blob: 0ae1152344dbe46c522e5c92cce9ee62196751ec [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#ifndef AOM_AV1_COMMON_RECONINTRA_H_
#define AOM_AV1_COMMON_RECONINTRA_H_
#include <stdlib.h>
#include "aom/aom_integer.h"
#include "av1/common/blockd.h"
#include "av1/common/onyxc_int.h"
#ifdef __cplusplus
extern "C" {
#endif
// Calculate the number of rows / columns available in the reference
// frame.
int av1_intra_top_available(const MACROBLOCKD *xd, int plane);
int av1_intra_left_available(const MACROBLOCKD *xd, int plane);
// Calculate the number of rows / columns unavailable in the reference
// frame. av1_intra_right_unavailable indicates the number of columns
// unavailable on the top of the block (starting from the right),
// av1_intra_bottom_unavailable indicates the number of rows unavailable
// to the left of the block (starting from bottom).
int av1_intra_right_unavailable(const MACROBLOCKD *xd, int plane,
TX_SIZE tx_size);
int av1_intra_bottom_unavailable(const MACROBLOCKD *xd, int plane,
TX_SIZE tx_size);
// Equivalent to memmove, but looks at the bit-depth and converts the
// pointer to dst16 (and the amount of data moved) if in high bitdepth mode.
void av1_bd_memmove(uint8_t *dst, const uint8_t *ref, size_t n, bool is_hbd);
// Equivalent to memset, but looks at the bit-depth and copies the value
// every uint16_t space if in high bitdepth mode.
void av1_bd_memset(uint8_t *dst, int c, size_t n, bool is_hbd);
// Extends the intra-predictor to have a border region consisting of the
// reference frame; border region is to the top-left and assumed to be
// offset negatively from the passed in pointer (which points to the start
// of the regular intra-prediction). Note that it is possible for the
// bit-depth to be 8 and is_hbd to be true, if high-bitdepth pipeline
// is forced on.
void av1_extend_intra_border(const uint8_t *ref, int ref_stride, uint8_t *dst,
int dst_stride, int top_rows_available,
int right_cols_unavailable,
int left_cols_available,
int bottom_rows_unavailable, int width, int height,
int border, aom_bit_depth_t bd, bool is_hbd);
void av1_init_intra_predictors(void);
void av1_predict_intra_block_facade(const AV1_COMMON *cm, MACROBLOCKD *xd,
int plane, int blk_col, int blk_row,
TX_SIZE tx_size);
void av1_predict_intra_block(const AV1_COMMON *cm, const MACROBLOCKD *xd,
int wpx, int hpx, TX_SIZE tx_size,
PREDICTION_MODE mode, int angle_delta,
int use_palette,
FILTER_INTRA_MODE filter_intra_mode,
#if CONFIG_ADAPT_FILTER_INTRA
ADAPT_FILTER_INTRA_MODE adapt_filter_intra_mode,
#endif
#if CONFIG_DERIVED_INTRA_MODE
int use_derived_intra_mode,
#endif // CONFIG_DERIVED_INTRA_MODE
const uint8_t *ref, int ref_stride, uint8_t *dst,
int dst_stride, int col_off, int row_off,
int plane);
// Mapping of interintra to intra mode for use in the intra component
static const PREDICTION_MODE interintra_to_intra_mode[INTERINTRA_MODES] = {
DC_PRED, V_PRED, H_PRED, SMOOTH_PRED,
#if CONFIG_ILLUM_MCOMP
DC_PRED
#endif // CONFIG_ILLUM_MCOMP
};
// Mapping of intra mode to the interintra mode
static const INTERINTRA_MODE intra_to_interintra_mode[INTRA_MODES] = {
II_DC_PRED, II_V_PRED, II_H_PRED, II_V_PRED, II_SMOOTH_PRED, II_V_PRED,
II_H_PRED, II_H_PRED, II_V_PRED, II_SMOOTH_PRED, II_SMOOTH_PRED
};
#define FILTER_INTRA_SCALE_BITS 4
static INLINE int av1_use_angle_delta(BLOCK_SIZE bsize) {
return bsize >= BLOCK_8X8;
}
static INLINE int av1_allow_intrabc(const AV1_COMMON *const cm) {
return frame_is_intra_only(cm) && cm->allow_screen_content_tools &&
cm->allow_intrabc;
}
static INLINE int av1_filter_intra_allowed_bsize(const AV1_COMMON *const cm,
BLOCK_SIZE bs) {
if (!cm->seq_params.enable_filter_intra || bs == BLOCK_INVALID) return 0;
return block_size_wide[bs] <= 32 && block_size_high[bs] <= 32;
}
static INLINE int av1_filter_intra_allowed(const AV1_COMMON *const cm,
const MB_MODE_INFO *mbmi) {
return mbmi->mode == DC_PRED &&
mbmi->palette_mode_info.palette_size[0] == 0 &&
av1_filter_intra_allowed_bsize(cm, mbmi->sb_type);
}
#if CONFIG_ADAPT_FILTER_INTRA
static INLINE int av1_adapt_filter_intra_allowed_bsize(
const AV1_COMMON *const cm, BLOCK_SIZE bs) {
if (!cm->seq_params.enable_adapt_filter_intra || bs == BLOCK_INVALID)
return 0;
return block_size_wide[bs] <= 128 && block_size_high[bs] <= 128;
}
static INLINE int av1_adapt_filter_intra_allowed(const AV1_COMMON *const cm,
const MB_MODE_INFO *mbmi) {
return mbmi->mode == DC_PRED &&
mbmi->palette_mode_info.palette_size[0] == 0 &&
mbmi->filter_intra_mode_info.use_filter_intra == 0 &&
av1_adapt_filter_intra_allowed_bsize(cm, mbmi->sb_type);
}
#endif // CONFIG_ADAPT_FILTER_INTRA
extern const int8_t av1_filter_intra_taps[FILTER_INTRA_MODES][8][8];
static const int16_t dr_intra_derivative[90] = {
// More evenly spread out angles and limited to 10-bit
// Values that are 0 will never be used
// Approx angle
0, 0, 0, //
1023, 0, 0, // 3, ...
547, 0, 0, // 6, ...
372, 0, 0, 0, 0, // 9, ...
273, 0, 0, // 14, ...
215, 0, 0, // 17, ...
178, 0, 0, // 20, ...
151, 0, 0, // 23, ... (113 & 203 are base angles)
132, 0, 0, // 26, ...
116, 0, 0, // 29, ...
102, 0, 0, 0, // 32, ...
90, 0, 0, // 36, ...
80, 0, 0, // 39, ...
71, 0, 0, // 42, ...
64, 0, 0, // 45, ... (45 & 135 are base angles)
57, 0, 0, // 48, ...
51, 0, 0, // 51, ...
45, 0, 0, 0, // 54, ...
40, 0, 0, // 58, ...
35, 0, 0, // 61, ...
31, 0, 0, // 64, ...
27, 0, 0, // 67, ... (67 & 157 are base angles)
23, 0, 0, // 70, ...
19, 0, 0, // 73, ...
15, 0, 0, 0, 0, // 76, ...
11, 0, 0, // 81, ...
7, 0, 0, // 84, ...
3, 0, 0, // 87, ...
};
// Get the shift (up-scaled by 256) in X w.r.t a unit change in Y.
// If angle > 0 && angle < 90, dx = -((int)(256 / t));
// If angle > 90 && angle < 180, dx = (int)(256 / t);
// If angle > 180 && angle < 270, dx = 1;
static INLINE int av1_get_dx(int angle) {
#if CONFIG_DERIVED_INTRA_MODE
if ((angle > 0 && angle < 90) || (angle > 90 && angle < 180)) {
if (angle > 90) angle = 180 - angle;
int dx = dr_intra_derivative[angle];
if (!dx) dx = (int)round(64 / tan(angle * PI / 180));
return dx;
} else {
return 1;
}
#endif // CONFIG_DERIVED_INTRA_MODE
if (angle > 0 && angle < 90) {
return dr_intra_derivative[angle];
} else if (angle > 90 && angle < 180) {
return dr_intra_derivative[180 - angle];
} else {
// In this case, we are not really going to use dx. We may return any value.
return 1;
}
}
// Get the shift (up-scaled by 256) in Y w.r.t a unit change in X.
// If angle > 0 && angle < 90, dy = 1;
// If angle > 90 && angle < 180, dy = (int)(256 * t);
// If angle > 180 && angle < 270, dy = -((int)(256 * t));
static INLINE int av1_get_dy(int angle) {
#if CONFIG_DERIVED_INTRA_MODE
if ((angle > 90 && angle < 180) || (angle > 180 && angle < 270)) {
if (angle > 90 && angle < 180) {
angle = angle - 90;
} else {
angle = 270 - angle;
}
int dy = dr_intra_derivative[angle];
if (!dy) dy = (int)round(64 / tan(angle * PI / 180));
return dy;
} else {
return 1;
}
#endif // CONFIG_DERIVED_INTRA_MODE
if (angle > 90 && angle < 180) {
return dr_intra_derivative[angle - 90];
} else if (angle > 180 && angle < 270) {
return dr_intra_derivative[270 - angle];
} else {
// In this case, we are not really going to use dy. We may return any value.
return 1;
}
}
static INLINE int av1_use_intra_edge_upsample(int bs0, int bs1, int delta,
int type) {
const int d = abs(delta);
const int blk_wh = bs0 + bs1;
if (d == 0 || d >= 40) return 0;
return type ? (blk_wh <= 8) : (blk_wh <= 16);
}
#ifdef __cplusplus
} // extern "C"
#endif
#endif // AOM_AV1_COMMON_RECONINTRA_H_