blob: fefc0363468685c9606a2d3a9371c32270720303 [file] [log] [blame] [edit]
/*
* Copyright (c) 2018, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <immintrin.h>
#include "aom_dsp/x86/mem_sse2.h"
#include "aom_dsp/x86/synonyms_avx2.h"
#include "aom_ports/system_state.h"
#include "config/av1_rtcd.h"
#include "av1/encoder/rdopt.h"
// Process horizontal and vertical correlations in a 4x4 block of pixels.
// We actually use the 4x4 pixels to calculate correlations corresponding to
// the top-left 3x3 pixels, so this function must be called with 1x1 overlap,
// moving the window along/down by 3 pixels at a time.
INLINE static void horver_correlation_4x4(const int16_t *diff, int stride,
__m256i *xy_sum_32,
__m256i *xz_sum_32, __m256i *x_sum_32,
__m256i *x2_sum_32) {
// Pixels in this 4x4 [ a b c d ]
// are referred to as: [ e f g h ]
// [ i j k l ]
// [ m n o p ]
const __m256i pixels = _mm256_set_epi64x(
loadu_uint64(&diff[0 * stride]), loadu_uint64(&diff[1 * stride]),
loadu_uint64(&diff[2 * stride]), loadu_uint64(&diff[3 * stride]));
// pixels = [d c b a h g f e] [l k j i p o n m] as i16
const __m256i slli = _mm256_slli_epi64(pixels, 16);
// slli = [c b a 0 g f e 0] [k j i 0 o n m 0] as i16
const __m256i madd_xy = _mm256_madd_epi16(pixels, slli);
// madd_xy = [bc+cd ab fg+gh ef] [jk+kl ij no+op mn] as i32
*xy_sum_32 = _mm256_add_epi32(*xy_sum_32, madd_xy);
// Permute control [3 2] [1 0] => [2 1] [0 0], 0b10010000 = 0x90
const __m256i perm = _mm256_permute4x64_epi64(slli, 0x90);
// perm = [g f e 0 k j i 0] [o n m 0 o n m 0] as i16
const __m256i madd_xz = _mm256_madd_epi16(slli, perm);
// madd_xz = [cg+bf ae gk+fj ei] [ko+jn im oo+nn mm] as i32
*xz_sum_32 = _mm256_add_epi32(*xz_sum_32, madd_xz);
// Sum every element in slli (and then also their squares)
const __m256i madd1_slli = _mm256_madd_epi16(slli, _mm256_set1_epi16(1));
// madd1_slli = [c+b a g+f e] [k+j i o+n m] as i32
*x_sum_32 = _mm256_add_epi32(*x_sum_32, madd1_slli);
const __m256i madd_slli = _mm256_madd_epi16(slli, slli);
// madd_slli = [cc+bb aa gg+ff ee] [kk+jj ii oo+nn mm] as i32
*x2_sum_32 = _mm256_add_epi32(*x2_sum_32, madd_slli);
}
void av1_get_horver_correlation_full_avx2(const int16_t *diff, int stride,
int width, int height, float *hcorr,
float *vcorr) {
// The following notation is used:
// x - current pixel
// y - right neighbour pixel
// z - below neighbour pixel
// w - down-right neighbour pixel
int64_t xy_sum = 0, xz_sum = 0;
int64_t x_sum = 0, x2_sum = 0;
// Process horizontal and vertical correlations through the body in 4x4
// blocks. This excludes the final row and column and possibly one extra
// column depending how 3 divides into width and height
int32_t xy_xz_tmp[8] = { 0 }, x_x2_tmp[8] = { 0 };
__m256i xy_sum_32 = _mm256_setzero_si256();
__m256i xz_sum_32 = _mm256_setzero_si256();
__m256i x_sum_32 = _mm256_setzero_si256();
__m256i x2_sum_32 = _mm256_setzero_si256();
for (int i = 0; i <= height - 4; i += 3) {
for (int j = 0; j <= width - 4; j += 3) {
horver_correlation_4x4(&diff[i * stride + j], stride, &xy_sum_32,
&xz_sum_32, &x_sum_32, &x2_sum_32);
}
const __m256i hadd_xy_xz = _mm256_hadd_epi32(xy_sum_32, xz_sum_32);
// hadd_xy_xz = [ae+bf+cg ei+fj+gk ab+bc+cd ef+fg+gh]
// [im+jn+ko mm+nn+oo ij+jk+kl mn+no+op] as i32
yy_storeu_256(xy_xz_tmp, hadd_xy_xz);
xy_sum += (int64_t)xy_xz_tmp[5] + xy_xz_tmp[4] + xy_xz_tmp[1];
xz_sum += (int64_t)xy_xz_tmp[7] + xy_xz_tmp[6] + xy_xz_tmp[3];
const __m256i hadd_x_x2 = _mm256_hadd_epi32(x_sum_32, x2_sum_32);
// hadd_x_x2 = [aa+bb+cc ee+ff+gg a+b+c e+f+g]
// [ii+jj+kk mm+nn+oo i+j+k m+n+o] as i32
yy_storeu_256(x_x2_tmp, hadd_x_x2);
x_sum += (int64_t)x_x2_tmp[5] + x_x2_tmp[4] + x_x2_tmp[1];
x2_sum += (int64_t)x_x2_tmp[7] + x_x2_tmp[6] + x_x2_tmp[3];
xy_sum_32 = _mm256_setzero_si256();
xz_sum_32 = _mm256_setzero_si256();
x_sum_32 = _mm256_setzero_si256();
x2_sum_32 = _mm256_setzero_si256();
}
// x_sum now covers every pixel except the final 1-2 rows and 1-2 cols
int64_t x_finalrow = 0, x_finalcol = 0, x2_finalrow = 0, x2_finalcol = 0;
// Do we have 2 rows remaining or just the one? Note that width and height
// are powers of 2, so each modulo 3 must be 1 or 2.
if (height % 3 == 1) { // Just horiz corrs on the final row
const int16_t x0 = diff[(height - 1) * stride];
x_sum += x0;
x_finalrow += x0;
x2_sum += x0 * x0;
x2_finalrow += x0 * x0;
for (int j = 0; j < width - 1; ++j) {
const int16_t x = diff[(height - 1) * stride + j];
const int16_t y = diff[(height - 1) * stride + j + 1];
xy_sum += x * y;
x_sum += y;
x2_sum += y * y;
x_finalrow += y;
x2_finalrow += y * y;
}
} else { // Two rows remaining to do
const int16_t x0 = diff[(height - 2) * stride];
const int16_t z0 = diff[(height - 1) * stride];
x_sum += x0 + z0;
x2_sum += x0 * x0 + z0 * z0;
x_finalrow += z0;
x2_finalrow += z0 * z0;
for (int j = 0; j < width - 1; ++j) {
const int16_t x = diff[(height - 2) * stride + j];
const int16_t y = diff[(height - 2) * stride + j + 1];
const int16_t z = diff[(height - 1) * stride + j];
const int16_t w = diff[(height - 1) * stride + j + 1];
// Horizontal and vertical correlations for the penultimate row:
xy_sum += x * y;
xz_sum += x * z;
// Now just horizontal correlations for the final row:
xy_sum += z * w;
x_sum += y + w;
x2_sum += y * y + w * w;
x_finalrow += w;
x2_finalrow += w * w;
}
}
// Do we have 2 columns remaining or just the one?
if (width % 3 == 1) { // Just vert corrs on the final col
const int16_t x0 = diff[width - 1];
x_sum += x0;
x_finalcol += x0;
x2_sum += x0 * x0;
x2_finalcol += x0 * x0;
for (int i = 0; i < height - 1; ++i) {
const int16_t x = diff[i * stride + width - 1];
const int16_t z = diff[(i + 1) * stride + width - 1];
xz_sum += x * z;
x_finalcol += z;
x2_finalcol += z * z;
// So the bottom-right elements don't get counted twice:
if (i < height - (height % 3 == 1 ? 2 : 3)) {
x_sum += z;
x2_sum += z * z;
}
}
} else { // Two cols remaining
const int16_t x0 = diff[width - 2];
const int16_t y0 = diff[width - 1];
x_sum += x0 + y0;
x2_sum += x0 * x0 + y0 * y0;
x_finalcol += y0;
x2_finalcol += y0 * y0;
for (int i = 0; i < height - 1; ++i) {
const int16_t x = diff[i * stride + width - 2];
const int16_t y = diff[i * stride + width - 1];
const int16_t z = diff[(i + 1) * stride + width - 2];
const int16_t w = diff[(i + 1) * stride + width - 1];
// Horizontal and vertical correlations for the penultimate col:
// Skip these on the last iteration of this loop if we also had two
// rows remaining, otherwise the final horizontal and vertical correlation
// get erroneously processed twice
if (i < height - 2 || height % 3 == 1) {
xy_sum += x * y;
xz_sum += x * z;
}
x_finalcol += w;
x2_finalcol += w * w;
// So the bottom-right elements don't get counted twice:
if (i < height - (height % 3 == 1 ? 2 : 3)) {
x_sum += z + w;
x2_sum += z * z + w * w;
}
// Now just vertical correlations for the final column:
xz_sum += y * w;
}
}
// Calculate the simple sums and squared-sums
int64_t x_firstrow = 0, x_firstcol = 0;
int64_t x2_firstrow = 0, x2_firstcol = 0;
for (int j = 0; j < width; ++j) {
x_firstrow += diff[j];
x2_firstrow += diff[j] * diff[j];
}
for (int i = 0; i < height; ++i) {
x_firstcol += diff[i * stride];
x2_firstcol += diff[i * stride] * diff[i * stride];
}
int64_t xhor_sum = x_sum - x_finalcol;
int64_t xver_sum = x_sum - x_finalrow;
int64_t y_sum = x_sum - x_firstcol;
int64_t z_sum = x_sum - x_firstrow;
int64_t x2hor_sum = x2_sum - x2_finalcol;
int64_t x2ver_sum = x2_sum - x2_finalrow;
int64_t y2_sum = x2_sum - x2_firstcol;
int64_t z2_sum = x2_sum - x2_firstrow;
aom_clear_system_state();
const float num_hor = (float)(height * (width - 1));
const float num_ver = (float)((height - 1) * width);
const float xhor_var_n = x2hor_sum - (xhor_sum * xhor_sum) / num_hor;
const float xver_var_n = x2ver_sum - (xver_sum * xver_sum) / num_ver;
const float y_var_n = y2_sum - (y_sum * y_sum) / num_hor;
const float z_var_n = z2_sum - (z_sum * z_sum) / num_ver;
const float xy_var_n = xy_sum - (xhor_sum * y_sum) / num_hor;
const float xz_var_n = xz_sum - (xver_sum * z_sum) / num_ver;
if (xhor_var_n > 0 && y_var_n > 0) {
*hcorr = xy_var_n / sqrtf(xhor_var_n * y_var_n);
*hcorr = *hcorr < 0 ? 0 : *hcorr;
} else {
*hcorr = 1.0;
}
if (xver_var_n > 0 && z_var_n > 0) {
*vcorr = xz_var_n / sqrtf(xver_var_n * z_var_n);
*vcorr = *vcorr < 0 ? 0 : *vcorr;
} else {
*vcorr = 1.0;
}
}