blob: 26e0eda772648a85db2e5f03f9ab98b565838b31 [file] [log] [blame] [edit]
/*
* Copyright (c) 2020, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <limits.h>
#include <math.h>
#include "config/aom_dsp_rtcd.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_scale/yv12config.h"
#include "aom/aom_integer.h"
#include "av1/common/reconinter.h"
#include "av1/encoder/reconinter_enc.h"
#include "av1/encoder/context_tree.h"
#include "av1/encoder/av1_temporal_denoiser.h"
#include "av1/encoder/encoder.h"
#ifdef OUTPUT_YUV_DENOISED
static void make_grayscale(YV12_BUFFER_CONFIG *yuv);
#endif
static int absdiff_thresh(BLOCK_SIZE bs, int increase_denoising) {
(void)bs;
return 3 + (increase_denoising ? 1 : 0);
}
static int delta_thresh(BLOCK_SIZE bs, int increase_denoising) {
(void)bs;
(void)increase_denoising;
return 4;
}
static int noise_motion_thresh(BLOCK_SIZE bs, int increase_denoising) {
(void)bs;
(void)increase_denoising;
return 625;
}
static unsigned int sse_thresh(BLOCK_SIZE bs, int increase_denoising) {
return (1 << num_pels_log2_lookup[bs]) * (increase_denoising ? 80 : 40);
}
static int sse_diff_thresh(BLOCK_SIZE bs, int increase_denoising,
int motion_magnitude) {
if (motion_magnitude > noise_motion_thresh(bs, increase_denoising)) {
if (increase_denoising)
return (1 << num_pels_log2_lookup[bs]) << 2;
else
return 0;
} else {
return (1 << num_pels_log2_lookup[bs]) << 4;
}
}
static int total_adj_weak_thresh(BLOCK_SIZE bs, int increase_denoising) {
return (1 << num_pels_log2_lookup[bs]) * (increase_denoising ? 3 : 2);
}
// TODO(kyslov): If increase_denoising is enabled in the future,
// we might need to update the code for calculating 'total_adj' in
// case the C code is not bit-exact with corresponding sse2 code.
int av1_denoiser_filter_c(const uint8_t *sig, int sig_stride,
const uint8_t *mc_avg, int mc_avg_stride,
uint8_t *avg, int avg_stride, int increase_denoising,
BLOCK_SIZE bs, int motion_magnitude) {
int r, c;
const uint8_t *sig_start = sig;
const uint8_t *mc_avg_start = mc_avg;
uint8_t *avg_start = avg;
int diff, adj, absdiff, delta;
int adj_val[] = { 3, 4, 6 };
int total_adj = 0;
int shift_inc = 1;
// If motion_magnitude is small, making the denoiser more aggressive by
// increasing the adjustment for each level. Add another increment for
// blocks that are labeled for increase denoising.
if (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) {
if (increase_denoising) {
shift_inc = 2;
}
adj_val[0] += shift_inc;
adj_val[1] += shift_inc;
adj_val[2] += shift_inc;
}
// First attempt to apply a strong temporal denoising filter.
for (r = 0; r < block_size_high[bs]; ++r) {
for (c = 0; c < block_size_wide[bs]; ++c) {
diff = mc_avg[c] - sig[c];
absdiff = abs(diff);
if (absdiff <= absdiff_thresh(bs, increase_denoising)) {
avg[c] = mc_avg[c];
total_adj += diff;
} else {
switch (absdiff) {
case 4:
case 5:
case 6:
case 7: adj = adj_val[0]; break;
case 8:
case 9:
case 10:
case 11:
case 12:
case 13:
case 14:
case 15: adj = adj_val[1]; break;
default: adj = adj_val[2];
}
if (diff > 0) {
avg[c] = AOMMIN(UINT8_MAX, sig[c] + adj);
total_adj += adj;
} else {
avg[c] = AOMMAX(0, sig[c] - adj);
total_adj -= adj;
}
}
}
sig += sig_stride;
avg += avg_stride;
mc_avg += mc_avg_stride;
}
// If the strong filter did not modify the signal too much, we're all set.
if (abs(total_adj) <= total_adj_strong_thresh(bs, increase_denoising)) {
return FILTER_BLOCK;
}
// Otherwise, we try to dampen the filter if the delta is not too high.
delta = ((abs(total_adj) - total_adj_strong_thresh(bs, increase_denoising)) >>
num_pels_log2_lookup[bs]) +
1;
if (delta >= delta_thresh(bs, increase_denoising)) {
return COPY_BLOCK;
}
mc_avg = mc_avg_start;
avg = avg_start;
sig = sig_start;
for (r = 0; r < block_size_high[bs]; ++r) {
for (c = 0; c < block_size_wide[bs]; ++c) {
diff = mc_avg[c] - sig[c];
adj = abs(diff);
if (adj > delta) {
adj = delta;
}
if (diff > 0) {
// Diff positive means we made positive adjustment above
// (in first try/attempt), so now make negative adjustment to bring
// denoised signal down.
avg[c] = AOMMAX(0, avg[c] - adj);
total_adj -= adj;
} else {
// Diff negative means we made negative adjustment above
// (in first try/attempt), so now make positive adjustment to bring
// denoised signal up.
avg[c] = AOMMIN(UINT8_MAX, avg[c] + adj);
total_adj += adj;
}
}
sig += sig_stride;
avg += avg_stride;
mc_avg += mc_avg_stride;
}
// We can use the filter if it has been sufficiently dampened
if (abs(total_adj) <= total_adj_weak_thresh(bs, increase_denoising)) {
return FILTER_BLOCK;
}
return COPY_BLOCK;
}
static uint8_t *block_start(uint8_t *framebuf, int stride, int mi_row,
int mi_col) {
return framebuf + (stride * mi_row << 2) + (mi_col << 2);
}
static AV1_DENOISER_DECISION perform_motion_compensation(
AV1_COMMON *const cm, AV1_DENOISER *denoiser, MACROBLOCK *mb, BLOCK_SIZE bs,
int increase_denoising, int mi_row, int mi_col, PICK_MODE_CONTEXT *ctx,
int motion_magnitude, int *zeromv_filter, int num_spatial_layers, int width,
int lst_fb_idx, int gld_fb_idx, int use_svc, int spatial_layer,
int use_gf_temporal_ref) {
const int sse_diff = (ctx->newmv_sse == UINT_MAX)
? 0
: ((int)ctx->zeromv_sse - (int)ctx->newmv_sse);
int frame;
int denoise_layer_idx = 0;
MACROBLOCKD *filter_mbd = &mb->e_mbd;
MB_MODE_INFO *mi = filter_mbd->mi[0];
MB_MODE_INFO saved_mi;
int i;
struct buf_2d saved_dst[MAX_MB_PLANE];
struct buf_2d saved_pre[MAX_MB_PLANE];
// const RefBuffer *saved_block_refs[2];
MV_REFERENCE_FRAME saved_frame;
frame = ctx->best_reference_frame;
saved_mi = *mi;
// Avoid denoising small blocks. When noise > kDenLow or frame width > 480,
// denoise 16x16 blocks.
if (bs == BLOCK_8X8 || bs == BLOCK_8X16 || bs == BLOCK_16X8 ||
(bs == BLOCK_16X16 && width > 480 &&
denoiser->denoising_level <= kDenLow))
return COPY_BLOCK;
// If the best reference frame uses inter-prediction and there is enough of a
// difference in sum-squared-error, use it.
if (frame != INTRA_FRAME && frame != ALTREF_FRAME && frame != GOLDEN_FRAME &&
sse_diff > sse_diff_thresh(bs, increase_denoising, motion_magnitude)) {
mi->ref_frame[0] = ctx->best_reference_frame;
mi->mode = ctx->best_sse_inter_mode;
mi->mv[0] = ctx->best_sse_mv;
} else {
// Otherwise, use the zero reference frame.
frame = ctx->best_zeromv_reference_frame;
ctx->newmv_sse = ctx->zeromv_sse;
// Bias to last reference.
if ((num_spatial_layers > 1 && !use_gf_temporal_ref) ||
frame == ALTREF_FRAME ||
(frame == GOLDEN_FRAME && use_gf_temporal_ref) ||
(frame != LAST_FRAME &&
((ctx->zeromv_lastref_sse<(5 * ctx->zeromv_sse)>> 2) ||
denoiser->denoising_level >= kDenHigh))) {
frame = LAST_FRAME;
ctx->newmv_sse = ctx->zeromv_lastref_sse;
}
mi->ref_frame[0] = frame;
mi->mode = GLOBALMV;
mi->mv[0].as_int = 0;
ctx->best_sse_inter_mode = GLOBALMV;
ctx->best_sse_mv.as_int = 0;
*zeromv_filter = 1;
if (denoiser->denoising_level > kDenMedium) {
motion_magnitude = 0;
}
}
saved_frame = frame;
// When using SVC, we need to map REF_FRAME to the frame buffer index.
if (use_svc) {
if (frame == LAST_FRAME)
frame = lst_fb_idx + 1;
else if (frame == GOLDEN_FRAME)
frame = gld_fb_idx + 1;
// Shift for the second spatial layer.
if (num_spatial_layers - spatial_layer == 2)
frame = frame + denoiser->num_ref_frames;
denoise_layer_idx = num_spatial_layers - spatial_layer - 1;
}
// Force copy (no denoise, copy source in denoised buffer) if
// running_avg_y[frame] is NULL.
if (denoiser->running_avg_y[frame].buffer_alloc == NULL) {
// Restore everything to its original state
*mi = saved_mi;
return COPY_BLOCK;
}
if (ctx->newmv_sse > sse_thresh(bs, increase_denoising)) {
// Restore everything to its original state
*mi = saved_mi;
return COPY_BLOCK;
}
if (motion_magnitude > (noise_motion_thresh(bs, increase_denoising) << 3)) {
// Restore everything to its original state
*mi = saved_mi;
return COPY_BLOCK;
}
// We will restore these after motion compensation.
for (i = 0; i < MAX_MB_PLANE; ++i) {
saved_pre[i] = filter_mbd->plane[i].pre[0];
saved_dst[i] = filter_mbd->plane[i].dst;
}
// Set the pointers in the MACROBLOCKD to point to the buffers in the denoiser
// struct.
set_ref_ptrs(cm, filter_mbd, saved_frame, NONE);
av1_setup_pre_planes(filter_mbd, 0, &(denoiser->running_avg_y[frame]), mi_row,
mi_col, filter_mbd->block_ref_scale_factors[0], 1);
av1_setup_dst_planes(filter_mbd->plane, bs,
&(denoiser->mc_running_avg_y[denoise_layer_idx]), mi_row,
mi_col, 0, 1);
av1_enc_build_inter_predictor_y(filter_mbd, mi_row, mi_col);
// Restore everything to its original state
*mi = saved_mi;
for (i = 0; i < MAX_MB_PLANE; ++i) {
filter_mbd->plane[i].pre[0] = saved_pre[i];
filter_mbd->plane[i].dst = saved_dst[i];
}
return FILTER_BLOCK;
}
void av1_denoiser_denoise(AV1_COMP *cpi, MACROBLOCK *mb, int mi_row, int mi_col,
BLOCK_SIZE bs, PICK_MODE_CONTEXT *ctx,
AV1_DENOISER_DECISION *denoiser_decision,
int use_gf_temporal_ref) {
int mv_col, mv_row;
int motion_magnitude = 0;
int zeromv_filter = 0;
AV1_DENOISER *denoiser = &cpi->denoiser;
AV1_DENOISER_DECISION decision = COPY_BLOCK;
const int shift =
cpi->svc.number_spatial_layers - cpi->svc.spatial_layer_id == 2
? denoiser->num_ref_frames
: 0;
YV12_BUFFER_CONFIG avg = denoiser->running_avg_y[INTRA_FRAME + shift];
const int denoise_layer_index =
cpi->svc.number_spatial_layers - cpi->svc.spatial_layer_id - 1;
YV12_BUFFER_CONFIG mc_avg = denoiser->mc_running_avg_y[denoise_layer_index];
uint8_t *avg_start = block_start(avg.y_buffer, avg.y_stride, mi_row, mi_col);
uint8_t *mc_avg_start =
block_start(mc_avg.y_buffer, mc_avg.y_stride, mi_row, mi_col);
struct buf_2d src = mb->plane[0].src;
int increase_denoising = 0;
int last_is_reference = cpi->ref_frame_flags & AOM_LAST_FLAG;
mv_col = ctx->best_sse_mv.as_mv.col;
mv_row = ctx->best_sse_mv.as_mv.row;
motion_magnitude = mv_row * mv_row + mv_col * mv_col;
if (denoiser->denoising_level == kDenHigh) increase_denoising = 1;
// Copy block if LAST_FRAME is not a reference.
// Last doesn't always exist when SVC layers are dynamically changed, e.g. top
// spatial layer doesn't have last reference when it's brought up for the
// first time on the fly.
if (last_is_reference && denoiser->denoising_level >= kDenLow &&
!ctx->sb_skip_denoising)
decision = perform_motion_compensation(
&cpi->common, denoiser, mb, bs, increase_denoising, mi_row, mi_col, ctx,
motion_magnitude, &zeromv_filter, cpi->svc.number_spatial_layers,
cpi->source->y_width, cpi->svc.ref_idx[0], cpi->svc.ref_idx[3],
cpi->ppi->use_svc, cpi->svc.spatial_layer_id, use_gf_temporal_ref);
if (decision == FILTER_BLOCK) {
decision = av1_denoiser_filter(src.buf, src.stride, mc_avg_start,
mc_avg.y_stride, avg_start, avg.y_stride,
increase_denoising, bs, motion_magnitude);
}
if (decision == FILTER_BLOCK) {
aom_convolve_copy(avg_start, avg.y_stride, src.buf, src.stride,
block_size_wide[bs], block_size_high[bs]);
} else { // COPY_BLOCK
aom_convolve_copy(src.buf, src.stride, avg_start, avg.y_stride,
block_size_wide[bs], block_size_high[bs]);
}
*denoiser_decision = decision;
if (decision == FILTER_BLOCK && zeromv_filter == 1)
*denoiser_decision = FILTER_ZEROMV_BLOCK;
}
static void copy_frame(YV12_BUFFER_CONFIG *const dest,
const YV12_BUFFER_CONFIG *const src) {
int r;
const uint8_t *srcbuf = src->y_buffer;
uint8_t *destbuf = dest->y_buffer;
assert(dest->y_width == src->y_width);
assert(dest->y_height == src->y_height);
for (r = 0; r < dest->y_height; ++r) {
memcpy(destbuf, srcbuf, dest->y_width);
destbuf += dest->y_stride;
srcbuf += src->y_stride;
}
}
static void swap_frame_buffer(YV12_BUFFER_CONFIG *const dest,
YV12_BUFFER_CONFIG *const src) {
uint8_t *tmp_buf = dest->y_buffer;
assert(dest->y_width == src->y_width);
assert(dest->y_height == src->y_height);
dest->y_buffer = src->y_buffer;
src->y_buffer = tmp_buf;
}
void av1_denoiser_update_frame_info(
AV1_DENOISER *denoiser, YV12_BUFFER_CONFIG src, struct SVC *svc,
FRAME_TYPE frame_type, int refresh_alt_ref_frame, int refresh_golden_frame,
int refresh_last_frame, int alt_fb_idx, int gld_fb_idx, int lst_fb_idx,
int resized, int svc_refresh_denoiser_buffers, int second_spatial_layer) {
const int shift = second_spatial_layer ? denoiser->num_ref_frames : 0;
// Copy source into denoised reference buffers on KEY_FRAME or
// if the just encoded frame was resized. For SVC, copy source if the base
// spatial layer was key frame.
if (frame_type == KEY_FRAME || resized != 0 || denoiser->reset ||
svc_refresh_denoiser_buffers) {
int i;
// Start at 1 so as not to overwrite the INTRA_FRAME
for (i = 1; i < denoiser->num_ref_frames; ++i) {
if (denoiser->running_avg_y[i + shift].buffer_alloc != NULL)
copy_frame(&denoiser->running_avg_y[i + shift], &src);
}
denoiser->reset = 0;
return;
}
if (svc->set_ref_frame_config) {
int i;
for (i = 0; i < REF_FRAMES; i++) {
if (svc->refresh[svc->spatial_layer_id] & (1 << i))
copy_frame(&denoiser->running_avg_y[i + 1 + shift],
&denoiser->running_avg_y[INTRA_FRAME + shift]);
}
} else {
// If more than one refresh occurs, must copy frame buffer.
if ((refresh_alt_ref_frame + refresh_golden_frame + refresh_last_frame) >
1) {
if (refresh_alt_ref_frame) {
copy_frame(&denoiser->running_avg_y[alt_fb_idx + 1 + shift],
&denoiser->running_avg_y[INTRA_FRAME + shift]);
}
if (refresh_golden_frame) {
copy_frame(&denoiser->running_avg_y[gld_fb_idx + 1 + shift],
&denoiser->running_avg_y[INTRA_FRAME + shift]);
}
if (refresh_last_frame) {
copy_frame(&denoiser->running_avg_y[lst_fb_idx + 1 + shift],
&denoiser->running_avg_y[INTRA_FRAME + shift]);
}
} else {
if (refresh_alt_ref_frame) {
swap_frame_buffer(&denoiser->running_avg_y[alt_fb_idx + 1 + shift],
&denoiser->running_avg_y[INTRA_FRAME + shift]);
}
if (refresh_golden_frame) {
swap_frame_buffer(&denoiser->running_avg_y[gld_fb_idx + 1 + shift],
&denoiser->running_avg_y[INTRA_FRAME + shift]);
}
if (refresh_last_frame) {
swap_frame_buffer(&denoiser->running_avg_y[lst_fb_idx + 1 + shift],
&denoiser->running_avg_y[INTRA_FRAME + shift]);
}
}
}
}
void av1_denoiser_reset_frame_stats(PICK_MODE_CONTEXT *ctx) {
ctx->zeromv_sse = INT64_MAX;
ctx->newmv_sse = INT64_MAX;
ctx->zeromv_lastref_sse = INT64_MAX;
ctx->best_sse_mv.as_int = 0;
}
void av1_denoiser_update_frame_stats(MB_MODE_INFO *mi, int64_t sse,
PREDICTION_MODE mode,
PICK_MODE_CONTEXT *ctx) {
if (mi->mv[0].as_int == 0 && sse < ctx->zeromv_sse) {
ctx->zeromv_sse = sse;
ctx->best_zeromv_reference_frame = mi->ref_frame[0];
if (mi->ref_frame[0] == LAST_FRAME) ctx->zeromv_lastref_sse = sse;
}
if (mi->mv[0].as_int != 0 && sse < ctx->newmv_sse) {
ctx->newmv_sse = sse;
ctx->best_sse_inter_mode = mode;
ctx->best_sse_mv = mi->mv[0];
ctx->best_reference_frame = mi->ref_frame[0];
}
}
static int av1_denoiser_realloc_svc_helper(AV1_COMMON *cm,
AV1_DENOISER *denoiser, int fb_idx) {
int fail = 0;
if (denoiser->running_avg_y[fb_idx].buffer_alloc == NULL) {
fail = aom_alloc_frame_buffer(
&denoiser->running_avg_y[fb_idx], cm->width, cm->height,
cm->seq_params->subsampling_x, cm->seq_params->subsampling_y,
cm->seq_params->use_highbitdepth, AOM_BORDER_IN_PIXELS,
cm->features.byte_alignment);
if (fail) {
av1_denoiser_free(denoiser);
return 1;
}
}
return 0;
}
int av1_denoiser_realloc_svc(AV1_COMMON *cm, AV1_DENOISER *denoiser,
struct SVC *svc, int svc_buf_shift,
int refresh_alt, int refresh_gld, int refresh_lst,
int alt_fb_idx, int gld_fb_idx, int lst_fb_idx) {
int fail = 0;
if (svc->set_ref_frame_config) {
int i;
for (i = 0; i < REF_FRAMES; i++) {
if (cm->current_frame.frame_type == KEY_FRAME ||
svc->refresh[svc->spatial_layer_id] & (1 << i)) {
fail = av1_denoiser_realloc_svc_helper(cm, denoiser,
i + 1 + svc_buf_shift);
}
}
} else {
if (refresh_alt) {
// Increase the frame buffer index by 1 to map it to the buffer index in
// the denoiser.
fail = av1_denoiser_realloc_svc_helper(cm, denoiser,
alt_fb_idx + 1 + svc_buf_shift);
if (fail) return 1;
}
if (refresh_gld) {
fail = av1_denoiser_realloc_svc_helper(cm, denoiser,
gld_fb_idx + 1 + svc_buf_shift);
if (fail) return 1;
}
if (refresh_lst) {
fail = av1_denoiser_realloc_svc_helper(cm, denoiser,
lst_fb_idx + 1 + svc_buf_shift);
if (fail) return 1;
}
}
return 0;
}
int av1_denoiser_alloc(AV1_COMMON *cm, struct SVC *svc, AV1_DENOISER *denoiser,
int use_svc, int noise_sen, int width, int height,
int ssx, int ssy, int use_highbitdepth, int border) {
int i, layer, fail, init_num_ref_frames;
const int legacy_byte_alignment = 0;
int num_layers = 1;
int scaled_width = width;
int scaled_height = height;
if (use_svc) {
LAYER_CONTEXT *lc = &svc->layer_context[svc->spatial_layer_id *
svc->number_temporal_layers +
svc->temporal_layer_id];
av1_get_layer_resolution(width, height, lc->scaling_factor_num,
lc->scaling_factor_den, &scaled_width,
&scaled_height);
// For SVC: only denoise at most 2 spatial (highest) layers.
if (noise_sen >= 2)
// Denoise from one spatial layer below the top.
svc->first_layer_denoise = AOMMAX(svc->number_spatial_layers - 2, 0);
else
// Only denoise the top spatial layer.
svc->first_layer_denoise = AOMMAX(svc->number_spatial_layers - 1, 0);
num_layers = svc->number_spatial_layers - svc->first_layer_denoise;
}
assert(denoiser != NULL);
denoiser->num_ref_frames = use_svc ? SVC_REF_FRAMES : NONSVC_REF_FRAMES;
init_num_ref_frames = use_svc ? REF_FRAMES : NONSVC_REF_FRAMES;
denoiser->num_layers = num_layers;
CHECK_MEM_ERROR(cm, denoiser->running_avg_y,
aom_calloc(denoiser->num_ref_frames * num_layers,
sizeof(denoiser->running_avg_y[0])));
CHECK_MEM_ERROR(
cm, denoiser->mc_running_avg_y,
aom_calloc(num_layers, sizeof(denoiser->mc_running_avg_y[0])));
for (layer = 0; layer < num_layers; ++layer) {
const int denoise_width = (layer == 0) ? width : scaled_width;
const int denoise_height = (layer == 0) ? height : scaled_height;
for (i = 0; i < init_num_ref_frames; ++i) {
fail = aom_alloc_frame_buffer(
&denoiser->running_avg_y[i + denoiser->num_ref_frames * layer],
denoise_width, denoise_height, ssx, ssy, use_highbitdepth, border,
legacy_byte_alignment);
if (fail) {
av1_denoiser_free(denoiser);
return 1;
}
#ifdef OUTPUT_YUV_DENOISED
make_grayscale(&denoiser->running_avg_y[i]);
#endif
}
fail = aom_alloc_frame_buffer(
&denoiser->mc_running_avg_y[layer], denoise_width, denoise_height, ssx,
ssy, use_highbitdepth, border, legacy_byte_alignment);
if (fail) {
av1_denoiser_free(denoiser);
return 1;
}
}
// denoiser->last_source only used for noise_estimation, so only for top
// layer.
fail =
aom_alloc_frame_buffer(&denoiser->last_source, width, height, ssx, ssy,
use_highbitdepth, border, legacy_byte_alignment);
if (fail) {
av1_denoiser_free(denoiser);
return 1;
}
#ifdef OUTPUT_YUV_DENOISED
make_grayscale(&denoiser->running_avg_y[i]);
#endif
denoiser->frame_buffer_initialized = 1;
denoiser->denoising_level = kDenMedium;
denoiser->prev_denoising_level = kDenMedium;
denoiser->reset = 0;
denoiser->current_denoiser_frame = 0;
return 0;
}
void av1_denoiser_free(AV1_DENOISER *denoiser) {
int i;
if (denoiser == NULL) {
return;
}
denoiser->frame_buffer_initialized = 0;
for (i = 0; i < denoiser->num_ref_frames * denoiser->num_layers; ++i) {
aom_free_frame_buffer(&denoiser->running_avg_y[i]);
}
aom_free(denoiser->running_avg_y);
denoiser->running_avg_y = NULL;
for (i = 0; i < denoiser->num_layers; ++i) {
aom_free_frame_buffer(&denoiser->mc_running_avg_y[i]);
}
aom_free(denoiser->mc_running_avg_y);
denoiser->mc_running_avg_y = NULL;
aom_free_frame_buffer(&denoiser->last_source);
}
// TODO(kyslov) Enable when SVC temporal denosing is implemented
#if 0
static void force_refresh_longterm_ref(AV1_COMP *const cpi) {
SVC *const svc = &cpi->svc;
// If long term reference is used, force refresh of that slot, so
// denoiser buffer for long term reference stays in sync.
if (svc->use_gf_temporal_ref_current_layer) {
int index = svc->spatial_layer_id;
if (svc->number_spatial_layers == 3) index = svc->spatial_layer_id - 1;
assert(index >= 0);
cpi->alt_fb_idx = svc->buffer_gf_temporal_ref[index].idx;
cpi->refresh_alt_ref_frame = 1;
}
}
#endif
void av1_denoiser_set_noise_level(AV1_COMP *const cpi, int noise_level) {
AV1_DENOISER *const denoiser = &cpi->denoiser;
denoiser->denoising_level = noise_level;
if (denoiser->denoising_level > kDenLowLow &&
denoiser->prev_denoising_level == kDenLowLow) {
denoiser->reset = 1;
// TODO(kyslov) Enable when SVC temporal denosing is implemented
#if 0
force_refresh_longterm_ref(cpi);
#endif
} else {
denoiser->reset = 0;
}
denoiser->prev_denoising_level = denoiser->denoising_level;
}
// Scale/increase the partition threshold
// for denoiser speed-up.
int64_t av1_scale_part_thresh(int64_t threshold, AV1_DENOISER_LEVEL noise_level,
CONTENT_STATE_SB content_state,
int temporal_layer_id) {
if ((content_state.source_sad == kLowSad && content_state.low_sumdiff) ||
(content_state.source_sad == kHighSad && content_state.low_sumdiff) ||
(content_state.lighting_change && !content_state.low_sumdiff) ||
(noise_level == kDenHigh) || (temporal_layer_id != 0)) {
int64_t scaled_thr =
(temporal_layer_id < 2) ? (3 * threshold) >> 1 : (7 * threshold) >> 2;
return scaled_thr;
} else {
return (5 * threshold) >> 2;
}
}
// Scale/increase the ac skip threshold for
// denoiser speed-up.
int64_t av1_scale_acskip_thresh(int64_t threshold,
AV1_DENOISER_LEVEL noise_level, int abs_sumdiff,
int temporal_layer_id) {
if (noise_level >= kDenLow && abs_sumdiff < 5)
return threshold *=
(noise_level == kDenLow) ? 2 : (temporal_layer_id == 2) ? 10 : 6;
else
return threshold;
}
void av1_denoiser_reset_on_first_frame(AV1_COMP *const cpi) {
if (/*av1_denoise_svc_non_key(cpi) &&*/
cpi->denoiser.current_denoiser_frame == 0) {
cpi->denoiser.reset = 1;
// TODO(kyslov) Enable when SVC temporal denosing is implemented
#if 0
force_refresh_longterm_ref(cpi);
#endif
}
}
void av1_denoiser_update_ref_frame(AV1_COMP *const cpi) {
AV1_COMMON *const cm = &cpi->common;
SVC *const svc = &cpi->svc;
if (cpi->oxcf.noise_sensitivity > 0 && denoise_svc(cpi) &&
cpi->denoiser.denoising_level > kDenLowLow) {
int svc_refresh_denoiser_buffers = 0;
int denoise_svc_second_layer = 0;
FRAME_TYPE frame_type = cm->current_frame.frame_type == INTRA_ONLY_FRAME
? KEY_FRAME
: cm->current_frame.frame_type;
cpi->denoiser.current_denoiser_frame++;
const int resize_pending = is_frame_resize_pending(cpi);
if (cpi->ppi->use_svc) {
// TODO(kyslov) Enable when SVC temporal denosing is implemented
#if 0
const int svc_buf_shift =
svc->number_spatial_layers - svc->spatial_layer_id == 2
? cpi->denoiser.num_ref_frames
: 0;
int layer =
LAYER_IDS_TO_IDX(svc->spatial_layer_id, svc->temporal_layer_id,
svc->number_temporal_layers);
LAYER_CONTEXT *const lc = &svc->layer_context[layer];
svc_refresh_denoiser_buffers =
lc->is_key_frame || svc->spatial_layer_sync[svc->spatial_layer_id];
denoise_svc_second_layer =
svc->number_spatial_layers - svc->spatial_layer_id == 2 ? 1 : 0;
// Check if we need to allocate extra buffers in the denoiser
// for refreshed frames.
if (av1_denoiser_realloc_svc(cm, &cpi->denoiser, svc, svc_buf_shift,
cpi->refresh_alt_ref_frame,
cpi->refresh_golden_frame,
cpi->refresh_last_frame, cpi->alt_fb_idx,
cpi->gld_fb_idx, cpi->lst_fb_idx))
aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
"Failed to re-allocate denoiser for SVC");
#endif
}
av1_denoiser_update_frame_info(
&cpi->denoiser, *cpi->source, svc, frame_type,
cpi->refresh_frame.alt_ref_frame, cpi->refresh_frame.golden_frame, 1,
svc->ref_idx[6], svc->ref_idx[3], svc->ref_idx[0], resize_pending,
svc_refresh_denoiser_buffers, denoise_svc_second_layer);
}
}
#ifdef OUTPUT_YUV_DENOISED
static void make_grayscale(YV12_BUFFER_CONFIG *yuv) {
int r, c;
uint8_t *u = yuv->u_buffer;
uint8_t *v = yuv->v_buffer;
for (r = 0; r < yuv->uv_height; ++r) {
for (c = 0; c < yuv->uv_width; ++c) {
u[c] = UINT8_MAX / 2;
v[c] = UINT8_MAX / 2;
}
u += yuv->uv_stride;
v += yuv->uv_stride;
}
}
void aom_write_yuv_frame(FILE *yuv_file, YV12_BUFFER_CONFIG *s) {
unsigned char *src = s->y_buffer;
int h = s->y_crop_height;
do {
fwrite(src, s->y_width, 1, yuv_file);
src += s->y_stride;
} while (--h);
src = s->u_buffer;
h = s->uv_crop_height;
do {
fwrite(src, s->uv_width, 1, yuv_file);
src += s->uv_stride;
} while (--h);
src = s->v_buffer;
h = s->uv_crop_height;
do {
fwrite(src, s->uv_width, 1, yuv_file);
src += s->uv_stride;
} while (--h);
}
#endif