|  | /* | 
|  | * Copyright (c) 2021, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  |  | 
|  | #include "aom/aom_codec.h" | 
|  | #include "aom/aomdx.h" | 
|  | #include "aom_dsp/psnr.h" | 
|  | #include "aom_mem/aom_mem.h" | 
|  | #include "av1/av1_iface_common.h" | 
|  | #include "av1/encoder/encoder.h" | 
|  | #include "av1/encoder/firstpass.h" | 
|  | #include "av1/encoder/thirdpass.h" | 
|  | #include "av1/common/blockd.h" | 
|  |  | 
|  | #if CONFIG_THREE_PASS | 
|  | #include "common/ivfdec.h" | 
|  | #endif | 
|  |  | 
|  | #if CONFIG_THREE_PASS | 
|  | static void setup_two_pass_stream_input( | 
|  | struct AvxInputContext **input_ctx_ptr, const char *input_file_name, | 
|  | struct aom_internal_error_info *err_info) { | 
|  | FILE *infile; | 
|  | infile = fopen(input_file_name, "rb"); | 
|  | if (!infile) { | 
|  | aom_internal_error(err_info, AOM_CODEC_INVALID_PARAM, | 
|  | "Failed to open input file '%s'.", input_file_name); | 
|  | } | 
|  | struct AvxInputContext *aom_input_ctx = aom_malloc(sizeof(*aom_input_ctx)); | 
|  | if (!aom_input_ctx) { | 
|  | fclose(infile); | 
|  | aom_internal_error(err_info, AOM_CODEC_MEM_ERROR, | 
|  | "Failed to allocate memory for third-pass context."); | 
|  | } | 
|  | memset(aom_input_ctx, 0, sizeof(*aom_input_ctx)); | 
|  | aom_input_ctx->filename = input_file_name; | 
|  | aom_input_ctx->file = infile; | 
|  |  | 
|  | if (file_is_ivf(aom_input_ctx)) { | 
|  | aom_input_ctx->file_type = FILE_TYPE_IVF; | 
|  | } else { | 
|  | fclose(infile); | 
|  | aom_free(aom_input_ctx); | 
|  | aom_internal_error(err_info, AOM_CODEC_INVALID_PARAM, | 
|  | "Unrecognized input file type."); | 
|  | } | 
|  | *input_ctx_ptr = aom_input_ctx; | 
|  | } | 
|  |  | 
|  | static void init_third_pass(THIRD_PASS_DEC_CTX *ctx) { | 
|  | if (!ctx->input_ctx) { | 
|  | if (ctx->input_file_name == NULL) { | 
|  | aom_internal_error(ctx->err_info, AOM_CODEC_INVALID_PARAM, | 
|  | "No third pass input specified."); | 
|  | } | 
|  | setup_two_pass_stream_input(&ctx->input_ctx, ctx->input_file_name, | 
|  | ctx->err_info); | 
|  | } | 
|  |  | 
|  | #if CONFIG_AV1_DECODER | 
|  | if (!ctx->decoder.iface) { | 
|  | aom_codec_iface_t *decoder_iface = &aom_codec_av1_inspect_algo; | 
|  | if (aom_codec_dec_init(&ctx->decoder, decoder_iface, NULL, 0)) { | 
|  | aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, | 
|  | "Failed to initialize decoder."); | 
|  | } | 
|  | } | 
|  | #else | 
|  | aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, | 
|  | "To utilize three-pass encoding, libaom must be built " | 
|  | "with CONFIG_AV1_DECODER=1."); | 
|  | #endif | 
|  | } | 
|  | #endif  // CONFIG_THREE_PASS | 
|  |  | 
|  | // Return 0: success | 
|  | //        1: cannot read because this is end of file | 
|  | //       -1: failure to read the frame | 
|  | static int read_frame(THIRD_PASS_DEC_CTX *ctx) { | 
|  | #if CONFIG_THREE_PASS | 
|  | if (!ctx->input_ctx || !ctx->decoder.iface) { | 
|  | init_third_pass(ctx); | 
|  | } | 
|  | if (!ctx->have_frame) { | 
|  | if (ivf_read_frame(ctx->input_ctx->file, &ctx->buf, &ctx->bytes_in_buffer, | 
|  | &ctx->buffer_size, NULL) != 0) { | 
|  | if (feof(ctx->input_ctx->file)) { | 
|  | return 1; | 
|  | } else { | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | ctx->frame = ctx->buf; | 
|  | ctx->end_frame = ctx->frame + ctx->bytes_in_buffer; | 
|  | ctx->have_frame = 1; | 
|  | } | 
|  | #else | 
|  | aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, | 
|  | "Cannot parse bitstream without CONFIG_THREE_PASS."); | 
|  | #endif | 
|  | Av1DecodeReturn adr; | 
|  | if (aom_codec_decode(&ctx->decoder, ctx->frame, | 
|  | (unsigned int)ctx->bytes_in_buffer, | 
|  | &adr) != AOM_CODEC_OK) { | 
|  | aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, | 
|  | "Failed to decode frame for third pass."); | 
|  | } | 
|  | ctx->this_frame_bits = (int)(adr.buf - ctx->frame) << 3; | 
|  | ctx->frame = adr.buf; | 
|  | ctx->bytes_in_buffer = ctx->end_frame - ctx->frame; | 
|  | if (ctx->frame == ctx->end_frame) ctx->have_frame = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void free_frame_info(THIRD_PASS_FRAME_INFO *frame_info) { | 
|  | if (!frame_info) return; | 
|  | aom_free(frame_info->mi_info); | 
|  | frame_info->mi_info = NULL; | 
|  | } | 
|  |  | 
|  | // This function gets the information needed from the recently decoded frame, | 
|  | // via various decoder APIs, and saves the info into ctx->frame_info. | 
|  | // Return 0: success | 
|  | //        1: cannot read because this is end of file | 
|  | //       -1: failure to read the frame | 
|  | static int get_frame_info(THIRD_PASS_DEC_CTX *ctx) { | 
|  | int ret = read_frame(ctx); | 
|  | if (ret != 0) return ret; | 
|  | int cur = ctx->frame_info_count; | 
|  |  | 
|  | ctx->frame_info[cur].actual_bits = ctx->this_frame_bits; | 
|  |  | 
|  | if (cur >= MAX_THIRD_PASS_BUF) { | 
|  | aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, | 
|  | "Third pass frame info ran out of available slots."); | 
|  | } | 
|  | int frame_type_flags = 0; | 
|  | if (aom_codec_control(&ctx->decoder, AOMD_GET_FRAME_FLAGS, | 
|  | &frame_type_flags) != AOM_CODEC_OK) { | 
|  | aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, | 
|  | "Failed to read frame flags."); | 
|  | } | 
|  | if (frame_type_flags & AOM_FRAME_IS_KEY) { | 
|  | ctx->frame_info[cur].frame_type = KEY_FRAME; | 
|  | } else if (frame_type_flags & AOM_FRAME_IS_INTRAONLY) { | 
|  | ctx->frame_info[cur].frame_type = INTRA_ONLY_FRAME; | 
|  | } else if (frame_type_flags & AOM_FRAME_IS_SWITCH) { | 
|  | ctx->frame_info[cur].frame_type = S_FRAME; | 
|  | } else { | 
|  | ctx->frame_info[cur].frame_type = INTER_FRAME; | 
|  | } | 
|  |  | 
|  | // Get frame width and height | 
|  | int frame_size[2]; | 
|  | if (aom_codec_control(&ctx->decoder, AV1D_GET_FRAME_SIZE, frame_size) != | 
|  | AOM_CODEC_OK) { | 
|  | aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, | 
|  | "Failed to read frame size."); | 
|  | } | 
|  |  | 
|  | // Check if we need to re-alloc the mi fields. | 
|  | const int mi_cols = (frame_size[0] + 3) >> 2; | 
|  | const int mi_rows = (frame_size[1] + 3) >> 2; | 
|  | ctx->frame_info[cur].mi_stride = mi_cols; | 
|  | ctx->frame_info[cur].mi_rows = mi_rows; | 
|  | ctx->frame_info[cur].mi_cols = mi_cols; | 
|  |  | 
|  | if (ctx->frame_info[cur].width != frame_size[0] || | 
|  | ctx->frame_info[cur].height != frame_size[1] || | 
|  | !ctx->frame_info[cur].mi_info) { | 
|  | free_frame_info(&ctx->frame_info[cur]); | 
|  |  | 
|  | ctx->frame_info[cur].mi_info = | 
|  | aom_malloc(mi_cols * mi_rows * sizeof(*ctx->frame_info[cur].mi_info)); | 
|  |  | 
|  | if (!ctx->frame_info[cur].mi_info) { | 
|  | aom_internal_error(ctx->err_info, AOM_CODEC_MEM_ERROR, | 
|  | "Failed to allocate mi buffer for the third pass."); | 
|  | } | 
|  | } | 
|  |  | 
|  | ctx->frame_info[cur].width = frame_size[0]; | 
|  | ctx->frame_info[cur].height = frame_size[1]; | 
|  |  | 
|  | // Get frame base q idx | 
|  | if (aom_codec_control(&ctx->decoder, AOMD_GET_BASE_Q_IDX, | 
|  | &ctx->frame_info[cur].base_q_idx) != AOM_CODEC_OK) { | 
|  | aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, | 
|  | "Failed to read base q index."); | 
|  | } | 
|  |  | 
|  | // Get show existing frame flag | 
|  | if (aom_codec_control(&ctx->decoder, AOMD_GET_SHOW_EXISTING_FRAME_FLAG, | 
|  | &ctx->frame_info[cur].is_show_existing_frame) != | 
|  | AOM_CODEC_OK) { | 
|  | aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, | 
|  | "Failed to read show existing frame flag."); | 
|  | } | 
|  |  | 
|  | // Get show frame flag | 
|  | if (aom_codec_control(&ctx->decoder, AOMD_GET_SHOW_FRAME_FLAG, | 
|  | &ctx->frame_info[cur].is_show_frame) != AOM_CODEC_OK) { | 
|  | aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, | 
|  | "Failed to read show frame flag."); | 
|  | } | 
|  |  | 
|  | // Get order hint | 
|  | if (aom_codec_control(&ctx->decoder, AOMD_GET_ORDER_HINT, | 
|  | &ctx->frame_info[cur].order_hint) != AOM_CODEC_OK) { | 
|  | aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, | 
|  | "Failed to read order hint."); | 
|  | } | 
|  |  | 
|  | // Clear MI info | 
|  | for (int mi_row = 0; mi_row < mi_rows; mi_row++) { | 
|  | for (int mi_col = 0; mi_col < mi_cols; mi_col++) { | 
|  | ctx->frame_info[cur].mi_info[mi_row * mi_cols + mi_col].bsize = | 
|  | BLOCK_INVALID; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Get relevant information regarding each 4x4 MI | 
|  | MB_MODE_INFO cur_mi_info; | 
|  | THIRD_PASS_MI_INFO *const this_mi = ctx->frame_info[cur].mi_info; | 
|  | for (int mi_row = 0; mi_row < mi_rows; mi_row++) { | 
|  | for (int mi_col = 0; mi_col < mi_cols; mi_col++) { | 
|  | const int offset = mi_row * mi_cols + mi_col; | 
|  | if (this_mi[offset].bsize != BLOCK_INVALID) { | 
|  | continue; | 
|  | } | 
|  | // Get info of this MI | 
|  | if (aom_codec_control(&ctx->decoder, AV1D_GET_MI_INFO, mi_row, mi_col, | 
|  | &cur_mi_info) != AOM_CODEC_OK) { | 
|  | aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, | 
|  | "Failed to read mi info."); | 
|  | } | 
|  | const int blk_mi_rows = mi_size_high[cur_mi_info.bsize]; | 
|  | const int blk_mi_cols = mi_size_wide[cur_mi_info.bsize]; | 
|  |  | 
|  | for (int h = 0; h < blk_mi_rows; h++) { | 
|  | for (int w = 0; w < blk_mi_cols; w++) { | 
|  | if (h + mi_row >= mi_rows || w + mi_col >= mi_cols) { | 
|  | continue; | 
|  | } | 
|  | const int this_offset = offset + h * mi_cols + w; | 
|  | this_mi[this_offset].bsize = cur_mi_info.bsize; | 
|  | this_mi[this_offset].partition = cur_mi_info.partition; | 
|  | this_mi[this_offset].mi_row_start = mi_row; | 
|  | this_mi[this_offset].mi_col_start = mi_col; | 
|  | this_mi[this_offset].mv[0] = cur_mi_info.mv[0]; | 
|  | this_mi[this_offset].mv[1] = cur_mi_info.mv[1]; | 
|  | this_mi[this_offset].ref_frame[0] = cur_mi_info.ref_frame[0]; | 
|  | this_mi[this_offset].ref_frame[1] = cur_mi_info.ref_frame[1]; | 
|  | this_mi[this_offset].pred_mode = cur_mi_info.mode; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | ctx->frame_info_count++; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define USE_SECOND_PASS_FILE 1 | 
|  |  | 
|  | #if !USE_SECOND_PASS_FILE | 
|  | // Parse the frames in the gop and determine the last frame of the current GOP. | 
|  | // Decode more frames if necessary. The variable max_num is the maximum static | 
|  | // GOP length if we detect an IPPP structure, and it is expected that max_mum >= | 
|  | // MAX_GF_INTERVAL. | 
|  | static void get_current_gop_end(THIRD_PASS_DEC_CTX *ctx, int max_num, | 
|  | int *last_idx) { | 
|  | assert(max_num >= MAX_GF_INTERVAL); | 
|  | *last_idx = 0; | 
|  | int cur_idx = 0; | 
|  | int arf_order_hint = -1; | 
|  | int num_show_frames = 0; | 
|  | while (num_show_frames < max_num) { | 
|  | assert(cur_idx < MAX_THIRD_PASS_BUF); | 
|  | // Read in from bitstream if needed. | 
|  | if (cur_idx >= ctx->frame_info_count) { | 
|  | int ret = get_frame_info(ctx); | 
|  | if (ret == 1) { | 
|  | // At the end of the file, GOP ends in the prev frame. | 
|  | if (arf_order_hint >= 0) { | 
|  | aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, | 
|  | "Failed to derive GOP length."); | 
|  | } | 
|  | *last_idx = cur_idx - 1; | 
|  | return; | 
|  | } | 
|  | if (ret < 0) { | 
|  | aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, | 
|  | "Failed to read frame for third pass."); | 
|  | } | 
|  | } | 
|  |  | 
|  | // TODO(bohanli): verify that fwd_kf works here. | 
|  | if (ctx->frame_info[cur_idx].frame_type == KEY_FRAME && | 
|  | ctx->frame_info[cur_idx].is_show_frame) { | 
|  | if (cur_idx != 0) { | 
|  | // If this is a key frame and is not the first kf in this kf group, we | 
|  | // have reached the next key frame. Stop here. | 
|  | *last_idx = cur_idx - 1; | 
|  | return; | 
|  | } | 
|  | } else if (!ctx->frame_info[cur_idx].is_show_frame && | 
|  | arf_order_hint == -1) { | 
|  | // If this is an arf (the first no show) | 
|  | if (num_show_frames <= 1) { | 
|  | // This is an arf and we should end the GOP with its overlay. | 
|  | arf_order_hint = ctx->frame_info[cur_idx].order_hint; | 
|  | } else { | 
|  | // There are multiple show frames before the this arf, so we treat the | 
|  | // frames previous to this arf as a GOP. | 
|  | *last_idx = cur_idx - 1; | 
|  | return; | 
|  | } | 
|  | } else if (arf_order_hint >= 0 && ctx->frame_info[cur_idx].order_hint == | 
|  | (unsigned int)arf_order_hint) { | 
|  | // If this is the overlay/show existing of the arf | 
|  | assert(ctx->frame_info[cur_idx].is_show_frame); | 
|  | *last_idx = cur_idx; | 
|  | return; | 
|  | } else { | 
|  | // This frame is part of the GOP. | 
|  | if (ctx->frame_info[cur_idx].is_show_frame) num_show_frames++; | 
|  | } | 
|  | cur_idx++; | 
|  | } | 
|  | // This is a long IPPP GOP and we will use a length of max_num here. | 
|  | assert(arf_order_hint < 0); | 
|  | *last_idx = max_num - 1; | 
|  | return; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static AOM_INLINE void read_gop_frames(THIRD_PASS_DEC_CTX *ctx) { | 
|  | int cur_idx = 0; | 
|  | while (cur_idx < ctx->gop_info.num_frames) { | 
|  | assert(cur_idx < MAX_THIRD_PASS_BUF); | 
|  | // Read in from bitstream if needed. | 
|  | if (cur_idx >= ctx->frame_info_count) { | 
|  | int ret = get_frame_info(ctx); | 
|  | if (ret != 0) { | 
|  | aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, | 
|  | "Failed to read frame for third pass."); | 
|  | } | 
|  | } | 
|  | cur_idx++; | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | void av1_set_gop_third_pass(THIRD_PASS_DEC_CTX *ctx) { | 
|  | // Read in future frames in the current GOP. | 
|  | read_gop_frames(ctx); | 
|  |  | 
|  | int gf_len = 0; | 
|  | // Check the GOP length against the value read from second_pass_file | 
|  | for (int i = 0; i < ctx->gop_info.num_frames; i++) { | 
|  | if (ctx->frame_info[i].is_show_frame) gf_len++; | 
|  | } | 
|  |  | 
|  | if (gf_len != ctx->gop_info.gf_length) { | 
|  | aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, | 
|  | "Mismatch in third pass GOP length!"); | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_pop_third_pass_info(THIRD_PASS_DEC_CTX *ctx) { | 
|  | if (ctx->frame_info_count == 0) { | 
|  | aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, | 
|  | "No available frame info for third pass."); | 
|  | } | 
|  | ctx->frame_info_count--; | 
|  | free_frame_info(&ctx->frame_info[0]); | 
|  | for (int i = 0; i < ctx->frame_info_count; i++) { | 
|  | ctx->frame_info[i] = ctx->frame_info[i + 1]; | 
|  | } | 
|  | ctx->frame_info[ctx->frame_info_count].mi_info = NULL; | 
|  | } | 
|  |  | 
|  | void av1_init_thirdpass_ctx(AV1_COMMON *cm, THIRD_PASS_DEC_CTX **ctx, | 
|  | const char *file) { | 
|  | av1_free_thirdpass_ctx(*ctx); | 
|  | CHECK_MEM_ERROR(cm, *ctx, aom_calloc(1, sizeof(**ctx))); | 
|  | THIRD_PASS_DEC_CTX *ctx_ptr = *ctx; | 
|  | ctx_ptr->input_file_name = file; | 
|  | ctx_ptr->prev_gop_end = -1; | 
|  | ctx_ptr->err_info = cm->error; | 
|  | } | 
|  |  | 
|  | void av1_free_thirdpass_ctx(THIRD_PASS_DEC_CTX *ctx) { | 
|  | if (ctx == NULL) return; | 
|  | if (ctx->decoder.iface) { | 
|  | aom_codec_destroy(&ctx->decoder); | 
|  | } | 
|  | #if CONFIG_THREE_PASS | 
|  | if (ctx->input_ctx && ctx->input_ctx->file) fclose(ctx->input_ctx->file); | 
|  | aom_free(ctx->input_ctx); | 
|  | #endif | 
|  | if (ctx->buf) free(ctx->buf); | 
|  | for (int i = 0; i < MAX_THIRD_PASS_BUF; i++) { | 
|  | free_frame_info(&ctx->frame_info[i]); | 
|  | } | 
|  | aom_free(ctx); | 
|  | } | 
|  |  | 
|  | void av1_write_second_pass_gop_info(AV1_COMP *cpi) { | 
|  | const AV1EncoderConfig *const oxcf = &cpi->oxcf; | 
|  | const GF_GROUP *const gf_group = &cpi->ppi->gf_group; | 
|  | const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; | 
|  |  | 
|  | if (oxcf->pass == AOM_RC_SECOND_PASS && oxcf->second_pass_log) { | 
|  | // Write the GOP length to a log file. | 
|  | av1_open_second_pass_log(cpi, 0); | 
|  |  | 
|  | THIRD_PASS_GOP_INFO gop_info; | 
|  |  | 
|  | gop_info.num_frames = gf_group->size; | 
|  | gop_info.use_arf = (gf_group->arf_index >= 0); | 
|  | gop_info.gf_length = p_rc->baseline_gf_interval; | 
|  |  | 
|  | size_t count = | 
|  | fwrite(&gop_info, sizeof(gop_info), 1, cpi->second_pass_log_stream); | 
|  | if (count < 1) { | 
|  | aom_internal_error(cpi->common.error, AOM_CODEC_ERROR, | 
|  | "Could not write to second pass log file!"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_write_second_pass_per_frame_info(AV1_COMP *cpi, int gf_index) { | 
|  | const AV1EncoderConfig *const oxcf = &cpi->oxcf; | 
|  | const GF_GROUP *const gf_group = &cpi->ppi->gf_group; | 
|  |  | 
|  | if (oxcf->pass == AOM_RC_SECOND_PASS && oxcf->second_pass_log) { | 
|  | // write target bitrate | 
|  | int bits = gf_group->bit_allocation[gf_index]; | 
|  | size_t count = fwrite(&bits, sizeof(bits), 1, cpi->second_pass_log_stream); | 
|  | if (count < 1) { | 
|  | aom_internal_error(cpi->common.error, AOM_CODEC_ERROR, | 
|  | "Could not write to second pass log file!"); | 
|  | } | 
|  |  | 
|  | // write sse | 
|  | uint64_t sse = 0; | 
|  | int pkt_idx = cpi->ppi->output_pkt_list->cnt - 1; | 
|  | if (pkt_idx >= 0 && | 
|  | cpi->ppi->output_pkt_list->pkts[pkt_idx].kind == AOM_CODEC_PSNR_PKT) { | 
|  | sse = cpi->ppi->output_pkt_list->pkts[pkt_idx].data.psnr.sse[0]; | 
|  | #if CONFIG_INTERNAL_STATS | 
|  | } else if (cpi->ppi->b_calculate_psnr) { | 
|  | sse = cpi->ppi->total_sq_error[0]; | 
|  | #endif | 
|  | } else { | 
|  | const YV12_BUFFER_CONFIG *orig = cpi->source; | 
|  | const YV12_BUFFER_CONFIG *recon = &cpi->common.cur_frame->buf; | 
|  | PSNR_STATS psnr; | 
|  | #if CONFIG_AV1_HIGHBITDEPTH | 
|  | const uint32_t in_bit_depth = cpi->oxcf.input_cfg.input_bit_depth; | 
|  | const uint32_t bit_depth = cpi->td.mb.e_mbd.bd; | 
|  | aom_calc_highbd_psnr(orig, recon, &psnr, bit_depth, in_bit_depth); | 
|  | #else | 
|  | aom_calc_psnr(orig, recon, &psnr); | 
|  | #endif | 
|  | sse = psnr.sse[0]; | 
|  | } | 
|  |  | 
|  | count = fwrite(&sse, sizeof(sse), 1, cpi->second_pass_log_stream); | 
|  | if (count < 1) { | 
|  | aom_internal_error(cpi->common.error, AOM_CODEC_ERROR, | 
|  | "Could not write to second pass log file!"); | 
|  | } | 
|  |  | 
|  | // write bpm_factor | 
|  | double factor = cpi->ppi->twopass.bpm_factor; | 
|  | count = fwrite(&factor, sizeof(factor), 1, cpi->second_pass_log_stream); | 
|  | if (count < 1) { | 
|  | aom_internal_error(cpi->common.error, AOM_CODEC_ERROR, | 
|  | "Could not write to second pass log file!"); | 
|  | } | 
|  | } | 
|  | } | 
|  | void av1_open_second_pass_log(AV1_COMP *cpi, int is_read) { | 
|  | const AV1EncoderConfig *const oxcf = &cpi->oxcf; | 
|  | if (oxcf->second_pass_log == NULL) { | 
|  | aom_internal_error(cpi->common.error, AOM_CODEC_INVALID_PARAM, | 
|  | "No second pass log file specified for the third pass!"); | 
|  | } | 
|  | // Read the GOP length from a file. | 
|  | if (!cpi->second_pass_log_stream) { | 
|  | if (is_read) { | 
|  | cpi->second_pass_log_stream = fopen(cpi->oxcf.second_pass_log, "rb"); | 
|  | } else { | 
|  | cpi->second_pass_log_stream = fopen(cpi->oxcf.second_pass_log, "wb"); | 
|  | } | 
|  | if (!cpi->second_pass_log_stream) { | 
|  | aom_internal_error(cpi->common.error, AOM_CODEC_ERROR, | 
|  | "Could not open second pass log file!"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_close_second_pass_log(AV1_COMP *cpi) { | 
|  | if (cpi->second_pass_log_stream) { | 
|  | int ret = fclose(cpi->second_pass_log_stream); | 
|  | if (ret != 0) { | 
|  | aom_internal_error(cpi->common.error, AOM_CODEC_ERROR, | 
|  | "Could not close second pass log file!"); | 
|  | } | 
|  | cpi->second_pass_log_stream = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_read_second_pass_gop_info(FILE *second_pass_log_stream, | 
|  | THIRD_PASS_GOP_INFO *gop_info, | 
|  | struct aom_internal_error_info *error) { | 
|  | size_t count = fread(gop_info, sizeof(*gop_info), 1, second_pass_log_stream); | 
|  | if (count < 1) { | 
|  | aom_internal_error(error, AOM_CODEC_ERROR, | 
|  | "Could not read from second pass log file!"); | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_read_second_pass_per_frame_info( | 
|  | FILE *second_pass_log_stream, THIRD_PASS_FRAME_INFO *frame_info_arr, | 
|  | int frame_info_count, struct aom_internal_error_info *error) { | 
|  | for (int i = 0; i < frame_info_count; i++) { | 
|  | // read target bits | 
|  | int bits = 0; | 
|  | size_t count = fread(&bits, sizeof(bits), 1, second_pass_log_stream); | 
|  | if (count < 1) { | 
|  | aom_internal_error(error, AOM_CODEC_ERROR, | 
|  | "Could not read from second pass log file!"); | 
|  | } | 
|  | frame_info_arr[i].bits_allocated = bits; | 
|  |  | 
|  | // read distortion | 
|  | uint64_t sse; | 
|  | count = fread(&sse, sizeof(sse), 1, second_pass_log_stream); | 
|  | if (count < 1) { | 
|  | aom_internal_error(error, AOM_CODEC_ERROR, | 
|  | "Could not read from second pass log file!"); | 
|  | } | 
|  | frame_info_arr[i].sse = sse; | 
|  |  | 
|  | // read bpm factor | 
|  | double factor; | 
|  | count = fread(&factor, sizeof(factor), 1, second_pass_log_stream); | 
|  | if (count < 1) { | 
|  | aom_internal_error(error, AOM_CODEC_ERROR, | 
|  | "Could not read from second pass log file!"); | 
|  | } | 
|  | frame_info_arr[i].bpm_factor = factor; | 
|  | } | 
|  | } | 
|  |  | 
|  | int av1_check_use_arf(THIRD_PASS_DEC_CTX *ctx) { | 
|  | if (ctx == NULL) return -1; | 
|  | int use_arf = 0; | 
|  | for (int i = 0; i < ctx->gop_info.gf_length; i++) { | 
|  | if (ctx->frame_info[i].order_hint != 0 && | 
|  | ctx->frame_info[i].is_show_frame == 0) { | 
|  | use_arf = 1; | 
|  | } | 
|  | } | 
|  | if (use_arf != ctx->gop_info.use_arf) { | 
|  | aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, | 
|  | "Mismatch in third pass GOP length!"); | 
|  | } | 
|  | return use_arf; | 
|  | } | 
|  |  | 
|  | void av1_get_third_pass_ratio(THIRD_PASS_DEC_CTX *ctx, int fidx, int fheight, | 
|  | int fwidth, double *ratio_h, double *ratio_w) { | 
|  | assert(ctx); | 
|  | assert(fidx < ctx->frame_info_count); | 
|  | const int fheight_second_pass = ctx->frame_info[fidx].height; | 
|  | const int fwidth_second_pass = ctx->frame_info[fidx].width; | 
|  | assert(fheight_second_pass <= fheight && fwidth_second_pass <= fwidth); | 
|  |  | 
|  | *ratio_h = (double)fheight / fheight_second_pass; | 
|  | *ratio_w = (double)fwidth / fwidth_second_pass; | 
|  | } | 
|  |  | 
|  | THIRD_PASS_MI_INFO *av1_get_third_pass_mi(THIRD_PASS_DEC_CTX *ctx, int fidx, | 
|  | int mi_row, int mi_col, | 
|  | double ratio_h, double ratio_w) { | 
|  | assert(ctx); | 
|  | assert(fidx < ctx->frame_info_count); | 
|  |  | 
|  | const int mi_rows_second_pass = ctx->frame_info[fidx].mi_rows; | 
|  | const int mi_cols_second_pass = ctx->frame_info[fidx].mi_cols; | 
|  |  | 
|  | const int mi_row_second_pass = | 
|  | clamp((int)round(mi_row / ratio_h), 0, mi_rows_second_pass - 1); | 
|  | const int mi_col_second_pass = | 
|  | clamp((int)round(mi_col / ratio_w), 0, mi_cols_second_pass - 1); | 
|  |  | 
|  | const int mi_stride_second_pass = ctx->frame_info[fidx].mi_stride; | 
|  | THIRD_PASS_MI_INFO *this_mi = ctx->frame_info[fidx].mi_info + | 
|  | mi_row_second_pass * mi_stride_second_pass + | 
|  | mi_col_second_pass; | 
|  | return this_mi; | 
|  | } | 
|  |  | 
|  | void av1_third_pass_get_adjusted_mi(THIRD_PASS_MI_INFO *third_pass_mi, | 
|  | double ratio_h, double ratio_w, int *mi_row, | 
|  | int *mi_col) { | 
|  | *mi_row = (int)round(third_pass_mi->mi_row_start * ratio_h); | 
|  | *mi_col = (int)round(third_pass_mi->mi_col_start * ratio_w); | 
|  | } | 
|  |  | 
|  | int_mv av1_get_third_pass_adjusted_mv(THIRD_PASS_MI_INFO *this_mi, | 
|  | double ratio_h, double ratio_w, | 
|  | MV_REFERENCE_FRAME frame) { | 
|  | assert(this_mi != NULL); | 
|  | int_mv cur_mv; | 
|  | cur_mv.as_int = INVALID_MV; | 
|  |  | 
|  | if (frame < LAST_FRAME || frame > ALTREF_FRAME) return cur_mv; | 
|  |  | 
|  | for (int r = 0; r < 2; r++) { | 
|  | if (this_mi->ref_frame[r] == frame) { | 
|  | cur_mv.as_mv.row = (int16_t)round(this_mi->mv[r].as_mv.row * ratio_h); | 
|  | cur_mv.as_mv.col = (int16_t)round(this_mi->mv[r].as_mv.col * ratio_w); | 
|  | } | 
|  | } | 
|  |  | 
|  | return cur_mv; | 
|  | } | 
|  |  | 
|  | BLOCK_SIZE av1_get_third_pass_adjusted_blk_size(THIRD_PASS_MI_INFO *this_mi, | 
|  | double ratio_h, | 
|  | double ratio_w) { | 
|  | assert(this_mi != NULL); | 
|  | BLOCK_SIZE bsize = BLOCK_INVALID; | 
|  |  | 
|  | const BLOCK_SIZE bsize_second_pass = this_mi->bsize; | 
|  | assert(bsize_second_pass != BLOCK_INVALID); | 
|  |  | 
|  | const int w_second_pass = block_size_wide[bsize_second_pass]; | 
|  | const int h_second_pass = block_size_high[bsize_second_pass]; | 
|  |  | 
|  | int part_type; | 
|  |  | 
|  | if (w_second_pass == h_second_pass) { | 
|  | part_type = PARTITION_NONE; | 
|  | } else if (w_second_pass / h_second_pass == 2) { | 
|  | part_type = PARTITION_HORZ; | 
|  | } else if (w_second_pass / h_second_pass == 4) { | 
|  | part_type = PARTITION_HORZ_4; | 
|  | } else if (h_second_pass / w_second_pass == 2) { | 
|  | part_type = PARTITION_VERT; | 
|  | } else if (h_second_pass / w_second_pass == 4) { | 
|  | part_type = PARTITION_VERT_4; | 
|  | } else { | 
|  | part_type = PARTITION_INVALID; | 
|  | } | 
|  | assert(part_type != PARTITION_INVALID); | 
|  |  | 
|  | const int w = (int)(round(w_second_pass * ratio_w)); | 
|  | const int h = (int)(round(h_second_pass * ratio_h)); | 
|  |  | 
|  | for (int i = 0; i < SQR_BLOCK_SIZES; i++) { | 
|  | const BLOCK_SIZE this_bsize = subsize_lookup[part_type][i]; | 
|  | if (this_bsize == BLOCK_INVALID) continue; | 
|  |  | 
|  | const int this_w = block_size_wide[this_bsize]; | 
|  | const int this_h = block_size_high[this_bsize]; | 
|  |  | 
|  | if (this_w >= w && this_h >= h) { | 
|  | // find the smallest block size that contains the mapped block | 
|  | bsize = this_bsize; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (bsize == BLOCK_INVALID) { | 
|  | // could not find a proper one, just use the largest then. | 
|  | bsize = BLOCK_128X128; | 
|  | } | 
|  |  | 
|  | return bsize; | 
|  | } | 
|  |  | 
|  | PARTITION_TYPE av1_third_pass_get_sb_part_type(THIRD_PASS_DEC_CTX *ctx, | 
|  | THIRD_PASS_MI_INFO *this_mi) { | 
|  | int mi_stride = ctx->frame_info[0].mi_stride; | 
|  |  | 
|  | int mi_row = this_mi->mi_row_start; | 
|  | int mi_col = this_mi->mi_col_start; | 
|  |  | 
|  | THIRD_PASS_MI_INFO *corner_mi = | 
|  | &ctx->frame_info[0].mi_info[mi_row * mi_stride + mi_col]; | 
|  |  | 
|  | return corner_mi->partition; | 
|  | } | 
|  |  | 
|  | #if CONFIG_BITRATE_ACCURACY | 
|  | static void fwrite_and_check(const void *ptr, size_t size, size_t nmemb, | 
|  | FILE *stream, | 
|  | struct aom_internal_error_info *error) { | 
|  | size_t count = fwrite(ptr, size, nmemb, stream); | 
|  | if (count < nmemb) { | 
|  | aom_internal_error(error, AOM_CODEC_ERROR, "fwrite_and_check failed\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void fread_and_check(void *ptr, size_t size, size_t nmemb, FILE *stream, | 
|  | struct aom_internal_error_info *error) { | 
|  | size_t count = fread(ptr, size, nmemb, stream); | 
|  | if (count < nmemb) { | 
|  | aom_internal_error(error, AOM_CODEC_ERROR, "fread_and_check failed\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_pack_tpl_info(TPL_INFO *tpl_info, const GF_GROUP *gf_group, | 
|  | const TplParams *tpl_data) { | 
|  | tpl_info->tpl_ready = tpl_data->ready; | 
|  | if (tpl_info->tpl_ready) { | 
|  | tpl_info->gf_length = gf_group->size; | 
|  | for (int i = 0; i < tpl_info->gf_length; ++i) { | 
|  | tpl_info->txfm_stats_list[i] = tpl_data->txfm_stats_list[i]; | 
|  | tpl_info->qstep_ratio_ls[i] = av1_tpl_get_qstep_ratio(tpl_data, i); | 
|  | tpl_info->update_type_list[i] = gf_group->update_type[i]; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_write_tpl_info(const TPL_INFO *tpl_info, FILE *log_stream, | 
|  | struct aom_internal_error_info *error) { | 
|  | fwrite_and_check(&tpl_info->tpl_ready, sizeof(tpl_info->tpl_ready), 1, | 
|  | log_stream, error); | 
|  | if (tpl_info->tpl_ready) { | 
|  | fwrite_and_check(&tpl_info->gf_length, sizeof(tpl_info->gf_length), 1, | 
|  | log_stream, error); | 
|  | assert(tpl_info->gf_length <= MAX_LENGTH_TPL_FRAME_STATS); | 
|  | fwrite_and_check(&tpl_info->txfm_stats_list, | 
|  | sizeof(tpl_info->txfm_stats_list[0]), tpl_info->gf_length, | 
|  | log_stream, error); | 
|  | fwrite_and_check(&tpl_info->qstep_ratio_ls, | 
|  | sizeof(tpl_info->qstep_ratio_ls[0]), tpl_info->gf_length, | 
|  | log_stream, error); | 
|  | fwrite_and_check(&tpl_info->update_type_list, | 
|  | sizeof(tpl_info->update_type_list[0]), tpl_info->gf_length, | 
|  | log_stream, error); | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_read_tpl_info(TPL_INFO *tpl_info, FILE *log_stream, | 
|  | struct aom_internal_error_info *error) { | 
|  | av1_zero(*tpl_info); | 
|  | fread_and_check(&tpl_info->tpl_ready, sizeof(tpl_info->tpl_ready), 1, | 
|  | log_stream, error); | 
|  | if (tpl_info->tpl_ready) { | 
|  | fread_and_check(&tpl_info->gf_length, sizeof(tpl_info->gf_length), 1, | 
|  | log_stream, error); | 
|  | assert(tpl_info->gf_length <= MAX_LENGTH_TPL_FRAME_STATS); | 
|  | fread_and_check(&tpl_info->txfm_stats_list, | 
|  | sizeof(tpl_info->txfm_stats_list[0]), tpl_info->gf_length, | 
|  | log_stream, error); | 
|  | fread_and_check(&tpl_info->qstep_ratio_ls, | 
|  | sizeof(tpl_info->qstep_ratio_ls[0]), tpl_info->gf_length, | 
|  | log_stream, error); | 
|  | fread_and_check(&tpl_info->update_type_list, | 
|  | sizeof(tpl_info->update_type_list[0]), tpl_info->gf_length, | 
|  | log_stream, error); | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_BITRATE_ACCURACY |