| /* |
| * Copyright (c) 2019, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <limits.h> |
| #include <math.h> |
| #include <stdbool.h> |
| #include <stdio.h> |
| |
| #include "config/aom_config.h" |
| #include "config/aom_dsp_rtcd.h" |
| #include "config/av1_rtcd.h" |
| |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "aom_dsp/binary_codes_writer.h" |
| #include "aom_ports/mem.h" |
| #include "aom_ports/aom_timer.h" |
| |
| #include "av1/common/reconinter.h" |
| #include "av1/common/blockd.h" |
| |
| #include "av1/encoder/encodeframe.h" |
| #include "av1/encoder/var_based_part.h" |
| #include "av1/encoder/reconinter_enc.h" |
| |
| extern const uint8_t AV1_VAR_OFFS[]; |
| |
| typedef struct { |
| VPVariance *part_variances; |
| VPartVar *split[4]; |
| } variance_node; |
| |
| static AOM_INLINE void tree_to_node(void *data, BLOCK_SIZE bsize, |
| variance_node *node) { |
| int i; |
| node->part_variances = NULL; |
| switch (bsize) { |
| case BLOCK_128X128: { |
| VP128x128 *vt = (VP128x128 *)data; |
| node->part_variances = &vt->part_variances; |
| for (i = 0; i < 4; i++) |
| node->split[i] = &vt->split[i].part_variances.none; |
| break; |
| } |
| case BLOCK_64X64: { |
| VP64x64 *vt = (VP64x64 *)data; |
| node->part_variances = &vt->part_variances; |
| for (i = 0; i < 4; i++) |
| node->split[i] = &vt->split[i].part_variances.none; |
| break; |
| } |
| case BLOCK_32X32: { |
| VP32x32 *vt = (VP32x32 *)data; |
| node->part_variances = &vt->part_variances; |
| for (i = 0; i < 4; i++) |
| node->split[i] = &vt->split[i].part_variances.none; |
| break; |
| } |
| case BLOCK_16X16: { |
| VP16x16 *vt = (VP16x16 *)data; |
| node->part_variances = &vt->part_variances; |
| for (i = 0; i < 4; i++) |
| node->split[i] = &vt->split[i].part_variances.none; |
| break; |
| } |
| case BLOCK_8X8: { |
| VP8x8 *vt = (VP8x8 *)data; |
| node->part_variances = &vt->part_variances; |
| for (i = 0; i < 4; i++) |
| node->split[i] = &vt->split[i].part_variances.none; |
| break; |
| } |
| default: { |
| VP4x4 *vt = (VP4x4 *)data; |
| assert(bsize == BLOCK_4X4); |
| node->part_variances = &vt->part_variances; |
| for (i = 0; i < 4; i++) node->split[i] = &vt->split[i]; |
| break; |
| } |
| } |
| } |
| |
| // Set variance values given sum square error, sum error, count. |
| static AOM_INLINE void fill_variance(uint32_t s2, int32_t s, int c, |
| VPartVar *v) { |
| v->sum_square_error = s2; |
| v->sum_error = s; |
| v->log2_count = c; |
| } |
| |
| static AOM_INLINE void get_variance(VPartVar *v) { |
| v->variance = |
| (int)(256 * (v->sum_square_error - |
| (uint32_t)(((int64_t)v->sum_error * v->sum_error) >> |
| v->log2_count)) >> |
| v->log2_count); |
| } |
| |
| static AOM_INLINE void sum_2_variances(const VPartVar *a, const VPartVar *b, |
| VPartVar *r) { |
| assert(a->log2_count == b->log2_count); |
| fill_variance(a->sum_square_error + b->sum_square_error, |
| a->sum_error + b->sum_error, a->log2_count + 1, r); |
| } |
| |
| static AOM_INLINE void fill_variance_tree(void *data, BLOCK_SIZE bsize) { |
| variance_node node; |
| memset(&node, 0, sizeof(node)); |
| tree_to_node(data, bsize, &node); |
| sum_2_variances(node.split[0], node.split[1], &node.part_variances->horz[0]); |
| sum_2_variances(node.split[2], node.split[3], &node.part_variances->horz[1]); |
| sum_2_variances(node.split[0], node.split[2], &node.part_variances->vert[0]); |
| sum_2_variances(node.split[1], node.split[3], &node.part_variances->vert[1]); |
| sum_2_variances(&node.part_variances->vert[0], &node.part_variances->vert[1], |
| &node.part_variances->none); |
| } |
| |
| static AOM_INLINE void set_block_size(AV1_COMP *const cpi, MACROBLOCK *const x, |
| MACROBLOCKD *const xd, int mi_row, |
| int mi_col, BLOCK_SIZE bsize) { |
| if (cpi->common.mi_params.mi_cols > mi_col && |
| cpi->common.mi_params.mi_rows > mi_row) { |
| set_mode_info_offsets(&cpi->common.mi_params, &cpi->mbmi_ext_info, x, xd, |
| mi_row, mi_col); |
| xd->mi[0]->bsize = bsize; |
| } |
| } |
| |
| static int set_vt_partitioning(AV1_COMP *cpi, MACROBLOCK *const x, |
| MACROBLOCKD *const xd, |
| const TileInfo *const tile, void *data, |
| BLOCK_SIZE bsize, int mi_row, int mi_col, |
| int64_t threshold, BLOCK_SIZE bsize_min, |
| int force_split) { |
| AV1_COMMON *const cm = &cpi->common; |
| variance_node vt; |
| const int block_width = mi_size_wide[bsize]; |
| const int block_height = mi_size_high[bsize]; |
| |
| assert(block_height == block_width); |
| tree_to_node(data, bsize, &vt); |
| |
| if (force_split == 1) return 0; |
| |
| // For bsize=bsize_min (16x16/8x8 for 8x8/4x4 downsampling), select if |
| // variance is below threshold, otherwise split will be selected. |
| // No check for vert/horiz split as too few samples for variance. |
| if (bsize == bsize_min) { |
| // Variance already computed to set the force_split. |
| if (frame_is_intra_only(cm)) get_variance(&vt.part_variances->none); |
| if (mi_col + block_width <= tile->mi_col_end && |
| mi_row + block_height <= tile->mi_row_end && |
| vt.part_variances->none.variance < threshold) { |
| set_block_size(cpi, x, xd, mi_row, mi_col, bsize); |
| return 1; |
| } |
| return 0; |
| } else if (bsize > bsize_min) { |
| // Variance already computed to set the force_split. |
| if (frame_is_intra_only(cm)) get_variance(&vt.part_variances->none); |
| // For key frame: take split for bsize above 32X32 or very high variance. |
| if (frame_is_intra_only(cm) && |
| (bsize > BLOCK_32X32 || |
| vt.part_variances->none.variance > (threshold << 4))) { |
| return 0; |
| } |
| // If variance is low, take the bsize (no split). |
| if (mi_col + block_width <= tile->mi_col_end && |
| mi_row + block_height <= tile->mi_row_end && |
| vt.part_variances->none.variance < threshold) { |
| set_block_size(cpi, x, xd, mi_row, mi_col, bsize); |
| return 1; |
| } |
| // Check vertical split. |
| if (mi_row + block_height <= tile->mi_row_end && |
| mi_col + block_width / 2 <= tile->mi_col_end) { |
| BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_VERT); |
| get_variance(&vt.part_variances->vert[0]); |
| get_variance(&vt.part_variances->vert[1]); |
| if (vt.part_variances->vert[0].variance < threshold && |
| vt.part_variances->vert[1].variance < threshold && |
| get_plane_block_size(subsize, xd->plane[1].subsampling_x, |
| xd->plane[1].subsampling_y) < BLOCK_INVALID) { |
| set_block_size(cpi, x, xd, mi_row, mi_col, subsize); |
| set_block_size(cpi, x, xd, mi_row, mi_col + block_width / 2, subsize); |
| return 1; |
| } |
| } |
| // Check horizontal split. |
| if (mi_col + block_width <= tile->mi_col_end && |
| mi_row + block_height / 2 <= tile->mi_row_end) { |
| BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_HORZ); |
| get_variance(&vt.part_variances->horz[0]); |
| get_variance(&vt.part_variances->horz[1]); |
| if (vt.part_variances->horz[0].variance < threshold && |
| vt.part_variances->horz[1].variance < threshold && |
| get_plane_block_size(subsize, xd->plane[1].subsampling_x, |
| xd->plane[1].subsampling_y) < BLOCK_INVALID) { |
| set_block_size(cpi, x, xd, mi_row, mi_col, subsize); |
| set_block_size(cpi, x, xd, mi_row + block_height / 2, mi_col, subsize); |
| return 1; |
| } |
| } |
| return 0; |
| } |
| return 0; |
| } |
| |
| static AOM_INLINE void fill_variance_8x8avg(const uint8_t *s, int sp, |
| const uint8_t *d, int dp, |
| int x16_idx, int y16_idx, |
| VP16x16 *vst, |
| #if CONFIG_AV1_HIGHBITDEPTH |
| int highbd_flag, |
| #endif |
| int pixels_wide, int pixels_high, |
| int is_key_frame) { |
| int k; |
| for (k = 0; k < 4; k++) { |
| int x8_idx = x16_idx + ((k & 1) << 3); |
| int y8_idx = y16_idx + ((k >> 1) << 3); |
| unsigned int sse = 0; |
| int sum = 0; |
| if (x8_idx < pixels_wide && y8_idx < pixels_high) { |
| int s_avg; |
| int d_avg = 128; |
| #if CONFIG_AV1_HIGHBITDEPTH |
| if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) { |
| s_avg = aom_highbd_avg_8x8(s + y8_idx * sp + x8_idx, sp); |
| if (!is_key_frame) |
| d_avg = aom_highbd_avg_8x8(d + y8_idx * dp + x8_idx, dp); |
| } else { |
| s_avg = aom_avg_8x8(s + y8_idx * sp + x8_idx, sp); |
| if (!is_key_frame) d_avg = aom_avg_8x8(d + y8_idx * dp + x8_idx, dp); |
| } |
| #else |
| s_avg = aom_avg_8x8(s + y8_idx * sp + x8_idx, sp); |
| if (!is_key_frame) d_avg = aom_avg_8x8(d + y8_idx * dp + x8_idx, dp); |
| #endif |
| sum = s_avg - d_avg; |
| sse = sum * sum; |
| } |
| fill_variance(sse, sum, 0, &vst->split[k].part_variances.none); |
| } |
| } |
| |
| static int compute_minmax_8x8(const uint8_t *s, int sp, const uint8_t *d, |
| int dp, int x16_idx, int y16_idx, |
| #if CONFIG_AV1_HIGHBITDEPTH |
| int highbd_flag, |
| #endif |
| int pixels_wide, int pixels_high) { |
| int k; |
| int minmax_max = 0; |
| int minmax_min = 255; |
| // Loop over the 4 8x8 subblocks. |
| for (k = 0; k < 4; k++) { |
| int x8_idx = x16_idx + ((k & 1) << 3); |
| int y8_idx = y16_idx + ((k >> 1) << 3); |
| int min = 0; |
| int max = 0; |
| if (x8_idx < pixels_wide && y8_idx < pixels_high) { |
| #if CONFIG_AV1_HIGHBITDEPTH |
| if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) { |
| aom_highbd_minmax_8x8(s + y8_idx * sp + x8_idx, sp, |
| d + y8_idx * dp + x8_idx, dp, &min, &max); |
| } else { |
| aom_minmax_8x8(s + y8_idx * sp + x8_idx, sp, d + y8_idx * dp + x8_idx, |
| dp, &min, &max); |
| } |
| #else |
| aom_minmax_8x8(s + y8_idx * sp + x8_idx, sp, d + y8_idx * dp + x8_idx, dp, |
| &min, &max); |
| #endif |
| if ((max - min) > minmax_max) minmax_max = (max - min); |
| if ((max - min) < minmax_min) minmax_min = (max - min); |
| } |
| } |
| return (minmax_max - minmax_min); |
| } |
| |
| static AOM_INLINE void fill_variance_4x4avg(const uint8_t *s, int sp, |
| const uint8_t *d, int dp, |
| int x8_idx, int y8_idx, VP8x8 *vst, |
| #if CONFIG_AV1_HIGHBITDEPTH |
| int highbd_flag, |
| #endif |
| int pixels_wide, int pixels_high, |
| int is_key_frame) { |
| int k; |
| for (k = 0; k < 4; k++) { |
| int x4_idx = x8_idx + ((k & 1) << 2); |
| int y4_idx = y8_idx + ((k >> 1) << 2); |
| unsigned int sse = 0; |
| int sum = 0; |
| if (x4_idx < pixels_wide && y4_idx < pixels_high) { |
| int s_avg; |
| int d_avg = 128; |
| #if CONFIG_AV1_HIGHBITDEPTH |
| if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) { |
| s_avg = aom_highbd_avg_4x4(s + y4_idx * sp + x4_idx, sp); |
| if (!is_key_frame) |
| d_avg = aom_highbd_avg_4x4(d + y4_idx * dp + x4_idx, dp); |
| } else { |
| s_avg = aom_avg_4x4(s + y4_idx * sp + x4_idx, sp); |
| if (!is_key_frame) d_avg = aom_avg_4x4(d + y4_idx * dp + x4_idx, dp); |
| } |
| #else |
| s_avg = aom_avg_4x4(s + y4_idx * sp + x4_idx, sp); |
| if (!is_key_frame) d_avg = aom_avg_4x4(d + y4_idx * dp + x4_idx, dp); |
| #endif |
| |
| sum = s_avg - d_avg; |
| sse = sum * sum; |
| } |
| fill_variance(sse, sum, 0, &vst->split[k].part_variances.none); |
| } |
| } |
| |
| // TODO(kyslov) Bring back threshold adjustment based on content state |
| static int64_t scale_part_thresh_content(int64_t threshold_base, int speed, |
| int width, int height, |
| int non_reference_frame) { |
| (void)width; |
| (void)height; |
| int64_t threshold = threshold_base; |
| if (non_reference_frame) threshold = (3 * threshold) >> 1; |
| if (speed >= 8) { |
| return (5 * threshold) >> 2; |
| } |
| return threshold; |
| } |
| |
| static AOM_INLINE void set_vbp_thresholds(AV1_COMP *cpi, int64_t thresholds[], |
| int q, int content_lowsumdiff, |
| int source_sad, int segment_id) { |
| AV1_COMMON *const cm = &cpi->common; |
| const int is_key_frame = frame_is_intra_only(cm); |
| const int threshold_multiplier = is_key_frame ? 120 : 1; |
| int64_t threshold_base = |
| (int64_t)(threshold_multiplier * |
| cpi->enc_quant_dequant_params.dequants.y_dequant_QTX[q][1]); |
| const int current_qindex = cm->quant_params.base_qindex; |
| |
| if (is_key_frame) { |
| if (cpi->sf.rt_sf.force_large_partition_blocks_intra) { |
| threshold_base <<= cpi->oxcf.speed - (cpi->oxcf.mode == ALLINTRA ? 7 : 8); |
| } |
| thresholds[0] = threshold_base; |
| thresholds[1] = threshold_base; |
| if (cm->width * cm->height < 1280 * 720) { |
| thresholds[2] = threshold_base / 3; |
| thresholds[3] = threshold_base >> 1; |
| } else { |
| int shift_val = 2; |
| if (cpi->sf.rt_sf.force_large_partition_blocks_intra) { |
| shift_val = 0; |
| } |
| |
| thresholds[2] = threshold_base >> shift_val; |
| thresholds[3] = threshold_base >> shift_val; |
| } |
| thresholds[4] = threshold_base << 2; |
| } else { |
| // Increase partition thresholds for noisy content. Apply it only for |
| // superblocks where sumdiff is low, as we assume the sumdiff of superblock |
| // whose only change is due to noise will be low (i.e, noise will average |
| // out over large block). |
| if (cpi->noise_estimate.enabled && content_lowsumdiff && |
| (cm->width * cm->height > 640 * 480) && |
| cm->current_frame.frame_number > 60) { |
| NOISE_LEVEL noise_level = |
| av1_noise_estimate_extract_level(&cpi->noise_estimate); |
| if (noise_level == kHigh) |
| threshold_base = (5 * threshold_base) >> 1; |
| else if (noise_level == kMedium && |
| !cpi->sf.rt_sf.force_large_partition_blocks) |
| threshold_base = (5 * threshold_base) >> 2; |
| } |
| // TODO(kyslov) Enable var based partition adjusment on temporal denoising |
| #if 0 // CONFIG_AV1_TEMPORAL_DENOISING |
| if (cpi->oxcf.noise_sensitivity > 0 && denoise_svc(cpi) && |
| cpi->oxcf.speed > 5 && cpi->denoiser.denoising_level >= kDenLow) |
| threshold_base = |
| av1_scale_part_thresh(threshold_base, cpi->denoiser.denoising_level, |
| content_state, cpi->svc.temporal_layer_id); |
| else |
| threshold_base = |
| scale_part_thresh_content(threshold_base, cpi->oxcf.speed, cm->width, |
| cm->height, cpi->svc.non_reference_frame); |
| #else |
| // Increase base variance threshold based on content_state/sum_diff level. |
| threshold_base = |
| scale_part_thresh_content(threshold_base, cpi->oxcf.speed, cm->width, |
| cm->height, cpi->svc.non_reference_frame); |
| #endif |
| thresholds[0] = threshold_base >> 1; |
| thresholds[1] = threshold_base; |
| thresholds[3] = threshold_base << cpi->oxcf.speed; |
| if (cm->width >= 1280 && cm->height >= 720) |
| thresholds[3] = thresholds[3] << 1; |
| if (cm->width * cm->height <= 352 * 288) { |
| if (current_qindex >= QINDEX_HIGH_THR) { |
| threshold_base = (5 * threshold_base) >> 1; |
| thresholds[1] = threshold_base >> 3; |
| thresholds[2] = threshold_base << 2; |
| thresholds[3] = threshold_base << 5; |
| } else if (current_qindex < QINDEX_LOW_THR) { |
| thresholds[1] = threshold_base >> 3; |
| thresholds[2] = threshold_base >> 1; |
| thresholds[3] = threshold_base << 3; |
| } else { |
| int64_t qi_diff_low = current_qindex - QINDEX_LOW_THR; |
| int64_t qi_diff_high = QINDEX_HIGH_THR - current_qindex; |
| int64_t threshold_diff = QINDEX_HIGH_THR - QINDEX_LOW_THR; |
| int64_t threshold_base_high = (5 * threshold_base) >> 1; |
| |
| threshold_diff = threshold_diff > 0 ? threshold_diff : 1; |
| threshold_base = (qi_diff_low * threshold_base_high + |
| qi_diff_high * threshold_base) / |
| threshold_diff; |
| thresholds[1] = threshold_base >> 3; |
| thresholds[2] = ((qi_diff_low * threshold_base) + |
| qi_diff_high * (threshold_base >> 1)) / |
| threshold_diff; |
| thresholds[3] = ((qi_diff_low * (threshold_base << 5)) + |
| qi_diff_high * (threshold_base << 3)) / |
| threshold_diff; |
| } |
| } else if (cm->width < 1280 && cm->height < 720) { |
| thresholds[2] = (5 * threshold_base) >> 2; |
| } else if (cm->width < 1920 && cm->height < 1080) { |
| thresholds[2] = threshold_base << 1; |
| } else { |
| thresholds[2] = (5 * threshold_base) >> 1; |
| } |
| if (cpi->sf.rt_sf.force_large_partition_blocks) { |
| double weight; |
| const int win = 20; |
| if (current_qindex < QINDEX_LARGE_BLOCK_THR - win) |
| weight = 1.0; |
| else if (current_qindex > QINDEX_LARGE_BLOCK_THR + win) |
| weight = 0.0; |
| else |
| weight = |
| 1.0 - (current_qindex - QINDEX_LARGE_BLOCK_THR + win) / (2 * win); |
| if (cm->width * cm->height > 640 * 480) { |
| for (int i = 0; i < 4; i++) { |
| thresholds[i] <<= 1; |
| } |
| } |
| if (cm->width * cm->height <= 352 * 288) { |
| thresholds[1] <<= 2; |
| thresholds[2] <<= 5; |
| thresholds[3] = INT32_MAX; |
| // Condition the increase of partition thresholds on the segment |
| // and the content. Avoid the increase for superblocks which have |
| // high source sad, unless the whole frame has very high motion |
| // (i.e, cpi->rc.avg_source_sad is very large, in which case all blocks |
| // have high source sad). |
| } else if (cm->width * cm->height > 640 * 480 && segment_id == 0 && |
| (source_sad != kHighSad || cpi->rc.avg_source_sad > 50000)) { |
| thresholds[0] = (3 * thresholds[0]) >> 1; |
| thresholds[3] = INT32_MAX; |
| if (current_qindex > QINDEX_LARGE_BLOCK_THR) { |
| thresholds[1] = (int)((1 - weight) * (thresholds[1] << 1) + |
| weight * thresholds[1]); |
| thresholds[2] = (int)((1 - weight) * (thresholds[2] << 1) + |
| weight * thresholds[2]); |
| } |
| } else if (current_qindex > QINDEX_LARGE_BLOCK_THR && segment_id == 0 && |
| (source_sad != kHighSad || cpi->rc.avg_source_sad > 50000)) { |
| thresholds[1] = |
| (int)((1 - weight) * (thresholds[1] << 2) + weight * thresholds[1]); |
| thresholds[2] = |
| (int)((1 - weight) * (thresholds[2] << 4) + weight * thresholds[2]); |
| thresholds[3] = INT32_MAX; |
| } |
| } |
| } |
| } |
| |
| // Set temporal variance low flag for superblock 64x64. |
| // Only first 25 in the array are used in this case. |
| static AOM_INLINE void set_low_temp_var_flag_64x64( |
| CommonModeInfoParams *mi_params, PartitionSearchInfo *part_info, |
| MACROBLOCKD *xd, VP64x64 *vt, const int64_t thresholds[], int mi_col, |
| int mi_row) { |
| if (xd->mi[0]->bsize == BLOCK_64X64) { |
| if ((vt->part_variances).none.variance < (thresholds[0] >> 1)) |
| part_info->variance_low[0] = 1; |
| } else if (xd->mi[0]->bsize == BLOCK_64X32) { |
| for (int i = 0; i < 2; i++) { |
| if (vt->part_variances.horz[i].variance < (thresholds[0] >> 2)) |
| part_info->variance_low[i + 1] = 1; |
| } |
| } else if (xd->mi[0]->bsize == BLOCK_32X64) { |
| for (int i = 0; i < 2; i++) { |
| if (vt->part_variances.vert[i].variance < (thresholds[0] >> 2)) |
| part_info->variance_low[i + 3] = 1; |
| } |
| } else { |
| static const int idx[4][2] = { { 0, 0 }, { 0, 8 }, { 8, 0 }, { 8, 8 } }; |
| for (int i = 0; i < 4; i++) { |
| const int idx_str = |
| mi_params->mi_stride * (mi_row + idx[i][0]) + mi_col + idx[i][1]; |
| MB_MODE_INFO **this_mi = mi_params->mi_grid_base + idx_str; |
| |
| if (mi_params->mi_cols <= mi_col + idx[i][1] || |
| mi_params->mi_rows <= mi_row + idx[i][0]) |
| continue; |
| |
| if (*this_mi == NULL) continue; |
| |
| if ((*this_mi)->bsize == BLOCK_32X32) { |
| int64_t threshold_32x32 = (5 * thresholds[1]) >> 3; |
| if (vt->split[i].part_variances.none.variance < threshold_32x32) |
| part_info->variance_low[i + 5] = 1; |
| } else { |
| // For 32x16 and 16x32 blocks, the flag is set on each 16x16 block |
| // inside. |
| if ((*this_mi)->bsize == BLOCK_16X16 || |
| (*this_mi)->bsize == BLOCK_32X16 || |
| (*this_mi)->bsize == BLOCK_16X32) { |
| for (int j = 0; j < 4; j++) { |
| if (vt->split[i].split[j].part_variances.none.variance < |
| (thresholds[2] >> 8)) |
| part_info->variance_low[(i << 2) + j + 9] = 1; |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| static AOM_INLINE void set_low_temp_var_flag_128x128( |
| CommonModeInfoParams *mi_params, PartitionSearchInfo *part_info, |
| MACROBLOCKD *xd, VP128x128 *vt, const int64_t thresholds[], int mi_col, |
| int mi_row) { |
| if (xd->mi[0]->bsize == BLOCK_128X128) { |
| if (vt->part_variances.none.variance < (thresholds[0] >> 1)) |
| part_info->variance_low[0] = 1; |
| } else if (xd->mi[0]->bsize == BLOCK_128X64) { |
| for (int i = 0; i < 2; i++) { |
| if (vt->part_variances.horz[i].variance < (thresholds[0] >> 2)) |
| part_info->variance_low[i + 1] = 1; |
| } |
| } else if (xd->mi[0]->bsize == BLOCK_64X128) { |
| for (int i = 0; i < 2; i++) { |
| if (vt->part_variances.vert[i].variance < (thresholds[0] >> 2)) |
| part_info->variance_low[i + 3] = 1; |
| } |
| } else { |
| static const int idx64[4][2] = { |
| { 0, 0 }, { 0, 16 }, { 16, 0 }, { 16, 16 } |
| }; |
| static const int idx32[4][2] = { { 0, 0 }, { 0, 8 }, { 8, 0 }, { 8, 8 } }; |
| for (int i = 0; i < 4; i++) { |
| const int idx_str = |
| mi_params->mi_stride * (mi_row + idx64[i][0]) + mi_col + idx64[i][1]; |
| MB_MODE_INFO **mi_64 = mi_params->mi_grid_base + idx_str; |
| if (*mi_64 == NULL) continue; |
| if (mi_params->mi_cols <= mi_col + idx64[i][1] || |
| mi_params->mi_rows <= mi_row + idx64[i][0]) |
| continue; |
| const int64_t threshold_64x64 = (5 * thresholds[1]) >> 3; |
| if ((*mi_64)->bsize == BLOCK_64X64) { |
| if (vt->split[i].part_variances.none.variance < threshold_64x64) |
| part_info->variance_low[5 + i] = 1; |
| } else if ((*mi_64)->bsize == BLOCK_64X32) { |
| for (int j = 0; j < 2; j++) |
| if (vt->split[i].part_variances.horz[j].variance < |
| (threshold_64x64 >> 1)) |
| part_info->variance_low[9 + (i << 1) + j] = 1; |
| } else if ((*mi_64)->bsize == BLOCK_32X64) { |
| for (int j = 0; j < 2; j++) |
| if (vt->split[i].part_variances.vert[j].variance < |
| (threshold_64x64 >> 1)) |
| part_info->variance_low[17 + (i << 1) + j] = 1; |
| } else { |
| for (int k = 0; k < 4; k++) { |
| const int idx_str1 = mi_params->mi_stride * idx32[k][0] + idx32[k][1]; |
| MB_MODE_INFO **mi_32 = mi_params->mi_grid_base + idx_str + idx_str1; |
| if (*mi_32 == NULL) continue; |
| |
| if (mi_params->mi_cols <= mi_col + idx64[i][1] + idx32[k][1] || |
| mi_params->mi_rows <= mi_row + idx64[i][0] + idx32[k][0]) |
| continue; |
| const int64_t threshold_32x32 = (5 * thresholds[2]) >> 3; |
| if ((*mi_32)->bsize == BLOCK_32X32) { |
| if (vt->split[i].split[k].part_variances.none.variance < |
| threshold_32x32) |
| part_info->variance_low[25 + (i << 2) + k] = 1; |
| } else { |
| // For 32x16 and 16x32 blocks, the flag is set on each 16x16 block |
| // inside. |
| if ((*mi_32)->bsize == BLOCK_16X16 || |
| (*mi_32)->bsize == BLOCK_32X16 || |
| (*mi_32)->bsize == BLOCK_16X32) { |
| for (int j = 0; j < 4; j++) { |
| if (vt->split[i] |
| .split[k] |
| .split[j] |
| .part_variances.none.variance < (thresholds[3] >> 8)) |
| part_info->variance_low[41 + (i << 4) + (k << 2) + j] = 1; |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| static AOM_INLINE void set_low_temp_var_flag( |
| AV1_COMP *cpi, PartitionSearchInfo *part_info, MACROBLOCKD *xd, |
| VP128x128 *vt, int64_t thresholds[], MV_REFERENCE_FRAME ref_frame_partition, |
| int mi_col, int mi_row) { |
| AV1_COMMON *const cm = &cpi->common; |
| // Check temporal variance for bsize >= 16x16, if LAST_FRAME was selected. |
| // If the temporal variance is small set the flag |
| // variance_low for the block. The variance threshold can be adjusted, the |
| // higher the more aggressive. |
| if (ref_frame_partition == LAST_FRAME) { |
| const int is_small_sb = (cm->seq_params->sb_size == BLOCK_64X64); |
| if (is_small_sb) |
| set_low_temp_var_flag_64x64(&cm->mi_params, part_info, xd, |
| &(vt->split[0]), thresholds, mi_col, mi_row); |
| else |
| set_low_temp_var_flag_128x128(&cm->mi_params, part_info, xd, vt, |
| thresholds, mi_col, mi_row); |
| } |
| } |
| |
| static const int pos_shift_16x16[4][4] = { |
| { 9, 10, 13, 14 }, { 11, 12, 15, 16 }, { 17, 18, 21, 22 }, { 19, 20, 23, 24 } |
| }; |
| |
| int av1_get_force_skip_low_temp_var_small_sb(const uint8_t *variance_low, |
| int mi_row, int mi_col, |
| BLOCK_SIZE bsize) { |
| // Relative indices of MB inside the superblock. |
| const int mi_x = mi_row & 0xF; |
| const int mi_y = mi_col & 0xF; |
| // Relative indices of 16x16 block inside the superblock. |
| const int i = mi_x >> 2; |
| const int j = mi_y >> 2; |
| int force_skip_low_temp_var = 0; |
| // Set force_skip_low_temp_var based on the block size and block offset. |
| switch (bsize) { |
| case BLOCK_64X64: force_skip_low_temp_var = variance_low[0]; break; |
| case BLOCK_64X32: |
| if (!mi_y && !mi_x) { |
| force_skip_low_temp_var = variance_low[1]; |
| } else if (!mi_y && mi_x) { |
| force_skip_low_temp_var = variance_low[2]; |
| } |
| break; |
| case BLOCK_32X64: |
| if (!mi_y && !mi_x) { |
| force_skip_low_temp_var = variance_low[3]; |
| } else if (mi_y && !mi_x) { |
| force_skip_low_temp_var = variance_low[4]; |
| } |
| break; |
| case BLOCK_32X32: |
| if (!mi_y && !mi_x) { |
| force_skip_low_temp_var = variance_low[5]; |
| } else if (mi_y && !mi_x) { |
| force_skip_low_temp_var = variance_low[6]; |
| } else if (!mi_y && mi_x) { |
| force_skip_low_temp_var = variance_low[7]; |
| } else if (mi_y && mi_x) { |
| force_skip_low_temp_var = variance_low[8]; |
| } |
| break; |
| case BLOCK_32X16: |
| case BLOCK_16X32: |
| case BLOCK_16X16: |
| force_skip_low_temp_var = variance_low[pos_shift_16x16[i][j]]; |
| break; |
| default: break; |
| } |
| |
| return force_skip_low_temp_var; |
| } |
| |
| int av1_get_force_skip_low_temp_var(const uint8_t *variance_low, int mi_row, |
| int mi_col, BLOCK_SIZE bsize) { |
| int force_skip_low_temp_var = 0; |
| int x, y; |
| x = (mi_col & 0x1F) >> 4; |
| // y = (mi_row & 0x1F) >> 4; |
| // const int idx64 = (y << 1) + x; |
| y = (mi_row & 0x17) >> 3; |
| const int idx64 = y + x; |
| |
| x = (mi_col & 0xF) >> 3; |
| // y = (mi_row & 0xF) >> 3; |
| // const int idx32 = (y << 1) + x; |
| y = (mi_row & 0xB) >> 2; |
| const int idx32 = y + x; |
| |
| x = (mi_col & 0x7) >> 2; |
| // y = (mi_row & 0x7) >> 2; |
| // const int idx16 = (y << 1) + x; |
| y = (mi_row & 0x5) >> 1; |
| const int idx16 = y + x; |
| // Set force_skip_low_temp_var based on the block size and block offset. |
| switch (bsize) { |
| case BLOCK_128X128: force_skip_low_temp_var = variance_low[0]; break; |
| case BLOCK_128X64: |
| assert((mi_col & 0x1F) == 0); |
| force_skip_low_temp_var = variance_low[1 + ((mi_row & 0x1F) != 0)]; |
| break; |
| case BLOCK_64X128: |
| assert((mi_row & 0x1F) == 0); |
| force_skip_low_temp_var = variance_low[3 + ((mi_col & 0x1F) != 0)]; |
| break; |
| case BLOCK_64X64: |
| // Location of this 64x64 block inside the 128x128 superblock |
| force_skip_low_temp_var = variance_low[5 + idx64]; |
| break; |
| case BLOCK_64X32: |
| x = (mi_col & 0x1F) >> 4; |
| y = (mi_row & 0x1F) >> 3; |
| /* |
| .---------------.---------------. |
| | x=0,y=0,idx=0 | x=0,y=0,idx=2 | |
| :---------------+---------------: |
| | x=0,y=1,idx=1 | x=1,y=1,idx=3 | |
| :---------------+---------------: |
| | x=0,y=2,idx=4 | x=1,y=2,idx=6 | |
| :---------------+---------------: |
| | x=0,y=3,idx=5 | x=1,y=3,idx=7 | |
| '---------------'---------------' |
| */ |
| const int idx64x32 = (x << 1) + (y % 2) + ((y >> 1) << 2); |
| force_skip_low_temp_var = variance_low[9 + idx64x32]; |
| break; |
| case BLOCK_32X64: |
| x = (mi_col & 0x1F) >> 3; |
| y = (mi_row & 0x1F) >> 4; |
| const int idx32x64 = (y << 2) + x; |
| force_skip_low_temp_var = variance_low[17 + idx32x64]; |
| break; |
| case BLOCK_32X32: |
| force_skip_low_temp_var = variance_low[25 + (idx64 << 2) + idx32]; |
| break; |
| case BLOCK_32X16: |
| case BLOCK_16X32: |
| case BLOCK_16X16: |
| force_skip_low_temp_var = |
| variance_low[41 + (idx64 << 4) + (idx32 << 2) + idx16]; |
| break; |
| default: break; |
| } |
| return force_skip_low_temp_var; |
| } |
| |
| void av1_set_variance_partition_thresholds(AV1_COMP *cpi, int q, |
| int content_lowsumdiff) { |
| SPEED_FEATURES *const sf = &cpi->sf; |
| if (sf->part_sf.partition_search_type != VAR_BASED_PARTITION) { |
| return; |
| } else { |
| set_vbp_thresholds(cpi, cpi->vbp_info.thresholds, q, content_lowsumdiff, 0, |
| 0); |
| // The threshold below is not changed locally. |
| cpi->vbp_info.threshold_minmax = 15 + (q >> 3); |
| } |
| } |
| |
| static AOM_INLINE void chroma_check(AV1_COMP *cpi, MACROBLOCK *x, |
| BLOCK_SIZE bsize, unsigned int y_sad, |
| int is_key_frame) { |
| int i; |
| MACROBLOCKD *xd = &x->e_mbd; |
| |
| if (is_key_frame || cpi->oxcf.tool_cfg.enable_monochrome) return; |
| |
| for (i = 1; i <= 2; ++i) { |
| unsigned int uv_sad = UINT_MAX; |
| struct macroblock_plane *p = &x->plane[i]; |
| struct macroblockd_plane *pd = &xd->plane[i]; |
| const BLOCK_SIZE bs = |
| get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); |
| |
| if (bs != BLOCK_INVALID) |
| uv_sad = cpi->ppi->fn_ptr[bs].sdf(p->src.buf, p->src.stride, pd->dst.buf, |
| pd->dst.stride); |
| |
| if (uv_sad > (y_sad >> 1)) |
| x->color_sensitivity_sb[i - 1] = 1; |
| else if (uv_sad < (y_sad >> 3)) |
| x->color_sensitivity_sb[i - 1] = 0; |
| // Borderline case: to be refined at coding block level in nonrd_pickmode, |
| // for coding block size < sb_size. |
| else |
| x->color_sensitivity_sb[i - 1] = 2; |
| } |
| } |
| |
| static void fill_variance_tree_leaves( |
| AV1_COMP *cpi, MACROBLOCK *x, VP128x128 *vt, VP16x16 *vt2, |
| unsigned char *force_split, int avg_16x16[][4], int maxvar_16x16[][4], |
| int minvar_16x16[][4], int *variance4x4downsample, int64_t *thresholds, |
| uint8_t *src, int src_stride, const uint8_t *dst, int dst_stride) { |
| AV1_COMMON *cm = &cpi->common; |
| MACROBLOCKD *xd = &x->e_mbd; |
| const int is_key_frame = frame_is_intra_only(cm); |
| const int is_small_sb = (cm->seq_params->sb_size == BLOCK_64X64); |
| const int num_64x64_blocks = is_small_sb ? 1 : 4; |
| // TODO(kyslov) Bring back compute_minmax_variance with content type detection |
| const int compute_minmax_variance = 0; |
| const int segment_id = xd->mi[0]->segment_id; |
| int pixels_wide = 128, pixels_high = 128; |
| |
| if (is_small_sb) { |
| pixels_wide = 64; |
| pixels_high = 64; |
| } |
| if (xd->mb_to_right_edge < 0) pixels_wide += (xd->mb_to_right_edge >> 3); |
| if (xd->mb_to_bottom_edge < 0) pixels_high += (xd->mb_to_bottom_edge >> 3); |
| for (int m = 0; m < num_64x64_blocks; m++) { |
| const int x64_idx = ((m & 1) << 6); |
| const int y64_idx = ((m >> 1) << 6); |
| const int m2 = m << 2; |
| force_split[m + 1] = 0; |
| |
| for (int i = 0; i < 4; i++) { |
| const int x32_idx = x64_idx + ((i & 1) << 5); |
| const int y32_idx = y64_idx + ((i >> 1) << 5); |
| const int i2 = (m2 + i) << 2; |
| force_split[5 + m2 + i] = 0; |
| avg_16x16[m][i] = 0; |
| maxvar_16x16[m][i] = 0; |
| minvar_16x16[m][i] = INT_MAX; |
| for (int j = 0; j < 4; j++) { |
| const int x16_idx = x32_idx + ((j & 1) << 4); |
| const int y16_idx = y32_idx + ((j >> 1) << 4); |
| const int split_index = 21 + i2 + j; |
| VP16x16 *vst = &vt->split[m].split[i].split[j]; |
| force_split[split_index] = 0; |
| variance4x4downsample[i2 + j] = 0; |
| if (!is_key_frame) { |
| fill_variance_8x8avg(src, src_stride, dst, dst_stride, x16_idx, |
| y16_idx, vst, |
| #if CONFIG_AV1_HIGHBITDEPTH |
| xd->cur_buf->flags, |
| #endif |
| pixels_wide, pixels_high, is_key_frame); |
| fill_variance_tree(&vt->split[m].split[i].split[j], BLOCK_16X16); |
| get_variance(&vt->split[m].split[i].split[j].part_variances.none); |
| avg_16x16[m][i] += |
| vt->split[m].split[i].split[j].part_variances.none.variance; |
| if (vt->split[m].split[i].split[j].part_variances.none.variance < |
| minvar_16x16[m][i]) |
| minvar_16x16[m][i] = |
| vt->split[m].split[i].split[j].part_variances.none.variance; |
| if (vt->split[m].split[i].split[j].part_variances.none.variance > |
| maxvar_16x16[m][i]) |
| maxvar_16x16[m][i] = |
| vt->split[m].split[i].split[j].part_variances.none.variance; |
| if (vt->split[m].split[i].split[j].part_variances.none.variance > |
| thresholds[3]) { |
| // 16X16 variance is above threshold for split, so force split to |
| // 8x8 for this 16x16 block (this also forces splits for upper |
| // levels). |
| force_split[split_index] = 1; |
| force_split[5 + m2 + i] = 1; |
| force_split[m + 1] = 1; |
| force_split[0] = 1; |
| } else if (!cyclic_refresh_segment_id_boosted(segment_id) && |
| compute_minmax_variance && |
| vt->split[m] |
| .split[i] |
| .split[j] |
| .part_variances.none.variance > thresholds[2]) { |
| // We have some nominal amount of 16x16 variance (based on average), |
| // compute the minmax over the 8x8 sub-blocks, and if above |
| // threshold, force split to 8x8 block for this 16x16 block. |
| int minmax = compute_minmax_8x8(src, src_stride, dst, dst_stride, |
| x16_idx, y16_idx, |
| #if CONFIG_AV1_HIGHBITDEPTH |
| xd->cur_buf->flags, |
| #endif |
| pixels_wide, pixels_high); |
| int thresh_minmax = (int)cpi->vbp_info.threshold_minmax; |
| if (minmax > thresh_minmax) { |
| force_split[split_index] = 1; |
| force_split[5 + m2 + i] = 1; |
| force_split[m + 1] = 1; |
| force_split[0] = 1; |
| } |
| } |
| } |
| if (is_key_frame) { |
| force_split[split_index] = 0; |
| // Go down to 4x4 down-sampling for variance. |
| variance4x4downsample[i2 + j] = 1; |
| for (int k = 0; k < 4; k++) { |
| int x8_idx = x16_idx + ((k & 1) << 3); |
| int y8_idx = y16_idx + ((k >> 1) << 3); |
| VP8x8 *vst2 = is_key_frame ? &vst->split[k] : &vt2[i2 + j].split[k]; |
| fill_variance_4x4avg(src, src_stride, dst, dst_stride, x8_idx, |
| y8_idx, vst2, |
| #if CONFIG_AV1_HIGHBITDEPTH |
| xd->cur_buf->flags, |
| #endif |
| pixels_wide, pixels_high, is_key_frame); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| static void setup_planes(AV1_COMP *cpi, MACROBLOCK *x, unsigned int *y_sad, |
| unsigned int *y_sad_g, |
| MV_REFERENCE_FRAME *ref_frame_partition, int mi_row, |
| int mi_col) { |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *xd = &x->e_mbd; |
| const int num_planes = av1_num_planes(cm); |
| const int is_small_sb = (cm->seq_params->sb_size == BLOCK_64X64); |
| BLOCK_SIZE bsize = is_small_sb ? BLOCK_64X64 : BLOCK_128X128; |
| // TODO(kyslov): we are assuming that the ref is LAST_FRAME! Check if it |
| // is!! |
| MB_MODE_INFO *mi = xd->mi[0]; |
| const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_yv12_buf(cm, LAST_FRAME); |
| assert(yv12 != NULL); |
| const YV12_BUFFER_CONFIG *yv12_g = NULL; |
| |
| // For non-SVC GOLDEN is another temporal reference. Check if it should be |
| // used as reference for partitioning. |
| if (!cpi->ppi->use_svc && (cpi->ref_frame_flags & AOM_GOLD_FLAG)) { |
| yv12_g = get_ref_frame_yv12_buf(cm, GOLDEN_FRAME); |
| if (yv12_g && yv12_g != yv12) { |
| av1_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col, |
| get_ref_scale_factors(cm, GOLDEN_FRAME), num_planes); |
| *y_sad_g = cpi->ppi->fn_ptr[bsize].sdf( |
| x->plane[0].src.buf, x->plane[0].src.stride, xd->plane[0].pre[0].buf, |
| xd->plane[0].pre[0].stride); |
| } |
| } |
| |
| av1_setup_pre_planes(xd, 0, yv12, mi_row, mi_col, |
| get_ref_scale_factors(cm, LAST_FRAME), num_planes); |
| mi->ref_frame[0] = LAST_FRAME; |
| mi->ref_frame[1] = NONE_FRAME; |
| mi->bsize = cm->seq_params->sb_size; |
| mi->mv[0].as_int = 0; |
| mi->interp_filters = av1_broadcast_interp_filter(BILINEAR); |
| if (cpi->sf.rt_sf.estimate_motion_for_var_based_partition) { |
| if (xd->mb_to_right_edge >= 0 && xd->mb_to_bottom_edge >= 0) { |
| const MV dummy_mv = { 0, 0 }; |
| *y_sad = av1_int_pro_motion_estimation(cpi, x, cm->seq_params->sb_size, |
| mi_row, mi_col, &dummy_mv); |
| } |
| } |
| if (*y_sad == UINT_MAX) { |
| *y_sad = cpi->ppi->fn_ptr[bsize].sdf( |
| x->plane[0].src.buf, x->plane[0].src.stride, xd->plane[0].pre[0].buf, |
| xd->plane[0].pre[0].stride); |
| } |
| |
| // Pick the ref frame for partitioning, use golden frame only if its |
| // lower sad. |
| if (*y_sad_g < 0.9 * *y_sad) { |
| av1_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col, |
| get_ref_scale_factors(cm, GOLDEN_FRAME), num_planes); |
| mi->ref_frame[0] = GOLDEN_FRAME; |
| mi->mv[0].as_int = 0; |
| *y_sad = *y_sad_g; |
| *ref_frame_partition = GOLDEN_FRAME; |
| x->nonrd_prune_ref_frame_search = 0; |
| } else { |
| *ref_frame_partition = LAST_FRAME; |
| x->nonrd_prune_ref_frame_search = |
| cpi->sf.rt_sf.nonrd_prune_ref_frame_search; |
| } |
| |
| // Only calculate the predictor for non-zero MV. |
| if (mi->mv[0].as_int != 0) { |
| set_ref_ptrs(cm, xd, mi->ref_frame[0], mi->ref_frame[1]); |
| av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, |
| cm->seq_params->sb_size, AOM_PLANE_Y, |
| AOM_PLANE_Y); |
| } |
| } |
| |
| int av1_choose_var_based_partitioning(AV1_COMP *cpi, const TileInfo *const tile, |
| ThreadData *td, MACROBLOCK *x, int mi_row, |
| int mi_col) { |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *xd = &x->e_mbd; |
| const int64_t *const vbp_thresholds = cpi->vbp_info.thresholds; |
| |
| int i, j, k, m; |
| VP128x128 *vt; |
| VP16x16 *vt2 = NULL; |
| unsigned char force_split[85]; |
| int avg_64x64; |
| int max_var_32x32[4]; |
| int min_var_32x32[4]; |
| int var_32x32; |
| int var_64x64; |
| int min_var_64x64 = INT_MAX; |
| int max_var_64x64 = 0; |
| int avg_16x16[4][4]; |
| int maxvar_16x16[4][4]; |
| int minvar_16x16[4][4]; |
| int64_t threshold_4x4avg; |
| uint8_t *s; |
| const uint8_t *d; |
| int sp; |
| int dp; |
| NOISE_LEVEL noise_level = kLow; |
| |
| int is_key_frame = |
| (frame_is_intra_only(cm) || |
| (cpi->ppi->use_svc && |
| cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame)); |
| |
| assert(cm->seq_params->sb_size == BLOCK_64X64 || |
| cm->seq_params->sb_size == BLOCK_128X128); |
| const int is_small_sb = (cm->seq_params->sb_size == BLOCK_64X64); |
| const int num_64x64_blocks = is_small_sb ? 1 : 4; |
| |
| unsigned int y_sad = UINT_MAX; |
| unsigned int y_sad_g = UINT_MAX; |
| BLOCK_SIZE bsize = is_small_sb ? BLOCK_64X64 : BLOCK_128X128; |
| |
| // Ref frame used in partitioning. |
| MV_REFERENCE_FRAME ref_frame_partition = LAST_FRAME; |
| |
| CHECK_MEM_ERROR(cm, vt, aom_malloc(sizeof(*vt))); |
| |
| vt->split = td->vt64x64; |
| |
| int64_t thresholds[5] = { vbp_thresholds[0], vbp_thresholds[1], |
| vbp_thresholds[2], vbp_thresholds[3], |
| vbp_thresholds[4] }; |
| |
| const int low_res = (cm->width <= 352 && cm->height <= 288); |
| int variance4x4downsample[64]; |
| const int segment_id = xd->mi[0]->segment_id; |
| |
| if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled && |
| cyclic_refresh_segment_id_boosted(segment_id)) { |
| const int q = |
| av1_get_qindex(&cm->seg, segment_id, cm->quant_params.base_qindex); |
| set_vbp_thresholds(cpi, thresholds, q, x->content_state_sb.low_sumdiff, |
| x->content_state_sb.source_sad, 1); |
| } else { |
| set_vbp_thresholds(cpi, thresholds, cm->quant_params.base_qindex, |
| x->content_state_sb.low_sumdiff, |
| x->content_state_sb.source_sad, 0); |
| } |
| |
| // For non keyframes, disable 4x4 average for low resolution when speed = 8 |
| threshold_4x4avg = INT64_MAX; |
| |
| s = x->plane[0].src.buf; |
| sp = x->plane[0].src.stride; |
| |
| // Index for force_split: 0 for 64x64, 1-4 for 32x32 blocks, |
| // 5-20 for the 16x16 blocks. |
| force_split[0] = 0; |
| memset(x->part_search_info.variance_low, 0, |
| sizeof(x->part_search_info.variance_low)); |
| |
| // Check if LAST frame is NULL or if the resolution of LAST is |
| // different than the current frame resolution, and if so, treat this frame |
| // as a key frame, for the purpose of the superblock partitioning. |
| // LAST == NULL can happen in cases where enhancement spatial layers are |
| // enabled dyanmically and the only reference is the spatial(GOLDEN). |
| // TODO(marpan): Check se of scaled references for the different resoln. |
| if (!frame_is_intra_only(cm)) { |
| const YV12_BUFFER_CONFIG *const ref = |
| get_ref_frame_yv12_buf(cm, LAST_FRAME); |
| if (ref == NULL || ref->y_crop_height != cm->height || |
| ref->y_crop_width != cm->width) { |
| is_key_frame = 1; |
| } |
| } |
| |
| if (!is_key_frame) { |
| setup_planes(cpi, x, &y_sad, &y_sad_g, &ref_frame_partition, mi_row, |
| mi_col); |
| |
| MB_MODE_INFO *mi = xd->mi[0]; |
| // Use reference SB directly for zero mv. |
| if (mi->mv[0].as_int != 0) { |
| d = xd->plane[0].dst.buf; |
| dp = xd->plane[0].dst.stride; |
| } else { |
| d = xd->plane[0].pre[0].buf; |
| dp = xd->plane[0].pre[0].stride; |
| } |
| } else { |
| d = AV1_VAR_OFFS; |
| dp = 0; |
| } |
| if (cpi->noise_estimate.enabled) |
| noise_level = av1_noise_estimate_extract_level(&cpi->noise_estimate); |
| |
| if (low_res && threshold_4x4avg < INT64_MAX) |
| CHECK_MEM_ERROR(cm, vt2, aom_malloc(sizeof(*vt2))); |
| // Fill in the entire tree of 8x8 (or 4x4 under some conditions) variances |
| // for splits. |
| fill_variance_tree_leaves(cpi, x, vt, vt2, force_split, avg_16x16, |
| maxvar_16x16, minvar_16x16, variance4x4downsample, |
| thresholds, s, sp, d, dp); |
| |
| avg_64x64 = 0; |
| for (m = 0; m < num_64x64_blocks; ++m) { |
| max_var_32x32[m] = 0; |
| min_var_32x32[m] = INT_MAX; |
| const int m2 = m << 2; |
| for (i = 0; i < 4; i++) { |
| const int i2 = (m2 + i) << 2; |
| for (j = 0; j < 4; j++) { |
| const int split_index = 21 + i2 + j; |
| if (variance4x4downsample[i2 + j] == 1) { |
| VP16x16 *vtemp = |
| (!is_key_frame) ? &vt2[i2 + j] : &vt->split[m].split[i].split[j]; |
| for (k = 0; k < 4; k++) |
| fill_variance_tree(&vtemp->split[k], BLOCK_8X8); |
| fill_variance_tree(vtemp, BLOCK_16X16); |
| // If variance of this 16x16 block is above the threshold, force block |
| // to split. This also forces a split on the upper levels. |
| get_variance(&vtemp->part_variances.none); |
| if (vtemp->part_variances.none.variance > thresholds[3]) { |
| force_split[split_index] = 1; |
| force_split[5 + m2 + i] = 1; |
| force_split[m + 1] = 1; |
| force_split[0] = 1; |
| } |
| } |
| } |
| fill_variance_tree(&vt->split[m].split[i], BLOCK_32X32); |
| // If variance of this 32x32 block is above the threshold, or if its above |
| // (some threshold of) the average variance over the sub-16x16 blocks, |
| // then force this block to split. This also forces a split on the upper |
| // (64x64) level. |
| if (!force_split[5 + m2 + i]) { |
| get_variance(&vt->split[m].split[i].part_variances.none); |
| var_32x32 = vt->split[m].split[i].part_variances.none.variance; |
| max_var_32x32[m] = AOMMAX(var_32x32, max_var_32x32[m]); |
| min_var_32x32[m] = AOMMIN(var_32x32, min_var_32x32[m]); |
| if (vt->split[m].split[i].part_variances.none.variance > |
| thresholds[2] || |
| (!is_key_frame && |
| vt->split[m].split[i].part_variances.none.variance > |
| (thresholds[2] >> 1) && |
| vt->split[m].split[i].part_variances.none.variance > |
| (avg_16x16[m][i] >> 1))) { |
| force_split[5 + m2 + i] = 1; |
| force_split[m + 1] = 1; |
| force_split[0] = 1; |
| } else if (!is_key_frame && cm->height <= 360 && |
| (maxvar_16x16[m][i] - minvar_16x16[m][i]) > |
| (thresholds[2] >> 1) && |
| maxvar_16x16[m][i] > thresholds[2]) { |
| force_split[5 + m2 + i] = 1; |
| force_split[m + 1] = 1; |
| force_split[0] = 1; |
| } |
| } |
| } |
| if (!force_split[1 + m]) { |
| fill_variance_tree(&vt->split[m], BLOCK_64X64); |
| get_variance(&vt->split[m].part_variances.none); |
| var_64x64 = vt->split[m].part_variances.none.variance; |
| max_var_64x64 = AOMMAX(var_64x64, max_var_64x64); |
| min_var_64x64 = AOMMIN(var_64x64, min_var_64x64); |
| // If the difference of the max-min variances of sub-blocks or max |
| // variance of a sub-block is above some threshold of then force this |
| // block to split. Only checking this for noise level >= medium, if |
| // encoder is in SVC or if we already forced large blocks. |
| |
| if (!is_key_frame && |
| (max_var_32x32[m] - min_var_32x32[m]) > 3 * (thresholds[1] >> 3) && |
| max_var_32x32[m] > thresholds[1] >> 1 && |
| (noise_level >= kMedium || cpi->ppi->use_svc || |
| cpi->sf.rt_sf.force_large_partition_blocks)) { |
| force_split[1 + m] = 1; |
| force_split[0] = 1; |
| } |
| avg_64x64 += var_64x64; |
| } |
| if (is_small_sb) force_split[0] = 1; |
| } |
| |
| if (!force_split[0]) { |
| fill_variance_tree(vt, BLOCK_128X128); |
| get_variance(&vt->part_variances.none); |
| if (!is_key_frame && |
| vt->part_variances.none.variance > (9 * avg_64x64) >> 5) |
| force_split[0] = 1; |
| |
| if (!is_key_frame && |
| (max_var_64x64 - min_var_64x64) > 3 * (thresholds[0] >> 3) && |
| max_var_64x64 > thresholds[0] >> 1) |
| force_split[0] = 1; |
| } |
| |
| if (mi_col + 32 > tile->mi_col_end || mi_row + 32 > tile->mi_row_end || |
| !set_vt_partitioning(cpi, x, xd, tile, vt, BLOCK_128X128, mi_row, mi_col, |
| thresholds[0], BLOCK_16X16, force_split[0])) { |
| for (m = 0; m < num_64x64_blocks; ++m) { |
| const int x64_idx = ((m & 1) << 4); |
| const int y64_idx = ((m >> 1) << 4); |
| const int m2 = m << 2; |
| |
| // Now go through the entire structure, splitting every block size until |
| // we get to one that's got a variance lower than our threshold. |
| if (!set_vt_partitioning(cpi, x, xd, tile, &vt->split[m], BLOCK_64X64, |
| mi_row + y64_idx, mi_col + x64_idx, |
| thresholds[1], BLOCK_16X16, |
| force_split[1 + m])) { |
| for (i = 0; i < 4; ++i) { |
| const int x32_idx = ((i & 1) << 3); |
| const int y32_idx = ((i >> 1) << 3); |
| const int i2 = (m2 + i) << 2; |
| if (!set_vt_partitioning(cpi, x, xd, tile, &vt->split[m].split[i], |
| BLOCK_32X32, (mi_row + y64_idx + y32_idx), |
| (mi_col + x64_idx + x32_idx), thresholds[2], |
| BLOCK_16X16, force_split[5 + m2 + i])) { |
| for (j = 0; j < 4; ++j) { |
| const int x16_idx = ((j & 1) << 2); |
| const int y16_idx = ((j >> 1) << 2); |
| const int split_index = 21 + i2 + j; |
| // For inter frames: if variance4x4downsample[] == 1 for this |
| // 16x16 block, then the variance is based on 4x4 down-sampling, |
| // so use vt2 in set_vt_partioning(), otherwise use vt. |
| VP16x16 *vtemp = |
| (!is_key_frame && variance4x4downsample[i2 + j] == 1) |
| ? &vt2[i2 + j] |
| : &vt->split[m].split[i].split[j]; |
| if (!set_vt_partitioning(cpi, x, xd, tile, vtemp, BLOCK_16X16, |
| mi_row + y64_idx + y32_idx + y16_idx, |
| mi_col + x64_idx + x32_idx + x16_idx, |
| thresholds[3], BLOCK_8X8, |
| force_split[split_index])) { |
| for (k = 0; k < 4; ++k) { |
| const int x8_idx = (k & 1) << 1; |
| const int y8_idx = (k >> 1) << 1; |
| set_block_size( |
| cpi, x, xd, |
| (mi_row + y64_idx + y32_idx + y16_idx + y8_idx), |
| (mi_col + x64_idx + x32_idx + x16_idx + x8_idx), |
| BLOCK_8X8); |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| if (cpi->sf.rt_sf.short_circuit_low_temp_var) { |
| set_low_temp_var_flag(cpi, &x->part_search_info, xd, vt, thresholds, |
| ref_frame_partition, mi_col, mi_row); |
| } |
| chroma_check(cpi, x, bsize, y_sad, is_key_frame); |
| |
| if (vt2) aom_free(vt2); |
| if (vt) aom_free(vt); |
| return 0; |
| } |