (*this_mode_pred)->stride;
} else if (best_filter_index < FILTER_SEARCH_SIZE - 1) {
av1_enc_build_inter_predictor_y(xd, mi_row, mi_col);
}
}
#define COLLECT_PICK_MODE_STAT 0
#if COLLECT_PICK_MODE_STAT
typedef struct _mode_search_stat {
int32_t num_blocks[BLOCK_SIZES];
int64_t avg_block_times[BLOCK_SIZES];
int32_t num_searches[BLOCK_SIZES][MB_MODE_COUNT];
int32_t num_nonskipped_searches[BLOCK_SIZES][MB_MODE_COUNT];
int64_t search_times[BLOCK_SIZES][MB_MODE_COUNT];
int64_t nonskipped_search_times[BLOCK_SIZES][MB_MODE_COUNT];
struct aom_usec_timer timer1;
struct aom_usec_timer timer2;
} mode_search_stat;
#endif // COLLECT_PICK_MODE_STAT
static void compute_intra_yprediction(const AV1_COMMON *cm,
PREDICTION_MODE mode, BLOCK_SIZE bsize,
MACROBLOCK *x, MACROBLOCKD *xd) {
struct macroblockd_plane *const pd = &xd->plane[0];
struct macroblock_plane *const p = &x->plane[0];
uint8_t *const src_buf_base = p->src.buf;
uint8_t *const dst_buf_base = pd->dst.buf;
const int src_stride = p->src.stride;
const int dst_stride = pd->dst.stride;
int plane = 0;
int row, col;
// block and transform sizes, in number of 4x4 blocks log 2 ("*_b")
// 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8
// transform size varies per plane, look it up in a common way.
const TX_SIZE tx_size = max_txsize_lookup[bsize];
const BLOCK_SIZE plane_bsize =
get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y);
// If mb_to_right_edge is < 0 we are in a situation in which
// the current block size extends into the UMV and we won't
// visit the sub blocks that are wholly within the UMV.
const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
// Keep track of the row and column of the blocks we use so that we know
// if we are in the unrestricted motion border.
for (row = 0; row < max_blocks_high; row += (1 << tx_size)) {
// Skip visiting the sub blocks that are wholly within the UMV.
for (col = 0; col < max_blocks_wide; col += (1 << tx_size)) {
p->src.buf = &src_buf_base[4 * (row * (int64_t)src_stride + col)];
pd->dst.buf = &dst_buf_base[4 * (row * (int64_t)dst_stride + col)];
av1_predict_intra_block(cm, xd, block_size_wide[bsize],
block_size_high[bsize], tx_size, mode, 0, 0,
FILTER_INTRA_MODES, pd->dst.buf, dst_stride,
pd->dst.buf, dst_stride, 0, 0, plane);
}
}
p->src.buf = src_buf_base;
pd->dst.buf = dst_buf_base;
}
void av1_nonrd_pick_intra_mode(AV1_COMP *cpi, MACROBLOCK *x, RD_STATS *rd_cost,
BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mi = xd->mi[0];
RD_STATS this_rdc, best_rdc;
struct estimate_block_intra_args args = { cpi, x, DC_PRED, 1, 0 };
const TxfmSearchParams *txfm_params = &x->txfm_search_params;
const TX_SIZE intra_tx_size =
AOMMIN(max_txsize_lookup[bsize],
tx_mode_to_biggest_tx_size[txfm_params->tx_mode_search_type]);
int *bmode_costs;
const MB_MODE_INFO *above_mi = xd->above_mbmi;
const MB_MODE_INFO *left_mi = xd->left_mbmi;
const PREDICTION_MODE A = av1_above_block_mode(above_mi);
const PREDICTION_MODE L = av1_left_block_mode(left_mi);
bmode_costs = x->mode_costs.y_mode_costs[A][L];
av1_invalid_rd_stats(&best_rdc);
av1_invalid_rd_stats(&this_rdc);
init_mbmi(mi, DC_PRED, INTRA_FRAME, NONE_FRAME, cm);
mi->mv[0].as_int = mi->mv[1].as_int = INVALID_MV;
// Change the limit of this loop to add other intra prediction
// mode tests.
for (int i = 0; i < 4; ++i) {
PREDICTION_MODE this_mode = intra_mode_list[i];
this_rdc.dist = this_rdc.rate = 0;
args.mode = this_mode;
args.skippable = 1;
args.rdc = &this_rdc;
mi->tx_size = intra_tx_size;
av1_foreach_transformed_block_in_plane(xd, bsize, 0, estimate_block_intra,
&args);
if (args.skippable) {
this_rdc.rate = av1_cost_symbol(av1_get_skip_txfm_cdf(xd)[1]);
} else {
this_rdc.rate += av1_cost_symbol(av1_get_skip_txfm_cdf(xd)[0]);
}
this_rdc.rate += bmode_costs[this_mode];
this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist);
if (this_rdc.rdcost < best_rdc.rdcost) {
best_rdc = this_rdc;
mi->mode = this_mode;
}
}
*rd_cost = best_rdc;
#if CONFIG_INTERNAL_STATS
store_coding_context(x, ctx, mi->mode);
#else
store_coding_context(x, ctx);
#endif // CONFIG_INTERNAL_STATS
}
static AOM_INLINE int is_same_gf_and_last_scale(AV1_COMMON *cm) {
struct scale_factors *const sf_last = get_ref_scale_factors(cm, LAST_FRAME);
struct scale_factors *const sf_golden =
get_ref_scale_factors(cm, GOLDEN_FRAME);
return ((sf_last->x_scale_fp == sf_golden->x_scale_fp) &&
(sf_last->y_scale_fp == sf_golden->y_scale_fp));
}
static AOM_INLINE void get_ref_frame_use_mask(AV1_COMP *cpi, MACROBLOCK *x,
MB_MODE_INFO *mi, int mi_row,
int mi_col, int bsize,
int gf_temporal_ref,
int use_ref_frame[],
int *force_skip_low_temp_var) {
AV1_COMMON *const cm = &cpi->common;
const struct segmentation *const seg = &cm->seg;
const int is_small_sb = (cm->seq_params.sb_size == BLOCK_64X64);
// For SVC the usage of alt_ref is determined by the ref_frame_flags.
int use_alt_ref_frame = cpi->use_svc || cpi->sf.rt_sf.use_nonrd_altref_frame;
int use_golden_ref_frame = 1;
use_ref_frame[LAST_FRAME] = 1; // we never skip LAST
if (cpi->rc.frames_since_golden == 0 && gf_temporal_ref) {
use_golden_ref_frame = 0;
}
if (cpi->sf.rt_sf.short_circuit_low_temp_var &&
x->nonrd_prune_ref_frame_search) {
if (is_small_sb)
*force_skip_low_temp_var = get_force_skip_low_temp_var_small_sb(
&x->part_search_info.variance_low[0], mi_row, mi_col, bsize);
else
*force_skip_low_temp_var = get_force_skip_low_temp_var(
&x->part_search_info.variance_low[0], mi_row, mi_col, bsize);
// If force_skip_low_temp_var is set, skip golden reference.
if (*force_skip_low_temp_var) {
use_golden_ref_frame = 0;
use_alt_ref_frame = 0;
}
}
if (segfeature_active(seg, mi->segment_id, SEG_LVL_REF_FRAME) &&
get_segdata(seg, mi->segment_id, SEG_LVL_REF_FRAME) == GOLDEN_FRAME) {
use_golden_ref_frame = 1;
use_alt_ref_frame = 0;
}
use_alt_ref_frame =
cpi->ref_frame_flags & AOM_ALT_FLAG ? use_alt_ref_frame : 0;
use_golden_ref_frame =
cpi->ref_frame_flags & AOM_GOLD_FLAG ? use_golden_ref_frame : 0;
use_ref_frame[ALTREF_FRAME] = use_alt_ref_frame;
use_ref_frame[GOLDEN_FRAME] = use_golden_ref_frame;
}
/*!\brief Estimates best intra mode for inter mode search
*
* \ingroup nonrd_mode_search
* \callgraph
* \callergraph
*
* Using heuristics based on best inter mode, block size, and other decides
* whether to check intra modes. If so, estimates and selects best intra mode
* from the reduced set of intra modes (max 4 intra modes checked)
*
* \param[in] cpi Top-level encoder structure
* \param[in] x Pointer to structure holding all the
* data for the current macroblock
* \param[in] bsize Current block size
* \param[in] use_modeled_non_rd_cost Flag, indicating usage of curvfit
* model for RD cost
* \param[in] best_early_term Flag, indicating that TX for the
* best inter mode was skipped
* \param[in] ref_cost_intra Cost of signalling intra mode
* \param[in] reuse_prediction Flag, indicating prediction re-use
* \param[in] orig_dst Original destination buffer
* \param[in] tmp_buffers Pointer to a temporary buffers for
* prediction re-use
* \param[out] this_mode_pred Pointer to store prediction buffer
* for prediction re-use
* \param[in] best_rdc Pointer to RD cost for the best
* selected intra mode
* \param[in] best_pickmode Pointer to a structure containing
* best mode picked so far
*
* \return Nothing is returned. Instead, calculated RD cost is placed to
* \c best_rdc and best selected mode is placed to \c best_pickmode
*/
static void estimate_intra_mode(
AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int use_modeled_non_rd_cost,
int best_early_term, unsigned int ref_cost_intra, int reuse_prediction,
struct buf_2d *orig_dst, PRED_BUFFER *tmp_buffers,
PRED_BUFFER **this_mode_pred, RD_STATS *best_rdc,
BEST_PICKMODE *best_pickmode) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mi = xd->mi[0];
const TxfmSearchParams *txfm_params = &x->txfm_search_params;
const unsigned char segment_id = mi->segment_id;
const int *const rd_threshes = cpi->rd.threshes[segment_id][bsize];
const int *const rd_thresh_freq_fact = x->thresh_freq_fact[bsize];
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
struct macroblockd_plane *const pd = &xd->plane[0];
const CommonQuantParams *quant_params = &cm->quant_params;
RD_STATS this_rdc;
int intra_cost_penalty = av1_get_intra_cost_penalty(
quant_params->base_qindex, quant_params->y_dc_delta_q,
cm->seq_params.bit_depth);
int64_t inter_mode_thresh = RDCOST(x->rdmult, intra_cost_penalty, 0);
int perform_intra_pred = cpi->sf.rt_sf.check_intra_pred_nonrd;
// For spatial enhancemanent layer: turn off intra prediction if the
// previous spatial layer as golden ref is not chosen as best reference.
// only do this for temporal enhancement layer and on non-key frames.
if (cpi->svc.spatial_layer_id > 0 &&
best_pickmode->best_ref_frame != GOLDEN_FRAME &&
cpi->svc.temporal_layer_id > 0 &&
!cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame)
perform_intra_pred = 0;
int do_early_exit_rdthresh = 1;
uint32_t spatial_var_thresh = 50;
int motion_thresh = 32;
// Adjust thresholds to make intra mode likely tested if the other
// references (golden, alt) are skipped/not checked. For now always
// adjust for svc mode.
if (cpi->use_svc || (cpi->sf.rt_sf.use_nonrd_altref_frame == 0 &&
cpi->sf.rt_sf.nonrd_prune_ref_frame_search > 0)) {
spatial_var_thresh = 150;
motion_thresh = 0;
}
// Some adjustments to checking intra mode based on source variance.
if (x->source_variance < spatial_var_thresh) {
// If the best inter mode is large motion or non-LAST ref reduce intra cost
// penalty, so intra mode is more likely tested.
if (best_pickmode->best_ref_frame != LAST_FRAME ||
abs(mi->mv[0].as_mv.row) >= motion_thresh ||
abs(mi->mv[0].as_mv.col) >= motion_thresh) {
intra_cost_penalty = intra_cost_penalty >> 2;
inter_mode_thresh = RDCOST(x->rdmult, intra_cost_penalty, 0);
do_early_exit_rdthresh = 0;
}
// For big blocks worth checking intra (since only DC will be checked),
// even if best_early_term is set.
if (bsize >= BLOCK_32X32) best_early_term = 0;
} else if (cpi->sf.rt_sf.source_metrics_sb_nonrd &&
x->content_state_sb.source_sad == kLowSad) {
perform_intra_pred = 0;
}
if (cpi->sf.rt_sf.skip_intra_pred_if_tx_skip && best_rdc->skip_txfm &&
best_pickmode->best_mode_initial_skip_flag) {
perform_intra_pred = 0;
}
if (!(best_rdc->rdcost == INT64_MAX ||
(perform_intra_pred && !best_early_term &&
best_rdc->rdcost > inter_mode_thresh &&
bsize <= cpi->sf.part_sf.max_intra_bsize))) {
return;
}
struct estimate_block_intra_args args = { cpi, x, DC_PRED, 1, 0 };
TX_SIZE intra_tx_size = AOMMIN(
AOMMIN(max_txsize_lookup[bsize],
tx_mode_to_biggest_tx_size[txfm_params->tx_mode_search_type]),
TX_16X16);
PRED_BUFFER *const best_pred = best_pickmode->best_pred;
if (reuse_prediction && best_pred != NULL) {
const int bh = block_size_high[bsize];
const int bw = block_size_wide[bsize];
if (best_pred->data == orig_dst->buf) {
*this_mode_pred = &tmp_buffers[get_pred_buffer(tmp_buffers, 3)];
aom_convolve_copy(best_pred->data, best_pred->stride,
(*this_mode_pred)->data, (*this_mode_pred)->stride, bw,
bh);
best_pickmode->best_pred = *this_mode_pred;
}
}
pd->dst = *orig_dst;
for (int i = 0; i < 4; ++i) {
const PREDICTION_MODE this_mode = intra_mode_list[i];
const THR_MODES mode_index = mode_idx[INTRA_FRAME][mode_offset(this_mode)];
const int64_t mode_rd_thresh = rd_threshes[mode_index];
if (!((1 << this_mode) & cpi->sf.rt_sf.intra_y_mode_bsize_mask_nrd[bsize]))
continue;
if (rd_less_than_thresh(best_rdc->rdcost, mode_rd_thresh,
rd_thresh_freq_fact[mode_index]) &&
(do_early_exit_rdthresh || this_mode == SMOOTH_PRED)) {
continue;
}
const BLOCK_SIZE uv_bsize = get_plane_block_size(
bsize, xd->plane[1].subsampling_x, xd->plane[1].subsampling_y);
mi->mode = this_mode;
mi->ref_frame[0] = INTRA_FRAME;
mi->ref_frame[1] = NONE_FRAME;
av1_invalid_rd_stats(&this_rdc);
args.mode = this_mode;
args.skippable = 1;
args.rdc = &this_rdc;
mi->tx_size = intra_tx_size;
compute_intra_yprediction(cm, this_mode, bsize, x, xd);
// Look into selecting tx_size here, based on prediction residual.
if (use_modeled_non_rd_cost)
model_rd_for_sb_y(cpi, bsize, x, xd, &this_rdc, 1);
else
block_yrd(cpi, x, mi_row, mi_col, &this_rdc, &args.skippable, bsize,
mi->tx_size);
// TODO(kyslov@) Need to account for skippable
if (x->color_sensitivity[0]) {
av1_foreach_transformed_block_in_plane(xd, uv_bsize, 1,
estimate_block_intra, &args);
}
if (x->color_sensitivity[1]) {
av1_foreach_transformed_block_in_plane(xd, uv_bsize, 2,
estimate_block_intra, &args);
}
int mode_cost = 0;
if (av1_is_directional_mode(this_mode) && av1_use_angle_delta(bsize)) {
mode_cost +=
x->mode_costs.angle_delta_cost[this_mode - V_PRED]
[MAX_ANGLE_DELTA +
mi->angle_delta[PLANE_TYPE_Y]];
}
if (this_mode == DC_PRED && av1_filter_intra_allowed_bsize(cm, bsize)) {
mode_cost += x->mode_costs.filter_intra_cost[bsize][0];
}
this_rdc.rate += ref_cost_intra;
this_rdc.rate += intra_cost_penalty;
this_rdc.rate += mode_cost;
this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist);
if (this_rdc.rdcost < best_rdc->rdcost) {
*best_rdc = this_rdc;
best_pickmode->best_mode = this_mode;
best_pickmode->best_tx_size = mi->tx_size;
best_pickmode->best_ref_frame = INTRA_FRAME;
mi->uv_mode = this_mode;
mi->mv[0].as_int = INVALID_MV;
mi->mv[1].as_int = INVALID_MV;
}
}
mi->tx_size = best_pickmode->best_tx_size;
}
static AOM_INLINE int is_filter_search_enabled(const AV1_COMP *cpi, int mi_row,
int mi_col, BLOCK_SIZE bsize) {
const AV1_COMMON *const cm = &cpi->common;
int enable_filter_search = 0;
if (cpi->sf.rt_sf.use_nonrd_filter_search) {
enable_filter_search = 1;
if (cpi->sf.interp_sf.cb_pred_filter_search) {
const int bsl = mi_size_wide_log2[bsize];
enable_filter_search =
(((mi_row + mi_col) >> bsl) +
get_chessboard_index(cm->current_frame.frame_number)) &
0x1;
}
}
return enable_filter_search;
}
static AOM_INLINE int skip_mode_by_threshold(
PREDICTION_MODE mode, MV_REFERENCE_FRAME ref_frame, int_mv mv,
int frames_since_golden, const int *const rd_threshes,
const int *const rd_thresh_freq_fact, int64_t best_cost, int best_skip,
int extra_shift) {
int skip_this_mode = 0;
const THR_MODES mode_index = mode_idx[ref_frame][INTER_OFFSET(mode)];
int64_t mode_rd_thresh =
best_skip ? ((int64_t)rd_threshes[mode_index]) << (extra_shift + 1)
: ((int64_t)rd_threshes[mode_index]) << extra_shift;
// Increase mode_rd_thresh value for non-LAST for improved encoding
// speed
if (ref_frame != LAST_FRAME) {
mode_rd_thresh = mode_rd_thresh << 1;
if (ref_frame == GOLDEN_FRAME && frames_since_golden > 4)
mode_rd_thresh = mode_rd_thresh << (extra_shift + 1);
}
if (rd_less_than_thresh(best_cost, mode_rd_thresh,
rd_thresh_freq_fact[mode_index]))
if (mv.as_int != 0) skip_this_mode = 1;
return skip_this_mode;
}
static AOM_INLINE int skip_mode_by_low_temp(
PREDICTION_MODE mode, MV_REFERENCE_FRAME ref_frame, BLOCK_SIZE bsize,
CONTENT_STATE_SB content_state_sb, int_mv mv, int force_skip_low_temp_var) {
// Skip non-zeromv mode search for non-LAST frame if force_skip_low_temp_var
// is set. If nearestmv for golden frame is 0, zeromv mode will be skipped
// later.
if (force_skip_low_temp_var && ref_frame != LAST_FRAME && mv.as_int != 0) {
return 1;
}
if (content_state_sb.source_sad != kHighSad && bsize >= BLOCK_64X64 &&
force_skip_low_temp_var && mode == NEWMV) {
return 1;
}
return 0;
}
static AOM_INLINE int skip_mode_by_bsize_and_ref_frame(
PREDICTION_MODE mode, MV_REFERENCE_FRAME ref_frame, BLOCK_SIZE bsize,
int extra_prune, unsigned int sse_zeromv_norm, int more_prune) {
const unsigned int thresh_skip_golden = 500;
if (ref_frame != LAST_FRAME && sse_zeromv_norm < thresh_skip_golden &&
mode == NEWMV)
return 1;
if (bsize == BLOCK_128X128 && mode == NEWMV) return 1;
// Skip testing non-LAST if this flag is set.
if (extra_prune) {
if (extra_prune > 1 && ref_frame != LAST_FRAME &&
(bsize > BLOCK_64X64 || (bsize > BLOCK_16X16 && mode == NEWMV)))
return 1;
if (ref_frame != LAST_FRAME && mode == NEARMV) return 1;
if (more_prune && bsize >= BLOCK_32X32 && mode == NEARMV) return 1;
}
return 0;
}
void av1_nonrd_pick_inter_mode_sb(AV1_COMP *cpi, TileDataEnc *tile_data,
MACROBLOCK *x, RD_STATS *rd_cost,
BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) {
AV1_COMMON *const cm = &cpi->common;
SVC *const svc = &cpi->svc;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mi = xd->mi[0];
struct macroblockd_plane *const pd = &xd->plane[0];
BEST_PICKMODE best_pickmode;
#if COLLECT_PICK_MODE_STAT
static mode_search_stat ms_stat;
#endif
MV_REFERENCE_FRAME ref_frame;
int_mv frame_mv[MB_MODE_COUNT][REF_FRAMES];
uint8_t mode_checked[MB_MODE_COUNT][REF_FRAMES];
struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE];
RD_STATS this_rdc, best_rdc;
const unsigned char segment_id = mi->segment_id;
const int *const rd_threshes = cpi->rd.threshes[segment_id][bsize];
const int *const rd_thresh_freq_fact = x->thresh_freq_fact[bsize];
const InterpFilter filter_ref = cm->features.interp_filter;
int best_early_term = 0;
unsigned int ref_costs_single[REF_FRAMES],
ref_costs_comp[REF_FRAMES][REF_FRAMES];
int force_skip_low_temp_var = 0;
int use_ref_frame_mask[REF_FRAMES] = { 0 };
unsigned int sse_zeromv_norm = UINT_MAX;
// Use mode set that includes zeromv (via globalmv) for speed >= 9 for
// content with low motion.
int use_zeromv =
((cpi->oxcf.speed >= 9 && cpi->rc.avg_frame_low_motion > 70) ||
cpi->sf.rt_sf.nonrd_agressive_skip);
const int num_inter_modes =
use_zeromv ? NUM_INTER_MODES_REDUCED : NUM_INTER_MODES_RT;
const REF_MODE *const ref_mode_set =
use_zeromv ? ref_mode_set_reduced : ref_mode_set_rt;
PRED_BUFFER tmp[4];
DECLARE_ALIGNED(16, uint8_t, pred_buf[3 * 128 * 128]);
PRED_BUFFER *this_mode_pred = NULL;
const int reuse_inter_pred = cpi->sf.rt_sf.reuse_inter_pred_nonrd &&
cm->seq_params.bit_depth == AOM_BITS_8;
const int bh = block_size_high[bsize];
const int bw = block_size_wide[bsize];
const int pixels_in_block = bh * bw;
struct buf_2d orig_dst = pd->dst;
const CommonQuantParams *quant_params = &cm->quant_params;
const TxfmSearchParams *txfm_params = &x->txfm_search_params;
TxfmSearchInfo *txfm_info = &x->txfm_search_info;
#if COLLECT_PICK_MODE_STAT
aom_usec_timer_start(&ms_stat.timer2);
#endif
const InterpFilter default_interp_filter = EIGHTTAP_REGULAR;
int64_t thresh_sad_pred = INT64_MAX;
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
int svc_mv_col = 0;
int svc_mv_row = 0;
int force_mv_inter_layer = 0;
int use_modeled_non_rd_cost = 0;
#if CONFIG_AV1_TEMPORAL_DENOISING
const int denoise_recheck_zeromv = 1;
AV1_PICKMODE_CTX_DEN ctx_den;
int64_t zero_last_cost_orig = INT64_MAX;
int denoise_svc_pickmode = 1;
const int resize_pending =
(cpi->resize_pending_params.width && cpi->resize_pending_params.height &&
(cpi->common.width != cpi->resize_pending_params.width ||
cpi->common.height != cpi->resize_pending_params.height));
#endif
init_best_pickmode(&best_pickmode);
const ModeCosts *mode_costs = &x->mode_costs;
estimate_single_ref_frame_costs(cm, xd, mode_costs, segment_id,
ref_costs_single);
if (cpi->sf.rt_sf.use_comp_ref_nonrd)
estimate_comp_ref_frame_costs(cm, xd, mode_costs, segment_id,
ref_costs_comp);
memset(&mode_checked[0][0], 0, MB_MODE_COUNT * REF_FRAMES);
if (reuse_inter_pred) {
for (int i = 0; i < 3; i++) {
tmp[i].data = &pred_buf[pixels_in_block * i];
tmp[i].stride = bw;
tmp[i].in_use = 0;
}
tmp[3].data = pd->dst.buf;
tmp[3].stride = pd->dst.stride;
tmp[3].in_use = 0;
}
txfm_info->skip_txfm = 0;
// initialize mode decisions
av1_invalid_rd_stats(&best_rdc);
av1_invalid_rd_stats(&this_rdc);
av1_invalid_rd_stats(rd_cost);
mi->bsize = bsize;
mi->ref_frame[0] = NONE_FRAME;
mi->ref_frame[1] = NONE_FRAME;
#if CONFIG_AV1_TEMPORAL_DENOISING
if (cpi->oxcf.noise_sensitivity > 0) {
// if (cpi->use_svc) denoise_svc_pickmode = av1_denoise_svc_non_key(cpi);
if (cpi->denoiser.denoising_level > kDenLowLow && denoise_svc_pickmode)
av1_denoiser_reset_frame_stats(ctx);
}
#endif
const int gf_temporal_ref = is_same_gf_and_last_scale(cm);
// If the lower spatial layer uses an averaging filter for downsampling
// (phase = 8), the target decimated pixel is shifted by (1/2, 1/2) relative
// to source, so use subpel motion vector to compensate. The nonzero motion
// is half pixel shifted to left and top, so (-4, -4). This has more effect
// on higher resolutins, so condition it on that for now.
if (cpi->use_svc && svc->spatial_layer_id > 0 &&
svc->downsample_filter_phase[svc->spatial_layer_id - 1] == 8 &&
cm->width * cm->height > 640 * 480) {
svc_mv_col = -4;
svc_mv_row = -4;
}
get_ref_frame_use_mask(cpi, x, mi, mi_row, mi_col, bsize, gf_temporal_ref,
use_ref_frame_mask, &force_skip_low_temp_var);
for (MV_REFERENCE_FRAME ref_frame_iter = LAST_FRAME;
ref_frame_iter <= ALTREF_FRAME; ++ref_frame_iter) {
if (use_ref_frame_mask[ref_frame_iter]) {
find_predictors(cpi, x, ref_frame_iter, frame_mv, tile_data, yv12_mb,
bsize, force_skip_low_temp_var);
}
}
thresh_sad_pred = ((int64_t)x->pred_mv_sad[LAST_FRAME]) << 1;
// Increase threshold for less agressive pruning.
if (cpi->sf.rt_sf.nonrd_prune_ref_frame_search == 1)
thresh_sad_pred += (x->pred_mv_sad[LAST_FRAME] >> 2);
const int large_block = bsize >= BLOCK_32X32;
const int use_model_yrd_large =
cpi->oxcf.rc_cfg.mode == AOM_CBR && large_block &&
!cyclic_refresh_segment_id_boosted(xd->mi[0]->segment_id) &&
quant_params->base_qindex && cm->seq_params.bit_depth == 8;
const int enable_filter_search =
is_filter_search_enabled(cpi, mi_row, mi_col, bsize);
// TODO(marpan): Look into reducing these conditions. For now constrain
// it to avoid significant bdrate loss.
if (cpi->sf.rt_sf.use_modeled_non_rd_cost) {
if (cpi->svc.non_reference_frame)
use_modeled_non_rd_cost = 1;
else if (cpi->svc.number_temporal_layers > 1 &&
cpi->svc.temporal_layer_id == 0)
use_modeled_non_rd_cost = 0;
else
use_modeled_non_rd_cost =
(quant_params->base_qindex > 120 && x->source_variance > 100 &&
bsize <= BLOCK_16X16 && !x->content_state_sb.lighting_change &&
x->content_state_sb.source_sad != kHighSad);
}
#if COLLECT_PICK_MODE_STAT
ms_stat.num_blocks[bsize]++;
#endif
init_mbmi(mi, DC_PRED, NONE_FRAME, NONE_FRAME, cm);
mi->tx_size = AOMMIN(
AOMMIN(max_txsize_lookup[bsize],
tx_mode_to_biggest_tx_size[txfm_params->tx_mode_search_type]),
TX_16X16);
for (int idx = 0; idx < num_inter_modes; ++idx) {
const struct segmentation *const seg = &cm->seg;
int rate_mv = 0;
int is_skippable;
int this_early_term = 0;
int skip_this_mv = 0;
PREDICTION_MODE this_mode;
MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext;
RD_STATS nonskip_rdc;
av1_invalid_rd_stats(&nonskip_rdc);
this_mode = ref_mode_set[idx].pred_mode;
ref_frame = ref_mode_set[idx].ref_frame;
#if COLLECT_PICK_MODE_STAT
aom_usec_timer_start(&ms_stat.timer1);
ms_stat.num_searches[bsize][this_mode]++;
#endif
mi->mode = this_mode;
mi->ref_frame[0] = ref_frame;
if (!use_ref_frame_mask[ref_frame]) continue;
force_mv_inter_layer = 0;
if (cpi->use_svc && svc->spatial_layer_id > 0 &&
((ref_frame == LAST_FRAME && svc->skip_mvsearch_last) ||
(ref_frame == GOLDEN_FRAME && svc->skip_mvsearch_gf))) {
// Only test mode if NEARESTMV/NEARMV is (svc_mv_col, svc_mv_row),
// otherwise set NEWMV to (svc_mv_col, svc_mv_row).
// Skip newmv and filter search.
force_mv_inter_layer = 1;
if (this_mode == NEWMV) {
frame_mv[this_mode][ref_frame].as_mv.col = svc_mv_col;
frame_mv[this_mode][ref_frame].as_mv.row = svc_mv_row;
} else if (frame_mv[this_mode][ref_frame].as_mv.col != svc_mv_col ||
frame_mv[this_mode][ref_frame].as_mv.row != svc_mv_row) {
continue;
}
}
// If the segment reference frame feature is enabled then do nothing if the
// current ref frame is not allowed.
if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) &&
get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame)
continue;
if (skip_mode_by_bsize_and_ref_frame(
this_mode, ref_frame, bsize, x->nonrd_prune_ref_frame_search,
sse_zeromv_norm, cpi->sf.rt_sf.nonrd_agressive_skip))
continue;
if (skip_mode_by_low_temp(this_mode, ref_frame, bsize, x->content_state_sb,
frame_mv[this_mode][ref_frame],
force_skip_low_temp_var))
continue;
// Disable this drop out case if the ref frame segment level feature is
// enabled for this segment. This is to prevent the possibility that we
// end up unable to pick any mode.
if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) {
// Check for skipping GOLDEN and ALTREF based pred_mv_sad.
if (cpi->sf.rt_sf.nonrd_prune_ref_frame_search > 0 &&
x->pred_mv_sad[ref_frame] != INT_MAX && ref_frame != LAST_FRAME) {
if ((int64_t)(x->pred_mv_sad[ref_frame]) > thresh_sad_pred) continue;
}
}
if (skip_mode_by_threshold(
this_mode, ref_frame, frame_mv[this_mode][ref_frame],
cpi->rc.frames_since_golden, rd_threshes, rd_thresh_freq_fact,
best_rdc.rdcost, best_pickmode.best_mode_skip_txfm,
(cpi->sf.rt_sf.nonrd_agressive_skip ? 1 : 0)))
continue;
// Select prediction reference frames.
for (int i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].pre[0] = yv12_mb[ref_frame][i];
}
mi->ref_frame[0] = ref_frame;
mi->ref_frame[1] = NONE_FRAME;
set_ref_ptrs(cm, xd, ref_frame, NONE_FRAME);
if (this_mode == NEWMV && !force_mv_inter_layer) {
if (search_new_mv(cpi, x, frame_mv, ref_frame, gf_temporal_ref, bsize,
mi_row, mi_col, &rate_mv, &best_rdc))
continue;
}
for (PREDICTION_MODE inter_mv_mode = NEARESTMV; inter_mv_mode <= NEWMV;
inter_mv_mode++) {
if (inter_mv_mode == this_mode) continue;
if (mode_checked[inter_mv_mode][ref_frame] &&
frame_mv[this_mode][ref_frame].as_int ==
frame_mv[inter_mv_mode][ref_frame].as_int) {
skip_this_mv = 1;
break;
}
}
if (skip_this_mv) continue;
mi->mode = this_mode;
mi->mv[0].as_int = frame_mv[this_mode][ref_frame].as_int;
mi->mv[1].as_int = 0;
if (reuse_inter_pred) {
if (!this_mode_pred) {
this_mode_pred = &tmp[3];
} else {
this_mode_pred = &tmp[get_pred_buffer(tmp, 3)];
pd->dst.buf = this_mode_pred->data;
pd->dst.stride = bw;
}
}
#if COLLECT_PICK_MODE_STAT
ms_stat.num_nonskipped_searches[bsize][this_mode]++;
#endif
if (enable_filter_search && !force_mv_inter_layer &&
((mi->mv[0].as_mv.row & 0x07) || (mi->mv[0].as_mv.col & 0x07)) &&
(ref_frame == LAST_FRAME || !x->nonrd_prune_ref_frame_search)) {
search_filter_ref(cpi, x, &this_rdc, mi_row, mi_col, tmp, bsize,
reuse_inter_pred, &this_mode_pred, &this_early_term,
use_model_yrd_large);
} else {
mi->interp_filters =
(filter_ref == SWITCHABLE)
? av1_broadcast_interp_filter(default_interp_filter)
: av1_broadcast_interp_filter(filter_ref);
if (force_mv_inter_layer)
mi->interp_filters = av1_broadcast_interp_filter(EIGHTTAP_REGULAR);
av1_enc_build_inter_predictor_y(xd, mi_row, mi_col);
if (use_model_yrd_large) {
model_skip_for_sb_y_large(cpi, bsize, mi_row, mi_col, x, xd, &this_rdc,
&this_early_term, use_modeled_non_rd_cost);
} else {
model_rd_for_sb_y(cpi, bsize, x, xd, &this_rdc,
use_modeled_non_rd_cost);
}
}
if (ref_frame == LAST_FRAME && frame_mv[this_mode][ref_frame].as_int == 0) {
sse_zeromv_norm =
(unsigned int)(this_rdc.sse >> (b_width_log2_lookup[bsize] +
b_height_log2_lookup[bsize]));
}
const int skip_ctx = av1_get_skip_txfm_context(xd);
const int skip_txfm_cost = mode_costs->skip_txfm_cost[skip_ctx][1];
const int no_skip_txfm_cost = mode_costs->skip_txfm_cost[skip_ctx][0];
const int64_t sse_y = this_rdc.sse;
if (this_early_term) {
this_rdc.skip_txfm = 1;
this_rdc.rate = skip_txfm_cost;
this_rdc.dist = this_rdc.sse << 4;
} else {
if (use_modeled_non_rd_cost) {
if (this_rdc.skip_txfm) {
this_rdc.rate = skip_txfm_cost;
} else {
this_rdc.rate += no_skip_txfm_cost;
}
} else {
block_yrd(cpi, x, mi_row, mi_col, &this_rdc, &is_skippable, bsize,
mi->tx_size);
if (this_rdc.skip_txfm ||
RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist) >=
RDCOST(x->rdmult, 0, this_rdc.sse)) {
if (!this_rdc.skip_txfm) {
// Need to store "real" rdc for possible furure use if UV rdc
// disallows tx skip
nonskip_rdc = this_rdc;
nonskip_rdc.rate += no_skip_txfm_cost;
}
this_rdc.rate = skip_txfm_cost;
this_rdc.skip_txfm = 1;
this_rdc.dist = this_rdc.sse;
} else {
this_rdc.rate += no_skip_txfm_cost;
}
}
if ((x->color_sensitivity[0] || x->color_sensitivity[1])) {
RD_STATS rdc_uv;
const BLOCK_SIZE uv_bsize = get_plane_block_size(
bsize, xd->plane[1].subsampling_x, xd->plane[1].subsampling_y);
if (x->color_sensitivity[0]) {
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize,
AOM_PLANE_U, AOM_PLANE_U);
}
if (x->color_sensitivity[1]) {
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize,
AOM_PLANE_V, AOM_PLANE_V);
}
model_rd_for_sb_uv(cpi, uv_bsize, x, xd, &rdc_uv, &this_rdc.sse, 1, 2);
// Restore Y rdc if UV rdc disallows txfm skip
if (this_rdc.skip_txfm && !rdc_uv.skip_txfm &&
nonskip_rdc.rate != INT_MAX)
this_rdc = nonskip_rdc;
this_rdc.rate += rdc_uv.rate;
this_rdc.dist += rdc_uv.dist;
this_rdc.skip_txfm = this_rdc.skip_txfm && rdc_uv.skip_txfm;
}
}
// TODO(kyslov) account for UV prediction cost
this_rdc.rate += rate_mv;
const int16_t mode_ctx =
av1_mode_context_analyzer(mbmi_ext->mode_context, mi->ref_frame);
this_rdc.rate += cost_mv_ref(mode_costs, this_mode, mode_ctx);
this_rdc.rate += ref_costs_single[ref_frame];
this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist);
if (cpi->oxcf.rc_cfg.mode == AOM_CBR) {
newmv_diff_bias(xd, this_mode, &this_rdc, bsize,
frame_mv[this_mode][ref_frame].as_mv.row,
frame_mv[this_mode][ref_frame].as_mv.col, cpi->speed,
x->source_variance, x->content_state_sb);
}
#if CONFIG_AV1_TEMPORAL_DENOISING
if (cpi->oxcf.noise_sensitivity > 0 && denoise_svc_pickmode &&
cpi->denoiser.denoising_level > kDenLowLow) {
av1_denoiser_update_frame_stats(mi, sse_y, this_mode, ctx);
// Keep track of zero_last cost.
if (ref_frame == LAST_FRAME && frame_mv[this_mode][ref_frame].as_int == 0)
zero_last_cost_orig = this_rdc.rdcost;
}
#else
(void)sse_y;
#endif
mode_checked[this_mode][ref_frame] = 1;
#if COLLECT_PICK_MODE_STAT
aom_usec_timer_mark(&ms_stat.timer1);
ms_stat.nonskipped_search_times[bsize][this_mode] +=
aom_usec_timer_elapsed(&ms_stat.timer1);
#endif
if (this_rdc.rdcost < best_rdc.rdcost) {
best_rdc = this_rdc;
best_early_term = this_early_term;
best_pickmode.best_mode = this_mode;
best_pickmode.best_pred_filter = mi->interp_filters;
best_pickmode.best_tx_size = mi->tx_size;
best_pickmode.best_ref_frame = ref_frame;
best_pickmode.best_mode_skip_txfm = this_rdc.skip_txfm;
best_pickmode.best_mode_initial_skip_flag =
(nonskip_rdc.rate == INT_MAX && this_rdc.skip_txfm);
if (reuse_inter_pred) {
free_pred_buffer(best_pickmode.best_pred);
best_pickmode.best_pred = this_mode_pred;
}
} else {
if (reuse_inter_pred) free_pred_buffer(this_mode_pred);
}
if (best_early_term && (idx > 0 || cpi->sf.rt_sf.nonrd_agressive_skip)) {
txfm_info->skip_txfm = 1;
break;
}
}
mi->mode = best_pickmode.best_mode;
mi->interp_filters = best_pickmode.best_pred_filter;
mi->tx_size = best_pickmode.best_tx_size;
memset(mi->inter_tx_size, mi->tx_size, sizeof(mi->inter_tx_size));
mi->ref_frame[0] = best_pickmode.best_ref_frame;
mi->mv[0].as_int =
frame_mv[best_pickmode.best_mode][best_pickmode.best_ref_frame].as_int;
// Perform intra prediction search, if the best SAD is above a certain
// threshold.
mi->angle_delta[PLANE_TYPE_Y] = 0;
mi->angle_delta[PLANE_TYPE_UV] = 0;
mi->filter_intra_mode_info.use_filter_intra = 0;
estimate_intra_mode(cpi, x, bsize, use_modeled_non_rd_cost, best_early_term,
ref_costs_single[INTRA_FRAME], reuse_inter_pred,
&orig_dst, tmp, &this_mode_pred, &best_rdc,
&best_pickmode);
pd->dst = orig_dst;
mi->mode = best_pickmode.best_mode;
mi->ref_frame[0] = best_pickmode.best_ref_frame;
txfm_info->skip_txfm = best_rdc.skip_txfm;
if (!is_inter_block(mi)) {
mi->interp_filters = av1_broadcast_interp_filter(SWITCHABLE_FILTERS);
}
if (reuse_inter_pred && best_pickmode.best_pred != NULL) {
PRED_BUFFER *const best_pred = best_pickmode.best_pred;
if (best_pred->data != orig_dst.buf && is_inter_mode(mi->mode)) {
aom_convolve_copy(best_pred->data, best_pred->stride, pd->dst.buf,
pd->dst.stride, bw, bh);
}
}
#if CONFIG_AV1_TEMPORAL_DENOISING
if (cpi->oxcf.noise_sensitivity > 0 && resize_pending == 0 &&
denoise_svc_pickmode && cpi->denoiser.denoising_level > kDenLowLow &&
cpi->denoiser.reset == 0) {
AV1_DENOISER_DECISION decision = COPY_BLOCK;
ctx->sb_skip_denoising = 0;
av1_pickmode_ctx_den_update(&ctx_den, zero_last_cost_orig, ref_costs_single,
frame_mv, reuse_inter_pred, &best_pickmode);
av1_denoiser_denoise(cpi, x, mi_row, mi_col, bsize, ctx, &decision,
gf_temporal_ref);
if (denoise_recheck_zeromv)
recheck_zeromv_after_denoising(cpi, mi, x, xd, decision, &ctx_den,
yv12_mb, &best_rdc, &best_pickmode, bsize,
mi_row, mi_col);
best_pickmode.best_ref_frame = ctx_den.best_ref_frame;
}
#endif
if (cpi->sf.inter_sf.adaptive_rd_thresh) {
THR_MODES best_mode_idx =
mode_idx[best_pickmode.best_ref_frame][mode_offset(mi->mode)];
if (best_pickmode.best_ref_frame == INTRA_FRAME) {
// Only consider the modes that are included in the intra_mode_list.
int intra_modes = sizeof(intra_mode_list) / sizeof(PREDICTION_MODE);
for (int i = 0; i < intra_modes; i++) {
update_thresh_freq_fact(cpi, x, bsize, INTRA_FRAME, best_mode_idx,
intra_mode_list[i]);
}
} else {
PREDICTION_MODE this_mode;
for (this_mode = NEARESTMV; this_mode <= NEWMV; ++this_mode) {
update_thresh_freq_fact(cpi, x, bsize, best_pickmode.best_ref_frame,
best_mode_idx, this_mode);
}
}
}
#if CONFIG_INTERNAL_STATS
store_coding_context(x, ctx, mi->mode);
#else
store_coding_context(x, ctx);
#endif // CONFIG_INTERNAL_STATS
#if COLLECT_PICK_MODE_STAT
aom_usec_timer_mark(&ms_stat.timer2);
ms_stat.avg_block_times[bsize] += aom_usec_timer_elapsed(&ms_stat.timer2);
//
if ((mi_row + mi_size_high[bsize] >= (cpi->common.mi_params.mi_rows)) &&
(mi_col + mi_size_wide[bsize] >= (cpi->common.mi_params.mi_cols))) {
int i, j;
PREDICTION_MODE used_modes[3] = { NEARESTMV, NEARMV, NEWMV };
BLOCK_SIZE bss[5] = { BLOCK_8X8, BLOCK_16X16, BLOCK_32X32, BLOCK_64X64,
BLOCK_128X128 };
int64_t total_time = 0l;
int32_t total_blocks = 0;
printf("\n");
for (i = 0; i < 5; i++) {
printf("BS(%d) Num %d, Avg_time %f: ", bss[i], ms_stat.num_blocks[bss[i]],
ms_stat.num_blocks[bss[i]] > 0
? (float)ms_stat.avg_block_times[bss[i]] /
ms_stat.num_blocks[bss[i]]
: 0);
total_time += ms_stat.avg_block_times[bss[i]];
total_blocks += ms_stat.num_blocks[bss[i]];
for (j = 0; j < 3; j++) {
printf("Mode %d, %d/%d tps %f ", used_modes[j],
ms_stat.num_nonskipped_searches[bss[i]][used_modes[j]],
ms_stat.num_searches[bss[i]][used_modes[j]],
ms_stat.num_nonskipped_searches[bss[i]][used_modes[j]] > 0
? (float)ms_stat
.nonskipped_search_times[bss[i]][used_modes[j]] /
ms_stat.num_nonskipped_searches[bss[i]][used_modes[j]]
: 0l);
}
printf("\n");
}
printf("Total time = %ld. Total blocks = %d\n", total_time, total_blocks);
}
//
#endif // COLLECT_PICK_MODE_STAT
*rd_cost = best_rdc;
}