blob: a58fafb21bc7046105c0a319267ff8a2cfebf9cb [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include "config/aom_dsp_rtcd.h"
#include "config/av1_rtcd.h"
#include "aom_dsp/txfm_common.h"
#include "av1/common/enums.h"
#include "av1/common/av1_txfm.h"
#include "av1/encoder/av1_fwd_txfm1d.h"
#include "av1/encoder/av1_fwd_txfm1d_cfg.h"
#if CONFIG_SUPERRES_TX64
#define USE_SIMPLE_DOWNSCALE 0
#if USE_SIMPLE_DOWNSCALE == 0
#include "av1/common/resize.h"
#endif // USE_SIMPLE_DOWNSCALE == 0
#endif // CONFIG_SUPERRES_TX64
static INLINE TxfmFunc fwd_txfm_type_to_func(int mode, TXFM_TYPE txfm_type) {
(void)mode;
switch (txfm_type) {
case TXFM_TYPE_DCT4: return av1_fdct4_new;
case TXFM_TYPE_DCT8: return av1_fdct8_new;
case TXFM_TYPE_DCT16: return av1_fdct16_new;
case TXFM_TYPE_DCT32: return av1_fdct32_new;
case TXFM_TYPE_DCT64: return av1_fdct64_new;
#if CONFIG_LGT
case TXFM_TYPE_ADST4:
return (mode >= INTER_MODE_START && mode < INTER_MODE_END)
? av1_fadst4_lgt_inter
: av1_fadst4_lgt_intra;
case TXFM_TYPE_ADST8:
return (mode >= INTER_MODE_START && mode < INTER_MODE_END)
? av1_fadst8_lgt_inter
: av1_fadst8_lgt_intra;
case TXFM_TYPE_ADST16:
return (mode >= INTER_MODE_START && mode < INTER_MODE_END)
? av1_fadst16_lgt_inter
: av1_fadst16_lgt_intra;
#else
case TXFM_TYPE_ADST4: return av1_fadst4_new;
case TXFM_TYPE_ADST8: return av1_fadst8_new;
case TXFM_TYPE_ADST16: return av1_fadst16_new;
#endif // CONFIG_LGT
#if CONFIG_MODE_DEP_INTRA_TX || CONFIG_MODE_DEP_INTER_TX
case TXFM_TYPE_MDTX4: return av1_fmdt4;
case TXFM_TYPE_MDTX8: return av1_fmdt8;
case TXFM_TYPE_MDTX16: return av1_fmdt16;
#endif
#if CONFIG_DST_32X32
case TXFM_TYPE_ADST32: return av1_fadst32_new;
#endif
case TXFM_TYPE_IDENTITY4: return av1_fidentity4_c;
case TXFM_TYPE_IDENTITY8: return av1_fidentity8_c;
case TXFM_TYPE_IDENTITY16: return av1_fidentity16_c;
case TXFM_TYPE_IDENTITY32: return av1_fidentity32_c;
default: assert(0); return NULL;
}
}
void av1_gen_fwd_stage_range(int8_t *stage_range_col, int8_t *stage_range_row,
const TXFM_2D_FLIP_CFG *cfg, int bd) {
// Take the shift from the larger dimension in the rectangular case.
const int8_t *shift = cfg->shift;
// i < MAX_TXFM_STAGE_NUM will mute above array bounds warning
for (int i = 0; i < cfg->stage_num_col && i < MAX_TXFM_STAGE_NUM; ++i) {
stage_range_col[i] = cfg->stage_range_col[i] + shift[0] + bd + 1;
}
// i < MAX_TXFM_STAGE_NUM will mute above array bounds warning
for (int i = 0; i < cfg->stage_num_row && i < MAX_TXFM_STAGE_NUM; ++i) {
stage_range_row[i] = cfg->stage_range_row[i] + shift[0] + shift[1] + bd + 1;
}
}
#if CONFIG_MODE_DEP_INTRA_TX && CONFIG_MODE_DEP_NONSEP_INTRA_TX
static INLINE void fwd_nonsep_txfm2d(const int16_t *input, int32_t *output,
const int stride, int32_t *buf,
const int32_t *nstx_mtx,
const TX_SIZE tx_size) {
int ud_flip = 0, lr_flip = 0;
const int tx_stride = tx_size_wide[tx_size] * tx_size_high[tx_size];
// column/row indices in pixel (p) or transform (t) domains
int cp, rp, ct, rt, kp, kt, l;
int txw = tx_size_wide[tx_size], txh = tx_size_high[tx_size];
for (rt = 0; rt < txh; ++rt)
for (ct = 0; ct < txw; ++ct) buf[rt * txw + ct] = 0;
// 2D transform
for (rt = 0; rt < txh; ++rt) {
for (ct = 0; ct < txw; ++ct) {
l = rt * txw + ct;
for (rp = 0; rp < txh; ++rp) {
for (cp = 0; cp < txw; ++cp) {
kp = rp * stride + cp;
kt = idx_flip(txw, txh, rp, cp, ud_flip, lr_flip);
// Values of buf[l] are transform coefficients * 2^(8-1)
// Bit depth of buf[l] = 8 + 1 (nstx) + 9 (input) + 6 (64 coeffs) - 1
// = 23
// (8 for magnitude, and 1 for sign of tx. matrix's elements)
// Max possible bit depth = 9 + 9 + 6 - 1 = 23
buf[l] += round_shift(nstx_mtx[l * tx_stride + kt] * input[kp], 1);
}
}
}
}
for (ct = 0; ct < txw; ++ct) {
for (rt = 0; rt < txh; ++rt) {
l = rt * txw + ct;
// Values of output[l] are transform coefficients * 2^3
// Max possible bit depth = 8 + 15 - (8 - 4) = 19
output[l] = round_shift(buf[l], 4);
}
}
}
#if CONFIG_MODE_DEP_NONSEP_SEC_INTRA_TX
static INLINE void fwd_nonsep_secondary_txfm2d(int32_t *input, int32_t *buf,
const int32_t *nsst_mtx,
const TX_SIZE tx_size) {
const int txw = tx_size_wide[tx_size], txh = tx_size_high[tx_size];
const int txwh = txw / 2, txhh = txh / 2;
const int tx_stride = txwh * txhh;
int cp, rp, ct, rt, k, l;
#if MDTX_DEBUG && 0
fprintf(stderr, "FWD-NSST: before NSST\n");
for (rt = 0; rt < txh; ++rt) {
for (ct = 0; ct < txw; ++ct) {
fprintf(stderr, "%3d ", input[rt * txw + ct]);
}
fprintf(stderr, "\n");
}
#endif
for (rt = 0; rt < txh; ++rt)
for (ct = 0; ct < txw; ++ct) buf[rt * txw + ct] = 0;
// Apply a 2D non-separable transform on the 1/4 block (only the 1/4
// top-left part of txfm_buf will be used). Note: stride in input[] and
// txfm_buf[] should be txw.
for (rt = 0; rt < txhh; ++rt) {
for (ct = 0; ct < txwh; ++ct) {
l = rt * txwh + ct;
for (rp = 0; rp < txhh; ++rp) {
for (cp = 0; cp < txwh; ++cp) {
k = rp * txwh + cp;
// Values of buf[l] are transform coefficients * 2^(8-1)
// Bit depth of buf[l] = 8 + 1 (nsst) + 9 (input) + 6 (64 coeffs) - 1
// = 23
// (8 for magnitude, and 1 for sign of tx. matrix's elements)
// Max possible bit depth = 9 + 9 + 6 - 1 = 23
buf[rt * txw + ct] += round_shift(
nsst_mtx[l * tx_stride + k] * input[rp * txw + cp], 1);
#if 0
fprintf(stderr, "(%d,%d,%d)[%d,%d,%d]", l, tx_stride, k,
nsst_mtx[l * tx_stride + k], input[rp * txw + cp],
buf[rt * txw + ct]);
#endif
}
#if 0
fprintf(stderr, "\n");
#endif
}
}
}
for (ct = 0; ct < txwh; ++ct)
for (rt = 0; rt < txhh; ++rt)
input[rt * txw + ct] = round_shift(buf[rt * txw + ct], 7);
#if MDTX_DEBUG
fprintf(stderr, "FWD-NSST: after NSST\n");
for (rt = 0; rt < txh; ++rt) {
for (ct = 0; ct < txw; ++ct) {
fprintf(stderr, "%3d ", input[rt * txw + ct]);
}
fprintf(stderr, "\n");
}
#endif
}
#endif // CONFIG_MODE_DEP_NONSEP_SEC_INTRA_TX
#endif // CONFIG_MODE_DEP_INTRA_TX &&
// CONFIG_MODE_DEP_NONSEP_INTRA_TX
static INLINE void fwd_txfm2d_c(const int16_t *input, int32_t *output,
const int stride, const TXFM_2D_FLIP_CFG *cfg,
int32_t *buf, int bd) {
#if CONFIG_MODE_DEP_INTRA_TX && CONFIG_MODE_DEP_NONSEP_INTRA_TX
if (cfg->nstx_mtx_ptr
#if CONFIG_MODE_DEP_NONSEP_SEC_INTRA_TX
&& cfg->tx_size == TX_4X4
#endif // CONFIG_MODE_DEP_NONSEP_SEC_INTRA_TX
) {
// 4x4 non-separable transform
fwd_nonsep_txfm2d(input, output, stride, buf, cfg->nstx_mtx_ptr,
cfg->tx_size);
return;
}
#endif // CONFIG_MODE_DEP_INTRA_TX &&
// CONFIG_MODE_DEP_NONSEP_INTRA_TX
int c, r;
// Note when assigning txfm_size_col, we use the txfm_size from the
// row configuration and vice versa. This is intentionally done to
// accurately perform rectangular transforms. When the transform is
// rectangular, the number of columns will be the same as the
// txfm_size stored in the row cfg struct. It will make no difference
// for square transforms.
const int txfm_size_col = tx_size_wide[cfg->tx_size];
const int txfm_size_row = tx_size_high[cfg->tx_size];
// Take the shift from the larger dimension in the rectangular case.
const int8_t *shift = cfg->shift;
const int rect_type = get_rect_tx_log_ratio(txfm_size_col, txfm_size_row);
int8_t stage_range_col[MAX_TXFM_STAGE_NUM + 1];
int8_t stage_range_row[MAX_TXFM_STAGE_NUM + 1];
assert(cfg->stage_num_col <= MAX_TXFM_STAGE_NUM);
assert(cfg->stage_num_row <= MAX_TXFM_STAGE_NUM);
av1_gen_fwd_stage_range(stage_range_col, stage_range_row, cfg, bd);
const int8_t cos_bit_col = cfg->cos_bit_col;
const int8_t cos_bit_row = cfg->cos_bit_row;
const TxfmFunc txfm_func_col =
fwd_txfm_type_to_func(cfg->mode, cfg->txfm_type_col);
const TxfmFunc txfm_func_row =
fwd_txfm_type_to_func(cfg->mode, cfg->txfm_type_row);
stage_range_col[MAX_TXFM_STAGE_NUM] = (int)cfg->mode;
stage_range_row[MAX_TXFM_STAGE_NUM] = (int)cfg->mode;
// use output buffer as temp buffer
int32_t *temp_in = output;
int32_t *temp_out = output + txfm_size_row;
#if CONFIG_MODE_DEP_INTRA_TX && CONFIG_MODE_DEP_NONSEP_INTRA_TX && MDTX_DEBUG
// debug
if (txfm_size_col <= 8 && txfm_size_row <= 8 && cfg->nstx_mtx_ptr) {
fprintf(stderr, "FWD: input block, %dx%d, mode %d, ctx %d, rtx %d\n",
txfm_size_col, txfm_size_row, (int)cfg->mode, cfg->txfm_type_col,
cfg->txfm_type_row);
for (r = 0; r < txfm_size_row; ++r) {
for (c = 0; c < txfm_size_col; ++c) {
fprintf(stderr, "%3d ", input[r * stride + c]);
}
fprintf(stderr, "\n");
}
}
#endif // CONFIG_MODE_DEP_INTRA_TX &&
// CONFIG_MODE_DEP_NONSEP_INTRA_TX && MDTX_DEBUG
// Columns
for (c = 0; c < txfm_size_col; ++c) {
if (cfg->ud_flip == 0) {
for (r = 0; r < txfm_size_row; ++r) temp_in[r] = input[r * stride + c];
} else {
for (r = 0; r < txfm_size_row; ++r)
// flip upside down
temp_in[r] = input[(txfm_size_row - r - 1) * stride + c];
}
av1_round_shift_array(temp_in, txfm_size_row, -shift[0]);
txfm_func_col(temp_in, temp_out, cos_bit_col, stage_range_col);
av1_round_shift_array(temp_out, txfm_size_row, -shift[1]);
if (cfg->lr_flip == 0) {
for (r = 0; r < txfm_size_row; ++r)
buf[r * txfm_size_col + c] = temp_out[r];
} else {
for (r = 0; r < txfm_size_row; ++r)
// flip from left to right
buf[r * txfm_size_col + (txfm_size_col - c - 1)] = temp_out[r];
}
}
// Rows
for (r = 0; r < txfm_size_row; ++r) {
txfm_func_row(buf + r * txfm_size_col, output + r * txfm_size_col,
cos_bit_row, stage_range_row);
av1_round_shift_array(output + r * txfm_size_col, txfm_size_col, -shift[2]);
if ((abs(rect_type) % 2) == 1) {
// Multiply everything by Sqrt2 if the transform is rectangular and the
// size difference is a factor of 2 or 8.
for (c = 0; c < txfm_size_col; ++c) {
output[r * txfm_size_col + c] = round_shift(
(int64_t)output[r * txfm_size_col + c] * NewSqrt2, NewSqrt2Bits);
}
}
}
#if CONFIG_MODE_DEP_INTRA_TX && CONFIG_MODE_DEP_NONSEP_INTRA_TX && \
CONFIG_MODE_DEP_NONSEP_SEC_INTRA_TX
#if MDTX_DEBUG
if (txfm_size_col <= 8 && txfm_size_row <= 8 && cfg->nstx_mtx_ptr) {
fprintf(stderr, "FWD: output block\n");
for (r = 0; r < txfm_size_row; ++r) {
for (c = 0; c < txfm_size_col; ++c) {
fprintf(stderr, "%3d ", output[r * txfm_size_col + c]);
}
fprintf(stderr, "\n");
}
}
#endif // MDTX_DEBUG
// Apply non-separable secondary transform after separable transforms
if (cfg->nstx_mtx_ptr)
fwd_nonsep_secondary_txfm2d(output, buf, cfg->nstx_mtx_ptr, cfg->tx_size);
#endif // CONFIG_MODE_DEP_INTRA_TX &&
// CONFIG_MODE_DEP_NONSEP_INTRA_TX &&
// CONFIG_MODE_DEP_NONSEP_SEC_INTRA_TX
}
void av1_fwd_txfm2d_4x8_c(const int16_t *input, int32_t *output, int stride,
TX_TYPE tx_type, PREDICTION_MODE mode, int bd) {
DECLARE_ALIGNED(32, int32_t, txfm_buf[4 * 8]);
TXFM_2D_FLIP_CFG cfg;
av1_get_fwd_txfm_cfg(tx_type, TX_4X8, mode, &cfg);
fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd);
}
void av1_fwd_txfm2d_8x4_c(const int16_t *input, int32_t *output, int stride,
TX_TYPE tx_type, PREDICTION_MODE mode, int bd) {
int32_t txfm_buf[8 * 4];
TXFM_2D_FLIP_CFG cfg;
av1_get_fwd_txfm_cfg(tx_type, TX_8X4, mode, &cfg);
fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd);
}
void av1_fwd_txfm2d_8x16_c(const int16_t *input, int32_t *output, int stride,
TX_TYPE tx_type, PREDICTION_MODE mode, int bd) {
DECLARE_ALIGNED(32, int32_t, txfm_buf[8 * 16]);
TXFM_2D_FLIP_CFG cfg;
av1_get_fwd_txfm_cfg(tx_type, TX_8X16, mode, &cfg);
fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd);
}
void av1_fwd_txfm2d_16x8_c(const int16_t *input, int32_t *output, int stride,
TX_TYPE tx_type, PREDICTION_MODE mode, int bd) {
int32_t txfm_buf[16 * 8];
TXFM_2D_FLIP_CFG cfg;
av1_get_fwd_txfm_cfg(tx_type, TX_16X8, mode, &cfg);
fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd);
}
void av1_fwd_txfm2d_16x32_c(const int16_t *input, int32_t *output, int stride,
TX_TYPE tx_type, PREDICTION_MODE mode, int bd) {
DECLARE_ALIGNED(32, int32_t, txfm_buf[16 * 32]);
TXFM_2D_FLIP_CFG cfg;
av1_get_fwd_txfm_cfg(tx_type, TX_16X32, mode, &cfg);
fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd);
}
void av1_fwd_txfm2d_32x16_c(const int16_t *input, int32_t *output, int stride,
TX_TYPE tx_type, PREDICTION_MODE mode, int bd) {
int32_t txfm_buf[32 * 16];
TXFM_2D_FLIP_CFG cfg;
av1_get_fwd_txfm_cfg(tx_type, TX_32X16, mode, &cfg);
fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd);
}
void av1_fwd_txfm2d_4x16_c(const int16_t *input, int32_t *output, int stride,
TX_TYPE tx_type, PREDICTION_MODE mode, int bd) {
DECLARE_ALIGNED(32, int32_t, txfm_buf[4 * 16]);
TXFM_2D_FLIP_CFG cfg;
av1_get_fwd_txfm_cfg(tx_type, TX_4X16, mode, &cfg);
fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd);
}
void av1_fwd_txfm2d_16x4_c(const int16_t *input, int32_t *output, int stride,
TX_TYPE tx_type, PREDICTION_MODE mode, int bd) {
int32_t txfm_buf[16 * 4];
TXFM_2D_FLIP_CFG cfg;
av1_get_fwd_txfm_cfg(tx_type, TX_16X4, mode, &cfg);
fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd);
}
void av1_fwd_txfm2d_8x32_c(const int16_t *input, int32_t *output, int stride,
TX_TYPE tx_type, PREDICTION_MODE mode, int bd) {
DECLARE_ALIGNED(32, int32_t, txfm_buf[32 * 8]);
TXFM_2D_FLIP_CFG cfg;
av1_get_fwd_txfm_cfg(tx_type, TX_8X32, mode, &cfg);
fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd);
}
void av1_fwd_txfm2d_32x8_c(const int16_t *input, int32_t *output, int stride,
TX_TYPE tx_type, PREDICTION_MODE mode, int bd) {
int32_t txfm_buf[32 * 8];
TXFM_2D_FLIP_CFG cfg;
av1_get_fwd_txfm_cfg(tx_type, TX_32X8, mode, &cfg);
fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd);
}
void av1_fwd_txfm2d_4x4_c(const int16_t *input, int32_t *output, int stride,
TX_TYPE tx_type, PREDICTION_MODE mode, int bd) {
int32_t txfm_buf[4 * 4];
TXFM_2D_FLIP_CFG cfg;
av1_get_fwd_txfm_cfg(tx_type, TX_4X4, mode, &cfg);
fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd);
}
void av1_fwd_txfm2d_8x8_c(const int16_t *input, int32_t *output, int stride,
TX_TYPE tx_type, PREDICTION_MODE mode, int bd) {
int32_t txfm_buf[8 * 8];
TXFM_2D_FLIP_CFG cfg;
av1_get_fwd_txfm_cfg(tx_type, TX_8X8, mode, &cfg);
fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd);
}
void av1_fwd_txfm2d_16x16_c(const int16_t *input, int32_t *output, int stride,
TX_TYPE tx_type, PREDICTION_MODE mode, int bd) {
int32_t txfm_buf[16 * 16];
TXFM_2D_FLIP_CFG cfg;
av1_get_fwd_txfm_cfg(tx_type, TX_16X16, mode, &cfg);
fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd);
}
void av1_fwd_txfm2d_32x32_c(const int16_t *input, int32_t *output, int stride,
TX_TYPE tx_type, PREDICTION_MODE mode, int bd) {
int32_t txfm_buf[32 * 32];
TXFM_2D_FLIP_CFG cfg;
av1_get_fwd_txfm_cfg(tx_type, TX_32X32, mode, &cfg);
fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd);
}
#if CONFIG_SUPERRES_TX64
void av1_fwd_txfm2d_64x64_c(const int16_t *input, int32_t *output, int stride,
TX_TYPE tx_type, PREDICTION_MODE mode, int bd) {
// Downsample to 32x32
DECLARE_ALIGNED(16, int16_t, input_32[32 * 32]);
#if USE_SIMPLE_DOWNSCALE
for (int r = 0; r < 32; ++r) {
for (int c = 0; c < 32; ++c) {
const int16_t *const in = &input[2 * r * stride + 2 * c];
input_32[r * 32 + c] = ROUND_POWER_OF_TWO_SIGNED(
in[0] + in[1] + in[stride] + in[stride + 1], 2);
}
}
#else
av1_signed_down2(input, 64, 64, stride, input_32, 32, 1, 1, bd);
#endif // USE_SIMPLE_DOWNSCALE
// Initialize output to all-zero.
memset(output, 0, 64 * 64 * sizeof(*output));
// Perform 32x32 transform and output to the top-left quadrant.
av1_fwd_txfm2d_32x32(input_32, output, 32, tx_type, mode, bd);
}
void av1_fwd_txfm2d_32x64_c(const int16_t *input, int32_t *output, int stride,
TX_TYPE tx_type, PREDICTION_MODE mode, int bd) {
// Downsample to 32x32
DECLARE_ALIGNED(16, int16_t, input_32[32 * 32]);
#if USE_SIMPLE_DOWNSCALE
for (int r = 0; r < 32; ++r) {
for (int c = 0; c < 32; ++c) {
const int16_t *const in = &input[2 * r * stride + c];
const int32_t avg = ROUND_POWER_OF_TWO_SIGNED(in[0] + in[stride], 1);
input_32[r * 32 + c] = avg;
}
}
#else
av1_signed_down2(input, 64, 32, stride, input_32, 32, 1, 0, bd);
#endif // USE_SIMPLE_DOWNSCALE
// Initialize output to all-zero.
memset(output, 0, 32 * 64 * sizeof(*output));
// Perform 32x32 transform and output to the top-left quadrant.
av1_fwd_txfm2d_32x32(input_32, output, 32, tx_type, mode, bd);
for (int r = 0; r < 32; ++r) {
for (int c = 0; c < 32; ++c) {
output[r * 32 + c] =
round_shift((int64_t)output[r * 32 + c] * NewInvSqrt2, NewSqrt2Bits);
}
}
}
void av1_fwd_txfm2d_64x32_c(const int16_t *input, int32_t *output, int stride,
TX_TYPE tx_type, PREDICTION_MODE mode, int bd) {
// Downsample to 32x32
DECLARE_ALIGNED(16, int16_t, input_32[32 * 32]);
#if USE_SIMPLE_DOWNSCALE
for (int r = 0; r < 32; ++r) {
for (int c = 0; c < 32; ++c) {
const int16_t *const in = &input[r * stride + 2 * c];
const int32_t avg = ROUND_POWER_OF_TWO_SIGNED(in[0] + in[1], 1);
input_32[r * 32 + c] = avg;
}
}
#else
av1_signed_down2(input, 32, 64, stride, input_32, 32, 0, 1, bd);
#endif // USE_SIMPLE_DOWNSCALE
// Initialize output to all-zero.
memset(output, 0, 64 * 32 * sizeof(*output));
// Perform 32x32 transform and output to the top-left quadrant.
av1_fwd_txfm2d_32x32(input_32, output, 32, tx_type, mode, bd);
for (int r = 0; r < 32; ++r) {
for (int c = 0; c < 32; ++c) {
output[r * 32 + c] =
round_shift((int64_t)output[r * 32 + c] * NewInvSqrt2, NewSqrt2Bits);
}
}
}
void av1_fwd_txfm2d_16x64_c(const int16_t *input, int32_t *output, int stride,
TX_TYPE tx_type, PREDICTION_MODE mode, int bd) {
// Downsample to 16x32
DECLARE_ALIGNED(16, int16_t, input_32[16 * 32]);
#if USE_SIMPLE_DOWNSCALE
for (int r = 0; r < 32; ++r) {
for (int c = 0; c < 16; ++c) {
const int16_t *const in = &input[2 * r * stride + c];
const int32_t avg = ROUND_POWER_OF_TWO_SIGNED(in[0] + in[stride], 1);
input_32[r * 16 + c] = avg;
}
}
#else
av1_signed_down2(input, 64, 16, stride, input_32, 16, 1, 0, bd);
#endif // USE_SIMPLE_DOWNSCALE
// Initialize output to all-zero.
memset(output, 0, 16 * 64 * sizeof(*output));
// Perform 16x32 transform and output to the top-left quadrant.
av1_fwd_txfm2d_16x32(input_32, output, 16, tx_type, mode, bd);
for (int r = 0; r < 32; ++r) {
for (int c = 0; c < 16; ++c) {
output[r * 16 + c] =
round_shift((int64_t)output[r * 16 + c] * NewSqrt2, NewSqrt2Bits);
}
}
}
void av1_fwd_txfm2d_64x16_c(const int16_t *input, int32_t *output, int stride,
TX_TYPE tx_type, PREDICTION_MODE mode, int bd) {
// Downsample to 32x16
DECLARE_ALIGNED(16, int16_t, input_32[32 * 16]);
#if USE_SIMPLE_DOWNSCALE
for (int r = 0; r < 16; ++r) {
for (int c = 0; c < 32; ++c) {
const int16_t *const in = &input[r * stride + 2 * c];
const int32_t avg = ROUND_POWER_OF_TWO_SIGNED(in[0] + in[1], 1);
input_32[r * 32 + c] = avg;
}
}
#else
av1_signed_down2(input, 16, 64, stride, input_32, 32, 0, 1, bd);
#endif // USE_SIMPLE_DOWNSCALE
// Initialize output to all-zero.
memset(output, 0, 64 * 16 * sizeof(*output));
// Perform 32x16 transform and output to the top-left quadrant.
av1_fwd_txfm2d_32x16(input_32, output, 32, tx_type, mode, bd);
for (int r = 0; r < 16; ++r) {
for (int c = 0; c < 32; ++c) {
output[r * 32 + c] =
round_shift((int64_t)output[r * 32 + c] * NewSqrt2, NewSqrt2Bits);
}
}
}
#else
void av1_fwd_txfm2d_64x64_c(const int16_t *input, int32_t *output, int stride,
TX_TYPE tx_type, PREDICTION_MODE mode, int bd) {
int32_t txfm_buf[64 * 64];
TXFM_2D_FLIP_CFG cfg;
av1_get_fwd_txfm_cfg(tx_type, TX_64X64, mode, &cfg);
fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd);
// Zero out top-right 32x32 area.
for (int row = 0; row < 32; ++row) {
memset(output + row * 64 + 32, 0, 32 * sizeof(*output));
}
// Zero out the bottom 64x32 area.
memset(output + 32 * 64, 0, 32 * 64 * sizeof(*output));
// Re-pack non-zero coeffs in the first 32x32 indices.
for (int row = 1; row < 32; ++row) {
memcpy(output + row * 32, output + row * 64, 32 * sizeof(*output));
}
}
void av1_fwd_txfm2d_32x64_c(const int16_t *input, int32_t *output, int stride,
TX_TYPE tx_type, PREDICTION_MODE mode, int bd) {
DECLARE_ALIGNED(32, int32_t, txfm_buf[32 * 64]);
TXFM_2D_FLIP_CFG cfg;
av1_get_fwd_txfm_cfg(tx_type, TX_32X64, mode, &cfg);
fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd);
// Zero out the bottom 32x32 area.
memset(output + 32 * 32, 0, 32 * 32 * sizeof(*output));
// Note: no repacking needed here.
}
void av1_fwd_txfm2d_64x32_c(const int16_t *input, int32_t *output, int stride,
TX_TYPE tx_type, PREDICTION_MODE mode, int bd) {
int32_t txfm_buf[64 * 32];
TXFM_2D_FLIP_CFG cfg;
av1_get_fwd_txfm_cfg(tx_type, TX_64X32, mode, &cfg);
fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd);
// Zero out right 32x32 area.
for (int row = 0; row < 32; ++row) {
memset(output + row * 64 + 32, 0, 32 * sizeof(*output));
}
// Re-pack non-zero coeffs in the first 32x32 indices.
for (int row = 1; row < 32; ++row) {
memcpy(output + row * 32, output + row * 64, 32 * sizeof(*output));
}
}
void av1_fwd_txfm2d_16x64_c(const int16_t *input, int32_t *output, int stride,
TX_TYPE tx_type, PREDICTION_MODE mode, int bd) {
DECLARE_ALIGNED(32, int32_t, txfm_buf[64 * 16]);
TXFM_2D_FLIP_CFG cfg;
av1_get_fwd_txfm_cfg(tx_type, TX_16X64, mode, &cfg);
fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd);
// Zero out the bottom 16x32 area.
memset(output + 16 * 32, 0, 16 * 32 * sizeof(*output));
// Note: no repacking needed here.
}
void av1_fwd_txfm2d_64x16_c(const int16_t *input, int32_t *output, int stride,
TX_TYPE tx_type, PREDICTION_MODE mode, int bd) {
int32_t txfm_buf[64 * 16];
TXFM_2D_FLIP_CFG cfg;
av1_get_fwd_txfm_cfg(tx_type, TX_64X16, mode, &cfg);
fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd);
// Zero out right 32x16 area.
for (int row = 0; row < 16; ++row) {
memset(output + row * 64 + 32, 0, 32 * sizeof(*output));
}
// Re-pack non-zero coeffs in the first 32x16 indices.
for (int row = 1; row < 16; ++row) {
memcpy(output + row * 32, output + row * 64, 32 * sizeof(*output));
}
}
#endif // CONFIG_SUPERRES_TX64
#if CONFIG_FLEX_PARTITION
void av1_fwd_txfm2d_4x32_c(const int16_t *input, int32_t *output, int stride,
TX_TYPE tx_type, PREDICTION_MODE mode, int bd) {
DECLARE_ALIGNED(32, int32_t, txfm_buf[32 * 4]);
TXFM_2D_FLIP_CFG cfg;
av1_get_fwd_txfm_cfg(tx_type, TX_4X32, mode, &cfg);
fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd);
}
void av1_fwd_txfm2d_32x4_c(const int16_t *input, int32_t *output, int stride,
TX_TYPE tx_type, PREDICTION_MODE mode, int bd) {
int32_t txfm_buf[32 * 4];
TXFM_2D_FLIP_CFG cfg;
av1_get_fwd_txfm_cfg(tx_type, TX_32X4, mode, &cfg);
fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd);
}
void av1_fwd_txfm2d_8x64_c(const int16_t *input, int32_t *output, int stride,
TX_TYPE tx_type, PREDICTION_MODE mode, int bd) {
DECLARE_ALIGNED(32, int32_t, txfm_buf[64 * 8]);
TXFM_2D_FLIP_CFG cfg;
av1_get_fwd_txfm_cfg(tx_type, TX_8X64, mode, &cfg);
fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd);
// Zero out the bottom 8x32 area.
memset(output + 8 * 32, 0, 8 * 32 * sizeof(*output));
// Note: no repacking needed here.
}
void av1_fwd_txfm2d_64x8_c(const int16_t *input, int32_t *output, int stride,
TX_TYPE tx_type, PREDICTION_MODE mode, int bd) {
int32_t txfm_buf[64 * 8];
TXFM_2D_FLIP_CFG cfg;
av1_get_fwd_txfm_cfg(tx_type, TX_64X8, mode, &cfg);
fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd);
// Zero out right 32x8 area.
for (int row = 0; row < 8; ++row) {
memset(output + row * 64 + 32, 0, 32 * sizeof(*output));
}
// Re-pack non-zero coeffs in the first 32x16 indices.
for (int row = 1; row < 8; ++row) {
memcpy(output + row * 32, output + row * 64, 32 * sizeof(*output));
}
}
void av1_fwd_txfm2d_4x64_c(const int16_t *input, int32_t *output, int stride,
TX_TYPE tx_type, PREDICTION_MODE mode, int bd) {
DECLARE_ALIGNED(32, int32_t, txfm_buf[64 * 4]);
TXFM_2D_FLIP_CFG cfg;
av1_get_fwd_txfm_cfg(tx_type, TX_4X64, mode, &cfg);
fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd);
// Zero out the bottom 4x32 area.
memset(output + 4 * 32, 0, 4 * 32 * sizeof(*output));
// Note: no repacking needed here.
}
void av1_fwd_txfm2d_64x4_c(const int16_t *input, int32_t *output, int stride,
TX_TYPE tx_type, PREDICTION_MODE mode, int bd) {
int32_t txfm_buf[64 * 4];
TXFM_2D_FLIP_CFG cfg;
av1_get_fwd_txfm_cfg(tx_type, TX_64X4, mode, &cfg);
fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd);
// Zero out right 32x4 area.
for (int row = 0; row < 4; ++row) {
memset(output + row * 64 + 32, 0, 32 * sizeof(*output));
}
// Re-pack non-zero coeffs in the first 32x4 indices.
for (int row = 1; row < 4; ++row) {
memcpy(output + row * 32, output + row * 64, 32 * sizeof(*output));
}
}
#endif // CONFIG_FLEX_PARTITION
static const int8_t fwd_shift_4x4[3] = { 2, 0, 0 };
static const int8_t fwd_shift_8x8[3] = { 2, -1, 0 };
static const int8_t fwd_shift_16x16[3] = { 2, -2, 0 };
static const int8_t fwd_shift_32x32[3] = { 2, -4, 0 };
static const int8_t fwd_shift_64x64[3] = { 0, -2, -2 };
static const int8_t fwd_shift_4x8[3] = { 2, -1, 0 };
static const int8_t fwd_shift_8x4[3] = { 2, -1, 0 };
static const int8_t fwd_shift_8x16[3] = { 2, -2, 0 };
static const int8_t fwd_shift_16x8[3] = { 2, -2, 0 };
static const int8_t fwd_shift_16x32[3] = { 2, -4, 0 };
static const int8_t fwd_shift_32x16[3] = { 2, -4, 0 };
static const int8_t fwd_shift_32x64[3] = { 0, -2, -2 };
static const int8_t fwd_shift_64x32[3] = { 2, -4, -2 };
static const int8_t fwd_shift_4x16[3] = { 2, -1, 0 };
static const int8_t fwd_shift_16x4[3] = { 2, -1, 0 };
static const int8_t fwd_shift_8x32[3] = { 2, -2, 0 };
static const int8_t fwd_shift_32x8[3] = { 2, -2, 0 };
static const int8_t fwd_shift_16x64[3] = { 0, -2, 0 };
static const int8_t fwd_shift_64x16[3] = { 2, -4, 0 };
#if CONFIG_FLEX_PARTITION
static const int8_t fwd_shift_4x32[3] = { 2, -2, 0 };
static const int8_t fwd_shift_32x4[3] = { 2, -2, 0 };
static const int8_t fwd_shift_8x64[3] = { 0, -2, 0 };
static const int8_t fwd_shift_64x8[3] = { 2, -4, 0 };
static const int8_t fwd_shift_4x64[3] = { 0, 0, 0 };
static const int8_t fwd_shift_64x4[3] = { 2, -2, 0 };
#endif // CONFIG_FLEX_PARTITION
const int8_t *av1_fwd_txfm_shift_ls[TX_SIZES_ALL] = {
fwd_shift_4x4, fwd_shift_8x8, fwd_shift_16x16, fwd_shift_32x32,
fwd_shift_64x64, fwd_shift_4x8, fwd_shift_8x4, fwd_shift_8x16,
fwd_shift_16x8, fwd_shift_16x32, fwd_shift_32x16, fwd_shift_32x64,
fwd_shift_64x32, fwd_shift_4x16, fwd_shift_16x4, fwd_shift_8x32,
fwd_shift_32x8, fwd_shift_16x64, fwd_shift_64x16,
#if CONFIG_FLEX_PARTITION
fwd_shift_4x32, fwd_shift_32x4, fwd_shift_8x64, fwd_shift_64x8,
fwd_shift_4x64, fwd_shift_64x4,
#endif // CONFIG_FLEX_PARTITION
};
const int8_t av1_fwd_cos_bit_col[MAX_TXWH_IDX /*txw_idx*/]
[MAX_TXWH_IDX /*txh_idx*/] = {
{ 13, 13, 13, 12, 13 },
{ 13, 13, 13, 12, 13 },
{ 13, 13, 13, 12, 13 },
{ 13, 13, 13, 12, 13 },
{ 13, 13, 13, 12, 13 }
};
const int8_t av1_fwd_cos_bit_row[MAX_TXWH_IDX /*txw_idx*/]
[MAX_TXWH_IDX /*txh_idx*/] = {
{ 13, 13, 12, 12, 12 },
{ 13, 13, 13, 12, 12 },
{ 13, 13, 12, 13, 12 },
{ 12, 12, 13, 12, 11 },
{ 12, 12, 12, 11, 10 }
};
static const int8_t fdct4_range_mult2[4] = { 0, 2, 3, 3 };
static const int8_t fdct8_range_mult2[6] = { 0, 2, 4, 5, 5, 5 };
static const int8_t fdct16_range_mult2[8] = { 0, 2, 4, 6, 7, 7, 7, 7 };
static const int8_t fdct32_range_mult2[10] = { 0, 2, 4, 6, 8, 9, 9, 9, 9, 9 };
static const int8_t fdct64_range_mult2[12] = { 0, 2, 4, 6, 8, 10,
11, 11, 11, 11, 11, 11 };
static const int8_t fadst4_range_mult2[7] = { 0, 2, 4, 3, 3, 3, 3 };
static const int8_t fadst8_range_mult2[8] = { 0, 0, 1, 3, 3, 5, 5, 5 };
static const int8_t fadst16_range_mult2[10] = { 0, 0, 1, 3, 3, 5, 5, 7, 7, 7 };
#if CONFIG_DST_32X32
static const int8_t fadst32_range_mult2[1] = { 9 };
#endif
static const int8_t fidtx4_range_mult2[1] = { 1 };
static const int8_t fidtx8_range_mult2[1] = { 2 };
static const int8_t fidtx16_range_mult2[1] = { 3 };
static const int8_t fidtx32_range_mult2[1] = { 4 };
#if 0
const int8_t fwd_idtx_range_row[MAX_TXWH_IDX /*txw_idx*/]
[MAX_TXWH_IDX /*txh_idx*/] = { { 2, 4, 5, 0, 0 },
{ 3, 4, 5, 6, 0 },
{ 4, 5, 6, 7, 8 },
{ 0, 5, 6, 7, 8 },
{ 0, 0, 7, 8,
9 } };
#endif
static const int8_t *fwd_txfm_range_mult2_list[TXFM_TYPES] = {
fdct4_range_mult2, fdct8_range_mult2, fdct16_range_mult2,
fdct32_range_mult2, fdct64_range_mult2, fadst4_range_mult2,
fadst8_range_mult2, fadst16_range_mult2, fidtx4_range_mult2,
fidtx8_range_mult2, fidtx16_range_mult2, fidtx32_range_mult2,
#if CONFIG_MODE_DEP_INTRA_TX || CONFIG_MODE_DEP_INTER_TX
fadst4_range_mult2, fadst8_range_mult2, fadst16_range_mult2,
#endif
#if CONFIG_DST_32X32
fadst32_range_mult2
#endif
};
static INLINE void set_fwd_txfm_non_scale_range(TXFM_2D_FLIP_CFG *cfg) {
av1_zero(cfg->stage_range_col);
av1_zero(cfg->stage_range_row);
const int8_t *range_mult2_col = fwd_txfm_range_mult2_list[cfg->txfm_type_col];
if (cfg->txfm_type_col != TXFM_TYPE_INVALID) {
int stage_num_col = cfg->stage_num_col;
for (int i = 0; i < stage_num_col; ++i)
cfg->stage_range_col[i] = (range_mult2_col[i] + 1) >> 1;
}
if (cfg->txfm_type_row != TXFM_TYPE_INVALID) {
int stage_num_row = cfg->stage_num_row;
const int8_t *range_mult2_row =
fwd_txfm_range_mult2_list[cfg->txfm_type_row];
for (int i = 0; i < stage_num_row; ++i) {
cfg->stage_range_row[i] =
(range_mult2_col[cfg->stage_num_col - 1] + range_mult2_row[i] + 1) >>
1;
}
}
}
void av1_get_fwd_txfm_cfg(TX_TYPE tx_type, TX_SIZE tx_size,
PREDICTION_MODE mode, TXFM_2D_FLIP_CFG *cfg) {
assert(cfg != NULL);
cfg->tx_size = tx_size;
set_flip_cfg(tx_type, cfg);
const TX_TYPE_1D tx_type_1d_col = vtx_tab[tx_type];
const TX_TYPE_1D tx_type_1d_row = htx_tab[tx_type];
const int txw_idx = tx_size_wide_log2[tx_size] - tx_size_wide_log2[0];
const int txh_idx = tx_size_high_log2[tx_size] - tx_size_high_log2[0];
cfg->shift = av1_fwd_txfm_shift_ls[tx_size];
cfg->cos_bit_col = av1_fwd_cos_bit_col[txw_idx][txh_idx];
cfg->cos_bit_row = av1_fwd_cos_bit_row[txw_idx][txh_idx];
cfg->txfm_type_col = av1_txfm_type_ls[txh_idx][tx_type_1d_col];
cfg->txfm_type_row = av1_txfm_type_ls[txw_idx][tx_type_1d_row];
assert(cfg->txfm_type_col < TXFM_TYPE_INVALID);
assert(cfg->txfm_type_row < TXFM_TYPE_INVALID);
cfg->mode = mode;
#if CONFIG_MODE_DEP_INTRA_TX && CONFIG_MODE_DEP_NONSEP_INTRA_TX
if (use_nstx(tx_type, tx_size, mode)) {
cfg->nstx_mtx_ptr = nstx_arr(tx_size, mode);
} else if (use_nsst(tx_type, tx_size, mode)) {
// For secondary transforms, use DCT_DCT as primary transform
cfg->nstx_mtx_ptr = nstx_arr(tx_size, mode);
cfg->txfm_type_col = av1_txfm_type_ls[txh_idx][DCT_1D];
cfg->txfm_type_row = av1_txfm_type_ls[txw_idx][DCT_1D];
} else {
cfg->nstx_mtx_ptr = NULL;
}
#endif // CONFIG_MODE_DEP_INTRA_TX &&
// CONFIG_MODE_DEP_NONSEP_INTRA_TX
cfg->stage_num_col = av1_txfm_stage_num_list[cfg->txfm_type_col];
cfg->stage_num_row = av1_txfm_stage_num_list[cfg->txfm_type_row];
set_fwd_txfm_non_scale_range(cfg);
}