| /* | 
 |  *  Copyright 2011 The LibYuv Project Authors. All rights reserved. | 
 |  * | 
 |  *  Use of this source code is governed by a BSD-style license | 
 |  *  that can be found in the LICENSE file in the root of the source | 
 |  *  tree. An additional intellectual property rights grant can be found | 
 |  *  in the file PATENTS. All contributing project authors may | 
 |  *  be found in the AUTHORS file in the root of the source tree. | 
 |  */ | 
 |  | 
 | #include "libyuv/compare.h" | 
 |  | 
 | #include <float.h> | 
 | #include <math.h> | 
 | #ifdef _OPENMP | 
 | #include <omp.h> | 
 | #endif | 
 |  | 
 | #include "libyuv/basic_types.h" | 
 | #include "libyuv/compare_row.h" | 
 | #include "libyuv/cpu_id.h" | 
 | #include "libyuv/row.h" | 
 | #include "libyuv/video_common.h" | 
 |  | 
 | #ifdef __cplusplus | 
 | namespace libyuv { | 
 | extern "C" { | 
 | #endif | 
 |  | 
 | // hash seed of 5381 recommended. | 
 | LIBYUV_API | 
 | uint32_t HashDjb2(const uint8_t* src, uint64_t count, uint32_t seed) { | 
 |   const int kBlockSize = 1 << 15;  // 32768; | 
 |   int remainder; | 
 |   uint32_t (*HashDjb2_SSE)(const uint8_t* src, int count, uint32_t seed) = | 
 |       HashDjb2_C; | 
 | #if defined(HAS_HASHDJB2_SSE41) | 
 |   if (TestCpuFlag(kCpuHasSSE41)) { | 
 |     HashDjb2_SSE = HashDjb2_SSE41; | 
 |   } | 
 | #endif | 
 | #if defined(HAS_HASHDJB2_AVX2) | 
 |   if (TestCpuFlag(kCpuHasAVX2)) { | 
 |     HashDjb2_SSE = HashDjb2_AVX2; | 
 |   } | 
 | #endif | 
 |  | 
 |   while (count >= (uint64_t)(kBlockSize)) { | 
 |     seed = HashDjb2_SSE(src, kBlockSize, seed); | 
 |     src += kBlockSize; | 
 |     count -= kBlockSize; | 
 |   } | 
 |   remainder = (int)count & ~15; | 
 |   if (remainder) { | 
 |     seed = HashDjb2_SSE(src, remainder, seed); | 
 |     src += remainder; | 
 |     count -= remainder; | 
 |   } | 
 |   remainder = (int)count & 15; | 
 |   if (remainder) { | 
 |     seed = HashDjb2_C(src, remainder, seed); | 
 |   } | 
 |   return seed; | 
 | } | 
 |  | 
 | static uint32_t ARGBDetectRow_C(const uint8_t* argb, int width) { | 
 |   int x; | 
 |   for (x = 0; x < width - 1; x += 2) { | 
 |     if (argb[0] != 255) {  // First byte is not Alpha of 255, so not ARGB. | 
 |       return FOURCC_BGRA; | 
 |     } | 
 |     if (argb[3] != 255) {  // Fourth byte is not Alpha of 255, so not BGRA. | 
 |       return FOURCC_ARGB; | 
 |     } | 
 |     if (argb[4] != 255) {  // Second pixel first byte is not Alpha of 255. | 
 |       return FOURCC_BGRA; | 
 |     } | 
 |     if (argb[7] != 255) {  // Second pixel fourth byte is not Alpha of 255. | 
 |       return FOURCC_ARGB; | 
 |     } | 
 |     argb += 8; | 
 |   } | 
 |   if (width & 1) { | 
 |     if (argb[0] != 255) {  // First byte is not Alpha of 255, so not ARGB. | 
 |       return FOURCC_BGRA; | 
 |     } | 
 |     if (argb[3] != 255) {  // 4th byte is not Alpha of 255, so not BGRA. | 
 |       return FOURCC_ARGB; | 
 |     } | 
 |   } | 
 |   return 0; | 
 | } | 
 |  | 
 | // Scan an opaque argb image and return fourcc based on alpha offset. | 
 | // Returns FOURCC_ARGB, FOURCC_BGRA, or 0 if unknown. | 
 | LIBYUV_API | 
 | uint32_t ARGBDetect(const uint8_t* argb, | 
 |                     int stride_argb, | 
 |                     int width, | 
 |                     int height) { | 
 |   uint32_t fourcc = 0; | 
 |   int h; | 
 |  | 
 |   // Coalesce rows. | 
 |   if (stride_argb == width * 4) { | 
 |     width *= height; | 
 |     height = 1; | 
 |     stride_argb = 0; | 
 |   } | 
 |   for (h = 0; h < height && fourcc == 0; ++h) { | 
 |     fourcc = ARGBDetectRow_C(argb, width); | 
 |     argb += stride_argb; | 
 |   } | 
 |   return fourcc; | 
 | } | 
 |  | 
 | // NEON version accumulates in 16 bit shorts which overflow at 65536 bytes. | 
 | // So actual maximum is 1 less loop, which is 64436 - 32 bytes. | 
 |  | 
 | LIBYUV_API | 
 | uint64_t ComputeHammingDistance(const uint8_t* src_a, | 
 |                                 const uint8_t* src_b, | 
 |                                 int count) { | 
 |   const int kBlockSize = 1 << 15;  // 32768; | 
 |   const int kSimdSize = 64; | 
 |   // SIMD for multiple of 64, and C for remainder | 
 |   int remainder = count & (kBlockSize - 1) & ~(kSimdSize - 1); | 
 |   uint64_t diff = 0; | 
 |   int i; | 
 |   uint32_t (*HammingDistance)(const uint8_t* src_a, const uint8_t* src_b, | 
 |                               int count) = HammingDistance_C; | 
 | #if defined(HAS_HAMMINGDISTANCE_NEON) | 
 |   if (TestCpuFlag(kCpuHasNEON)) { | 
 |     HammingDistance = HammingDistance_NEON; | 
 |   } | 
 | #endif | 
 | #if defined(HAS_HAMMINGDISTANCE_SSSE3) | 
 |   if (TestCpuFlag(kCpuHasSSSE3)) { | 
 |     HammingDistance = HammingDistance_SSSE3; | 
 |   } | 
 | #endif | 
 | #if defined(HAS_HAMMINGDISTANCE_SSE42) | 
 |   if (TestCpuFlag(kCpuHasSSE42)) { | 
 |     HammingDistance = HammingDistance_SSE42; | 
 |   } | 
 | #endif | 
 | #if defined(HAS_HAMMINGDISTANCE_AVX2) | 
 |   if (TestCpuFlag(kCpuHasAVX2)) { | 
 |     HammingDistance = HammingDistance_AVX2; | 
 |   } | 
 | #endif | 
 | #if defined(HAS_HAMMINGDISTANCE_MMI) | 
 |   if (TestCpuFlag(kCpuHasMMI)) { | 
 |     HammingDistance = HammingDistance_MMI; | 
 |   } | 
 | #endif | 
 | #if defined(HAS_HAMMINGDISTANCE_MSA) | 
 |   if (TestCpuFlag(kCpuHasMSA)) { | 
 |     HammingDistance = HammingDistance_MSA; | 
 |   } | 
 | #endif | 
 |  | 
 | #ifdef _OPENMP | 
 | #pragma omp parallel for reduction(+ : diff) | 
 | #endif | 
 |   for (i = 0; i < (count - (kBlockSize - 1)); i += kBlockSize) { | 
 |     diff += HammingDistance(src_a + i, src_b + i, kBlockSize); | 
 |   } | 
 |   src_a += count & ~(kBlockSize - 1); | 
 |   src_b += count & ~(kBlockSize - 1); | 
 |   if (remainder) { | 
 |     diff += HammingDistance(src_a, src_b, remainder); | 
 |     src_a += remainder; | 
 |     src_b += remainder; | 
 |   } | 
 |   remainder = count & (kSimdSize - 1); | 
 |   if (remainder) { | 
 |     diff += HammingDistance_C(src_a, src_b, remainder); | 
 |   } | 
 |   return diff; | 
 | } | 
 |  | 
 | // TODO(fbarchard): Refactor into row function. | 
 | LIBYUV_API | 
 | uint64_t ComputeSumSquareError(const uint8_t* src_a, | 
 |                                const uint8_t* src_b, | 
 |                                int count) { | 
 |   // SumSquareError returns values 0 to 65535 for each squared difference. | 
 |   // Up to 65536 of those can be summed and remain within a uint32_t. | 
 |   // After each block of 65536 pixels, accumulate into a uint64_t. | 
 |   const int kBlockSize = 65536; | 
 |   int remainder = count & (kBlockSize - 1) & ~31; | 
 |   uint64_t sse = 0; | 
 |   int i; | 
 |   uint32_t (*SumSquareError)(const uint8_t* src_a, const uint8_t* src_b, | 
 |                              int count) = SumSquareError_C; | 
 | #if defined(HAS_SUMSQUAREERROR_NEON) | 
 |   if (TestCpuFlag(kCpuHasNEON)) { | 
 |     SumSquareError = SumSquareError_NEON; | 
 |   } | 
 | #endif | 
 | #if defined(HAS_SUMSQUAREERROR_SSE2) | 
 |   if (TestCpuFlag(kCpuHasSSE2)) { | 
 |     // Note only used for multiples of 16 so count is not checked. | 
 |     SumSquareError = SumSquareError_SSE2; | 
 |   } | 
 | #endif | 
 | #if defined(HAS_SUMSQUAREERROR_AVX2) | 
 |   if (TestCpuFlag(kCpuHasAVX2)) { | 
 |     // Note only used for multiples of 32 so count is not checked. | 
 |     SumSquareError = SumSquareError_AVX2; | 
 |   } | 
 | #endif | 
 | #if defined(HAS_SUMSQUAREERROR_MMI) | 
 |   if (TestCpuFlag(kCpuHasMMI)) { | 
 |     SumSquareError = SumSquareError_MMI; | 
 |   } | 
 | #endif | 
 | #if defined(HAS_SUMSQUAREERROR_MSA) | 
 |   if (TestCpuFlag(kCpuHasMSA)) { | 
 |     SumSquareError = SumSquareError_MSA; | 
 |   } | 
 | #endif | 
 | #ifdef _OPENMP | 
 | #pragma omp parallel for reduction(+ : sse) | 
 | #endif | 
 |   for (i = 0; i < (count - (kBlockSize - 1)); i += kBlockSize) { | 
 |     sse += SumSquareError(src_a + i, src_b + i, kBlockSize); | 
 |   } | 
 |   src_a += count & ~(kBlockSize - 1); | 
 |   src_b += count & ~(kBlockSize - 1); | 
 |   if (remainder) { | 
 |     sse += SumSquareError(src_a, src_b, remainder); | 
 |     src_a += remainder; | 
 |     src_b += remainder; | 
 |   } | 
 |   remainder = count & 31; | 
 |   if (remainder) { | 
 |     sse += SumSquareError_C(src_a, src_b, remainder); | 
 |   } | 
 |   return sse; | 
 | } | 
 |  | 
 | LIBYUV_API | 
 | uint64_t ComputeSumSquareErrorPlane(const uint8_t* src_a, | 
 |                                     int stride_a, | 
 |                                     const uint8_t* src_b, | 
 |                                     int stride_b, | 
 |                                     int width, | 
 |                                     int height) { | 
 |   uint64_t sse = 0; | 
 |   int h; | 
 |   // Coalesce rows. | 
 |   if (stride_a == width && stride_b == width) { | 
 |     width *= height; | 
 |     height = 1; | 
 |     stride_a = stride_b = 0; | 
 |   } | 
 |   for (h = 0; h < height; ++h) { | 
 |     sse += ComputeSumSquareError(src_a, src_b, width); | 
 |     src_a += stride_a; | 
 |     src_b += stride_b; | 
 |   } | 
 |   return sse; | 
 | } | 
 |  | 
 | LIBYUV_API | 
 | double SumSquareErrorToPsnr(uint64_t sse, uint64_t count) { | 
 |   double psnr; | 
 |   if (sse > 0) { | 
 |     double mse = (double)count / (double)sse; | 
 |     psnr = 10.0 * log10(255.0 * 255.0 * mse); | 
 |   } else { | 
 |     psnr = kMaxPsnr;  // Limit to prevent divide by 0 | 
 |   } | 
 |  | 
 |   if (psnr > kMaxPsnr) { | 
 |     psnr = kMaxPsnr; | 
 |   } | 
 |  | 
 |   return psnr; | 
 | } | 
 |  | 
 | LIBYUV_API | 
 | double CalcFramePsnr(const uint8_t* src_a, | 
 |                      int stride_a, | 
 |                      const uint8_t* src_b, | 
 |                      int stride_b, | 
 |                      int width, | 
 |                      int height) { | 
 |   const uint64_t samples = (uint64_t)width * (uint64_t)height; | 
 |   const uint64_t sse = ComputeSumSquareErrorPlane(src_a, stride_a, src_b, | 
 |                                                   stride_b, width, height); | 
 |   return SumSquareErrorToPsnr(sse, samples); | 
 | } | 
 |  | 
 | LIBYUV_API | 
 | double I420Psnr(const uint8_t* src_y_a, | 
 |                 int stride_y_a, | 
 |                 const uint8_t* src_u_a, | 
 |                 int stride_u_a, | 
 |                 const uint8_t* src_v_a, | 
 |                 int stride_v_a, | 
 |                 const uint8_t* src_y_b, | 
 |                 int stride_y_b, | 
 |                 const uint8_t* src_u_b, | 
 |                 int stride_u_b, | 
 |                 const uint8_t* src_v_b, | 
 |                 int stride_v_b, | 
 |                 int width, | 
 |                 int height) { | 
 |   const uint64_t sse_y = ComputeSumSquareErrorPlane( | 
 |       src_y_a, stride_y_a, src_y_b, stride_y_b, width, height); | 
 |   const int width_uv = (width + 1) >> 1; | 
 |   const int height_uv = (height + 1) >> 1; | 
 |   const uint64_t sse_u = ComputeSumSquareErrorPlane( | 
 |       src_u_a, stride_u_a, src_u_b, stride_u_b, width_uv, height_uv); | 
 |   const uint64_t sse_v = ComputeSumSquareErrorPlane( | 
 |       src_v_a, stride_v_a, src_v_b, stride_v_b, width_uv, height_uv); | 
 |   const uint64_t samples = (uint64_t)width * (uint64_t)height + | 
 |                            2 * ((uint64_t)width_uv * (uint64_t)height_uv); | 
 |   const uint64_t sse = sse_y + sse_u + sse_v; | 
 |   return SumSquareErrorToPsnr(sse, samples); | 
 | } | 
 |  | 
 | static const int64_t cc1 = 26634;   // (64^2*(.01*255)^2 | 
 | static const int64_t cc2 = 239708;  // (64^2*(.03*255)^2 | 
 |  | 
 | static double Ssim8x8_C(const uint8_t* src_a, | 
 |                         int stride_a, | 
 |                         const uint8_t* src_b, | 
 |                         int stride_b) { | 
 |   int64_t sum_a = 0; | 
 |   int64_t sum_b = 0; | 
 |   int64_t sum_sq_a = 0; | 
 |   int64_t sum_sq_b = 0; | 
 |   int64_t sum_axb = 0; | 
 |  | 
 |   int i; | 
 |   for (i = 0; i < 8; ++i) { | 
 |     int j; | 
 |     for (j = 0; j < 8; ++j) { | 
 |       sum_a += src_a[j]; | 
 |       sum_b += src_b[j]; | 
 |       sum_sq_a += src_a[j] * src_a[j]; | 
 |       sum_sq_b += src_b[j] * src_b[j]; | 
 |       sum_axb += src_a[j] * src_b[j]; | 
 |     } | 
 |  | 
 |     src_a += stride_a; | 
 |     src_b += stride_b; | 
 |   } | 
 |  | 
 |   { | 
 |     const int64_t count = 64; | 
 |     // scale the constants by number of pixels | 
 |     const int64_t c1 = (cc1 * count * count) >> 12; | 
 |     const int64_t c2 = (cc2 * count * count) >> 12; | 
 |  | 
 |     const int64_t sum_a_x_sum_b = sum_a * sum_b; | 
 |  | 
 |     const int64_t ssim_n = (2 * sum_a_x_sum_b + c1) * | 
 |                            (2 * count * sum_axb - 2 * sum_a_x_sum_b + c2); | 
 |  | 
 |     const int64_t sum_a_sq = sum_a * sum_a; | 
 |     const int64_t sum_b_sq = sum_b * sum_b; | 
 |  | 
 |     const int64_t ssim_d = | 
 |         (sum_a_sq + sum_b_sq + c1) * | 
 |         (count * sum_sq_a - sum_a_sq + count * sum_sq_b - sum_b_sq + c2); | 
 |  | 
 |     if (ssim_d == 0.0) { | 
 |       return DBL_MAX; | 
 |     } | 
 |     return ssim_n * 1.0 / ssim_d; | 
 |   } | 
 | } | 
 |  | 
 | // We are using a 8x8 moving window with starting location of each 8x8 window | 
 | // on the 4x4 pixel grid. Such arrangement allows the windows to overlap | 
 | // block boundaries to penalize blocking artifacts. | 
 | LIBYUV_API | 
 | double CalcFrameSsim(const uint8_t* src_a, | 
 |                      int stride_a, | 
 |                      const uint8_t* src_b, | 
 |                      int stride_b, | 
 |                      int width, | 
 |                      int height) { | 
 |   int samples = 0; | 
 |   double ssim_total = 0; | 
 |   double (*Ssim8x8)(const uint8_t* src_a, int stride_a, const uint8_t* src_b, | 
 |                     int stride_b) = Ssim8x8_C; | 
 |  | 
 |   // sample point start with each 4x4 location | 
 |   int i; | 
 |   for (i = 0; i < height - 8; i += 4) { | 
 |     int j; | 
 |     for (j = 0; j < width - 8; j += 4) { | 
 |       ssim_total += Ssim8x8(src_a + j, stride_a, src_b + j, stride_b); | 
 |       samples++; | 
 |     } | 
 |  | 
 |     src_a += stride_a * 4; | 
 |     src_b += stride_b * 4; | 
 |   } | 
 |  | 
 |   ssim_total /= samples; | 
 |   return ssim_total; | 
 | } | 
 |  | 
 | LIBYUV_API | 
 | double I420Ssim(const uint8_t* src_y_a, | 
 |                 int stride_y_a, | 
 |                 const uint8_t* src_u_a, | 
 |                 int stride_u_a, | 
 |                 const uint8_t* src_v_a, | 
 |                 int stride_v_a, | 
 |                 const uint8_t* src_y_b, | 
 |                 int stride_y_b, | 
 |                 const uint8_t* src_u_b, | 
 |                 int stride_u_b, | 
 |                 const uint8_t* src_v_b, | 
 |                 int stride_v_b, | 
 |                 int width, | 
 |                 int height) { | 
 |   const double ssim_y = | 
 |       CalcFrameSsim(src_y_a, stride_y_a, src_y_b, stride_y_b, width, height); | 
 |   const int width_uv = (width + 1) >> 1; | 
 |   const int height_uv = (height + 1) >> 1; | 
 |   const double ssim_u = CalcFrameSsim(src_u_a, stride_u_a, src_u_b, stride_u_b, | 
 |                                       width_uv, height_uv); | 
 |   const double ssim_v = CalcFrameSsim(src_v_a, stride_v_a, src_v_b, stride_v_b, | 
 |                                       width_uv, height_uv); | 
 |   return ssim_y * 0.8 + 0.1 * (ssim_u + ssim_v); | 
 | } | 
 |  | 
 | #ifdef __cplusplus | 
 | }  // extern "C" | 
 | }  // namespace libyuv | 
 | #endif |