blob: 3b55aa0b370b804dcd25a2d8bc53dfd18dad9a93 [file] [log] [blame] [edit]
/*
* Copyright (c) 2019, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#ifndef AOM_AV1_COMMON_CNN_H_
#define AOM_AV1_COMMON_CNN_H_
#ifdef __cplusplus
extern "C" {
#endif
#include <math.h>
#include "aom_util/aom_thread.h"
#include "config/av1_rtcd.h"
struct AV1Common;
#define CNN_MAX_HIDDEN_LAYERS 64
#define CNN_MAX_LAYERS (CNN_MAX_HIDDEN_LAYERS + 1)
#define CNN_MAX_CHANNELS 256
#define CNN_MAX_BRANCHES 4
#define CNN_MAX_THREADS 32
#define NO_BRANCH_CONFIG \
{ 0, 0, 0 }
#define NO_BN_PARAMS \
{ NULL, NULL, NULL, NULL }
enum {
PADDING_SAME_ZERO, // tensorflow's SAME padding with pixels outside
// the image area assumed to be 0 (default)
PADDING_SAME_REPLICATE, // tensorflow's SAME padding with pixels outside
// the image area replicated from closest edge
PADDING_VALID // tensorflow's VALID padding
} UENUM1BYTE(PADDING_TYPE);
// enum { NONE, RELU, SOFTSIGN } UENUM1BYTE(ACTIVATION);
// Times when input tensor may be copied to branches given in input_to_branches.
// BRANCH_NO_COPY: doesn't copy any tensor.
// BRANCH_INPUT: copies the input tensor to branches.
// BRANCH_OUTPUT: copies the convolved tensor to branches.
// BRANCH_COMBINED: copies the combined (after convolving and branch combining)
// tensor. If no combinations happen at this layer, then this option
// has the same effect as COPY_OUTPUT.
enum {
BRANCH_NO_COPY,
BRANCH_INPUT,
BRANCH_OUTPUT,
BRANCH_COMBINED
} UENUM1BYTE(BRANCH_COPY);
// Types of combining branches with output of current layer:
// BRANCH_NOC: no branch combining
// BRANCH_ADD: Add previously stored branch tensor to output of layer
// BRANCH_CAT: Concatenate branch tensor to output of layer
enum { BRANCH_NOC, BRANCH_ADD, BRANCH_CAT } UENUM1BYTE(BRANCH_COMBINE);
// The parameters used to scale each channel in batch
// normalization. The processing in done on a per-channel basis.
// e.g. bn_mean[c] is the mean for all pixels in channel c. This
// is always applied after activation. The output is given by
// out[c,i,j] = norm[c,i,j] * bn_gamma[c] + bn_beta[c] where
// norm[c,i,j] = (in[c,i,j] - bn_mean[c]) / bn_std[c]
// here we assume that the effect of variance_epsilon is already
// taken into account when bn_std is calculated. The pointers
// needs to be either all zero or all valid. If all zero, then
// batchnorm is disabled, else batchnorm is applied.
struct CNN_BATCHNORM_PARAMS {
const float *bn_gamma;
const float *bn_beta;
const float *bn_mean;
const float *bn_std;
};
struct CNN_BRANCH_CONFIG {
int input_to_branches; // If nonzero, copy the active tensor to the current
// layer and store for future use in branches
// specified in the field as a binary mask. For
// example, if input_to_branch = 0x06, it means the
// input tensor to the current branch is copied to
// branches 1 and 2 (where 0 represents the primary
// branch). One restriction is that the mask
// cannot indicate copying to the current branch.
// If greater than 0, only copies the channels up
// to the given index.
int channels_to_copy; // Within the layer, input a copy of active
// tensor to branches given in input_to_branches.
int branches_to_combine; // mask of branches to combine with output of
// current layer, if
// branch_combine_type != BRANCH_NOC
// For example, if branches_to_combine = 0x0A,
// it means that braches 1 and 3 are combined
// with the current branch.
};
struct CNN_LAYER_CONFIG {
int in_channels;
int filter_width;
int filter_height;
int out_channels;
int skip_width;
int skip_height;
int maxpool; // whether to use maxpool or not (only effective when
// skip width or skip_height are > 1)
const float *weights; // array of length filter_height x filter_width x
// in_channels x out_channels where the inner-most
// scan is out_channels and the outer most scan is
// filter_height.
const float *bias; // array of length out_channels
PADDING_TYPE pad; // padding type
ACTIVATION activation; // the activation function to use after convolution
int deconvolve; // whether this is a deconvolution layer.
// 0: If skip_width or skip_height are > 1, then we
// reduce resolution
// 1: If skip_width or skip_height are > 1, then we
// increase resolution
int branch; // branch index in [0, CNN_MAX_BRANCHES - 1], where
// 0 refers to the primary branch.
BRANCH_COPY branch_copy_type;
BRANCH_COMBINE branch_combine_type;
struct CNN_BRANCH_CONFIG branch_config;
struct CNN_BATCHNORM_PARAMS
bn_params; // A struct that contains the parameters
// used for batch normalization.
int output_num; // The output buffer idx to which the layer output is
// written. Set to -1 to disable writing it to the output. In
// the case that branch_combine_type is BRANCH_CAT, all
// concatenated channels will be written to output. In the
// case of BRANCH_ADD, the output will be the result of
// summation.
};
struct CNN_CONFIG {
int num_layers; // number of CNN layers ( = number of hidden layers + 1)
int is_residue; // whether the output activation is a residue
int ext_width, ext_height; // extension horizontally and vertically
int strict_bounds; // whether the input bounds are strict or not.
// If strict, the extension area is filled by
// replication; if not strict, image data is
// assumed available beyond the bounds.
CNN_LAYER_CONFIG layer_config[CNN_MAX_LAYERS];
};
struct CNN_THREAD_DATA {
int num_workers;
AVxWorker *workers;
};
struct CNN_MULTI_OUT {
int num_outputs;
const int *output_channels;
const int *output_strides;
float **output_buffer;
};
// Function to return size of output
void av1_find_cnn_output_size(int in_width, int in_height,
const CNN_CONFIG *cnn_config, int *out_width,
int *out_height, int *out_channels);
// Function to return output width and output height of given layer.
void av1_find_cnn_layer_output_size(int in_width, int in_height,
const CNN_LAYER_CONFIG *layer_config,
int *out_width, int *out_height);
// Prediction functions from set of input image buffers. This function supports
// CNN with multiple outputs.
void av1_cnn_predict_img_multi_out(uint8_t **dgd, int width, int height,
int stride, const CNN_CONFIG *cnn_config,
const CNN_THREAD_DATA *thread_data,
struct CNN_MULTI_OUT *output);
void av1_cnn_predict_img_multi_out_highbd(uint16_t **dgd, int width, int height,
int stride,
const CNN_CONFIG *cnn_config,
const CNN_THREAD_DATA *thread_data,
int bit_depth, CNN_MULTI_OUT *output);
// Prediction functions from set of input image buffers. This function only
// supports a single output.
void av1_cnn_predict_img(uint8_t **dgd, int width, int height, int stride,
const CNN_CONFIG *cnn_config,
const CNN_THREAD_DATA *thread_data, float **output,
int out_stride);
void av1_cnn_predict_img_highbd(uint16_t **dgd, int width, int height,
int stride, const CNN_CONFIG *cnn_config,
const CNN_THREAD_DATA *thread_data,
int bit_depth, float **output, int out_stride);
#ifdef __cplusplus
} // extern "C"
#endif
#endif // AOM_AV1_COMMON_CNN_H_