blob: 9ab7d4d235a4b5be6b63a9a7dd6a201e76ff18be [file] [log] [blame] [edit]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <math.h>
#include <string.h>
#include "config/aom_scale_rtcd.h"
#include "aom/aom_integer.h"
#include "av1/common/av1_common_int.h"
#include "av1/common/cdef.h"
#include "av1/common/cdef_block.h"
#include "av1/common/reconinter.h"
static int is_8x8_block_skip(MB_MODE_INFO **grid, int mi_row, int mi_col,
int mi_stride) {
MB_MODE_INFO **mbmi = grid + mi_row * mi_stride + mi_col;
for (int r = 0; r < mi_size_high[BLOCK_8X8]; ++r, mbmi += mi_stride) {
for (int c = 0; c < mi_size_wide[BLOCK_8X8]; ++c) {
if (!mbmi[c]->skip_txfm) return 0;
}
}
return 1;
}
int av1_cdef_compute_sb_list(const CommonModeInfoParams *const mi_params,
int mi_row, int mi_col, cdef_list *dlist,
BLOCK_SIZE bs) {
MB_MODE_INFO **grid = mi_params->mi_grid_base;
int maxc = mi_params->mi_cols - mi_col;
int maxr = mi_params->mi_rows - mi_row;
if (bs == BLOCK_128X128 || bs == BLOCK_128X64)
maxc = AOMMIN(maxc, MI_SIZE_128X128);
else
maxc = AOMMIN(maxc, MI_SIZE_64X64);
if (bs == BLOCK_128X128 || bs == BLOCK_64X128)
maxr = AOMMIN(maxr, MI_SIZE_128X128);
else
maxr = AOMMIN(maxr, MI_SIZE_64X64);
const int r_step = 2; // mi_size_high[BLOCK_8X8]
const int c_step = 2; // mi_size_wide[BLOCK_8X8]
const int r_shift = 1;
const int c_shift = 1;
int count = 0;
for (int r = 0; r < maxr; r += r_step) {
for (int c = 0; c < maxc; c += c_step) {
if (!is_8x8_block_skip(grid, mi_row + r, mi_col + c,
mi_params->mi_stride)) {
dlist[count].by = r >> r_shift;
dlist[count].bx = c >> c_shift;
count++;
}
}
}
return count;
}
void cdef_copy_rect8_8bit_to_16bit_c(uint16_t *dst, int dstride,
const uint8_t *src, int sstride, int v,
int h) {
for (int i = 0; i < v; i++) {
for (int j = 0; j < h; j++) {
dst[i * dstride + j] = src[i * sstride + j];
}
}
}
void cdef_copy_rect8_16bit_to_16bit_c(uint16_t *dst, int dstride,
const uint16_t *src, int sstride, int v,
int h) {
for (int i = 0; i < v; i++) {
for (int j = 0; j < h; j++) {
dst[i * dstride + j] = src[i * sstride + j];
}
}
}
void av1_cdef_copy_sb8_16(const AV1_COMMON *const cm, uint16_t *const dst,
int dstride, const uint8_t *src, int src_voffset,
int src_hoffset, int sstride, int vsize, int hsize) {
if (cm->seq_params->use_highbitdepth) {
const uint16_t *base =
&CONVERT_TO_SHORTPTR(src)[src_voffset * sstride + src_hoffset];
cdef_copy_rect8_16bit_to_16bit(dst, dstride, base, sstride, vsize, hsize);
} else {
const uint8_t *base = &src[src_voffset * sstride + src_hoffset];
cdef_copy_rect8_8bit_to_16bit(dst, dstride, base, sstride, vsize, hsize);
}
}
static INLINE void fill_rect(uint16_t *dst, int dstride, int v, int h,
uint16_t x) {
for (int i = 0; i < v; i++) {
for (int j = 0; j < h; j++) {
dst[i * dstride + j] = x;
}
}
}
static INLINE void copy_rect(uint16_t *dst, int dstride, const uint16_t *src,
int sstride, int v, int h) {
for (int i = 0; i < v; i++) {
for (int j = 0; j < h; j++) {
dst[i * dstride + j] = src[i * sstride + j];
}
}
}
// Prepares intermediate input buffer for CDEF.
// Inputs:
// cm: Pointer to common structure.
// fb_info: Pointer to the CDEF block-level parameter structure.
// colbuf: Left column buffer for CDEF.
// cdef_left: Left block is filtered or not.
// fbc, fbr: col and row index of a block.
// plane: plane index Y/CB/CR.
// Returns:
// Nothing will be returned.
static void cdef_prepare_fb(const AV1_COMMON *const cm, CdefBlockInfo *fb_info,
uint16_t **const colbuf, const int *cdef_left,
int fbc, int fbr, int plane) {
const CommonModeInfoParams *const mi_params = &cm->mi_params;
uint16_t *src = fb_info->src;
const int luma_stride =
ALIGN_POWER_OF_TWO(mi_params->mi_cols << MI_SIZE_LOG2, 4);
const int nvfb = (mi_params->mi_rows + MI_SIZE_64X64 - 1) / MI_SIZE_64X64;
const int nhfb = (mi_params->mi_cols + MI_SIZE_64X64 - 1) / MI_SIZE_64X64;
int cstart = 0;
if (!*cdef_left) cstart = -CDEF_HBORDER;
int rend, cend;
const int nhb =
AOMMIN(MI_SIZE_64X64, mi_params->mi_cols - MI_SIZE_64X64 * fbc);
const int nvb =
AOMMIN(MI_SIZE_64X64, mi_params->mi_rows - MI_SIZE_64X64 * fbr);
const int hsize = nhb << fb_info->mi_wide_l2;
const int vsize = nvb << fb_info->mi_high_l2;
const uint16_t *top_linebuf = fb_info->top_linebuf[plane];
const uint16_t *bot_linebuf = fb_info->bot_linebuf[plane];
const int bot_offset = (vsize + CDEF_VBORDER) * CDEF_BSTRIDE;
const int stride =
luma_stride >> (plane == AOM_PLANE_Y ? 0 : cm->seq_params->subsampling_x);
if (fbc == nhfb - 1)
cend = hsize;
else
cend = hsize + CDEF_HBORDER;
if (fbr == nvfb - 1)
rend = vsize;
else
rend = vsize + CDEF_VBORDER;
/* Copy in the pixels we need from the current superblock for
deringing.*/
av1_cdef_copy_sb8_16(
cm, &src[CDEF_VBORDER * CDEF_BSTRIDE + CDEF_HBORDER + cstart],
CDEF_BSTRIDE, fb_info->dst, fb_info->roffset, fb_info->coffset + cstart,
fb_info->dst_stride, vsize, cend - cstart);
/* Copy in the pixels we need for the current superblock from bottom buffer.*/
if (fbr < nvfb - 1) {
copy_rect(&src[bot_offset + CDEF_HBORDER], CDEF_BSTRIDE,
&bot_linebuf[fb_info->coffset], stride, CDEF_VBORDER, hsize);
} else {
fill_rect(&src[bot_offset + CDEF_HBORDER], CDEF_BSTRIDE, CDEF_VBORDER,
hsize, CDEF_VERY_LARGE);
}
if (fbr < nvfb - 1 && fbc > 0) {
copy_rect(&src[bot_offset], CDEF_BSTRIDE,
&bot_linebuf[fb_info->coffset - CDEF_HBORDER], stride,
CDEF_VBORDER, CDEF_HBORDER);
} else {
fill_rect(&src[bot_offset], CDEF_BSTRIDE, CDEF_VBORDER, CDEF_HBORDER,
CDEF_VERY_LARGE);
}
if (fbr < nvfb - 1 && fbc < nhfb - 1) {
copy_rect(&src[bot_offset + hsize + CDEF_HBORDER], CDEF_BSTRIDE,
&bot_linebuf[fb_info->coffset + hsize], stride, CDEF_VBORDER,
CDEF_HBORDER);
} else {
fill_rect(&src[bot_offset + hsize + CDEF_HBORDER], CDEF_BSTRIDE,
CDEF_VBORDER, CDEF_HBORDER, CDEF_VERY_LARGE);
}
/* Copy in the pixels we need from the current superblock from top buffer.*/
if (fbr > 0) {
copy_rect(&src[CDEF_HBORDER], CDEF_BSTRIDE, &top_linebuf[fb_info->coffset],
stride, CDEF_VBORDER, hsize);
} else {
fill_rect(&src[CDEF_HBORDER], CDEF_BSTRIDE, CDEF_VBORDER, hsize,
CDEF_VERY_LARGE);
}
if (fbr > 0 && fbc > 0) {
copy_rect(src, CDEF_BSTRIDE, &top_linebuf[fb_info->coffset - CDEF_HBORDER],
stride, CDEF_VBORDER, CDEF_HBORDER);
} else {
fill_rect(src, CDEF_BSTRIDE, CDEF_VBORDER, CDEF_HBORDER, CDEF_VERY_LARGE);
}
if (fbr > 0 && fbc < nhfb - 1) {
copy_rect(&src[hsize + CDEF_HBORDER], CDEF_BSTRIDE,
&top_linebuf[fb_info->coffset + hsize], stride, CDEF_VBORDER,
CDEF_HBORDER);
} else {
fill_rect(&src[hsize + CDEF_HBORDER], CDEF_BSTRIDE, CDEF_VBORDER,
CDEF_HBORDER, CDEF_VERY_LARGE);
}
if (*cdef_left) {
/* If we deringed the superblock on the left then we need to copy in
saved pixels. */
copy_rect(src, CDEF_BSTRIDE, colbuf[plane], CDEF_HBORDER,
rend + CDEF_VBORDER, CDEF_HBORDER);
}
/* Saving pixels in case we need to dering the superblock on the
right. */
copy_rect(colbuf[plane], CDEF_HBORDER, src + hsize, CDEF_BSTRIDE,
rend + CDEF_VBORDER, CDEF_HBORDER);
if (fb_info->frame_boundary[LEFT]) {
fill_rect(src, CDEF_BSTRIDE, vsize + 2 * CDEF_VBORDER, CDEF_HBORDER,
CDEF_VERY_LARGE);
}
if (fb_info->frame_boundary[RIGHT]) {
fill_rect(&src[hsize + CDEF_HBORDER], CDEF_BSTRIDE,
vsize + 2 * CDEF_VBORDER, CDEF_HBORDER, CDEF_VERY_LARGE);
}
}
static INLINE void cdef_filter_fb(CdefBlockInfo *const fb_info, int plane,
uint8_t use_highbitdepth) {
int offset = fb_info->dst_stride * fb_info->roffset + fb_info->coffset;
if (use_highbitdepth) {
av1_cdef_filter_fb(
NULL, CONVERT_TO_SHORTPTR(fb_info->dst + offset), fb_info->dst_stride,
&fb_info->src[CDEF_VBORDER * CDEF_BSTRIDE + CDEF_HBORDER],
fb_info->xdec, fb_info->ydec, fb_info->dir, NULL, fb_info->var, plane,
fb_info->dlist, fb_info->cdef_count, fb_info->level,
fb_info->sec_strength, fb_info->damping, fb_info->coeff_shift);
} else {
av1_cdef_filter_fb(
fb_info->dst + offset, NULL, fb_info->dst_stride,
&fb_info->src[CDEF_VBORDER * CDEF_BSTRIDE + CDEF_HBORDER],
fb_info->xdec, fb_info->ydec, fb_info->dir, NULL, fb_info->var, plane,
fb_info->dlist, fb_info->cdef_count, fb_info->level,
fb_info->sec_strength, fb_info->damping, fb_info->coeff_shift);
}
}
// Initializes block-level parameters for CDEF.
static INLINE void cdef_init_fb_col(const MACROBLOCKD *const xd,
const CdefInfo *const cdef_info,
CdefBlockInfo *const fb_info,
int mbmi_cdef_strength, int fbc, int fbr,
int plane) {
if (plane == AOM_PLANE_Y) {
fb_info->level =
cdef_info->cdef_strengths[mbmi_cdef_strength] / CDEF_SEC_STRENGTHS;
fb_info->sec_strength =
cdef_info->cdef_strengths[mbmi_cdef_strength] % CDEF_SEC_STRENGTHS;
fb_info->sec_strength += fb_info->sec_strength == 3;
int uv_level =
cdef_info->cdef_uv_strengths[mbmi_cdef_strength] / CDEF_SEC_STRENGTHS;
int uv_sec_strength =
cdef_info->cdef_uv_strengths[mbmi_cdef_strength] % CDEF_SEC_STRENGTHS;
uv_sec_strength += uv_sec_strength == 3;
fb_info->is_zero_level = (fb_info->level == 0) &&
(fb_info->sec_strength == 0) && (uv_level == 0) &&
(uv_sec_strength == 0);
} else {
fb_info->level =
cdef_info->cdef_uv_strengths[mbmi_cdef_strength] / CDEF_SEC_STRENGTHS;
fb_info->sec_strength =
cdef_info->cdef_uv_strengths[mbmi_cdef_strength] % CDEF_SEC_STRENGTHS;
fb_info->sec_strength += fb_info->sec_strength == 3;
}
fb_info->dst = xd->plane[plane].dst.buf;
fb_info->dst_stride = xd->plane[plane].dst.stride;
fb_info->xdec = xd->plane[plane].subsampling_x;
fb_info->ydec = xd->plane[plane].subsampling_y;
fb_info->mi_wide_l2 = MI_SIZE_LOG2 - xd->plane[plane].subsampling_x;
fb_info->mi_high_l2 = MI_SIZE_LOG2 - xd->plane[plane].subsampling_y;
fb_info->roffset = MI_SIZE_64X64 * fbr << fb_info->mi_high_l2;
fb_info->coffset = MI_SIZE_64X64 * fbc << fb_info->mi_wide_l2;
}
static void cdef_fb_col(const AV1_COMMON *const cm, const MACROBLOCKD *const xd,
CdefBlockInfo *const fb_info, uint16_t **const colbuf,
int *cdef_left, int fbc, int fbr) {
const CommonModeInfoParams *const mi_params = &cm->mi_params;
const int mbmi_cdef_strength =
mi_params
->mi_grid_base[MI_SIZE_64X64 * fbr * mi_params->mi_stride +
MI_SIZE_64X64 * fbc]
->cdef_strength;
const int num_planes = av1_num_planes(cm);
if (mi_params->mi_grid_base[MI_SIZE_64X64 * fbr * mi_params->mi_stride +
MI_SIZE_64X64 * fbc] == NULL ||
mbmi_cdef_strength == -1) {
*cdef_left = 0;
return;
}
for (int plane = 0; plane < num_planes; plane++) {
cdef_init_fb_col(xd, &cm->cdef_info, fb_info, mbmi_cdef_strength, fbc, fbr,
plane);
if (fb_info->is_zero_level ||
(fb_info->cdef_count = av1_cdef_compute_sb_list(
mi_params, fbr * MI_SIZE_64X64, fbc * MI_SIZE_64X64,
fb_info->dlist, BLOCK_64X64)) == 0) {
*cdef_left = 0;
return;
}
cdef_prepare_fb(cm, fb_info, colbuf, cdef_left, fbc, fbr, plane);
cdef_filter_fb(fb_info, plane, cm->seq_params->use_highbitdepth);
}
*cdef_left = 1;
}
// Initializes row-level parameters for CDEF frame.
void av1_cdef_init_fb_row(const AV1_COMMON *const cm,
const MACROBLOCKD *const xd,
CdefBlockInfo *const fb_info,
uint16_t **const linebuf, uint16_t *const src,
struct AV1CdefSyncData *const cdef_sync, int fbr) {
(void)cdef_sync;
const int num_planes = av1_num_planes(cm);
const int nvfb = (cm->mi_params.mi_rows + MI_SIZE_64X64 - 1) / MI_SIZE_64X64;
const int luma_stride =
ALIGN_POWER_OF_TWO(cm->mi_params.mi_cols << MI_SIZE_LOG2, 4);
const bool ping_pong = fbr & 1;
// for the current filter block, it's top left corner mi structure (mi_tl)
// is first accessed to check whether the top and left boundaries are
// frame boundaries. Then bottom-left and top-right mi structures are
// accessed to check whether the bottom and right boundaries
// (respectively) are frame boundaries.
//
// Note that we can't just check the bottom-right mi structure - eg. if
// we're at the right-hand edge of the frame but not the bottom, then
// the bottom-right mi is NULL but the bottom-left is not.
fb_info->frame_boundary[TOP] = (MI_SIZE_64X64 * fbr == 0) ? 1 : 0;
if (fbr != nvfb - 1)
fb_info->frame_boundary[BOTTOM] =
(MI_SIZE_64X64 * (fbr + 1) == cm->mi_params.mi_rows) ? 1 : 0;
else
fb_info->frame_boundary[BOTTOM] = 1;
fb_info->src = src;
fb_info->damping = cm->cdef_info.cdef_damping;
fb_info->coeff_shift = AOMMAX(cm->seq_params->bit_depth - 8, 0);
av1_zero(fb_info->dir);
av1_zero(fb_info->var);
for (int plane = 0; plane < num_planes; plane++) {
const int mi_high_l2 = MI_SIZE_LOG2 - xd->plane[plane].subsampling_y;
const int offset = MI_SIZE_64X64 * (fbr + 1) << mi_high_l2;
const int stride = luma_stride >> xd->plane[plane].subsampling_x;
// here ping-pong buffers are maintained for top linebuf
// to avoid linebuf over-write by consecutive row.
uint16_t *const top_linebuf =
&linebuf[plane][ping_pong * CDEF_VBORDER * stride];
fb_info->bot_linebuf[plane] = &linebuf[plane][(CDEF_VBORDER << 1) * stride];
if (fbr != nvfb - 1) // top line buffer copy
av1_cdef_copy_sb8_16(cm, top_linebuf, stride, xd->plane[plane].dst.buf,
offset - CDEF_VBORDER, 0,
xd->plane[plane].dst.stride, CDEF_VBORDER, stride);
fb_info->top_linebuf[plane] =
&linebuf[plane][(!ping_pong) * CDEF_VBORDER * stride];
if (fbr != nvfb - 1) // bottom line buffer copy
av1_cdef_copy_sb8_16(cm, fb_info->bot_linebuf[plane], stride,
xd->plane[plane].dst.buf, offset, 0,
xd->plane[plane].dst.stride, CDEF_VBORDER, stride);
}
}
void av1_cdef_fb_row(const AV1_COMMON *const cm, MACROBLOCKD *xd,
uint16_t **const linebuf, uint16_t **const colbuf,
uint16_t *const src, int fbr,
cdef_init_fb_row_t cdef_init_fb_row_fn,
struct AV1CdefSyncData *const cdef_sync) {
CdefBlockInfo fb_info;
int cdef_left = 1;
const int nhfb = (cm->mi_params.mi_cols + MI_SIZE_64X64 - 1) / MI_SIZE_64X64;
cdef_init_fb_row_fn(cm, xd, &fb_info, linebuf, src, cdef_sync, fbr);
for (int fbc = 0; fbc < nhfb; fbc++) {
fb_info.frame_boundary[LEFT] = (MI_SIZE_64X64 * fbc == 0) ? 1 : 0;
if (fbc != nhfb - 1)
fb_info.frame_boundary[RIGHT] =
(MI_SIZE_64X64 * (fbc + 1) == cm->mi_params.mi_cols) ? 1 : 0;
else
fb_info.frame_boundary[RIGHT] = 1;
cdef_fb_col(cm, xd, &fb_info, colbuf, &cdef_left, fbc, fbr);
}
}
// Perform CDEF on input frame.
// Inputs:
// frame: Pointer to input frame buffer.
// cm: Pointer to common structure.
// xd: Pointer to common current coding block structure.
// Returns:
// Nothing will be returned.
void av1_cdef_frame(YV12_BUFFER_CONFIG *frame, AV1_COMMON *const cm,
MACROBLOCKD *xd, cdef_init_fb_row_t cdef_init_fb_row_fn) {
const int num_planes = av1_num_planes(cm);
const int nvfb = (cm->mi_params.mi_rows + MI_SIZE_64X64 - 1) / MI_SIZE_64X64;
av1_setup_dst_planes(xd->plane, cm->seq_params->sb_size, frame, 0, 0, 0,
num_planes);
for (int fbr = 0; fbr < nvfb; fbr++)
av1_cdef_fb_row(cm, xd, cm->cdef_info.linebuf, cm->cdef_info.colbuf,
cm->cdef_info.srcbuf, fbr, cdef_init_fb_row_fn, NULL);
}