| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <assert.h> |
| #include <stdio.h> |
| #include <limits.h> |
| |
| #include "config/aom_config.h" |
| #include "config/aom_dsp_rtcd.h" |
| #include "config/aom_scale_rtcd.h" |
| |
| #include "aom/aom_integer.h" |
| #include "aom_dsp/blend.h" |
| |
| #include "av1/common/av1_common_int.h" |
| #include "av1/common/blockd.h" |
| #include "av1/common/mvref_common.h" |
| #include "av1/common/obmc.h" |
| #include "av1/common/reconinter.h" |
| #include "av1/common/reconintra.h" |
| |
| // This function will determine whether or not to create a warped |
| // prediction. |
| int av1_allow_warp(const MB_MODE_INFO *const mbmi, |
| const WarpTypesAllowed *const warp_types, |
| const WarpedMotionParams *const gm_params, |
| int build_for_obmc, const struct scale_factors *const sf, |
| WarpedMotionParams *final_warp_params) { |
| // Note: As per the spec, we must test the fixed point scales here, which are |
| // at a higher precision (1 << 14) than the xs and ys in subpel_params (that |
| // have 1 << 10 precision). |
| if (av1_is_scaled(sf)) return 0; |
| |
| if (final_warp_params != NULL) *final_warp_params = default_warp_params; |
| |
| if (build_for_obmc) return 0; |
| |
| if (warp_types->local_warp_allowed && !mbmi->wm_params.invalid) { |
| if (final_warp_params != NULL) |
| memcpy(final_warp_params, &mbmi->wm_params, sizeof(*final_warp_params)); |
| return 1; |
| } else if (warp_types->global_warp_allowed && !gm_params->invalid) { |
| if (final_warp_params != NULL) |
| memcpy(final_warp_params, gm_params, sizeof(*final_warp_params)); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| void av1_init_inter_params(InterPredParams *inter_pred_params, int block_width, |
| int block_height, int pix_row, int pix_col, |
| int subsampling_x, int subsampling_y, int bit_depth, |
| int use_hbd_buf, int is_intrabc, |
| const struct scale_factors *sf, |
| const struct buf_2d *ref_buf, |
| int_interpfilters interp_filters) { |
| inter_pred_params->block_width = block_width; |
| inter_pred_params->block_height = block_height; |
| inter_pred_params->pix_row = pix_row; |
| inter_pred_params->pix_col = pix_col; |
| inter_pred_params->subsampling_x = subsampling_x; |
| inter_pred_params->subsampling_y = subsampling_y; |
| inter_pred_params->bit_depth = bit_depth; |
| inter_pred_params->use_hbd_buf = use_hbd_buf; |
| inter_pred_params->is_intrabc = is_intrabc; |
| inter_pred_params->scale_factors = sf; |
| inter_pred_params->ref_frame_buf = *ref_buf; |
| inter_pred_params->mode = TRANSLATION_PRED; |
| inter_pred_params->comp_mode = UNIFORM_SINGLE; |
| |
| if (is_intrabc) { |
| inter_pred_params->interp_filter_params[0] = &av1_intrabc_filter_params; |
| inter_pred_params->interp_filter_params[1] = &av1_intrabc_filter_params; |
| } else { |
| inter_pred_params->interp_filter_params[0] = |
| av1_get_interp_filter_params_with_block_size( |
| interp_filters.as_filters.x_filter, block_width); |
| inter_pred_params->interp_filter_params[1] = |
| av1_get_interp_filter_params_with_block_size( |
| interp_filters.as_filters.y_filter, block_height); |
| } |
| } |
| |
| void av1_init_comp_mode(InterPredParams *inter_pred_params) { |
| inter_pred_params->comp_mode = UNIFORM_COMP; |
| } |
| |
| void av1_init_warp_params(InterPredParams *inter_pred_params, |
| const WarpTypesAllowed *warp_types, int ref, |
| const MACROBLOCKD *xd, const MB_MODE_INFO *mi) { |
| if (inter_pred_params->block_height < 8 || inter_pred_params->block_width < 8) |
| return; |
| |
| if (xd->cur_frame_force_integer_mv) return; |
| |
| if (av1_allow_warp(mi, warp_types, &xd->global_motion[mi->ref_frame[ref]], 0, |
| inter_pred_params->scale_factors, |
| &inter_pred_params->warp_params)) |
| inter_pred_params->mode = WARP_PRED; |
| } |
| |
| void av1_make_inter_predictor(const uint8_t *src, int src_stride, uint8_t *dst, |
| int dst_stride, |
| InterPredParams *inter_pred_params, |
| const SubpelParams *subpel_params) { |
| assert(IMPLIES(inter_pred_params->conv_params.is_compound, |
| inter_pred_params->conv_params.dst != NULL)); |
| |
| if (inter_pred_params->mode == TRANSLATION_PRED) { |
| #if CONFIG_AV1_HIGHBITDEPTH |
| if (inter_pred_params->use_hbd_buf) { |
| highbd_inter_predictor(src, src_stride, dst, dst_stride, subpel_params, |
| inter_pred_params->block_width, |
| inter_pred_params->block_height, |
| &inter_pred_params->conv_params, |
| inter_pred_params->interp_filter_params, |
| inter_pred_params->bit_depth); |
| } else { |
| inter_predictor(src, src_stride, dst, dst_stride, subpel_params, |
| inter_pred_params->block_width, |
| inter_pred_params->block_height, |
| &inter_pred_params->conv_params, |
| inter_pred_params->interp_filter_params); |
| } |
| #else |
| inter_predictor(src, src_stride, dst, dst_stride, subpel_params, |
| inter_pred_params->block_width, |
| inter_pred_params->block_height, |
| &inter_pred_params->conv_params, |
| inter_pred_params->interp_filter_params); |
| #endif |
| } |
| #if !CONFIG_REALTIME_ONLY |
| // TODO(jingning): av1_warp_plane() can be further cleaned up. |
| else if (inter_pred_params->mode == WARP_PRED) { |
| av1_warp_plane( |
| &inter_pred_params->warp_params, inter_pred_params->use_hbd_buf, |
| inter_pred_params->bit_depth, inter_pred_params->ref_frame_buf.buf0, |
| inter_pred_params->ref_frame_buf.width, |
| inter_pred_params->ref_frame_buf.height, |
| inter_pred_params->ref_frame_buf.stride, dst, |
| inter_pred_params->pix_col, inter_pred_params->pix_row, |
| inter_pred_params->block_width, inter_pred_params->block_height, |
| dst_stride, inter_pred_params->subsampling_x, |
| inter_pred_params->subsampling_y, &inter_pred_params->conv_params); |
| } |
| #endif |
| } |
| |
| static const uint8_t wedge_master_oblique_odd[MASK_MASTER_SIZE] = { |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 6, 18, |
| 37, 53, 60, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, |
| 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, |
| }; |
| static const uint8_t wedge_master_oblique_even[MASK_MASTER_SIZE] = { |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 11, 27, |
| 46, 58, 62, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, |
| 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, |
| }; |
| static const uint8_t wedge_master_vertical[MASK_MASTER_SIZE] = { |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 7, 21, |
| 43, 57, 62, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, |
| 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, |
| }; |
| |
| static AOM_INLINE void shift_copy(const uint8_t *src, uint8_t *dst, int shift, |
| int width) { |
| if (shift >= 0) { |
| memcpy(dst + shift, src, width - shift); |
| memset(dst, src[0], shift); |
| } else { |
| shift = -shift; |
| memcpy(dst, src + shift, width - shift); |
| memset(dst + width - shift, src[width - 1], shift); |
| } |
| } |
| |
| /* clang-format off */ |
| DECLARE_ALIGNED(16, static uint8_t, |
| wedge_signflip_lookup[BLOCK_SIZES_ALL][MAX_WEDGE_TYPES]) = { |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, }, |
| { 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, }, |
| { 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, }, |
| { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, }, |
| { 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, }, |
| { 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, }, |
| { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, }, |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| { 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, }, |
| { 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, }, |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used |
| }; |
| /* clang-format on */ |
| |
| // [negative][direction] |
| DECLARE_ALIGNED( |
| 16, static uint8_t, |
| wedge_mask_obl[2][WEDGE_DIRECTIONS][MASK_MASTER_SIZE * MASK_MASTER_SIZE]); |
| |
| // 4 * MAX_WEDGE_SQUARE is an easy to compute and fairly tight upper bound |
| // on the sum of all mask sizes up to an including MAX_WEDGE_SQUARE. |
| DECLARE_ALIGNED(16, static uint8_t, |
| wedge_mask_buf[2 * MAX_WEDGE_TYPES * 4 * MAX_WEDGE_SQUARE]); |
| |
| DECLARE_ALIGNED(16, static uint8_t, |
| smooth_interintra_mask_buf[INTERINTRA_MODES][BLOCK_SIZES_ALL] |
| [MAX_WEDGE_SQUARE]); |
| |
| static wedge_masks_type wedge_masks[BLOCK_SIZES_ALL][2]; |
| |
| static const wedge_code_type wedge_codebook_16_hgtw[16] = { |
| { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 }, |
| { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, |
| { WEDGE_HORIZONTAL, 4, 2 }, { WEDGE_HORIZONTAL, 4, 4 }, |
| { WEDGE_HORIZONTAL, 4, 6 }, { WEDGE_VERTICAL, 4, 4 }, |
| { WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 }, |
| { WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 }, |
| { WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 }, |
| { WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 }, |
| }; |
| |
| static const wedge_code_type wedge_codebook_16_hltw[16] = { |
| { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 }, |
| { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, |
| { WEDGE_VERTICAL, 2, 4 }, { WEDGE_VERTICAL, 4, 4 }, |
| { WEDGE_VERTICAL, 6, 4 }, { WEDGE_HORIZONTAL, 4, 4 }, |
| { WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 }, |
| { WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 }, |
| { WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 }, |
| { WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 }, |
| }; |
| |
| static const wedge_code_type wedge_codebook_16_heqw[16] = { |
| { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 }, |
| { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, |
| { WEDGE_HORIZONTAL, 4, 2 }, { WEDGE_HORIZONTAL, 4, 6 }, |
| { WEDGE_VERTICAL, 2, 4 }, { WEDGE_VERTICAL, 6, 4 }, |
| { WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 }, |
| { WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 }, |
| { WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 }, |
| { WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 }, |
| }; |
| |
| const wedge_params_type av1_wedge_params_lookup[BLOCK_SIZES_ALL] = { |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_8X8], |
| wedge_masks[BLOCK_8X8] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_8X16], |
| wedge_masks[BLOCK_8X16] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_16X8], |
| wedge_masks[BLOCK_16X8] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_16X16], |
| wedge_masks[BLOCK_16X16] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_16X32], |
| wedge_masks[BLOCK_16X32] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_32X16], |
| wedge_masks[BLOCK_32X16] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_32X32], |
| wedge_masks[BLOCK_32X32] }, |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_8X32], |
| wedge_masks[BLOCK_8X32] }, |
| { MAX_WEDGE_TYPES, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_32X8], |
| wedge_masks[BLOCK_32X8] }, |
| { 0, NULL, NULL, NULL }, |
| { 0, NULL, NULL, NULL }, |
| }; |
| |
| static const uint8_t *get_wedge_mask_inplace(int wedge_index, int neg, |
| BLOCK_SIZE sb_type) { |
| const uint8_t *master; |
| const int bh = block_size_high[sb_type]; |
| const int bw = block_size_wide[sb_type]; |
| const wedge_code_type *a = |
| av1_wedge_params_lookup[sb_type].codebook + wedge_index; |
| int woff, hoff; |
| const uint8_t wsignflip = |
| av1_wedge_params_lookup[sb_type].signflip[wedge_index]; |
| |
| assert(wedge_index >= 0 && wedge_index < get_wedge_types_lookup(sb_type)); |
| woff = (a->x_offset * bw) >> 3; |
| hoff = (a->y_offset * bh) >> 3; |
| master = wedge_mask_obl[neg ^ wsignflip][a->direction] + |
| MASK_MASTER_STRIDE * (MASK_MASTER_SIZE / 2 - hoff) + |
| MASK_MASTER_SIZE / 2 - woff; |
| return master; |
| } |
| |
| const uint8_t *av1_get_compound_type_mask( |
| const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type) { |
| (void)sb_type; |
| switch (comp_data->type) { |
| case COMPOUND_WEDGE: |
| return av1_get_contiguous_soft_mask(comp_data->wedge_index, |
| comp_data->wedge_sign, sb_type); |
| default: return comp_data->seg_mask; |
| } |
| } |
| |
| static AOM_INLINE void diffwtd_mask_d16( |
| uint8_t *mask, int which_inverse, int mask_base, const CONV_BUF_TYPE *src0, |
| int src0_stride, const CONV_BUF_TYPE *src1, int src1_stride, int h, int w, |
| ConvolveParams *conv_params, int bd) { |
| int round = |
| 2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1 + (bd - 8); |
| int i, j, m, diff; |
| for (i = 0; i < h; ++i) { |
| for (j = 0; j < w; ++j) { |
| diff = abs(src0[i * src0_stride + j] - src1[i * src1_stride + j]); |
| diff = ROUND_POWER_OF_TWO(diff, round); |
| m = clamp(mask_base + (diff / DIFF_FACTOR), 0, AOM_BLEND_A64_MAX_ALPHA); |
| mask[i * w + j] = which_inverse ? AOM_BLEND_A64_MAX_ALPHA - m : m; |
| } |
| } |
| } |
| |
| void av1_build_compound_diffwtd_mask_d16_c( |
| uint8_t *mask, DIFFWTD_MASK_TYPE mask_type, const CONV_BUF_TYPE *src0, |
| int src0_stride, const CONV_BUF_TYPE *src1, int src1_stride, int h, int w, |
| ConvolveParams *conv_params, int bd) { |
| switch (mask_type) { |
| case DIFFWTD_38: |
| diffwtd_mask_d16(mask, 0, 38, src0, src0_stride, src1, src1_stride, h, w, |
| conv_params, bd); |
| break; |
| case DIFFWTD_38_INV: |
| diffwtd_mask_d16(mask, 1, 38, src0, src0_stride, src1, src1_stride, h, w, |
| conv_params, bd); |
| break; |
| default: assert(0); |
| } |
| } |
| |
| static AOM_INLINE void diffwtd_mask(uint8_t *mask, int which_inverse, |
| int mask_base, const uint8_t *src0, |
| int src0_stride, const uint8_t *src1, |
| int src1_stride, int h, int w) { |
| int i, j, m, diff; |
| for (i = 0; i < h; ++i) { |
| for (j = 0; j < w; ++j) { |
| diff = |
| abs((int)src0[i * src0_stride + j] - (int)src1[i * src1_stride + j]); |
| m = clamp(mask_base + (diff / DIFF_FACTOR), 0, AOM_BLEND_A64_MAX_ALPHA); |
| mask[i * w + j] = which_inverse ? AOM_BLEND_A64_MAX_ALPHA - m : m; |
| } |
| } |
| } |
| |
| void av1_build_compound_diffwtd_mask_c(uint8_t *mask, |
| DIFFWTD_MASK_TYPE mask_type, |
| const uint8_t *src0, int src0_stride, |
| const uint8_t *src1, int src1_stride, |
| int h, int w) { |
| switch (mask_type) { |
| case DIFFWTD_38: |
| diffwtd_mask(mask, 0, 38, src0, src0_stride, src1, src1_stride, h, w); |
| break; |
| case DIFFWTD_38_INV: |
| diffwtd_mask(mask, 1, 38, src0, src0_stride, src1, src1_stride, h, w); |
| break; |
| default: assert(0); |
| } |
| } |
| |
| static AOM_FORCE_INLINE void diffwtd_mask_highbd( |
| uint8_t *mask, int which_inverse, int mask_base, const uint16_t *src0, |
| int src0_stride, const uint16_t *src1, int src1_stride, int h, int w, |
| const unsigned int bd) { |
| assert(bd >= 8); |
| if (bd == 8) { |
| if (which_inverse) { |
| for (int i = 0; i < h; ++i) { |
| for (int j = 0; j < w; ++j) { |
| int diff = abs((int)src0[j] - (int)src1[j]) / DIFF_FACTOR; |
| unsigned int m = negative_to_zero(mask_base + diff); |
| m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA); |
| mask[j] = AOM_BLEND_A64_MAX_ALPHA - m; |
| } |
| src0 += src0_stride; |
| src1 += src1_stride; |
| mask += w; |
| } |
| } else { |
| for (int i = 0; i < h; ++i) { |
| for (int j = 0; j < w; ++j) { |
| int diff = abs((int)src0[j] - (int)src1[j]) / DIFF_FACTOR; |
| unsigned int m = negative_to_zero(mask_base + diff); |
| m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA); |
| mask[j] = m; |
| } |
| src0 += src0_stride; |
| src1 += src1_stride; |
| mask += w; |
| } |
| } |
| } else { |
| const unsigned int bd_shift = bd - 8; |
| if (which_inverse) { |
| for (int i = 0; i < h; ++i) { |
| for (int j = 0; j < w; ++j) { |
| int diff = |
| (abs((int)src0[j] - (int)src1[j]) >> bd_shift) / DIFF_FACTOR; |
| unsigned int m = negative_to_zero(mask_base + diff); |
| m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA); |
| mask[j] = AOM_BLEND_A64_MAX_ALPHA - m; |
| } |
| src0 += src0_stride; |
| src1 += src1_stride; |
| mask += w; |
| } |
| } else { |
| for (int i = 0; i < h; ++i) { |
| for (int j = 0; j < w; ++j) { |
| int diff = |
| (abs((int)src0[j] - (int)src1[j]) >> bd_shift) / DIFF_FACTOR; |
| unsigned int m = negative_to_zero(mask_base + diff); |
| m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA); |
| mask[j] = m; |
| } |
| src0 += src0_stride; |
| src1 += src1_stride; |
| mask += w; |
| } |
| } |
| } |
| } |
| |
| void av1_build_compound_diffwtd_mask_highbd_c( |
| uint8_t *mask, DIFFWTD_MASK_TYPE mask_type, const uint8_t *src0, |
| int src0_stride, const uint8_t *src1, int src1_stride, int h, int w, |
| int bd) { |
| switch (mask_type) { |
| case DIFFWTD_38: |
| diffwtd_mask_highbd(mask, 0, 38, CONVERT_TO_SHORTPTR(src0), src0_stride, |
| CONVERT_TO_SHORTPTR(src1), src1_stride, h, w, bd); |
| break; |
| case DIFFWTD_38_INV: |
| diffwtd_mask_highbd(mask, 1, 38, CONVERT_TO_SHORTPTR(src0), src0_stride, |
| CONVERT_TO_SHORTPTR(src1), src1_stride, h, w, bd); |
| break; |
| default: assert(0); |
| } |
| } |
| |
| static AOM_INLINE void init_wedge_master_masks() { |
| int i, j; |
| const int w = MASK_MASTER_SIZE; |
| const int h = MASK_MASTER_SIZE; |
| const int stride = MASK_MASTER_STRIDE; |
| // Note: index [0] stores the masters, and [1] its complement. |
| // Generate prototype by shifting the masters |
| int shift = h / 4; |
| for (i = 0; i < h; i += 2) { |
| shift_copy(wedge_master_oblique_even, |
| &wedge_mask_obl[0][WEDGE_OBLIQUE63][i * stride], shift, |
| MASK_MASTER_SIZE); |
| shift--; |
| shift_copy(wedge_master_oblique_odd, |
| &wedge_mask_obl[0][WEDGE_OBLIQUE63][(i + 1) * stride], shift, |
| MASK_MASTER_SIZE); |
| memcpy(&wedge_mask_obl[0][WEDGE_VERTICAL][i * stride], |
| wedge_master_vertical, |
| MASK_MASTER_SIZE * sizeof(wedge_master_vertical[0])); |
| memcpy(&wedge_mask_obl[0][WEDGE_VERTICAL][(i + 1) * stride], |
| wedge_master_vertical, |
| MASK_MASTER_SIZE * sizeof(wedge_master_vertical[0])); |
| } |
| |
| for (i = 0; i < h; ++i) { |
| for (j = 0; j < w; ++j) { |
| const int msk = wedge_mask_obl[0][WEDGE_OBLIQUE63][i * stride + j]; |
| wedge_mask_obl[0][WEDGE_OBLIQUE27][j * stride + i] = msk; |
| wedge_mask_obl[0][WEDGE_OBLIQUE117][i * stride + w - 1 - j] = |
| wedge_mask_obl[0][WEDGE_OBLIQUE153][(w - 1 - j) * stride + i] = |
| (1 << WEDGE_WEIGHT_BITS) - msk; |
| wedge_mask_obl[1][WEDGE_OBLIQUE63][i * stride + j] = |
| wedge_mask_obl[1][WEDGE_OBLIQUE27][j * stride + i] = |
| (1 << WEDGE_WEIGHT_BITS) - msk; |
| wedge_mask_obl[1][WEDGE_OBLIQUE117][i * stride + w - 1 - j] = |
| wedge_mask_obl[1][WEDGE_OBLIQUE153][(w - 1 - j) * stride + i] = msk; |
| const int mskx = wedge_mask_obl[0][WEDGE_VERTICAL][i * stride + j]; |
| wedge_mask_obl[0][WEDGE_HORIZONTAL][j * stride + i] = mskx; |
| wedge_mask_obl[1][WEDGE_VERTICAL][i * stride + j] = |
| wedge_mask_obl[1][WEDGE_HORIZONTAL][j * stride + i] = |
| (1 << WEDGE_WEIGHT_BITS) - mskx; |
| } |
| } |
| } |
| |
| static AOM_INLINE void init_wedge_masks() { |
| uint8_t *dst = wedge_mask_buf; |
| BLOCK_SIZE bsize; |
| memset(wedge_masks, 0, sizeof(wedge_masks)); |
| for (bsize = BLOCK_4X4; bsize < BLOCK_SIZES_ALL; ++bsize) { |
| const wedge_params_type *wedge_params = &av1_wedge_params_lookup[bsize]; |
| const int wtypes = wedge_params->wedge_types; |
| if (wtypes == 0) continue; |
| const uint8_t *mask; |
| const int bw = block_size_wide[bsize]; |
| const int bh = block_size_high[bsize]; |
| int w; |
| for (w = 0; w < wtypes; ++w) { |
| mask = get_wedge_mask_inplace(w, 0, bsize); |
| aom_convolve_copy(mask, MASK_MASTER_STRIDE, dst, bw /* dst_stride */, bw, |
| bh); |
| wedge_params->masks[0][w] = dst; |
| dst += bw * bh; |
| |
| mask = get_wedge_mask_inplace(w, 1, bsize); |
| aom_convolve_copy(mask, MASK_MASTER_STRIDE, dst, bw /* dst_stride */, bw, |
| bh); |
| wedge_params->masks[1][w] = dst; |
| dst += bw * bh; |
| } |
| assert(sizeof(wedge_mask_buf) >= (size_t)(dst - wedge_mask_buf)); |
| } |
| } |
| |
| /* clang-format off */ |
| static const uint8_t ii_weights1d[MAX_SB_SIZE] = { |
| 60, 58, 56, 54, 52, 50, 48, 47, 45, 44, 42, 41, 39, 38, 37, 35, 34, 33, 32, |
| 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 22, 21, 20, 19, 19, 18, 18, 17, 16, |
| 16, 15, 15, 14, 14, 13, 13, 12, 12, 12, 11, 11, 10, 10, 10, 9, 9, 9, 8, |
| 8, 8, 8, 7, 7, 7, 7, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 4, 4, |
| 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, |
| 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 |
| }; |
| static uint8_t ii_size_scales[BLOCK_SIZES_ALL] = { |
| 32, 16, 16, 16, 8, 8, 8, 4, |
| 4, 4, 2, 2, 2, 1, 1, 1, |
| 8, 8, 4, 4, 2, 2 |
| }; |
| /* clang-format on */ |
| |
| static AOM_INLINE void build_smooth_interintra_mask(uint8_t *mask, int stride, |
| BLOCK_SIZE plane_bsize, |
| INTERINTRA_MODE mode) { |
| int i, j; |
| const int bw = block_size_wide[plane_bsize]; |
| const int bh = block_size_high[plane_bsize]; |
| const int size_scale = ii_size_scales[plane_bsize]; |
| |
| switch (mode) { |
| case II_V_PRED: |
| for (i = 0; i < bh; ++i) { |
| memset(mask, ii_weights1d[i * size_scale], bw * sizeof(mask[0])); |
| mask += stride; |
| } |
| break; |
| |
| case II_H_PRED: |
| for (i = 0; i < bh; ++i) { |
| for (j = 0; j < bw; ++j) mask[j] = ii_weights1d[j * size_scale]; |
| mask += stride; |
| } |
| break; |
| |
| case II_SMOOTH_PRED: |
| for (i = 0; i < bh; ++i) { |
| for (j = 0; j < bw; ++j) |
| mask[j] = ii_weights1d[(i < j ? i : j) * size_scale]; |
| mask += stride; |
| } |
| break; |
| |
| case II_DC_PRED: |
| default: |
| for (i = 0; i < bh; ++i) { |
| memset(mask, 32, bw * sizeof(mask[0])); |
| mask += stride; |
| } |
| break; |
| } |
| } |
| |
| static AOM_INLINE void init_smooth_interintra_masks() { |
| for (int m = 0; m < INTERINTRA_MODES; ++m) { |
| for (int bs = 0; bs < BLOCK_SIZES_ALL; ++bs) { |
| const int bw = block_size_wide[bs]; |
| const int bh = block_size_high[bs]; |
| if (bw > MAX_WEDGE_SIZE || bh > MAX_WEDGE_SIZE) continue; |
| build_smooth_interintra_mask(smooth_interintra_mask_buf[m][bs], bw, bs, |
| m); |
| } |
| } |
| } |
| |
| // Equation of line: f(x, y) = a[0]*(x - a[2]*w/8) + a[1]*(y - a[3]*h/8) = 0 |
| void av1_init_wedge_masks() { |
| init_wedge_master_masks(); |
| init_wedge_masks(); |
| init_smooth_interintra_masks(); |
| } |
| |
| static AOM_INLINE void build_masked_compound_no_round( |
| uint8_t *dst, int dst_stride, const CONV_BUF_TYPE *src0, int src0_stride, |
| const CONV_BUF_TYPE *src1, int src1_stride, |
| const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type, int h, |
| int w, InterPredParams *inter_pred_params) { |
| const int ssy = inter_pred_params->subsampling_y; |
| const int ssx = inter_pred_params->subsampling_x; |
| const uint8_t *mask = av1_get_compound_type_mask(comp_data, sb_type); |
| const int mask_stride = block_size_wide[sb_type]; |
| #if CONFIG_AV1_HIGHBITDEPTH |
| if (inter_pred_params->use_hbd_buf) { |
| aom_highbd_blend_a64_d16_mask(dst, dst_stride, src0, src0_stride, src1, |
| src1_stride, mask, mask_stride, w, h, ssx, |
| ssy, &inter_pred_params->conv_params, |
| inter_pred_params->bit_depth); |
| } else { |
| aom_lowbd_blend_a64_d16_mask(dst, dst_stride, src0, src0_stride, src1, |
| src1_stride, mask, mask_stride, w, h, ssx, ssy, |
| &inter_pred_params->conv_params); |
| } |
| #else |
| aom_lowbd_blend_a64_d16_mask(dst, dst_stride, src0, src0_stride, src1, |
| src1_stride, mask, mask_stride, w, h, ssx, ssy, |
| &inter_pred_params->conv_params); |
| #endif |
| } |
| |
| static void make_masked_inter_predictor(const uint8_t *pre, int pre_stride, |
| uint8_t *dst, int dst_stride, |
| InterPredParams *inter_pred_params, |
| const SubpelParams *subpel_params) { |
| const INTERINTER_COMPOUND_DATA *comp_data = &inter_pred_params->mask_comp; |
| BLOCK_SIZE sb_type = inter_pred_params->sb_type; |
| |
| // We're going to call av1_make_inter_predictor to generate a prediction into |
| // a temporary buffer, then will blend that temporary buffer with that from |
| // the other reference. |
| DECLARE_ALIGNED(32, uint8_t, tmp_buf[2 * MAX_SB_SQUARE]); |
| uint8_t *tmp_dst = |
| inter_pred_params->use_hbd_buf ? CONVERT_TO_BYTEPTR(tmp_buf) : tmp_buf; |
| |
| const int tmp_buf_stride = MAX_SB_SIZE; |
| CONV_BUF_TYPE *org_dst = inter_pred_params->conv_params.dst; |
| int org_dst_stride = inter_pred_params->conv_params.dst_stride; |
| CONV_BUF_TYPE *tmp_buf16 = (CONV_BUF_TYPE *)tmp_buf; |
| inter_pred_params->conv_params.dst = tmp_buf16; |
| inter_pred_params->conv_params.dst_stride = tmp_buf_stride; |
| assert(inter_pred_params->conv_params.do_average == 0); |
| |
| // This will generate a prediction in tmp_buf for the second reference |
| av1_make_inter_predictor(pre, pre_stride, tmp_dst, MAX_SB_SIZE, |
| inter_pred_params, subpel_params); |
| |
| if (!inter_pred_params->conv_params.plane && |
| comp_data->type == COMPOUND_DIFFWTD) { |
| av1_build_compound_diffwtd_mask_d16( |
| comp_data->seg_mask, comp_data->mask_type, org_dst, org_dst_stride, |
| tmp_buf16, tmp_buf_stride, inter_pred_params->block_height, |
| inter_pred_params->block_width, &inter_pred_params->conv_params, |
| inter_pred_params->bit_depth); |
| } |
| build_masked_compound_no_round( |
| dst, dst_stride, org_dst, org_dst_stride, tmp_buf16, tmp_buf_stride, |
| comp_data, sb_type, inter_pred_params->block_height, |
| inter_pred_params->block_width, inter_pred_params); |
| } |
| |
| void av1_build_one_inter_predictor( |
| uint8_t *dst, int dst_stride, const MV *const src_mv, |
| InterPredParams *inter_pred_params, MACROBLOCKD *xd, int mi_x, int mi_y, |
| int ref, uint8_t **mc_buf, CalcSubpelParamsFunc calc_subpel_params_func) { |
| SubpelParams subpel_params; |
| uint8_t *src; |
| int src_stride; |
| calc_subpel_params_func(src_mv, inter_pred_params, xd, mi_x, mi_y, ref, |
| mc_buf, &src, &subpel_params, &src_stride); |
| |
| if (inter_pred_params->comp_mode == UNIFORM_SINGLE || |
| inter_pred_params->comp_mode == UNIFORM_COMP) { |
| av1_make_inter_predictor(src, src_stride, dst, dst_stride, |
| inter_pred_params, &subpel_params); |
| } else { |
| make_masked_inter_predictor(src, src_stride, dst, dst_stride, |
| inter_pred_params, &subpel_params); |
| } |
| } |
| |
| void av1_dist_wtd_comp_weight_assign(const AV1_COMMON *cm, |
| const MB_MODE_INFO *mbmi, int order_idx, |
| int *fwd_offset, int *bck_offset, |
| int *use_dist_wtd_comp_avg, |
| int is_compound) { |
| assert(fwd_offset != NULL && bck_offset != NULL); |
| if (!is_compound || mbmi->compound_idx) { |
| *fwd_offset = 8; |
| *bck_offset = 8; |
| *use_dist_wtd_comp_avg = 0; |
| return; |
| } |
| |
| *use_dist_wtd_comp_avg = 1; |
| const RefCntBuffer *const bck_buf = get_ref_frame_buf(cm, mbmi->ref_frame[0]); |
| const RefCntBuffer *const fwd_buf = get_ref_frame_buf(cm, mbmi->ref_frame[1]); |
| const int cur_frame_index = cm->cur_frame->order_hint; |
| int bck_frame_index = 0, fwd_frame_index = 0; |
| |
| if (bck_buf != NULL) bck_frame_index = bck_buf->order_hint; |
| if (fwd_buf != NULL) fwd_frame_index = fwd_buf->order_hint; |
| |
| int d0 = clamp(abs(get_relative_dist(&cm->seq_params.order_hint_info, |
| fwd_frame_index, cur_frame_index)), |
| 0, MAX_FRAME_DISTANCE); |
| int d1 = clamp(abs(get_relative_dist(&cm->seq_params.order_hint_info, |
| cur_frame_index, bck_frame_index)), |
| 0, MAX_FRAME_DISTANCE); |
| |
| const int order = d0 <= d1; |
| |
| if (d0 == 0 || d1 == 0) { |
| *fwd_offset = quant_dist_lookup_table[order_idx][3][order]; |
| *bck_offset = quant_dist_lookup_table[order_idx][3][1 - order]; |
| return; |
| } |
| |
| int i; |
| for (i = 0; i < 3; ++i) { |
| int c0 = quant_dist_weight[i][order]; |
| int c1 = quant_dist_weight[i][!order]; |
| int d0_c0 = d0 * c0; |
| int d1_c1 = d1 * c1; |
| if ((d0 > d1 && d0_c0 < d1_c1) || (d0 <= d1 && d0_c0 > d1_c1)) break; |
| } |
| |
| *fwd_offset = quant_dist_lookup_table[order_idx][i][order]; |
| *bck_offset = quant_dist_lookup_table[order_idx][i][1 - order]; |
| } |
| |
| // True if the following hold: |
| // 1. Not intrabc and not build_for_obmc |
| // 2. At least one dimension is size 4 with subsampling |
| // 3. If sub-sampled, none of the previous blocks around the sub-sample |
| // are intrabc or inter-blocks |
| static bool is_sub8x8_inter(const MACROBLOCKD *xd, int plane, BLOCK_SIZE bsize, |
| int is_intrabc, int build_for_obmc) { |
| if (is_intrabc || build_for_obmc) { |
| return false; |
| } |
| |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const int ss_x = pd->subsampling_x; |
| const int ss_y = pd->subsampling_y; |
| const int is_sub4_x = (block_size_wide[bsize] == 4) && ss_x; |
| const int is_sub4_y = (block_size_high[bsize] == 4) && ss_y; |
| if (!is_sub4_x && !is_sub4_y) { |
| return false; |
| } |
| |
| // For sub8x8 chroma blocks, we may be covering more than one luma block's |
| // worth of pixels. Thus (mi_x, mi_y) may not be the correct coordinates for |
| // the top-left corner of the prediction source - the correct top-left corner |
| // is at (pre_x, pre_y). |
| const int row_start = is_sub4_y ? -1 : 0; |
| const int col_start = is_sub4_x ? -1 : 0; |
| |
| for (int row = row_start; row <= 0; ++row) { |
| for (int col = col_start; col <= 0; ++col) { |
| const MB_MODE_INFO *this_mbmi = xd->mi[row * xd->mi_stride + col]; |
| if (!is_inter_block(this_mbmi)) return false; |
| if (is_intrabc_block(this_mbmi)) return false; |
| } |
| } |
| return true; |
| } |
| |
| static void build_inter_predictors_sub8x8( |
| const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, const MB_MODE_INFO *mi, |
| int mi_x, int mi_y, uint8_t **mc_buf, |
| CalcSubpelParamsFunc calc_subpel_params_func) { |
| const BLOCK_SIZE bsize = mi->bsize; |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const bool ss_x = pd->subsampling_x; |
| const bool ss_y = pd->subsampling_y; |
| const int b4_w = block_size_wide[bsize] >> ss_x; |
| const int b4_h = block_size_high[bsize] >> ss_y; |
| const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, ss_x, ss_y); |
| const int b8_w = block_size_wide[plane_bsize]; |
| const int b8_h = block_size_high[plane_bsize]; |
| const int is_compound = has_second_ref(mi); |
| assert(!is_compound); |
| assert(!is_intrabc_block(mi)); |
| |
| // For sub8x8 chroma blocks, we may be covering more than one luma block's |
| // worth of pixels. Thus (mi_x, mi_y) may not be the correct coordinates for |
| // the top-left corner of the prediction source - the correct top-left corner |
| // is at (pre_x, pre_y). |
| const int row_start = (block_size_high[bsize] == 4) && ss_y ? -1 : 0; |
| const int col_start = (block_size_wide[bsize] == 4) && ss_x ? -1 : 0; |
| const int pre_x = (mi_x + MI_SIZE * col_start) >> ss_x; |
| const int pre_y = (mi_y + MI_SIZE * row_start) >> ss_y; |
| |
| int row = row_start; |
| for (int y = 0; y < b8_h; y += b4_h) { |
| int col = col_start; |
| for (int x = 0; x < b8_w; x += b4_w) { |
| MB_MODE_INFO *this_mbmi = xd->mi[row * xd->mi_stride + col]; |
| struct buf_2d *const dst_buf = &pd->dst; |
| uint8_t *dst = dst_buf->buf + dst_buf->stride * y + x; |
| int ref = 0; |
| const RefCntBuffer *ref_buf = |
| get_ref_frame_buf(cm, this_mbmi->ref_frame[ref]); |
| const struct scale_factors *ref_scale_factors = |
| get_ref_scale_factors_const(cm, this_mbmi->ref_frame[ref]); |
| const struct scale_factors *const sf = ref_scale_factors; |
| const struct buf_2d pre_buf = { |
| NULL, |
| (plane == 1) ? ref_buf->buf.u_buffer : ref_buf->buf.v_buffer, |
| ref_buf->buf.uv_crop_width, |
| ref_buf->buf.uv_crop_height, |
| ref_buf->buf.uv_stride, |
| }; |
| |
| const MV mv = this_mbmi->mv[ref].as_mv; |
| |
| InterPredParams inter_pred_params; |
| av1_init_inter_params(&inter_pred_params, b4_w, b4_h, pre_y + y, |
| pre_x + x, pd->subsampling_x, pd->subsampling_y, |
| xd->bd, is_cur_buf_hbd(xd), mi->use_intrabc, sf, |
| &pre_buf, this_mbmi->interp_filters); |
| inter_pred_params.conv_params = |
| get_conv_params_no_round(ref, plane, NULL, 0, is_compound, xd->bd); |
| |
| av1_build_one_inter_predictor(dst, dst_buf->stride, &mv, |
| &inter_pred_params, xd, mi_x + x, mi_y + y, |
| ref, mc_buf, calc_subpel_params_func); |
| |
| ++col; |
| } |
| ++row; |
| } |
| } |
| |
| static void build_inter_predictors_8x8_and_bigger( |
| const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, const MB_MODE_INFO *mi, |
| int build_for_obmc, int bw, int bh, int mi_x, int mi_y, uint8_t **mc_buf, |
| CalcSubpelParamsFunc calc_subpel_params_func) { |
| const int is_compound = has_second_ref(mi); |
| const int is_intrabc = is_intrabc_block(mi); |
| assert(IMPLIES(is_intrabc, !is_compound)); |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| struct buf_2d *const dst_buf = &pd->dst; |
| uint8_t *const dst = dst_buf->buf; |
| |
| int is_global[2] = { 0, 0 }; |
| for (int ref = 0; ref < 1 + is_compound; ++ref) { |
| const WarpedMotionParams *const wm = &xd->global_motion[mi->ref_frame[ref]]; |
| is_global[ref] = is_global_mv_block(mi, wm->wmtype); |
| } |
| |
| const BLOCK_SIZE bsize = mi->bsize; |
| const int ss_x = pd->subsampling_x; |
| const int ss_y = pd->subsampling_y; |
| const int row_start = |
| (block_size_high[bsize] == 4) && ss_y && !build_for_obmc ? -1 : 0; |
| const int col_start = |
| (block_size_wide[bsize] == 4) && ss_x && !build_for_obmc ? -1 : 0; |
| const int pre_x = (mi_x + MI_SIZE * col_start) >> ss_x; |
| const int pre_y = (mi_y + MI_SIZE * row_start) >> ss_y; |
| |
| for (int ref = 0; ref < 1 + is_compound; ++ref) { |
| const struct scale_factors *const sf = |
| is_intrabc ? &cm->sf_identity : xd->block_ref_scale_factors[ref]; |
| struct buf_2d *const pre_buf = is_intrabc ? dst_buf : &pd->pre[ref]; |
| const MV mv = mi->mv[ref].as_mv; |
| const WarpTypesAllowed warp_types = { is_global[ref], |
| mi->motion_mode == WARPED_CAUSAL }; |
| |
| InterPredParams inter_pred_params; |
| av1_init_inter_params(&inter_pred_params, bw, bh, pre_y, pre_x, |
| pd->subsampling_x, pd->subsampling_y, xd->bd, |
| is_cur_buf_hbd(xd), mi->use_intrabc, sf, pre_buf, |
| mi->interp_filters); |
| if (is_compound) av1_init_comp_mode(&inter_pred_params); |
| inter_pred_params.conv_params = get_conv_params_no_round( |
| ref, plane, xd->tmp_conv_dst, MAX_SB_SIZE, is_compound, xd->bd); |
| |
| av1_dist_wtd_comp_weight_assign( |
| cm, mi, 0, &inter_pred_params.conv_params.fwd_offset, |
| &inter_pred_params.conv_params.bck_offset, |
| &inter_pred_params.conv_params.use_dist_wtd_comp_avg, is_compound); |
| |
| if (!build_for_obmc) |
| av1_init_warp_params(&inter_pred_params, &warp_types, ref, xd, mi); |
| |
| if (is_masked_compound_type(mi->interinter_comp.type)) { |
| inter_pred_params.sb_type = mi->bsize; |
| inter_pred_params.mask_comp = mi->interinter_comp; |
| if (ref == 1) { |
| inter_pred_params.conv_params.do_average = 0; |
| inter_pred_params.comp_mode = MASK_COMP; |
| } |
| // Assign physical buffer. |
| inter_pred_params.mask_comp.seg_mask = xd->seg_mask; |
| } |
| |
| av1_build_one_inter_predictor(dst, dst_buf->stride, &mv, &inter_pred_params, |
| xd, mi_x, mi_y, ref, mc_buf, |
| calc_subpel_params_func); |
| } |
| } |
| |
| void av1_build_inter_predictors(const AV1_COMMON *cm, MACROBLOCKD *xd, |
| int plane, const MB_MODE_INFO *mi, |
| int build_for_obmc, int bw, int bh, int mi_x, |
| int mi_y, uint8_t **mc_buf, |
| CalcSubpelParamsFunc calc_subpel_params_func) { |
| if (is_sub8x8_inter(xd, plane, mi->bsize, is_intrabc_block(mi), |
| build_for_obmc)) { |
| assert(bw < 8 || bh < 8); |
| build_inter_predictors_sub8x8(cm, xd, plane, mi, mi_x, mi_y, mc_buf, |
| calc_subpel_params_func); |
| } else { |
| build_inter_predictors_8x8_and_bigger(cm, xd, plane, mi, build_for_obmc, bw, |
| bh, mi_x, mi_y, mc_buf, |
| calc_subpel_params_func); |
| } |
| } |
| void av1_setup_dst_planes(struct macroblockd_plane *planes, BLOCK_SIZE bsize, |
| const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col, |
| const int plane_start, const int plane_end) { |
| // We use AOMMIN(num_planes, MAX_MB_PLANE) instead of num_planes to quiet |
| // the static analysis warnings. |
| for (int i = plane_start; i < AOMMIN(plane_end, MAX_MB_PLANE); ++i) { |
| struct macroblockd_plane *const pd = &planes[i]; |
| const int is_uv = i > 0; |
| setup_pred_plane(&pd->dst, bsize, src->buffers[i], src->crop_widths[is_uv], |
| src->crop_heights[is_uv], src->strides[is_uv], mi_row, |
| mi_col, NULL, pd->subsampling_x, pd->subsampling_y); |
| } |
| } |
| |
| void av1_setup_pre_planes(MACROBLOCKD *xd, int idx, |
| const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col, |
| const struct scale_factors *sf, |
| const int num_planes) { |
| if (src != NULL) { |
| // We use AOMMIN(num_planes, MAX_MB_PLANE) instead of num_planes to quiet |
| // the static analysis warnings. |
| for (int i = 0; i < AOMMIN(num_planes, MAX_MB_PLANE); ++i) { |
| struct macroblockd_plane *const pd = &xd->plane[i]; |
| const int is_uv = i > 0; |
| setup_pred_plane(&pd->pre[idx], xd->mi[0]->bsize, src->buffers[i], |
| src->crop_widths[is_uv], src->crop_heights[is_uv], |
| src->strides[is_uv], mi_row, mi_col, sf, |
| pd->subsampling_x, pd->subsampling_y); |
| } |
| } |
| } |
| |
| // obmc_mask_N[overlap_position] |
| static const uint8_t obmc_mask_1[1] = { 64 }; |
| DECLARE_ALIGNED(2, static const uint8_t, obmc_mask_2[2]) = { 45, 64 }; |
| |
| DECLARE_ALIGNED(4, static const uint8_t, obmc_mask_4[4]) = { 39, 50, 59, 64 }; |
| |
| static const uint8_t obmc_mask_8[8] = { 36, 42, 48, 53, 57, 61, 64, 64 }; |
| |
| static const uint8_t obmc_mask_16[16] = { 34, 37, 40, 43, 46, 49, 52, 54, |
| 56, 58, 60, 61, 64, 64, 64, 64 }; |
| |
| static const uint8_t obmc_mask_32[32] = { 33, 35, 36, 38, 40, 41, 43, 44, |
| 45, 47, 48, 50, 51, 52, 53, 55, |
| 56, 57, 58, 59, 60, 60, 61, 62, |
| 64, 64, 64, 64, 64, 64, 64, 64 }; |
| |
| static const uint8_t obmc_mask_64[64] = { |
| 33, 34, 35, 35, 36, 37, 38, 39, 40, 40, 41, 42, 43, 44, 44, 44, |
| 45, 46, 47, 47, 48, 49, 50, 51, 51, 51, 52, 52, 53, 54, 55, 56, |
| 56, 56, 57, 57, 58, 58, 59, 60, 60, 60, 60, 60, 61, 62, 62, 62, |
| 62, 62, 63, 63, 63, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, |
| }; |
| |
| const uint8_t *av1_get_obmc_mask(int length) { |
| switch (length) { |
| case 1: return obmc_mask_1; |
| case 2: return obmc_mask_2; |
| case 4: return obmc_mask_4; |
| case 8: return obmc_mask_8; |
| case 16: return obmc_mask_16; |
| case 32: return obmc_mask_32; |
| case 64: return obmc_mask_64; |
| default: assert(0); return NULL; |
| } |
| } |
| |
| static INLINE void increment_int_ptr(MACROBLOCKD *xd, int rel_mi_row, |
| int rel_mi_col, uint8_t op_mi_size, |
| int dir, MB_MODE_INFO *mi, void *fun_ctxt, |
| const int num_planes) { |
| (void)xd; |
| (void)rel_mi_row; |
| (void)rel_mi_col; |
| (void)op_mi_size; |
| (void)dir; |
| (void)mi; |
| ++*(int *)fun_ctxt; |
| (void)num_planes; |
| } |
| |
| void av1_count_overlappable_neighbors(const AV1_COMMON *cm, MACROBLOCKD *xd) { |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| |
| mbmi->overlappable_neighbors = 0; |
| |
| if (!is_motion_variation_allowed_bsize(mbmi->bsize)) return; |
| |
| foreach_overlappable_nb_above(cm, xd, INT_MAX, increment_int_ptr, |
| &mbmi->overlappable_neighbors); |
| if (mbmi->overlappable_neighbors) return; |
| foreach_overlappable_nb_left(cm, xd, INT_MAX, increment_int_ptr, |
| &mbmi->overlappable_neighbors); |
| } |
| |
| // HW does not support < 4x4 prediction. To limit the bandwidth requirement, if |
| // block-size of current plane is smaller than 8x8, always only blend with the |
| // left neighbor(s) (skip blending with the above side). |
| #define DISABLE_CHROMA_U8X8_OBMC 0 // 0: one-sided obmc; 1: disable |
| |
| int av1_skip_u4x4_pred_in_obmc(BLOCK_SIZE bsize, |
| const struct macroblockd_plane *pd, int dir) { |
| assert(is_motion_variation_allowed_bsize(bsize)); |
| |
| const BLOCK_SIZE bsize_plane = |
| get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); |
| switch (bsize_plane) { |
| #if DISABLE_CHROMA_U8X8_OBMC |
| case BLOCK_4X4: |
| case BLOCK_8X4: |
| case BLOCK_4X8: return 1; break; |
| #else |
| case BLOCK_4X4: |
| case BLOCK_8X4: |
| case BLOCK_4X8: return dir == 0; break; |
| #endif |
| default: return 0; |
| } |
| } |
| |
| void av1_modify_neighbor_predictor_for_obmc(MB_MODE_INFO *mbmi) { |
| mbmi->ref_frame[1] = NONE_FRAME; |
| mbmi->interinter_comp.type = COMPOUND_AVERAGE; |
| |
| return; |
| } |
| |
| struct obmc_inter_pred_ctxt { |
| uint8_t **adjacent; |
| int *adjacent_stride; |
| }; |
| |
| static INLINE void build_obmc_inter_pred_above( |
| MACROBLOCKD *xd, int rel_mi_row, int rel_mi_col, uint8_t op_mi_size, |
| int dir, MB_MODE_INFO *above_mi, void *fun_ctxt, const int num_planes) { |
| (void)above_mi; |
| (void)rel_mi_row; |
| (void)dir; |
| struct obmc_inter_pred_ctxt *ctxt = (struct obmc_inter_pred_ctxt *)fun_ctxt; |
| const BLOCK_SIZE bsize = xd->mi[0]->bsize; |
| const int overlap = |
| AOMMIN(block_size_high[bsize], block_size_high[BLOCK_64X64]) >> 1; |
| |
| for (int plane = 0; plane < num_planes; ++plane) { |
| const struct macroblockd_plane *pd = &xd->plane[plane]; |
| const int bw = (op_mi_size * MI_SIZE) >> pd->subsampling_x; |
| const int bh = overlap >> pd->subsampling_y; |
| const int plane_col = (rel_mi_col * MI_SIZE) >> pd->subsampling_x; |
| |
| if (av1_skip_u4x4_pred_in_obmc(bsize, pd, 0)) continue; |
| |
| const int dst_stride = pd->dst.stride; |
| uint8_t *const dst = &pd->dst.buf[plane_col]; |
| const int tmp_stride = ctxt->adjacent_stride[plane]; |
| const uint8_t *const tmp = &ctxt->adjacent[plane][plane_col]; |
| const uint8_t *const mask = av1_get_obmc_mask(bh); |
| #if CONFIG_AV1_HIGHBITDEPTH |
| const int is_hbd = is_cur_buf_hbd(xd); |
| if (is_hbd) |
| aom_highbd_blend_a64_vmask(dst, dst_stride, dst, dst_stride, tmp, |
| tmp_stride, mask, bw, bh, xd->bd); |
| else |
| aom_blend_a64_vmask(dst, dst_stride, dst, dst_stride, tmp, tmp_stride, |
| mask, bw, bh); |
| #else |
| aom_blend_a64_vmask(dst, dst_stride, dst, dst_stride, tmp, tmp_stride, mask, |
| bw, bh); |
| #endif |
| } |
| } |
| |
| static INLINE void build_obmc_inter_pred_left( |
| MACROBLOCKD *xd, int rel_mi_row, int rel_mi_col, uint8_t op_mi_size, |
| int dir, MB_MODE_INFO *left_mi, void *fun_ctxt, const int num_planes) { |
| (void)left_mi; |
| (void)rel_mi_col; |
| (void)dir; |
| struct obmc_inter_pred_ctxt *ctxt = (struct obmc_inter_pred_ctxt *)fun_ctxt; |
| const BLOCK_SIZE bsize = xd->mi[0]->bsize; |
| const int overlap = |
| AOMMIN(block_size_wide[bsize], block_size_wide[BLOCK_64X64]) >> 1; |
| |
| for (int plane = 0; plane < num_planes; ++plane) { |
| const struct macroblockd_plane *pd = &xd->plane[plane]; |
| const int bw = overlap >> pd->subsampling_x; |
| const int bh = (op_mi_size * MI_SIZE) >> pd->subsampling_y; |
| const int plane_row = (rel_mi_row * MI_SIZE) >> pd->subsampling_y; |
| |
| if (av1_skip_u4x4_pred_in_obmc(bsize, pd, 1)) continue; |
| |
| const int dst_stride = pd->dst.stride; |
| uint8_t *const dst = &pd->dst.buf[plane_row * dst_stride]; |
| const int tmp_stride = ctxt->adjacent_stride[plane]; |
| const uint8_t *const tmp = &ctxt->adjacent[plane][plane_row * tmp_stride]; |
| const uint8_t *const mask = av1_get_obmc_mask(bw); |
| |
| #if CONFIG_AV1_HIGHBITDEPTH |
| const int is_hbd = is_cur_buf_hbd(xd); |
| if (is_hbd) |
| aom_highbd_blend_a64_hmask(dst, dst_stride, dst, dst_stride, tmp, |
| tmp_stride, mask, bw, bh, xd->bd); |
| else |
| aom_blend_a64_hmask(dst, dst_stride, dst, dst_stride, tmp, tmp_stride, |
| mask, bw, bh); |
| #else |
| aom_blend_a64_hmask(dst, dst_stride, dst, dst_stride, tmp, tmp_stride, mask, |
| bw, bh); |
| #endif |
| } |
| } |
| |
| // This function combines motion compensated predictions that are generated by |
| // top/left neighboring blocks' inter predictors with the regular inter |
| // prediction. We assume the original prediction (bmc) is stored in |
| // xd->plane[].dst.buf |
| void av1_build_obmc_inter_prediction(const AV1_COMMON *cm, MACROBLOCKD *xd, |
| uint8_t *above[MAX_MB_PLANE], |
| int above_stride[MAX_MB_PLANE], |
| uint8_t *left[MAX_MB_PLANE], |
| int left_stride[MAX_MB_PLANE]) { |
| const BLOCK_SIZE bsize = xd->mi[0]->bsize; |
| |
| // handle above row |
| struct obmc_inter_pred_ctxt ctxt_above = { above, above_stride }; |
| foreach_overlappable_nb_above(cm, xd, |
| max_neighbor_obmc[mi_size_wide_log2[bsize]], |
| build_obmc_inter_pred_above, &ctxt_above); |
| |
| // handle left column |
| struct obmc_inter_pred_ctxt ctxt_left = { left, left_stride }; |
| foreach_overlappable_nb_left(cm, xd, |
| max_neighbor_obmc[mi_size_high_log2[bsize]], |
| build_obmc_inter_pred_left, &ctxt_left); |
| } |
| |
| void av1_setup_obmc_dst_bufs(MACROBLOCKD *xd, uint8_t **dst_buf1, |
| uint8_t **dst_buf2) { |
| #if CONFIG_AV1_HIGHBITDEPTH |
| if (is_cur_buf_hbd(xd)) { |
| int len = sizeof(uint16_t); |
| dst_buf1[0] = CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[0]); |
| dst_buf1[1] = |
| CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[0] + MAX_SB_SQUARE * len); |
| dst_buf1[2] = |
| CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[0] + MAX_SB_SQUARE * 2 * len); |
| dst_buf2[0] = CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[1]); |
| dst_buf2[1] = |
| CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[1] + MAX_SB_SQUARE * len); |
| dst_buf2[2] = |
| CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[1] + MAX_SB_SQUARE * 2 * len); |
| } else { |
| #endif // CONFIG_AV1_HIGHBITDEPTH |
| dst_buf1[0] = xd->tmp_obmc_bufs[0]; |
| dst_buf1[1] = xd->tmp_obmc_bufs[0] + MAX_SB_SQUARE; |
| dst_buf1[2] = xd->tmp_obmc_bufs[0] + MAX_SB_SQUARE * 2; |
| dst_buf2[0] = xd->tmp_obmc_bufs[1]; |
| dst_buf2[1] = xd->tmp_obmc_bufs[1] + MAX_SB_SQUARE; |
| dst_buf2[2] = xd->tmp_obmc_bufs[1] + MAX_SB_SQUARE * 2; |
| #if CONFIG_AV1_HIGHBITDEPTH |
| } |
| #endif // CONFIG_AV1_HIGHBITDEPTH |
| } |
| |
| void av1_setup_build_prediction_by_above_pred( |
| MACROBLOCKD *xd, int rel_mi_col, uint8_t above_mi_width, |
| MB_MODE_INFO *above_mbmi, struct build_prediction_ctxt *ctxt, |
| const int num_planes) { |
| const BLOCK_SIZE a_bsize = AOMMAX(BLOCK_8X8, above_mbmi->bsize); |
| const int above_mi_col = xd->mi_col + rel_mi_col; |
| |
| av1_modify_neighbor_predictor_for_obmc(above_mbmi); |
| |
| for (int j = 0; j < num_planes; ++j) { |
| struct macroblockd_plane *const pd = &xd->plane[j]; |
| setup_pred_plane(&pd->dst, a_bsize, ctxt->tmp_buf[j], ctxt->tmp_width[j], |
| ctxt->tmp_height[j], ctxt->tmp_stride[j], 0, rel_mi_col, |
| NULL, pd->subsampling_x, pd->subsampling_y); |
| } |
| |
| const int num_refs = 1 + has_second_ref(above_mbmi); |
| |
| for (int ref = 0; ref < num_refs; ++ref) { |
| const MV_REFERENCE_FRAME frame = above_mbmi->ref_frame[ref]; |
| |
| const RefCntBuffer *const ref_buf = get_ref_frame_buf(ctxt->cm, frame); |
| const struct scale_factors *const sf = |
| get_ref_scale_factors_const(ctxt->cm, frame); |
| xd->block_ref_scale_factors[ref] = sf; |
| if ((!av1_is_valid_scale(sf))) |
| aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM, |
| "Reference frame has invalid dimensions"); |
| av1_setup_pre_planes(xd, ref, &ref_buf->buf, xd->mi_row, above_mi_col, sf, |
| num_planes); |
| } |
| |
| xd->mb_to_left_edge = 8 * MI_SIZE * (-above_mi_col); |
| xd->mb_to_right_edge = |
| ctxt->mb_to_far_edge + |
| (xd->width - rel_mi_col - above_mi_width) * MI_SIZE * 8; |
| } |
| |
| void av1_setup_build_prediction_by_left_pred(MACROBLOCKD *xd, int rel_mi_row, |
| uint8_t left_mi_height, |
| MB_MODE_INFO *left_mbmi, |
| struct build_prediction_ctxt *ctxt, |
| const int num_planes) { |
| const BLOCK_SIZE l_bsize = AOMMAX(BLOCK_8X8, left_mbmi->bsize); |
| const int left_mi_row = xd->mi_row + rel_mi_row; |
| |
| av1_modify_neighbor_predictor_for_obmc(left_mbmi); |
| |
| for (int j = 0; j < num_planes; ++j) { |
| struct macroblockd_plane *const pd = &xd->plane[j]; |
| setup_pred_plane(&pd->dst, l_bsize, ctxt->tmp_buf[j], ctxt->tmp_width[j], |
| ctxt->tmp_height[j], ctxt->tmp_stride[j], rel_mi_row, 0, |
| NULL, pd->subsampling_x, pd->subsampling_y); |
| } |
| |
| const int num_refs = 1 + has_second_ref(left_mbmi); |
| |
| for (int ref = 0; ref < num_refs; ++ref) { |
| const MV_REFERENCE_FRAME frame = left_mbmi->ref_frame[ref]; |
| |
| const RefCntBuffer *const ref_buf = get_ref_frame_buf(ctxt->cm, frame); |
| const struct scale_factors *const ref_scale_factors = |
| get_ref_scale_factors_const(ctxt->cm, frame); |
| |
| xd->block_ref_scale_factors[ref] = ref_scale_factors; |
| if ((!av1_is_valid_scale(ref_scale_factors))) |
| aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM, |
| "Reference frame has invalid dimensions"); |
| av1_setup_pre_planes(xd, ref, &ref_buf->buf, left_mi_row, xd->mi_col, |
| ref_scale_factors, num_planes); |
| } |
| |
| xd->mb_to_top_edge = GET_MV_SUBPEL(MI_SIZE * (-left_mi_row)); |
| xd->mb_to_bottom_edge = |
| ctxt->mb_to_far_edge + |
| GET_MV_SUBPEL((xd->height - rel_mi_row - left_mi_height) * MI_SIZE); |
| } |
| |
| static AOM_INLINE void combine_interintra( |
| INTERINTRA_MODE mode, int8_t use_wedge_interintra, int8_t wedge_index, |
| int8_t wedge_sign, BLOCK_SIZE bsize, BLOCK_SIZE plane_bsize, |
| uint8_t *comppred, int compstride, const uint8_t *interpred, |
| int interstride, const uint8_t *intrapred, int intrastride) { |
| const int bw = block_size_wide[plane_bsize]; |
| const int bh = block_size_high[plane_bsize]; |
| |
| if (use_wedge_interintra) { |
| if (av1_is_wedge_used(bsize)) { |
| const uint8_t *mask = |
| av1_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize); |
| const int subw = 2 * mi_size_wide[bsize] == bw; |
| const int subh = 2 * mi_size_high[bsize] == bh; |
| aom_blend_a64_mask(comppred, compstride, intrapred, intrastride, |
| interpred, interstride, mask, block_size_wide[bsize], |
| bw, bh, subw, subh); |
| } |
| return; |
| } |
| |
| const uint8_t *mask = smooth_interintra_mask_buf[mode][plane_bsize]; |
| aom_blend_a64_mask(comppred, compstride, intrapred, intrastride, interpred, |
| interstride, mask, bw, bw, bh, 0, 0); |
| } |
| |
| #if CONFIG_AV1_HIGHBITDEPTH |
| static AOM_INLINE void combine_interintra_highbd( |
| INTERINTRA_MODE mode, int8_t use_wedge_interintra, int8_t wedge_index, |
| int8_t wedge_sign, BLOCK_SIZE bsize, BLOCK_SIZE plane_bsize, |
| uint8_t *comppred8, int compstride, const uint8_t *interpred8, |
| int interstride, const uint8_t *intrapred8, int intrastride, int bd) { |
| const int bw = block_size_wide[plane_bsize]; |
| const int bh = block_size_high[plane_bsize]; |
| |
| if (use_wedge_interintra) { |
| if (av1_is_wedge_used(bsize)) { |
| const uint8_t *mask = |
| av1_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize); |
| const int subh = 2 * mi_size_high[bsize] == bh; |
| const int subw = 2 * mi_size_wide[bsize] == bw; |
| aom_highbd_blend_a64_mask(comppred8, compstride, intrapred8, intrastride, |
| interpred8, interstride, mask, |
| block_size_wide[bsize], bw, bh, subw, subh, bd); |
| } |
| return; |
| } |
| |
| uint8_t mask[MAX_SB_SQUARE]; |
| build_smooth_interintra_mask(mask, bw, plane_bsize, mode); |
| aom_highbd_blend_a64_mask(comppred8, compstride, intrapred8, intrastride, |
| interpred8, interstride, mask, bw, bw, bh, 0, 0, |
| bd); |
| } |
| #endif |
| |
| void av1_build_intra_predictors_for_interintra(const AV1_COMMON *cm, |
| MACROBLOCKD *xd, |
| BLOCK_SIZE bsize, int plane, |
| const BUFFER_SET *ctx, |
| uint8_t *dst, int dst_stride) { |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const int ssx = xd->plane[plane].subsampling_x; |
| const int ssy = xd->plane[plane].subsampling_y; |
| BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, ssx, ssy); |
| PREDICTION_MODE mode = interintra_to_intra_mode[xd->mi[0]->interintra_mode]; |
| assert(xd->mi[0]->angle_delta[PLANE_TYPE_Y] == 0); |
| assert(xd->mi[0]->angle_delta[PLANE_TYPE_UV] == 0); |
| assert(xd->mi[0]->filter_intra_mode_info.use_filter_intra == 0); |
| assert(xd->mi[0]->use_intrabc == 0); |
| |
| av1_predict_intra_block(cm, xd, pd->width, pd->height, |
| max_txsize_rect_lookup[plane_bsize], mode, 0, 0, |
| FILTER_INTRA_MODES, ctx->plane[plane], |
| ctx->stride[plane], dst, dst_stride, 0, 0, plane); |
| } |
| |
| void av1_combine_interintra(MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane, |
| const uint8_t *inter_pred, int inter_stride, |
| const uint8_t *intra_pred, int intra_stride) { |
| const int ssx = xd->plane[plane].subsampling_x; |
| const int ssy = xd->plane[plane].subsampling_y; |
| const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, ssx, ssy); |
| #if CONFIG_AV1_HIGHBITDEPTH |
| if (is_cur_buf_hbd(xd)) { |
| combine_interintra_highbd( |
| xd->mi[0]->interintra_mode, xd->mi[0]->use_wedge_interintra, |
| xd->mi[0]->interintra_wedge_index, INTERINTRA_WEDGE_SIGN, bsize, |
| plane_bsize, xd->plane[plane].dst.buf, xd->plane[plane].dst.stride, |
| inter_pred, inter_stride, intra_pred, intra_stride, xd->bd); |
| return; |
| } |
| #endif |
| combine_interintra( |
| xd->mi[0]->interintra_mode, xd->mi[0]->use_wedge_interintra, |
| xd->mi[0]->interintra_wedge_index, INTERINTRA_WEDGE_SIGN, bsize, |
| plane_bsize, xd->plane[plane].dst.buf, xd->plane[plane].dst.stride, |
| inter_pred, inter_stride, intra_pred, intra_stride); |
| } |
| |
| // build interintra_predictors for one plane |
| void av1_build_interintra_predictor(const AV1_COMMON *cm, MACROBLOCKD *xd, |
| uint8_t *pred, int stride, |
| const BUFFER_SET *ctx, int plane, |
| BLOCK_SIZE bsize) { |
| assert(bsize < BLOCK_SIZES_ALL); |
| if (is_cur_buf_hbd(xd)) { |
| DECLARE_ALIGNED(16, uint16_t, intrapredictor[MAX_SB_SQUARE]); |
| av1_build_intra_predictors_for_interintra( |
| cm, xd, bsize, plane, ctx, CONVERT_TO_BYTEPTR(intrapredictor), |
| MAX_SB_SIZE); |
| av1_combine_interintra(xd, bsize, plane, pred, stride, |
| CONVERT_TO_BYTEPTR(intrapredictor), MAX_SB_SIZE); |
| } else { |
| DECLARE_ALIGNED(16, uint8_t, intrapredictor[MAX_SB_SQUARE]); |
| av1_build_intra_predictors_for_interintra(cm, xd, bsize, plane, ctx, |
| intrapredictor, MAX_SB_SIZE); |
| av1_combine_interintra(xd, bsize, plane, pred, stride, intrapredictor, |
| MAX_SB_SIZE); |
| } |
| } |