| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <assert.h> |
| #include <math.h> |
| |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "av1/encoder/ml.h" |
| |
| void av1_nn_output_prec_reduce(float *const output, int num_output) { |
| const int prec_bits = 9; |
| const int prec = 1 << prec_bits; |
| const float inv_prec = (float)(1.0 / prec); |
| for (int i = 0; i < num_output; i++) { |
| output[i] = ((int)(output[i] * prec + 0.5)) * inv_prec; |
| } |
| } |
| |
| // Calculate prediction based on the given input features and neural net config. |
| // Assume there are no more than NN_MAX_NODES_PER_LAYER nodes in each hidden |
| // layer. |
| void av1_nn_predict_c(const float *input_nodes, |
| const NN_CONFIG *const nn_config, int reduce_prec, |
| float *const output) { |
| int num_input_nodes = nn_config->num_inputs; |
| int buf_index = 0; |
| float buf[2][NN_MAX_NODES_PER_LAYER]; |
| |
| // Propagate hidden layers. |
| const int num_layers = nn_config->num_hidden_layers; |
| assert(num_layers <= NN_MAX_HIDDEN_LAYERS); |
| for (int layer = 0; layer < num_layers; ++layer) { |
| const float *layer_weights = nn_config->weights[layer]; |
| const float *layer_bias = nn_config->bias[layer]; |
| float *output_nodes = buf[buf_index]; |
| const int num_output_nodes = nn_config->num_hidden_nodes[layer]; |
| assert(num_output_nodes < NN_MAX_NODES_PER_LAYER); |
| for (int node = 0; node < num_output_nodes; ++node) { |
| float val = layer_bias[node]; |
| for (int i = 0; i < num_input_nodes; ++i) |
| val += layer_weights[node * num_input_nodes + i] * input_nodes[i]; |
| // ReLU as activation function. |
| val = val > 0.0f ? val : 0.0f; // Could use AOMMAX(). |
| output_nodes[node] = val; |
| } |
| num_input_nodes = num_output_nodes; |
| input_nodes = output_nodes; |
| buf_index = 1 - buf_index; |
| } |
| |
| // Final output layer. |
| const float *layer_weights = nn_config->weights[num_layers]; |
| const float *layer_bias = nn_config->bias[num_layers]; |
| for (int node = 0; node < nn_config->num_outputs; ++node) { |
| float val = layer_bias[node]; |
| for (int i = 0; i < num_input_nodes; ++i) |
| val += layer_weights[node * num_input_nodes + i] * input_nodes[i]; |
| output[node] = val; |
| } |
| if (reduce_prec) av1_nn_output_prec_reduce(output, nn_config->num_outputs); |
| } |
| |
| #if CONFIG_NN_V2 |
| // Applies the ReLu activation to one fc layer |
| // output[i] = Max(input[i],0.0f) |
| static float *nn_relu(const float *input, FC_LAYER *layer) { |
| for (int i = 0; i < layer->num_outputs; ++i) { |
| layer->output[i] = AOMMAX(input[i], 0.0f); |
| } |
| |
| return layer->output; |
| } |
| |
| // Applies the Sigmoid activation to one fc layer |
| // output[i] = 1/(1+exp(input[i])) |
| static float *nn_sigmoid(const float *input, FC_LAYER *layer) { |
| for (int i = 0; i < layer->num_outputs; ++i) { |
| const float tmp = AOMMIN(AOMMAX(input[i], -10.0f), 10.0f); |
| layer->output[i] = 1.0f / (1.0f + expf(-tmp)); |
| } |
| |
| return layer->output; |
| } |
| |
| // Forward prediction in one fc layer, used in function av1_nn_predict_V2 |
| static float *nn_fc_forward(const float *input, FC_LAYER *layer) { |
| const float *weights = layer->weights; |
| const float *bias = layer->bias; |
| assert(layer->num_outputs < NN_MAX_NODES_PER_LAYER); |
| // fc |
| for (int node = 0; node < layer->num_outputs; ++node) { |
| float val = bias[node]; |
| for (int i = 0; i < layer->num_inputs; ++i) val += weights[i] * input[i]; |
| layer->output[node] = val; |
| weights += layer->num_inputs; |
| } |
| |
| // activation |
| switch (layer->activation) { |
| case NONE: return layer->output; |
| case RELU: return nn_relu(layer->output, layer); |
| case SIGMOID: return nn_sigmoid(layer->output, layer); |
| case SOFTSIGN: |
| assert(0 && "Softsign has not been supported in NN."); // TO DO |
| return NULL; |
| default: |
| assert(0 && "Unknown activation"); // Unknown activation |
| return NULL; |
| } |
| } |
| |
| void av1_nn_predict_v2(const float *feature, NN_CONFIG_V2 *nn_config, |
| int reduce_prec, float *output) { |
| const float *input_nodes = feature; |
| |
| // Propagate the layers. |
| const int num_layers = nn_config->num_hidden_layers; |
| assert(num_layers <= NN_MAX_HIDDEN_LAYERS); |
| for (int i = 0; i < num_layers; ++i) { |
| input_nodes = nn_fc_forward(input_nodes, nn_config->layer + i); |
| assert(nn_config->layer[i + 1].num_inputs == |
| nn_config->layer[i].num_outputs); |
| } |
| |
| // Final layer |
| input_nodes = nn_fc_forward(input_nodes, nn_config->layer + num_layers); |
| assert(nn_config->layer[num_layers].num_outputs == nn_config->num_logits); |
| // Copy the final layer output |
| memcpy(output, input_nodes, sizeof(*input_nodes) * nn_config->num_logits); |
| if (reduce_prec) av1_nn_output_prec_reduce(output, nn_config->num_logits); |
| } |
| #endif // CONFIG_NN_V2 |
| |
| void av1_nn_softmax(const float *input, float *output, int n) { |
| // Softmax function is invariant to adding the same constant |
| // to all input values, so we subtract the maximum input to avoid |
| // possible overflow. |
| float max_input = input[0]; |
| for (int i = 1; i < n; i++) max_input = AOMMAX(max_input, input[i]); |
| float sum_out = 0.0f; |
| for (int i = 0; i < n; i++) { |
| // Clamp to range [-10.0, 0.0] to prevent FE_UNDERFLOW errors. |
| const float normalized_input = AOMMAX(input[i] - max_input, -10.0f); |
| output[i] = expf(normalized_input); |
| sum_out += output[i]; |
| } |
| for (int i = 0; i < n; i++) output[i] /= sum_out; |
| } |
| |
| static AOM_INLINE float approx_exp(float y) { |
| #define A ((1 << 23) / 0.69314718056f) // (1 << 23) / ln(2) |
| #define B \ |
| 127 // Offset for the exponent according to IEEE floating point standard. |
| #define C 60801 // Magic number controls the accuracy of approximation |
| union { |
| float as_float; |
| int32_t as_int32; |
| } container; |
| container.as_int32 = ((int32_t)(y * A)) + ((B << 23) - C); |
| return container.as_float; |
| #undef A |
| #undef B |
| #undef C |
| } |
| |
| void av1_nn_fast_softmax_16_c(const float *input, float *output) { |
| const int kNumClasses = 16; |
| float max_input = input[0]; |
| for (int i = 1; i < kNumClasses; i++) max_input = AOMMAX(max_input, input[i]); |
| float sum_out = 0.0f; |
| for (int i = 0; i < kNumClasses; i++) { |
| // Clamp to range [-10.0, 0.0] to prevent FE_UNDERFLOW errors. |
| const float normalized_input = AOMMAX(input[i] - max_input, -10.0f); |
| output[i] = approx_exp(normalized_input); |
| sum_out += output[i]; |
| } |
| for (int i = 0; i < kNumClasses; i++) output[i] /= sum_out; |
| } |