|  | /* | 
|  | * Copyright (c) 2019, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  |  | 
|  | #include "config/aom_config.h" | 
|  | #include "config/av1_rtcd.h" | 
|  |  | 
|  | #include "av1/common/nn_em.h" | 
|  |  | 
|  | #if CONFIG_INTRA_ENTROPY | 
|  | // Applies the ReLu activation to one fc layer | 
|  | // output[i] = Max(input[i],0.0f) | 
|  | static void nn_relu(float *input, int num_outputs) { | 
|  | for (int i = 0; i < num_outputs; ++i) { | 
|  | input[i] = AOMMAX(input[i], 0.0f); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Applies the Sigmoid activation to one fc layer | 
|  | // output[i] = 1/(1+exp(input[i])) | 
|  | static void nn_sigmoid(float *input, int num_outputs) { | 
|  | for (int i = 0; i < num_outputs; ++i) { | 
|  | const float tmp = AOMMIN(AOMMAX(input[i], -10.0f), 10.0f); | 
|  | input[i] = 1.0f / (1.0f + expf(-tmp)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Forward prediction in one fc layer, used in function av1_nn_predict_V2 | 
|  | void av1_nn_fc_forward_c(FC_LAYER_EM *layer, const float *input, | 
|  | float *output) { | 
|  | const float *weights = layer->weights; | 
|  | const float *bias = layer->bias; | 
|  | for (int node = 0; node < layer->num_outputs; ++node) { | 
|  | float val = bias[node]; | 
|  | for (int i = 0; i < layer->num_inputs; ++i) val += weights[i] * input[i]; | 
|  | output[node] = val; | 
|  | weights += layer->num_inputs; | 
|  | } | 
|  |  | 
|  | // activation | 
|  | switch (layer->activation) { | 
|  | case ACTN_NONE:  // Do Nothing; | 
|  | break; | 
|  | case ACTN_RELU: nn_relu(output, layer->num_outputs); break; | 
|  | case ACTN_SIGMOID: nn_sigmoid(output, layer->num_outputs); break; | 
|  | default: assert(0 && "Unknown activation");  // Unknown activation | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_nn_input_forward(FC_INPUT_LAYER_EM *layer, const int *sparse_features, | 
|  | const float *dense_features) { | 
|  | float *output = layer->output; | 
|  | const int output_size = layer->num_outputs; | 
|  | const int has_sparse = layer->num_sparse_inputs > 0; | 
|  | const int has_dense = layer->num_dense_inputs > 0; | 
|  | const float *bias = layer->bias; | 
|  |  | 
|  | av1_copy_array(output, bias, output_size); | 
|  |  | 
|  | if (has_sparse) { | 
|  | float **sparse_weights = layer->sparse_weights; | 
|  | for (int sparse_idx = 0; sparse_idx < layer->num_sparse_inputs; | 
|  | sparse_idx++) { | 
|  | const float *weight_ptr = sparse_weights[sparse_idx] + | 
|  | sparse_features[sparse_idx] * output_size; | 
|  | for (int out_idx = 0; out_idx < output_size; out_idx++) { | 
|  | output[out_idx] += weight_ptr[out_idx]; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (has_dense) { | 
|  | const float *dense_weights = layer->dense_weights; | 
|  | for (int node = 0; node < layer->num_outputs; ++node) { | 
|  | float val = 0.0f; | 
|  | for (int i = 0; i < layer->num_dense_inputs; ++i) { | 
|  | val += dense_weights[i] * dense_features[i]; | 
|  | } | 
|  | output[node] += val; | 
|  | dense_weights += layer->num_dense_inputs; | 
|  | } | 
|  | } | 
|  |  | 
|  | // activation | 
|  | switch (layer->activation) { | 
|  | case ACTN_NONE:  // Do Nothing; | 
|  | break; | 
|  | case ACTN_RELU: nn_relu(output, layer->num_outputs); break; | 
|  | case ACTN_SIGMOID: nn_sigmoid(output, layer->num_outputs); break; | 
|  | default: assert(0 && "Unknown activation");  // Unknown activation | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_nn_predict_em(NN_CONFIG_EM *nn_config) { | 
|  | const int *sparse_features = nn_config->sparse_features; | 
|  | const float *dense_features = nn_config->dense_features; | 
|  | const int num_layers = nn_config->num_hidden_layers; | 
|  | assert(num_layers <= EM_MAX_HLAYERS); | 
|  |  | 
|  | // Propagate input layers | 
|  | av1_nn_input_forward(&nn_config->input_layer, sparse_features, | 
|  | dense_features); | 
|  | float *input_nodes = nn_config->input_layer.output; | 
|  |  | 
|  | // Propagate the layers. | 
|  | int num_inputs = nn_config->layer[0].num_inputs; | 
|  | for (int i = 0; i < num_layers; ++i) { | 
|  | assert(num_inputs == nn_config->layer[i].num_inputs); | 
|  | av1_nn_fc_forward(nn_config->layer + i, input_nodes, | 
|  | nn_config->layer[i].output); | 
|  | input_nodes = nn_config->layer[i].output; | 
|  | num_inputs = nn_config->layer[i].num_outputs; | 
|  | } | 
|  |  | 
|  | // Final layer | 
|  | assert(num_inputs == nn_config->num_logits); | 
|  | (void)num_inputs; | 
|  | switch (nn_config->loss) { | 
|  | case SOFTMAX_CROSS_ENTROPY_LOSS: | 
|  | if (nn_config->num_logits == 1) { | 
|  | // sigmoid | 
|  | const float tmp = AOMMIN(AOMMAX(input_nodes[0], -10.0f), 10.0f); | 
|  | nn_config->output[0] = 1.0f / (1.0f + expf(-tmp)); | 
|  | } else { | 
|  | // softmax | 
|  | av1_nn_softmax_em(input_nodes, nn_config->output, | 
|  | nn_config->num_logits); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | av1_copy_array(nn_config->output, input_nodes, nn_config->num_logits); | 
|  | } | 
|  | } | 
|  |  | 
|  | /***************************Backprop for gradient******************************/ | 
|  | // Backprop for ReLU activation | 
|  | static void nn_relu_back(float *dX_out, const float *dY, const float *output, | 
|  | int num_outputs) { | 
|  | for (int i = 0; i < num_outputs; ++i) | 
|  | dX_out[i] = output[i] > 0.0f ? dY[i] : 0.0f; | 
|  | } | 
|  |  | 
|  | // Backprop for sigmoid activation | 
|  | static void nn_sigmoid_back(float *dX_out, const float *dY, const float *output, | 
|  | int num_outputs) { | 
|  | for (int i = 0; i < num_outputs; ++i) | 
|  | dX_out[i] = dY[i] * output[i] * (1 - output[i]);  // dX=dY*sigmoid(X) | 
|  | } | 
|  |  | 
|  | // Backprop for softmax cross entropy loss | 
|  | static void nn_softmax_cross_entropy_loss_back(float *dX_out, | 
|  | const float *output, | 
|  | const int num_outputs, | 
|  | const int label) { | 
|  | if (num_outputs == 1) { | 
|  | // sigmoid | 
|  | assert(label < 2);  // label [0,1] | 
|  | dX_out[0] = output[0] - (float)label; | 
|  | } else { | 
|  | // softmax | 
|  | assert(num_outputs > label);  // label [0,1,... num_logits-1] | 
|  | av1_copy_array(dX_out, output, num_outputs); | 
|  | dX_out[label] -= 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Assume there are no more than MAX_NODES nodes in each layer. | 
|  | #define MAX_NODES 128 | 
|  |  | 
|  | // Backprop in one fc layer, used in function av1_nn_backprop | 
|  | static void nn_fc_backward(const float *X, float *dX_out, FC_LAYER_EM *layer) { | 
|  | // backprop on activation | 
|  | float dY_fc[MAX_NODES] = { 0.0f };  // dY for fc | 
|  | switch (layer->activation) { | 
|  | case ACTN_NONE:  // no activation, dY_fc <-- dY | 
|  | av1_copy_array(dY_fc, layer->dy, layer->num_outputs); | 
|  | break; | 
|  | case ACTN_RELU: | 
|  | nn_relu_back(dY_fc, layer->dy, layer->output, layer->num_outputs); | 
|  | break; | 
|  | case ACTN_SIGMOID: | 
|  | nn_sigmoid_back(dY_fc, layer->dy, layer->output, layer->num_outputs); | 
|  | break; | 
|  | default: assert(0 && "Unknown activation");  // Unknown activation | 
|  | } | 
|  |  | 
|  | // backprop on fc | 
|  | // gradient of W, b | 
|  | float *dW = layer->dw; | 
|  | float *db = layer->db; | 
|  |  | 
|  | for (int j = 0; j < layer->num_outputs; ++j) { | 
|  | for (int i = 0; i < layer->num_inputs; ++i) { | 
|  | dW[i] += dY_fc[j] * X[i]; | 
|  | } | 
|  | db[j] += dY_fc[j]; | 
|  | dW += layer->num_inputs; | 
|  | } | 
|  |  | 
|  | // gradient of the input, i.e., the output of last layer | 
|  | if (dX_out) { | 
|  | for (int i = 0; i < layer->num_inputs; ++i) { | 
|  | float *w = layer->weights + i; | 
|  | float val = 0.0f; | 
|  | for (int j = 0; j < layer->num_outputs; ++j) { | 
|  | val += dY_fc[j] * w[j * layer->num_inputs]; | 
|  | } | 
|  | dX_out[i] = val; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void nn_fc_input_backward(const int *sparse_features, | 
|  | const float *dense_features, | 
|  | FC_INPUT_LAYER_EM *layer) { | 
|  | const int num_sparse = layer->num_sparse_inputs; | 
|  | const int num_dense = layer->num_dense_inputs; | 
|  | const int num_out = layer->num_outputs; | 
|  | const int has_sparse = num_sparse > 0; | 
|  | const int has_dense = num_dense > 0; | 
|  |  | 
|  | // backprop on activation | 
|  | const float *dy_fc = NULL; | 
|  | float dy_buffer[MAX_NODES] = { 0.0f };  // dY for fc | 
|  | switch (layer->activation) { | 
|  | case ACTN_NONE:  // no activation, dY_fc <-- dY | 
|  | dy_fc = layer->dy; | 
|  | break; | 
|  | case ACTN_RELU: | 
|  | nn_relu_back(dy_buffer, layer->dy, layer->output, layer->num_outputs); | 
|  | dy_fc = dy_buffer; | 
|  | break; | 
|  | case ACTN_SIGMOID: | 
|  | nn_sigmoid_back(dy_buffer, layer->dy, layer->output, layer->num_outputs); | 
|  | dy_fc = dy_buffer; | 
|  | break; | 
|  | default: assert(0 && "Unknown activation");  // Unknown activation | 
|  | } | 
|  |  | 
|  | // Handle bias | 
|  | float *db = layer->db; | 
|  | for (int j = 0; j < num_out; ++j) { | 
|  | db[j] += dy_fc[j]; | 
|  | } | 
|  | // Handle sparse | 
|  | float **dw_sparse = layer->dw_sparse; | 
|  | if (has_sparse) { | 
|  | for (int s_idx = 0; s_idx < num_sparse; s_idx++) { | 
|  | const int non_zero_idx = sparse_features[s_idx]; | 
|  | for (int j = 0; j < num_out; ++j) { | 
|  | dw_sparse[s_idx][non_zero_idx * num_out + j] += dy_fc[j]; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Handle dense | 
|  | if (has_dense) { | 
|  | float *dw_dense = layer->dw_dense; | 
|  | for (int j = 0; j < num_out; ++j) { | 
|  | for (int i = 0; i < num_dense; ++i) { | 
|  | dw_dense[i] += dy_fc[j] * dense_features[i]; | 
|  | } | 
|  | dw_dense += num_dense; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_nn_backprop_em(NN_CONFIG_EM *nn_config, const int label) { | 
|  | // loss layer | 
|  | const int num_layers = nn_config->num_hidden_layers; | 
|  | float *prev_dY = num_layers > 0 ? nn_config->layer[num_layers - 1].dy | 
|  | : nn_config->input_layer.dy; | 
|  |  | 
|  | switch (nn_config->loss) { | 
|  | case SOFTMAX_CROSS_ENTROPY_LOSS: | 
|  | nn_softmax_cross_entropy_loss_back(prev_dY, nn_config->output, | 
|  | nn_config->num_logits, label); | 
|  | break; | 
|  | default: assert(0 && "Unknown loss");  // Unknown loss | 
|  | } | 
|  |  | 
|  | // hidden fc layer | 
|  | float *prev_Y; | 
|  | for (int layer_idx = num_layers - 1; layer_idx >= 0; --layer_idx) { | 
|  | if (layer_idx == 0) { | 
|  | prev_dY = nn_config->input_layer.dy; | 
|  | prev_Y = nn_config->input_layer.output; | 
|  | } else { | 
|  | FC_LAYER_EM *last_layer = &nn_config->layer[layer_idx - 1]; | 
|  | prev_dY = last_layer->dy; | 
|  | prev_Y = last_layer->output; | 
|  | } | 
|  | nn_fc_backward(prev_Y, prev_dY, &nn_config->layer[layer_idx]); | 
|  | } | 
|  |  | 
|  | nn_fc_input_backward(nn_config->sparse_features, nn_config->dense_features, | 
|  | &nn_config->input_layer); | 
|  | } | 
|  |  | 
|  | static INLINE void adapt(float *w, const float *dw, float mu, int n) { | 
|  | for (int idx = 0; idx < n; idx++) { | 
|  | w[idx] -= mu * dw[idx]; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void update_input_layer(NN_CONFIG_EM *nn_config, float mu) { | 
|  | FC_INPUT_LAYER_EM *input_layer = &nn_config->input_layer; | 
|  | const int num_sparse = input_layer->num_sparse_inputs; | 
|  | const int num_dense = input_layer->num_dense_inputs; | 
|  | const int num_out = input_layer->num_outputs; | 
|  | const int has_sparse = num_sparse > 0; | 
|  | const int has_dense = num_dense > 0; | 
|  |  | 
|  | float *b = input_layer->bias; | 
|  | float *db = input_layer->db; | 
|  | adapt(b, db, mu, num_out); | 
|  | av1_zero_array(db, num_out); | 
|  |  | 
|  | // Handle sparse | 
|  | if (has_sparse) { | 
|  | float **dw_sparse = input_layer->dw_sparse; | 
|  | float **w_sparse = input_layer->sparse_weights; | 
|  | for (int s_idx = 0; s_idx < num_sparse; s_idx++) { | 
|  | const int non_zero_idx = nn_config->sparse_features[s_idx]; | 
|  | const int sparse_size = input_layer->sparse_input_size[s_idx]; | 
|  | if (non_zero_idx == sparse_size - 1) { | 
|  | continue; | 
|  | } | 
|  | adapt(&w_sparse[s_idx][non_zero_idx * num_out], | 
|  | &dw_sparse[s_idx][non_zero_idx * num_out], mu, num_out); | 
|  | av1_zero_array(&dw_sparse[s_idx][non_zero_idx * num_out], num_out); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (has_dense) { | 
|  | const int num_dense_weights = num_dense * num_out; | 
|  | float *dw_dense = input_layer->dw_dense; | 
|  | float *w_dense = input_layer->dense_weights; | 
|  | adapt(w_dense, dw_dense, mu, num_dense_weights); | 
|  | av1_zero_array(dw_dense, num_dense_weights); | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_nn_update_em(NN_CONFIG_EM *nn_config, float mu) { | 
|  | const int num_layers = nn_config->num_hidden_layers; | 
|  |  | 
|  | // Update the weights | 
|  | for (int i = 0; i < num_layers; ++i) { | 
|  | FC_LAYER_EM *layer = nn_config->layer + i; | 
|  | const int num_weights = layer->num_inputs * layer->num_outputs; | 
|  | adapt(layer->weights, layer->dw, mu, num_weights); | 
|  | av1_zero_array(layer->dw, num_weights); | 
|  |  | 
|  | const int num_out = layer->num_outputs; | 
|  | adapt(layer->bias, layer->db, mu, num_out); | 
|  | av1_zero_array(layer->db, num_out); | 
|  | } | 
|  |  | 
|  | // Input layer | 
|  | update_input_layer(nn_config, mu); | 
|  | } | 
|  |  | 
|  | void av1_nn_softmax_em_c(const float *input, float *output, int n) { | 
|  | // Softmax function is invariant to adding the same constant | 
|  | // to all input values, so we subtract the maximum input to avoid | 
|  | // possible overflow. | 
|  | float max_inp = input[0]; | 
|  | for (int i = 1; i < n; i++) max_inp = AOMMAX(max_inp, input[i]); | 
|  | float sum_out = 0.0f; | 
|  | for (int i = 0; i < n; i++) { | 
|  | // Clamp to range [-10.0, 0.0] to prevent FE_UNDERFLOW errors. | 
|  | const float normalized_input = AOMMAX(input[i] - max_inp, -10.0f); | 
|  | output[i] = (float)exp(normalized_input); | 
|  | sum_out += output[i]; | 
|  | } | 
|  | for (int i = 0; i < n; i++) output[i] /= sum_out; | 
|  | } | 
|  | #endif  // CONFIG_INTRA_ENTROPY |