|  | /* | 
|  | * Copyright (c) 2016, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <limits.h> | 
|  | #include <math.h> | 
|  | #include <stdio.h> | 
|  | #include <stdlib.h> | 
|  | #include <string.h> | 
|  |  | 
|  | #include "aom_dsp/aom_dsp_common.h" | 
|  | #include "aom_mem/aom_mem.h" | 
|  | #include "aom_ports/mem.h" | 
|  | #include "aom_ports/aom_once.h" | 
|  |  | 
|  | #include "av1/common/alloccommon.h" | 
|  | #include "av1/encoder/aq_cyclicrefresh.h" | 
|  | #include "av1/common/common.h" | 
|  | #include "av1/common/entropymode.h" | 
|  | #include "av1/common/quant_common.h" | 
|  | #include "av1/common/seg_common.h" | 
|  |  | 
|  | #include "av1/encoder/encodemv.h" | 
|  | #include "av1/encoder/encode_strategy.h" | 
|  | #include "av1/encoder/gop_structure.h" | 
|  | #include "av1/encoder/random.h" | 
|  | #include "av1/encoder/ratectrl.h" | 
|  |  | 
|  | #define USE_UNRESTRICTED_Q_IN_CQ_MODE 0 | 
|  |  | 
|  | // Max rate target for 1080P and below encodes under normal circumstances | 
|  | // (1920 * 1080 / (16 * 16)) * MAX_MB_RATE bits per MB | 
|  | #define MAX_MB_RATE 250 | 
|  | #define MAXRATE_1080P 2025000 | 
|  |  | 
|  | #define MIN_BPB_FACTOR 0.005 | 
|  | #define MAX_BPB_FACTOR 50 | 
|  |  | 
|  | #define SUPERRES_QADJ_PER_DENOM_KEYFRAME_SOLO 0 | 
|  | #define SUPERRES_QADJ_PER_DENOM_KEYFRAME 2 | 
|  | #define SUPERRES_QADJ_PER_DENOM_ARFFRAME 0 | 
|  |  | 
|  | #define FRAME_OVERHEAD_BITS 200 | 
|  | #define ASSIGN_MINQ_TABLE(bit_depth, name)                   \ | 
|  | do {                                                       \ | 
|  | switch (bit_depth) {                                     \ | 
|  | case AOM_BITS_8: name = name##_8; break;               \ | 
|  | case AOM_BITS_10: name = name##_10; break;             \ | 
|  | case AOM_BITS_12: name = name##_12; break;             \ | 
|  | default:                                               \ | 
|  | assert(0 &&                                          \ | 
|  | "bit_depth should be AOM_BITS_8, AOM_BITS_10" \ | 
|  | " or AOM_BITS_12");                           \ | 
|  | name = NULL;                                         \ | 
|  | }                                                        \ | 
|  | } while (0) | 
|  |  | 
|  | // Tables relating active max Q to active min Q | 
|  | static int kf_low_motion_minq_8[QINDEX_RANGE]; | 
|  | static int kf_high_motion_minq_8[QINDEX_RANGE]; | 
|  | static int arfgf_low_motion_minq_8[QINDEX_RANGE]; | 
|  | static int arfgf_high_motion_minq_8[QINDEX_RANGE]; | 
|  | static int inter_minq_8[QINDEX_RANGE]; | 
|  | static int rtc_minq_8[QINDEX_RANGE]; | 
|  |  | 
|  | static int kf_low_motion_minq_10[QINDEX_RANGE]; | 
|  | static int kf_high_motion_minq_10[QINDEX_RANGE]; | 
|  | static int arfgf_low_motion_minq_10[QINDEX_RANGE]; | 
|  | static int arfgf_high_motion_minq_10[QINDEX_RANGE]; | 
|  | static int inter_minq_10[QINDEX_RANGE]; | 
|  | static int rtc_minq_10[QINDEX_RANGE]; | 
|  | static int kf_low_motion_minq_12[QINDEX_RANGE]; | 
|  | static int kf_high_motion_minq_12[QINDEX_RANGE]; | 
|  | static int arfgf_low_motion_minq_12[QINDEX_RANGE]; | 
|  | static int arfgf_high_motion_minq_12[QINDEX_RANGE]; | 
|  | static int inter_minq_12[QINDEX_RANGE]; | 
|  | static int rtc_minq_12[QINDEX_RANGE]; | 
|  |  | 
|  | static int gf_high = 2400; | 
|  | static int gf_low = 300; | 
|  | #ifdef STRICT_RC | 
|  | static int kf_high = 3200; | 
|  | #else | 
|  | static int kf_high = 5000; | 
|  | #endif | 
|  | static int kf_low = 400; | 
|  |  | 
|  | // How many times less pixels there are to encode given the current scaling. | 
|  | // Temporary replacement for rcf_mult and rate_thresh_mult. | 
|  | static double resize_rate_factor(const FrameDimensionCfg *const frm_dim_cfg, | 
|  | int width, int height) { | 
|  | return (double)(frm_dim_cfg->width * frm_dim_cfg->height) / (width * height); | 
|  | } | 
|  |  | 
|  | // Functions to compute the active minq lookup table entries based on a | 
|  | // formulaic approach to facilitate easier adjustment of the Q tables. | 
|  | // The formulae were derived from computing a 3rd order polynomial best | 
|  | // fit to the original data (after plotting real maxq vs minq (not q index)) | 
|  | static int get_minq_index(double maxq, double x3, double x2, double x1, | 
|  | aom_bit_depth_t bit_depth) { | 
|  | const double minqtarget = AOMMIN(((x3 * maxq + x2) * maxq + x1) * maxq, maxq); | 
|  |  | 
|  | // Special case handling to deal with the step from q2.0 | 
|  | // down to lossless mode represented by q 1.0. | 
|  | if (minqtarget <= 2.0) return 0; | 
|  |  | 
|  | return av1_find_qindex(minqtarget, bit_depth, 0, QINDEX_RANGE - 1); | 
|  | } | 
|  |  | 
|  | static void init_minq_luts(int *kf_low_m, int *kf_high_m, int *arfgf_low, | 
|  | int *arfgf_high, int *inter, int *rtc, | 
|  | aom_bit_depth_t bit_depth) { | 
|  | int i; | 
|  | for (i = 0; i < QINDEX_RANGE; i++) { | 
|  | const double maxq = av1_convert_qindex_to_q(i, bit_depth); | 
|  | kf_low_m[i] = get_minq_index(maxq, 0.000001, -0.0004, 0.150, bit_depth); | 
|  | kf_high_m[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.45, bit_depth); | 
|  | arfgf_low[i] = get_minq_index(maxq, 0.0000015, -0.0009, 0.30, bit_depth); | 
|  | arfgf_high[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.55, bit_depth); | 
|  | inter[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.90, bit_depth); | 
|  | rtc[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.70, bit_depth); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void rc_init_minq_luts(void) { | 
|  | init_minq_luts(kf_low_motion_minq_8, kf_high_motion_minq_8, | 
|  | arfgf_low_motion_minq_8, arfgf_high_motion_minq_8, | 
|  | inter_minq_8, rtc_minq_8, AOM_BITS_8); | 
|  | init_minq_luts(kf_low_motion_minq_10, kf_high_motion_minq_10, | 
|  | arfgf_low_motion_minq_10, arfgf_high_motion_minq_10, | 
|  | inter_minq_10, rtc_minq_10, AOM_BITS_10); | 
|  | init_minq_luts(kf_low_motion_minq_12, kf_high_motion_minq_12, | 
|  | arfgf_low_motion_minq_12, arfgf_high_motion_minq_12, | 
|  | inter_minq_12, rtc_minq_12, AOM_BITS_12); | 
|  | } | 
|  |  | 
|  | void av1_rc_init_minq_luts(void) { aom_once(rc_init_minq_luts); } | 
|  |  | 
|  | // These functions use formulaic calculations to make playing with the | 
|  | // quantizer tables easier. If necessary they can be replaced by lookup | 
|  | // tables if and when things settle down in the experimental bitstream | 
|  | double av1_convert_qindex_to_q(int qindex, aom_bit_depth_t bit_depth) { | 
|  | // Convert the index to a real Q value (scaled down to match old Q values) | 
|  | switch (bit_depth) { | 
|  | case AOM_BITS_8: return av1_ac_quant_QTX(qindex, 0, bit_depth) / 4.0; | 
|  | case AOM_BITS_10: return av1_ac_quant_QTX(qindex, 0, bit_depth) / 16.0; | 
|  | case AOM_BITS_12: return av1_ac_quant_QTX(qindex, 0, bit_depth) / 64.0; | 
|  | default: | 
|  | assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12"); | 
|  | return -1.0; | 
|  | } | 
|  | } | 
|  |  | 
|  | int av1_rc_bits_per_mb(FRAME_TYPE frame_type, int qindex, | 
|  | double correction_factor, aom_bit_depth_t bit_depth, | 
|  | const int is_screen_content_type) { | 
|  | const double q = av1_convert_qindex_to_q(qindex, bit_depth); | 
|  | int enumerator = frame_type == KEY_FRAME ? 2000000 : 1500000; | 
|  | if (is_screen_content_type) { | 
|  | enumerator = frame_type == KEY_FRAME ? 1000000 : 750000; | 
|  | } | 
|  |  | 
|  | assert(correction_factor <= MAX_BPB_FACTOR && | 
|  | correction_factor >= MIN_BPB_FACTOR); | 
|  |  | 
|  | // q based adjustment to baseline enumerator | 
|  | return (int)(enumerator * correction_factor / q); | 
|  | } | 
|  |  | 
|  | int av1_estimate_bits_at_q(FRAME_TYPE frame_type, int q, int mbs, | 
|  | double correction_factor, aom_bit_depth_t bit_depth, | 
|  | const int is_screen_content_type) { | 
|  | const int bpm = (int)(av1_rc_bits_per_mb(frame_type, q, correction_factor, | 
|  | bit_depth, is_screen_content_type)); | 
|  | return AOMMAX(FRAME_OVERHEAD_BITS, | 
|  | (int)((uint64_t)bpm * mbs) >> BPER_MB_NORMBITS); | 
|  | } | 
|  |  | 
|  | int av1_rc_clamp_pframe_target_size(const AV1_COMP *const cpi, int target, | 
|  | FRAME_UPDATE_TYPE frame_update_type) { | 
|  | const RATE_CONTROL *rc = &cpi->rc; | 
|  | const AV1EncoderConfig *oxcf = &cpi->oxcf; | 
|  | const int min_frame_target = | 
|  | AOMMAX(rc->min_frame_bandwidth, rc->avg_frame_bandwidth >> 5); | 
|  | // Clip the frame target to the minimum setup value. | 
|  | if (frame_update_type == OVERLAY_UPDATE || | 
|  | frame_update_type == INTNL_OVERLAY_UPDATE) { | 
|  | // If there is an active ARF at this location use the minimum | 
|  | // bits on this frame even if it is a constructed arf. | 
|  | // The active maximum quantizer insures that an appropriate | 
|  | // number of bits will be spent if needed for constructed ARFs. | 
|  | target = min_frame_target; | 
|  | } else if (target < min_frame_target) { | 
|  | target = min_frame_target; | 
|  | } | 
|  |  | 
|  | // Clip the frame target to the maximum allowed value. | 
|  | if (target > rc->max_frame_bandwidth) target = rc->max_frame_bandwidth; | 
|  | if (oxcf->rc_cfg.max_inter_bitrate_pct) { | 
|  | const int max_rate = | 
|  | rc->avg_frame_bandwidth * oxcf->rc_cfg.max_inter_bitrate_pct / 100; | 
|  | target = AOMMIN(target, max_rate); | 
|  | } | 
|  |  | 
|  | return target; | 
|  | } | 
|  |  | 
|  | int av1_rc_clamp_iframe_target_size(const AV1_COMP *const cpi, int64_t target) { | 
|  | const RATE_CONTROL *rc = &cpi->rc; | 
|  | const RateControlCfg *const rc_cfg = &cpi->oxcf.rc_cfg; | 
|  | if (rc_cfg->max_intra_bitrate_pct) { | 
|  | const int64_t max_rate = | 
|  | (int64_t)rc->avg_frame_bandwidth * rc_cfg->max_intra_bitrate_pct / 100; | 
|  | target = AOMMIN(target, max_rate); | 
|  | } | 
|  | if (target > rc->max_frame_bandwidth) target = rc->max_frame_bandwidth; | 
|  | return (int)target; | 
|  | } | 
|  |  | 
|  | // Update the buffer level for higher temporal layers, given the encoded current | 
|  | // temporal layer. | 
|  | static void update_layer_buffer_level(SVC *svc, int encoded_frame_size) { | 
|  | const int current_temporal_layer = svc->temporal_layer_id; | 
|  | for (int i = current_temporal_layer + 1; i < svc->number_temporal_layers; | 
|  | ++i) { | 
|  | const int layer = | 
|  | LAYER_IDS_TO_IDX(svc->spatial_layer_id, i, svc->number_temporal_layers); | 
|  | LAYER_CONTEXT *lc = &svc->layer_context[layer]; | 
|  | PRIMARY_RATE_CONTROL *lp_rc = &lc->p_rc; | 
|  | lp_rc->bits_off_target += | 
|  | (int)round(lc->target_bandwidth / lc->framerate) - encoded_frame_size; | 
|  | // Clip buffer level to maximum buffer size for the layer. | 
|  | lp_rc->bits_off_target = | 
|  | AOMMIN(lp_rc->bits_off_target, lp_rc->maximum_buffer_size); | 
|  | lp_rc->buffer_level = lp_rc->bits_off_target; | 
|  | } | 
|  | } | 
|  | // Update the buffer level: leaky bucket model. | 
|  | static void update_buffer_level(AV1_COMP *cpi, int encoded_frame_size) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; | 
|  |  | 
|  | // Non-viewable frames are a special case and are treated as pure overhead. | 
|  | if (!cm->show_frame) | 
|  | p_rc->bits_off_target -= encoded_frame_size; | 
|  | else | 
|  | p_rc->bits_off_target += rc->avg_frame_bandwidth - encoded_frame_size; | 
|  |  | 
|  | // Clip the buffer level to the maximum specified buffer size. | 
|  | p_rc->bits_off_target = | 
|  | AOMMIN(p_rc->bits_off_target, p_rc->maximum_buffer_size); | 
|  | // For screen-content mode: don't let buffel level go below threshold, | 
|  | // given here as -rc->maximum_ buffer_size, to allow buffer to come back | 
|  | // up sooner after slide change with big oveshoot. | 
|  | if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN) | 
|  | p_rc->bits_off_target = | 
|  | AOMMAX(p_rc->bits_off_target, -p_rc->maximum_buffer_size); | 
|  | p_rc->buffer_level = p_rc->bits_off_target; | 
|  |  | 
|  | if (cpi->ppi->use_svc) | 
|  | update_layer_buffer_level(&cpi->svc, encoded_frame_size); | 
|  |  | 
|  | #if CONFIG_FRAME_PARALLEL_ENCODE && CONFIG_FPMT_TEST | 
|  | /* The variable temp_buffer_level is introduced for quality | 
|  | * simulation purpose, it retains the value previous to the parallel | 
|  | * encode frames. The variable is updated based on the update flag. | 
|  | * | 
|  | * If there exist show_existing_frames between parallel frames, then to | 
|  | * retain the temp state do not update it. */ | 
|  | int show_existing_between_parallel_frames = | 
|  | (cpi->ppi->gf_group.update_type[cpi->gf_frame_index] == | 
|  | INTNL_OVERLAY_UPDATE && | 
|  | cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index + 1] == 2); | 
|  |  | 
|  | if (cpi->do_frame_data_update && !show_existing_between_parallel_frames && | 
|  | cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) { | 
|  | p_rc->temp_buffer_level = p_rc->buffer_level; | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | int av1_rc_get_default_min_gf_interval(int width, int height, | 
|  | double framerate) { | 
|  | // Assume we do not need any constraint lower than 4K 20 fps | 
|  | static const double factor_safe = 3840 * 2160 * 20.0; | 
|  | const double factor = width * height * framerate; | 
|  | const int default_interval = | 
|  | clamp((int)(framerate * 0.125), MIN_GF_INTERVAL, MAX_GF_INTERVAL); | 
|  |  | 
|  | if (factor <= factor_safe) | 
|  | return default_interval; | 
|  | else | 
|  | return AOMMAX(default_interval, | 
|  | (int)(MIN_GF_INTERVAL * factor / factor_safe + 0.5)); | 
|  | // Note this logic makes: | 
|  | // 4K24: 5 | 
|  | // 4K30: 6 | 
|  | // 4K60: 12 | 
|  | } | 
|  |  | 
|  | int av1_rc_get_default_max_gf_interval(double framerate, int min_gf_interval) { | 
|  | int interval = AOMMIN(MAX_GF_INTERVAL, (int)(framerate * 0.75)); | 
|  | interval += (interval & 0x01);  // Round to even value | 
|  | interval = AOMMAX(MAX_GF_INTERVAL, interval); | 
|  | return AOMMAX(interval, min_gf_interval); | 
|  | } | 
|  |  | 
|  | void av1_primary_rc_init(const AV1EncoderConfig *oxcf, | 
|  | PRIMARY_RATE_CONTROL *p_rc) { | 
|  | const RateControlCfg *const rc_cfg = &oxcf->rc_cfg; | 
|  |  | 
|  | int worst_allowed_q = rc_cfg->worst_allowed_q; | 
|  |  | 
|  | int min_gf_interval = oxcf->gf_cfg.min_gf_interval; | 
|  | int max_gf_interval = oxcf->gf_cfg.max_gf_interval; | 
|  | if (min_gf_interval == 0) | 
|  | min_gf_interval = av1_rc_get_default_min_gf_interval( | 
|  | oxcf->frm_dim_cfg.width, oxcf->frm_dim_cfg.height, | 
|  | oxcf->input_cfg.init_framerate); | 
|  | if (max_gf_interval == 0) | 
|  | max_gf_interval = av1_rc_get_default_max_gf_interval( | 
|  | oxcf->input_cfg.init_framerate, min_gf_interval); | 
|  | p_rc->baseline_gf_interval = (min_gf_interval + max_gf_interval) / 2; | 
|  | p_rc->this_key_frame_forced = 0; | 
|  | p_rc->next_key_frame_forced = 0; | 
|  | p_rc->ni_frames = 0; | 
|  |  | 
|  | p_rc->tot_q = 0.0; | 
|  | p_rc->total_actual_bits = 0; | 
|  | p_rc->total_target_bits = 0; | 
|  | p_rc->buffer_level = p_rc->starting_buffer_level; | 
|  |  | 
|  | if (oxcf->target_seq_level_idx[0] < SEQ_LEVELS) { | 
|  | worst_allowed_q = 255; | 
|  | } | 
|  | if (oxcf->pass == AOM_RC_ONE_PASS && rc_cfg->mode == AOM_CBR) { | 
|  | p_rc->avg_frame_qindex[KEY_FRAME] = worst_allowed_q; | 
|  | p_rc->avg_frame_qindex[INTER_FRAME] = worst_allowed_q; | 
|  | } else { | 
|  | p_rc->avg_frame_qindex[KEY_FRAME] = | 
|  | (worst_allowed_q + rc_cfg->best_allowed_q) / 2; | 
|  | p_rc->avg_frame_qindex[INTER_FRAME] = | 
|  | (worst_allowed_q + rc_cfg->best_allowed_q) / 2; | 
|  | } | 
|  | p_rc->avg_q = av1_convert_qindex_to_q(rc_cfg->worst_allowed_q, | 
|  | oxcf->tool_cfg.bit_depth); | 
|  | p_rc->last_q[KEY_FRAME] = rc_cfg->best_allowed_q; | 
|  | p_rc->last_q[INTER_FRAME] = rc_cfg->worst_allowed_q; | 
|  |  | 
|  | for (int i = 0; i < RATE_FACTOR_LEVELS; ++i) { | 
|  | p_rc->rate_correction_factors[i] = 0.7; | 
|  | } | 
|  | p_rc->rate_correction_factors[KF_STD] = 1.0; | 
|  | p_rc->bits_off_target = p_rc->starting_buffer_level; | 
|  |  | 
|  | p_rc->rolling_target_bits = | 
|  | (int)(oxcf->rc_cfg.target_bandwidth / oxcf->input_cfg.init_framerate); | 
|  | p_rc->rolling_actual_bits = | 
|  | (int)(oxcf->rc_cfg.target_bandwidth / oxcf->input_cfg.init_framerate); | 
|  | } | 
|  |  | 
|  | void av1_rc_init(const AV1EncoderConfig *oxcf, RATE_CONTROL *rc) { | 
|  | const RateControlCfg *const rc_cfg = &oxcf->rc_cfg; | 
|  |  | 
|  | rc->frames_since_key = 8;  // Sensible default for first frame. | 
|  |  | 
|  | rc->frames_till_gf_update_due = 0; | 
|  | rc->ni_av_qi = rc_cfg->worst_allowed_q; | 
|  | rc->ni_tot_qi = 0; | 
|  |  | 
|  | rc->min_gf_interval = oxcf->gf_cfg.min_gf_interval; | 
|  | rc->max_gf_interval = oxcf->gf_cfg.max_gf_interval; | 
|  | if (rc->min_gf_interval == 0) | 
|  | rc->min_gf_interval = av1_rc_get_default_min_gf_interval( | 
|  | oxcf->frm_dim_cfg.width, oxcf->frm_dim_cfg.height, | 
|  | oxcf->input_cfg.init_framerate); | 
|  | if (rc->max_gf_interval == 0) | 
|  | rc->max_gf_interval = av1_rc_get_default_max_gf_interval( | 
|  | oxcf->input_cfg.init_framerate, rc->min_gf_interval); | 
|  | rc->avg_frame_low_motion = 0; | 
|  |  | 
|  | rc->resize_state = ORIG; | 
|  | rc->resize_avg_qp = 0; | 
|  | rc->resize_buffer_underflow = 0; | 
|  | rc->resize_count = 0; | 
|  | rc->rtc_external_ratectrl = 0; | 
|  | rc->frame_level_fast_extra_bits = 0; | 
|  | } | 
|  |  | 
|  | int av1_rc_drop_frame(AV1_COMP *cpi) { | 
|  | const AV1EncoderConfig *oxcf = &cpi->oxcf; | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; | 
|  | #if CONFIG_FRAME_PARALLEL_ENCODE && CONFIG_FPMT_TEST | 
|  | const int simulate_parallel_frame = | 
|  | cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 && | 
|  | cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE; | 
|  | int64_t buffer_level = | 
|  | simulate_parallel_frame ? p_rc->temp_buffer_level : p_rc->buffer_level; | 
|  | #else | 
|  | int64_t buffer_level = p_rc->buffer_level; | 
|  | #endif | 
|  |  | 
|  | if (!oxcf->rc_cfg.drop_frames_water_mark) { | 
|  | return 0; | 
|  | } else { | 
|  | if (buffer_level < 0) { | 
|  | // Always drop if buffer is below 0. | 
|  | return 1; | 
|  | } else { | 
|  | // If buffer is below drop_mark, for now just drop every other frame | 
|  | // (starting with the next frame) until it increases back over drop_mark. | 
|  | int drop_mark = (int)(oxcf->rc_cfg.drop_frames_water_mark * | 
|  | p_rc->optimal_buffer_level / 100); | 
|  | if ((buffer_level > drop_mark) && (rc->decimation_factor > 0)) { | 
|  | --rc->decimation_factor; | 
|  | } else if (buffer_level <= drop_mark && rc->decimation_factor == 0) { | 
|  | rc->decimation_factor = 1; | 
|  | } | 
|  | if (rc->decimation_factor > 0) { | 
|  | if (rc->decimation_count > 0) { | 
|  | --rc->decimation_count; | 
|  | return 1; | 
|  | } else { | 
|  | rc->decimation_count = rc->decimation_factor; | 
|  | return 0; | 
|  | } | 
|  | } else { | 
|  | rc->decimation_count = 0; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int adjust_q_cbr(const AV1_COMP *cpi, int q, int active_worst_quality) { | 
|  | const RATE_CONTROL *const rc = &cpi->rc; | 
|  | const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame; | 
|  | const int max_delta_down = | 
|  | (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN) ? 8 : 16; | 
|  | const int max_delta_up = 20; | 
|  | const int change_avg_frame_bandwidth = | 
|  | abs(rc->avg_frame_bandwidth - rc->prev_avg_frame_bandwidth) > | 
|  | 0.1 * (rc->avg_frame_bandwidth); | 
|  | // If resolution changes or avg_frame_bandwidth significantly changed, | 
|  | // then set this flag to indicate change in target bits per macroblock. | 
|  | const int change_target_bits_mb = | 
|  | cm->prev_frame && | 
|  | (cm->width != cm->prev_frame->width || | 
|  | cm->height != cm->prev_frame->height || change_avg_frame_bandwidth); | 
|  | // Apply some control/clamp to QP under certain conditions. | 
|  | if (cm->current_frame.frame_type != KEY_FRAME && !cpi->ppi->use_svc && | 
|  | rc->frames_since_key > 1 && !change_target_bits_mb && | 
|  | (!cpi->oxcf.rc_cfg.gf_cbr_boost_pct || | 
|  | !(refresh_frame->alt_ref_frame || refresh_frame->golden_frame))) { | 
|  | // Make sure q is between oscillating Qs to prevent resonance. | 
|  | if (rc->rc_1_frame * rc->rc_2_frame == -1 && | 
|  | rc->q_1_frame != rc->q_2_frame) { | 
|  | int qclamp = clamp(q, AOMMIN(rc->q_1_frame, rc->q_2_frame), | 
|  | AOMMAX(rc->q_1_frame, rc->q_2_frame)); | 
|  | // If the previous frame had overshoot and the current q needs to | 
|  | // increase above the clamped value, reduce the clamp for faster reaction | 
|  | // to overshoot. | 
|  | if (cpi->rc.rc_1_frame == -1 && q > qclamp && rc->frames_since_key > 10) | 
|  | q = (q + qclamp) >> 1; | 
|  | else | 
|  | q = qclamp; | 
|  | } | 
|  | // Adjust Q base on source content change from scene detection. | 
|  | if (cpi->sf.rt_sf.check_scene_detection && rc->prev_avg_source_sad > 0 && | 
|  | rc->frames_since_key > 10 && rc->frame_source_sad > 0 && | 
|  | !cpi->ppi->use_svc) { | 
|  | const int bit_depth = cm->seq_params->bit_depth; | 
|  | double delta = | 
|  | (double)rc->avg_source_sad / (double)rc->prev_avg_source_sad - 1.0; | 
|  | // Push Q downwards if content change is decreasing and buffer level | 
|  | // is stable (at least 1/4-optimal level), so not overshooting. Do so | 
|  | // only for high Q to avoid excess overshoot. | 
|  | // Else reduce decrease in Q from previous frame if content change is | 
|  | // increasing and buffer is below max (so not undershooting). | 
|  | if (delta < 0.0 && | 
|  | p_rc->buffer_level > (p_rc->optimal_buffer_level >> 2) && | 
|  | q > (rc->worst_quality >> 1)) { | 
|  | double q_adj_factor = 1.0 + 0.5 * tanh(4.0 * delta); | 
|  | double q_val = av1_convert_qindex_to_q(q, bit_depth); | 
|  | q += av1_compute_qdelta(rc, q_val, q_val * q_adj_factor, bit_depth); | 
|  | } else if (rc->q_1_frame - q > 0 && delta > 0.1 && | 
|  | p_rc->buffer_level < AOMMIN(p_rc->maximum_buffer_size, | 
|  | p_rc->optimal_buffer_level << 1)) { | 
|  | q = (3 * q + rc->q_1_frame) >> 2; | 
|  | } | 
|  | } | 
|  | // Limit the decrease in Q from previous frame. | 
|  | if (rc->q_1_frame - q > max_delta_down) q = rc->q_1_frame - max_delta_down; | 
|  | // Limit the increase in Q from previous frame. | 
|  | else if (q - rc->q_1_frame > max_delta_up && | 
|  | cpi->oxcf.tune_cfg.content != AOM_CONTENT_SCREEN) | 
|  | q = rc->q_1_frame + max_delta_up; | 
|  | } | 
|  | // For single spatial layer: if resolution has increased push q closer | 
|  | // to the active_worst to avoid excess overshoot. | 
|  | if (cpi->svc.number_spatial_layers <= 1 && cm->prev_frame && | 
|  | (cm->width * cm->height > | 
|  | 1.5 * cm->prev_frame->width * cm->prev_frame->height)) | 
|  | q = (q + active_worst_quality) >> 1; | 
|  | return AOMMAX(AOMMIN(q, cpi->rc.worst_quality), cpi->rc.best_quality); | 
|  | } | 
|  |  | 
|  | static const RATE_FACTOR_LEVEL rate_factor_levels[FRAME_UPDATE_TYPES] = { | 
|  | KF_STD,        // KF_UPDATE | 
|  | INTER_NORMAL,  // LF_UPDATE | 
|  | GF_ARF_STD,    // GF_UPDATE | 
|  | GF_ARF_STD,    // ARF_UPDATE | 
|  | INTER_NORMAL,  // OVERLAY_UPDATE | 
|  | INTER_NORMAL,  // INTNL_OVERLAY_UPDATE | 
|  | GF_ARF_LOW,    // INTNL_ARF_UPDATE | 
|  | }; | 
|  |  | 
|  | static RATE_FACTOR_LEVEL get_rate_factor_level(const GF_GROUP *const gf_group, | 
|  | int gf_frame_index) { | 
|  | const FRAME_UPDATE_TYPE update_type = gf_group->update_type[gf_frame_index]; | 
|  | assert(update_type < FRAME_UPDATE_TYPES); | 
|  | return rate_factor_levels[update_type]; | 
|  | } | 
|  |  | 
|  | /*!\brief Gets a rate vs Q correction factor | 
|  | * | 
|  | * This function returns the current value of a correction factor used to | 
|  | * dynamilcally adjust the relationship between Q and the expected number | 
|  | * of bits for the frame. | 
|  | * | 
|  | * \ingroup rate_control | 
|  | * \param[in]   cpi                   Top level encoder instance structure | 
|  | * \param[in]   width                 Frame width | 
|  | * \param[in]   height                Frame height | 
|  | * | 
|  | * \return Returns a correction factor for the current frame | 
|  | */ | 
|  | static double get_rate_correction_factor(const AV1_COMP *cpi, int width, | 
|  | int height) { | 
|  | const RATE_CONTROL *const rc = &cpi->rc; | 
|  | const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; | 
|  | const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame; | 
|  | double rcf; | 
|  | double rate_correction_factors_kfstd; | 
|  | double rate_correction_factors_gfarfstd; | 
|  | double rate_correction_factors_internormal; | 
|  | #if CONFIG_FRAME_PARALLEL_ENCODE | 
|  | rate_correction_factors_kfstd = | 
|  | (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) | 
|  | ? rc->frame_level_rate_correction_factors[KF_STD] | 
|  | : p_rc->rate_correction_factors[KF_STD]; | 
|  | rate_correction_factors_gfarfstd = | 
|  | (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) | 
|  | ? rc->frame_level_rate_correction_factors[GF_ARF_STD] | 
|  | : p_rc->rate_correction_factors[GF_ARF_STD]; | 
|  | rate_correction_factors_internormal = | 
|  | (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) | 
|  | ? rc->frame_level_rate_correction_factors[INTER_NORMAL] | 
|  | : p_rc->rate_correction_factors[INTER_NORMAL]; | 
|  | #else | 
|  | rate_correction_factors_kfstd = p_rc->rate_correction_factors[KF_STD]; | 
|  | rate_correction_factors_gfarfstd = p_rc->rate_correction_factors[GF_ARF_STD]; | 
|  | rate_correction_factors_internormal = | 
|  | p_rc->rate_correction_factors[INTER_NORMAL]; | 
|  | #endif | 
|  |  | 
|  | if (cpi->common.current_frame.frame_type == KEY_FRAME) { | 
|  | rcf = rate_correction_factors_kfstd; | 
|  | } else if (is_stat_consumption_stage(cpi)) { | 
|  | const RATE_FACTOR_LEVEL rf_lvl = | 
|  | get_rate_factor_level(&cpi->ppi->gf_group, cpi->gf_frame_index); | 
|  | double rate_correction_factors_rflvl; | 
|  | #if CONFIG_FRAME_PARALLEL_ENCODE | 
|  | rate_correction_factors_rflvl = | 
|  | (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) | 
|  | ? rc->frame_level_rate_correction_factors[rf_lvl] | 
|  | : p_rc->rate_correction_factors[rf_lvl]; | 
|  | #else | 
|  | rate_correction_factors_rflvl = p_rc->rate_correction_factors[rf_lvl]; | 
|  | #endif | 
|  | rcf = rate_correction_factors_rflvl; | 
|  | } else { | 
|  | if ((refresh_frame->alt_ref_frame || refresh_frame->golden_frame) && | 
|  | !rc->is_src_frame_alt_ref && !cpi->ppi->use_svc && | 
|  | (cpi->oxcf.rc_cfg.mode != AOM_CBR || | 
|  | cpi->oxcf.rc_cfg.gf_cbr_boost_pct > 20)) | 
|  | rcf = rate_correction_factors_gfarfstd; | 
|  | else | 
|  | rcf = rate_correction_factors_internormal; | 
|  | } | 
|  | rcf *= resize_rate_factor(&cpi->oxcf.frm_dim_cfg, width, height); | 
|  | return fclamp(rcf, MIN_BPB_FACTOR, MAX_BPB_FACTOR); | 
|  | } | 
|  |  | 
|  | /*!\brief Sets a rate vs Q correction factor | 
|  | * | 
|  | * This function updates the current value of a correction factor used to | 
|  | * dynamilcally adjust the relationship between Q and the expected number | 
|  | * of bits for the frame. | 
|  | * | 
|  | * \ingroup rate_control | 
|  | * \param[in]   cpi                   Top level encoder instance structure | 
|  | * \param[in]   is_encode_stage       Indicates if recode loop or post-encode | 
|  | * \param[in]   factor                New correction factor | 
|  | * \param[in]   width                 Frame width | 
|  | * \param[in]   height                Frame height | 
|  | * | 
|  | * \return None but updates the rate correction factor for the | 
|  | *         current frame type in cpi->rc. | 
|  | */ | 
|  | static void set_rate_correction_factor(AV1_COMP *cpi, int is_encode_stage, | 
|  | double factor, int width, int height) { | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; | 
|  | const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame; | 
|  | #if !CONFIG_FRAME_PARALLEL_ENCODE | 
|  | (void)is_encode_stage; | 
|  | #endif | 
|  | int update_default_rcf = 1; | 
|  | // Normalize RCF to account for the size-dependent scaling factor. | 
|  | factor /= resize_rate_factor(&cpi->oxcf.frm_dim_cfg, width, height); | 
|  |  | 
|  | factor = fclamp(factor, MIN_BPB_FACTOR, MAX_BPB_FACTOR); | 
|  |  | 
|  | if (cpi->common.current_frame.frame_type == KEY_FRAME) { | 
|  | p_rc->rate_correction_factors[KF_STD] = factor; | 
|  | } else if (is_stat_consumption_stage(cpi)) { | 
|  | const RATE_FACTOR_LEVEL rf_lvl = | 
|  | get_rate_factor_level(&cpi->ppi->gf_group, cpi->gf_frame_index); | 
|  | #if CONFIG_FRAME_PARALLEL_ENCODE | 
|  | if (is_encode_stage && | 
|  | cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) { | 
|  | rc->frame_level_rate_correction_factors[rf_lvl] = factor; | 
|  | update_default_rcf = 0; | 
|  | } | 
|  | #endif | 
|  | if (update_default_rcf) p_rc->rate_correction_factors[rf_lvl] = factor; | 
|  | } else { | 
|  | if ((refresh_frame->alt_ref_frame || refresh_frame->golden_frame) && | 
|  | !rc->is_src_frame_alt_ref && !cpi->ppi->use_svc && | 
|  | (cpi->oxcf.rc_cfg.mode != AOM_CBR || | 
|  | cpi->oxcf.rc_cfg.gf_cbr_boost_pct > 20)) { | 
|  | p_rc->rate_correction_factors[GF_ARF_STD] = factor; | 
|  | } else { | 
|  | #if CONFIG_FRAME_PARALLEL_ENCODE | 
|  | if (is_encode_stage && | 
|  | cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) { | 
|  | rc->frame_level_rate_correction_factors[INTER_NORMAL] = factor; | 
|  | update_default_rcf = 0; | 
|  | } | 
|  | #endif | 
|  | if (update_default_rcf) | 
|  | p_rc->rate_correction_factors[INTER_NORMAL] = factor; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_rc_update_rate_correction_factors(AV1_COMP *cpi, int is_encode_stage, | 
|  | int width, int height) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | int correction_factor = 100; | 
|  | double rate_correction_factor = | 
|  | get_rate_correction_factor(cpi, width, height); | 
|  | double adjustment_limit; | 
|  | const int MBs = av1_get_MBs(width, height); | 
|  |  | 
|  | #if !CONFIG_FRAME_PARALLEL_ENCODE | 
|  | (void)is_encode_stage; | 
|  | #endif | 
|  |  | 
|  | int projected_size_based_on_q = 0; | 
|  |  | 
|  | // Do not update the rate factors for arf overlay frames. | 
|  | if (cpi->rc.is_src_frame_alt_ref) return; | 
|  |  | 
|  | // Clear down mmx registers to allow floating point in what follows | 
|  |  | 
|  | // Work out how big we would have expected the frame to be at this Q given | 
|  | // the current correction factor. | 
|  | // Stay in double to avoid int overflow when values are large | 
|  | if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ && cpi->common.seg.enabled) { | 
|  | projected_size_based_on_q = | 
|  | av1_cyclic_refresh_estimate_bits_at_q(cpi, rate_correction_factor); | 
|  | } else { | 
|  | projected_size_based_on_q = av1_estimate_bits_at_q( | 
|  | cm->current_frame.frame_type, cm->quant_params.base_qindex, MBs, | 
|  | rate_correction_factor, cm->seq_params->bit_depth, | 
|  | cpi->is_screen_content_type); | 
|  | } | 
|  | // Work out a size correction factor. | 
|  | if (projected_size_based_on_q > FRAME_OVERHEAD_BITS) | 
|  | correction_factor = (int)((100 * (int64_t)cpi->rc.projected_frame_size) / | 
|  | projected_size_based_on_q); | 
|  |  | 
|  | // More heavily damped adjustment used if we have been oscillating either side | 
|  | // of target. | 
|  | if (correction_factor > 0) { | 
|  | adjustment_limit = | 
|  | 0.25 + 0.5 * AOMMIN(1, fabs(log10(0.01 * correction_factor))); | 
|  | } else { | 
|  | adjustment_limit = 0.75; | 
|  | } | 
|  |  | 
|  | cpi->rc.q_2_frame = cpi->rc.q_1_frame; | 
|  | cpi->rc.q_1_frame = cm->quant_params.base_qindex; | 
|  | cpi->rc.rc_2_frame = cpi->rc.rc_1_frame; | 
|  | if (correction_factor > 110) | 
|  | cpi->rc.rc_1_frame = -1; | 
|  | else if (correction_factor < 90) | 
|  | cpi->rc.rc_1_frame = 1; | 
|  | else | 
|  | cpi->rc.rc_1_frame = 0; | 
|  |  | 
|  | if (correction_factor > 102) { | 
|  | // We are not already at the worst allowable quality | 
|  | correction_factor = | 
|  | (int)(100 + ((correction_factor - 100) * adjustment_limit)); | 
|  | rate_correction_factor = (rate_correction_factor * correction_factor) / 100; | 
|  | // Keep rate_correction_factor within limits | 
|  | if (rate_correction_factor > MAX_BPB_FACTOR) | 
|  | rate_correction_factor = MAX_BPB_FACTOR; | 
|  | } else if (correction_factor < 99) { | 
|  | // We are not already at the best allowable quality | 
|  | correction_factor = | 
|  | (int)(100 - ((100 - correction_factor) * adjustment_limit)); | 
|  | rate_correction_factor = (rate_correction_factor * correction_factor) / 100; | 
|  |  | 
|  | // Keep rate_correction_factor within limits | 
|  | if (rate_correction_factor < MIN_BPB_FACTOR) | 
|  | rate_correction_factor = MIN_BPB_FACTOR; | 
|  | } | 
|  |  | 
|  | set_rate_correction_factor(cpi, is_encode_stage, rate_correction_factor, | 
|  | width, height); | 
|  | } | 
|  |  | 
|  | // Calculate rate for the given 'q'. | 
|  | static int get_bits_per_mb(const AV1_COMP *cpi, int use_cyclic_refresh, | 
|  | double correction_factor, int q) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | return use_cyclic_refresh | 
|  | ? av1_cyclic_refresh_rc_bits_per_mb(cpi, q, correction_factor) | 
|  | : av1_rc_bits_per_mb(cm->current_frame.frame_type, q, | 
|  | correction_factor, cm->seq_params->bit_depth, | 
|  | cpi->is_screen_content_type); | 
|  | } | 
|  |  | 
|  | /*!\brief Searches for a Q index value predicted to give an average macro | 
|  | * block rate closest to the target value. | 
|  | * | 
|  | * Similar to find_qindex_by_rate() function, but returns a q index with a | 
|  | * rate just above or below the desired rate, depending on which of the two | 
|  | * rates is closer to the desired rate. | 
|  | * Also, respects the selected aq_mode when computing the rate. | 
|  | * | 
|  | * \ingroup rate_control | 
|  | * \param[in]   desired_bits_per_mb   Target bits per mb | 
|  | * \param[in]   cpi                   Top level encoder instance structure | 
|  | * \param[in]   correction_factor     Current Q to rate correction factor | 
|  | * \param[in]   best_qindex           Min allowed Q value. | 
|  | * \param[in]   worst_qindex          Max allowed Q value. | 
|  | * | 
|  | * \return Returns a correction factor for the current frame | 
|  | */ | 
|  | static int find_closest_qindex_by_rate(int desired_bits_per_mb, | 
|  | const AV1_COMP *cpi, | 
|  | double correction_factor, | 
|  | int best_qindex, int worst_qindex) { | 
|  | const int use_cyclic_refresh = cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ && | 
|  | cpi->cyclic_refresh->apply_cyclic_refresh; | 
|  |  | 
|  | // Find 'qindex' based on 'desired_bits_per_mb'. | 
|  | assert(best_qindex <= worst_qindex); | 
|  | int low = best_qindex; | 
|  | int high = worst_qindex; | 
|  | while (low < high) { | 
|  | const int mid = (low + high) >> 1; | 
|  | const int mid_bits_per_mb = | 
|  | get_bits_per_mb(cpi, use_cyclic_refresh, correction_factor, mid); | 
|  | if (mid_bits_per_mb > desired_bits_per_mb) { | 
|  | low = mid + 1; | 
|  | } else { | 
|  | high = mid; | 
|  | } | 
|  | } | 
|  | assert(low == high); | 
|  |  | 
|  | // Calculate rate difference of this q index from the desired rate. | 
|  | const int curr_q = low; | 
|  | const int curr_bits_per_mb = | 
|  | get_bits_per_mb(cpi, use_cyclic_refresh, correction_factor, curr_q); | 
|  | const int curr_bit_diff = (curr_bits_per_mb <= desired_bits_per_mb) | 
|  | ? desired_bits_per_mb - curr_bits_per_mb | 
|  | : INT_MAX; | 
|  | assert((curr_bit_diff != INT_MAX && curr_bit_diff >= 0) || | 
|  | curr_q == worst_qindex); | 
|  |  | 
|  | // Calculate rate difference for previous q index too. | 
|  | const int prev_q = curr_q - 1; | 
|  | int prev_bit_diff; | 
|  | if (curr_bit_diff == INT_MAX || curr_q == best_qindex) { | 
|  | prev_bit_diff = INT_MAX; | 
|  | } else { | 
|  | const int prev_bits_per_mb = | 
|  | get_bits_per_mb(cpi, use_cyclic_refresh, correction_factor, prev_q); | 
|  | assert(prev_bits_per_mb > desired_bits_per_mb); | 
|  | prev_bit_diff = prev_bits_per_mb - desired_bits_per_mb; | 
|  | } | 
|  |  | 
|  | // Pick one of the two q indices, depending on which one has rate closer to | 
|  | // the desired rate. | 
|  | return (curr_bit_diff <= prev_bit_diff) ? curr_q : prev_q; | 
|  | } | 
|  |  | 
|  | int av1_rc_regulate_q(const AV1_COMP *cpi, int target_bits_per_frame, | 
|  | int active_best_quality, int active_worst_quality, | 
|  | int width, int height) { | 
|  | const int MBs = av1_get_MBs(width, height); | 
|  | const double correction_factor = | 
|  | get_rate_correction_factor(cpi, width, height); | 
|  | const int target_bits_per_mb = | 
|  | (int)(((uint64_t)target_bits_per_frame << BPER_MB_NORMBITS) / MBs); | 
|  |  | 
|  | int q = | 
|  | find_closest_qindex_by_rate(target_bits_per_mb, cpi, correction_factor, | 
|  | active_best_quality, active_worst_quality); | 
|  | if (cpi->oxcf.rc_cfg.mode == AOM_CBR && has_no_stats_stage(cpi)) | 
|  | return adjust_q_cbr(cpi, q, active_worst_quality); | 
|  |  | 
|  | return q; | 
|  | } | 
|  |  | 
|  | static int get_active_quality(int q, int gfu_boost, int low, int high, | 
|  | int *low_motion_minq, int *high_motion_minq) { | 
|  | if (gfu_boost > high) { | 
|  | return low_motion_minq[q]; | 
|  | } else if (gfu_boost < low) { | 
|  | return high_motion_minq[q]; | 
|  | } else { | 
|  | const int gap = high - low; | 
|  | const int offset = high - gfu_boost; | 
|  | const int qdiff = high_motion_minq[q] - low_motion_minq[q]; | 
|  | const int adjustment = ((offset * qdiff) + (gap >> 1)) / gap; | 
|  | return low_motion_minq[q] + adjustment; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int get_kf_active_quality(const PRIMARY_RATE_CONTROL *const p_rc, int q, | 
|  | aom_bit_depth_t bit_depth) { | 
|  | int *kf_low_motion_minq; | 
|  | int *kf_high_motion_minq; | 
|  | ASSIGN_MINQ_TABLE(bit_depth, kf_low_motion_minq); | 
|  | ASSIGN_MINQ_TABLE(bit_depth, kf_high_motion_minq); | 
|  | return get_active_quality(q, p_rc->kf_boost, kf_low, kf_high, | 
|  | kf_low_motion_minq, kf_high_motion_minq); | 
|  | } | 
|  |  | 
|  | static int get_gf_active_quality_no_rc(int gfu_boost, int q, | 
|  | aom_bit_depth_t bit_depth) { | 
|  | int *arfgf_low_motion_minq; | 
|  | int *arfgf_high_motion_minq; | 
|  | ASSIGN_MINQ_TABLE(bit_depth, arfgf_low_motion_minq); | 
|  | ASSIGN_MINQ_TABLE(bit_depth, arfgf_high_motion_minq); | 
|  | return get_active_quality(q, gfu_boost, gf_low, gf_high, | 
|  | arfgf_low_motion_minq, arfgf_high_motion_minq); | 
|  | } | 
|  |  | 
|  | static int get_gf_active_quality(const PRIMARY_RATE_CONTROL *const p_rc, int q, | 
|  | aom_bit_depth_t bit_depth) { | 
|  | return get_gf_active_quality_no_rc(p_rc->gfu_boost, q, bit_depth); | 
|  | } | 
|  |  | 
|  | static int get_gf_high_motion_quality(int q, aom_bit_depth_t bit_depth) { | 
|  | int *arfgf_high_motion_minq; | 
|  | ASSIGN_MINQ_TABLE(bit_depth, arfgf_high_motion_minq); | 
|  | return arfgf_high_motion_minq[q]; | 
|  | } | 
|  |  | 
|  | static int calc_active_worst_quality_no_stats_vbr(const AV1_COMP *cpi) { | 
|  | const RATE_CONTROL *const rc = &cpi->rc; | 
|  | const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; | 
|  | const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame; | 
|  | const unsigned int curr_frame = cpi->common.current_frame.frame_number; | 
|  | int active_worst_quality; | 
|  | int last_q_key_frame; | 
|  | int last_q_inter_frame; | 
|  | #if CONFIG_FRAME_PARALLEL_ENCODE && CONFIG_FPMT_TEST | 
|  | const int simulate_parallel_frame = | 
|  | cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 && | 
|  | cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE; | 
|  | last_q_key_frame = simulate_parallel_frame ? p_rc->temp_last_q[KEY_FRAME] | 
|  | : p_rc->last_q[KEY_FRAME]; | 
|  | last_q_inter_frame = simulate_parallel_frame ? p_rc->temp_last_q[INTER_FRAME] | 
|  | : p_rc->last_q[INTER_FRAME]; | 
|  | #else | 
|  | last_q_key_frame = p_rc->last_q[KEY_FRAME]; | 
|  | last_q_inter_frame = p_rc->last_q[INTER_FRAME]; | 
|  | #endif | 
|  |  | 
|  | if (cpi->common.current_frame.frame_type == KEY_FRAME) { | 
|  | active_worst_quality = | 
|  | curr_frame == 0 ? rc->worst_quality : last_q_key_frame * 2; | 
|  | } else { | 
|  | if (!rc->is_src_frame_alt_ref && | 
|  | (refresh_frame->golden_frame || refresh_frame->bwd_ref_frame || | 
|  | refresh_frame->alt_ref_frame)) { | 
|  | active_worst_quality = | 
|  | curr_frame == 1 ? last_q_key_frame * 5 / 4 : last_q_inter_frame; | 
|  | } else { | 
|  | active_worst_quality = | 
|  | curr_frame == 1 ? last_q_key_frame * 2 : last_q_inter_frame * 2; | 
|  | } | 
|  | } | 
|  | return AOMMIN(active_worst_quality, rc->worst_quality); | 
|  | } | 
|  |  | 
|  | // Adjust active_worst_quality level based on buffer level. | 
|  | static int calc_active_worst_quality_no_stats_cbr(const AV1_COMP *cpi) { | 
|  | // Adjust active_worst_quality: If buffer is above the optimal/target level, | 
|  | // bring active_worst_quality down depending on fullness of buffer. | 
|  | // If buffer is below the optimal level, let the active_worst_quality go from | 
|  | // ambient Q (at buffer = optimal level) to worst_quality level | 
|  | // (at buffer = critical level). | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const RATE_CONTROL *rc = &cpi->rc; | 
|  | const PRIMARY_RATE_CONTROL *p_rc = &cpi->ppi->p_rc; | 
|  | const SVC *const svc = &cpi->svc; | 
|  | unsigned int num_frames_weight_key = 5 * cpi->svc.number_temporal_layers; | 
|  | // Buffer level below which we push active_worst to worst_quality. | 
|  | int64_t critical_level = p_rc->optimal_buffer_level >> 3; | 
|  | int64_t buff_lvl_step = 0; | 
|  | int adjustment = 0; | 
|  | int active_worst_quality; | 
|  | int ambient_qp; | 
|  | if (cm->current_frame.frame_type == KEY_FRAME) return rc->worst_quality; | 
|  | // For ambient_qp we use minimum of avg_frame_qindex[KEY_FRAME/INTER_FRAME] | 
|  | // for the first few frames following key frame. These are both initialized | 
|  | // to worst_quality and updated with (3/4, 1/4) average in postencode_update. | 
|  | // So for first few frames following key, the qp of that key frame is weighted | 
|  | // into the active_worst_quality setting. For SVC the key frame should | 
|  | // correspond to layer (0, 0), so use that for layer context. | 
|  | int avg_qindex_key = p_rc->avg_frame_qindex[KEY_FRAME]; | 
|  | if (svc->number_temporal_layers > 1) { | 
|  | int layer = LAYER_IDS_TO_IDX(0, 0, svc->number_temporal_layers); | 
|  | const LAYER_CONTEXT *lc = &svc->layer_context[layer]; | 
|  | const PRIMARY_RATE_CONTROL *const lp_rc = &lc->p_rc; | 
|  | avg_qindex_key = lp_rc->avg_frame_qindex[KEY_FRAME]; | 
|  | if (svc->temporal_layer_id == 0) | 
|  | avg_qindex_key = | 
|  | AOMMIN(lp_rc->avg_frame_qindex[KEY_FRAME], lp_rc->last_q[KEY_FRAME]); | 
|  | } | 
|  | ambient_qp = (cm->current_frame.frame_number < num_frames_weight_key) | 
|  | ? AOMMIN(p_rc->avg_frame_qindex[INTER_FRAME], avg_qindex_key) | 
|  | : p_rc->avg_frame_qindex[INTER_FRAME]; | 
|  | active_worst_quality = AOMMIN(rc->worst_quality, ambient_qp * 5 / 4); | 
|  | if (p_rc->buffer_level > p_rc->optimal_buffer_level) { | 
|  | // Adjust down. | 
|  | // Maximum limit for down adjustment, ~30%. | 
|  | int max_adjustment_down = active_worst_quality / 3; | 
|  | if (max_adjustment_down) { | 
|  | buff_lvl_step = | 
|  | ((p_rc->maximum_buffer_size - p_rc->optimal_buffer_level) / | 
|  | max_adjustment_down); | 
|  | if (buff_lvl_step) | 
|  | adjustment = (int)((p_rc->buffer_level - p_rc->optimal_buffer_level) / | 
|  | buff_lvl_step); | 
|  | active_worst_quality -= adjustment; | 
|  | } | 
|  | } else if (p_rc->buffer_level > critical_level) { | 
|  | // Adjust up from ambient Q. | 
|  | if (critical_level) { | 
|  | buff_lvl_step = (p_rc->optimal_buffer_level - critical_level); | 
|  | if (buff_lvl_step) { | 
|  | adjustment = (int)((rc->worst_quality - ambient_qp) * | 
|  | (p_rc->optimal_buffer_level - p_rc->buffer_level) / | 
|  | buff_lvl_step); | 
|  | } | 
|  | active_worst_quality = ambient_qp + adjustment; | 
|  | } | 
|  | } else { | 
|  | // Set to worst_quality if buffer is below critical level. | 
|  | active_worst_quality = rc->worst_quality; | 
|  | } | 
|  | return active_worst_quality; | 
|  | } | 
|  |  | 
|  | // Calculate the active_best_quality level. | 
|  | static int calc_active_best_quality_no_stats_cbr(const AV1_COMP *cpi, | 
|  | int active_worst_quality, | 
|  | int width, int height) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const RATE_CONTROL *const rc = &cpi->rc; | 
|  | const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; | 
|  | const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame; | 
|  | const CurrentFrame *const current_frame = &cm->current_frame; | 
|  | int *rtc_minq; | 
|  | const int bit_depth = cm->seq_params->bit_depth; | 
|  | int active_best_quality = rc->best_quality; | 
|  | ASSIGN_MINQ_TABLE(bit_depth, rtc_minq); | 
|  |  | 
|  | if (frame_is_intra_only(cm)) { | 
|  | // Handle the special case for key frames forced when we have reached | 
|  | // the maximum key frame interval. Here force the Q to a range | 
|  | // based on the ambient Q to reduce the risk of popping. | 
|  | if (p_rc->this_key_frame_forced) { | 
|  | int qindex = p_rc->last_boosted_qindex; | 
|  | double last_boosted_q = av1_convert_qindex_to_q(qindex, bit_depth); | 
|  | int delta_qindex = av1_compute_qdelta(rc, last_boosted_q, | 
|  | (last_boosted_q * 0.75), bit_depth); | 
|  | active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality); | 
|  | } else if (current_frame->frame_number > 0) { | 
|  | // not first frame of one pass and kf_boost is set | 
|  | double q_adj_factor = 1.0; | 
|  | double q_val; | 
|  | active_best_quality = get_kf_active_quality( | 
|  | p_rc, p_rc->avg_frame_qindex[KEY_FRAME], bit_depth); | 
|  | // Allow somewhat lower kf minq with small image formats. | 
|  | if ((width * height) <= (352 * 288)) { | 
|  | q_adj_factor -= 0.25; | 
|  | } | 
|  | // Convert the adjustment factor to a qindex delta | 
|  | // on active_best_quality. | 
|  | q_val = av1_convert_qindex_to_q(active_best_quality, bit_depth); | 
|  | active_best_quality += | 
|  | av1_compute_qdelta(rc, q_val, q_val * q_adj_factor, bit_depth); | 
|  | } | 
|  | } else if (!rc->is_src_frame_alt_ref && !cpi->ppi->use_svc && | 
|  | cpi->oxcf.rc_cfg.gf_cbr_boost_pct && | 
|  | (refresh_frame->golden_frame || refresh_frame->alt_ref_frame)) { | 
|  | // Use the lower of active_worst_quality and recent | 
|  | // average Q as basis for GF/ARF best Q limit unless last frame was | 
|  | // a key frame. | 
|  | int q = active_worst_quality; | 
|  | if (rc->frames_since_key > 1 && | 
|  | p_rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) { | 
|  | q = p_rc->avg_frame_qindex[INTER_FRAME]; | 
|  | } | 
|  | active_best_quality = get_gf_active_quality(p_rc, q, bit_depth); | 
|  | } else { | 
|  | // Use the lower of active_worst_quality and recent/average Q. | 
|  | FRAME_TYPE frame_type = | 
|  | (current_frame->frame_number > 1) ? INTER_FRAME : KEY_FRAME; | 
|  | if (p_rc->avg_frame_qindex[frame_type] < active_worst_quality) | 
|  | active_best_quality = rtc_minq[p_rc->avg_frame_qindex[frame_type]]; | 
|  | else | 
|  | active_best_quality = rtc_minq[active_worst_quality]; | 
|  | } | 
|  | return active_best_quality; | 
|  | } | 
|  |  | 
|  | /*!\brief Picks q and q bounds given CBR rate control parameters in \c cpi->rc. | 
|  | * | 
|  | * Handles the special case when using: | 
|  | * - Constant bit-rate mode: \c cpi->oxcf.rc_cfg.mode == \ref AOM_CBR, and | 
|  | * - 1-pass encoding without LAP (look-ahead processing), so 1st pass stats are | 
|  | * NOT available. | 
|  | * | 
|  | * \ingroup rate_control | 
|  | * \param[in]       cpi          Top level encoder structure | 
|  | * \param[in]       width        Coded frame width | 
|  | * \param[in]       height       Coded frame height | 
|  | * \param[out]      bottom_index Bottom bound for q index (best quality) | 
|  | * \param[out]      top_index    Top bound for q index (worst quality) | 
|  | * \return Returns selected q index to be used for encoding this frame. | 
|  | */ | 
|  | static int rc_pick_q_and_bounds_no_stats_cbr(const AV1_COMP *cpi, int width, | 
|  | int height, int *bottom_index, | 
|  | int *top_index) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const RATE_CONTROL *const rc = &cpi->rc; | 
|  | const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; | 
|  | const CurrentFrame *const current_frame = &cm->current_frame; | 
|  | int q; | 
|  | const int bit_depth = cm->seq_params->bit_depth; | 
|  | int active_worst_quality = calc_active_worst_quality_no_stats_cbr(cpi); | 
|  | int active_best_quality = calc_active_best_quality_no_stats_cbr( | 
|  | cpi, active_worst_quality, width, height); | 
|  | assert(has_no_stats_stage(cpi)); | 
|  | assert(cpi->oxcf.rc_cfg.mode == AOM_CBR); | 
|  |  | 
|  | // Clip the active best and worst quality values to limits | 
|  | active_best_quality = | 
|  | clamp(active_best_quality, rc->best_quality, rc->worst_quality); | 
|  | active_worst_quality = | 
|  | clamp(active_worst_quality, active_best_quality, rc->worst_quality); | 
|  |  | 
|  | *top_index = active_worst_quality; | 
|  | *bottom_index = active_best_quality; | 
|  |  | 
|  | // Limit Q range for the adaptive loop. | 
|  | if (current_frame->frame_type == KEY_FRAME && !p_rc->this_key_frame_forced && | 
|  | current_frame->frame_number != 0) { | 
|  | int qdelta = 0; | 
|  | qdelta = av1_compute_qdelta_by_rate(&cpi->rc, current_frame->frame_type, | 
|  | active_worst_quality, 2.0, | 
|  | cpi->is_screen_content_type, bit_depth); | 
|  | *top_index = active_worst_quality + qdelta; | 
|  | *top_index = AOMMAX(*top_index, *bottom_index); | 
|  | } | 
|  |  | 
|  | // Special case code to try and match quality with forced key frames | 
|  | if (current_frame->frame_type == KEY_FRAME && p_rc->this_key_frame_forced) { | 
|  | q = p_rc->last_boosted_qindex; | 
|  | } else { | 
|  | q = av1_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality, | 
|  | active_worst_quality, width, height); | 
|  | if (q > *top_index) { | 
|  | // Special case when we are targeting the max allowed rate | 
|  | if (rc->this_frame_target >= rc->max_frame_bandwidth) | 
|  | *top_index = q; | 
|  | else | 
|  | q = *top_index; | 
|  | } | 
|  | } | 
|  | // Special case: we force the first few frames to use low q such that | 
|  | // these frames are encoded at a high quality, which provides good | 
|  | // references for following frames. | 
|  | if (current_frame->frame_type != KEY_FRAME && !cpi->ppi->use_svc && | 
|  | current_frame->frame_number >= 10 && current_frame->frame_number <= 15) { | 
|  | q = AOMMIN(p_rc->last_kf_qindex + 108, AOMMAX(5, q - 9)); | 
|  | q = AOMMAX(q, rc->best_quality); | 
|  | } | 
|  |  | 
|  | assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality); | 
|  | assert(*bottom_index <= rc->worst_quality && | 
|  | *bottom_index >= rc->best_quality); | 
|  | assert(q <= rc->worst_quality && q >= rc->best_quality); | 
|  | return q; | 
|  | } | 
|  |  | 
|  | static int gf_group_pyramid_level(const GF_GROUP *gf_group, int gf_index) { | 
|  | return gf_group->layer_depth[gf_index]; | 
|  | } | 
|  |  | 
|  | static int get_active_cq_level(const RATE_CONTROL *rc, | 
|  | const PRIMARY_RATE_CONTROL *p_rc, | 
|  | const AV1EncoderConfig *const oxcf, | 
|  | int intra_only, aom_superres_mode superres_mode, | 
|  | int superres_denom) { | 
|  | const RateControlCfg *const rc_cfg = &oxcf->rc_cfg; | 
|  | static const double cq_adjust_threshold = 0.1; | 
|  | int active_cq_level = rc_cfg->cq_level; | 
|  | if (rc_cfg->mode == AOM_CQ || rc_cfg->mode == AOM_Q) { | 
|  | // printf("Superres %d %d %d = %d\n", superres_denom, intra_only, | 
|  | //        rc->frames_to_key, !(intra_only && rc->frames_to_key <= 1)); | 
|  | if ((superres_mode == AOM_SUPERRES_QTHRESH || | 
|  | superres_mode == AOM_SUPERRES_AUTO) && | 
|  | superres_denom != SCALE_NUMERATOR) { | 
|  | int mult = SUPERRES_QADJ_PER_DENOM_KEYFRAME_SOLO; | 
|  | if (intra_only && rc->frames_to_key <= 1) { | 
|  | mult = 0; | 
|  | } else if (intra_only) { | 
|  | mult = SUPERRES_QADJ_PER_DENOM_KEYFRAME; | 
|  | } else { | 
|  | mult = SUPERRES_QADJ_PER_DENOM_ARFFRAME; | 
|  | } | 
|  | active_cq_level = AOMMAX( | 
|  | active_cq_level - ((superres_denom - SCALE_NUMERATOR) * mult), 0); | 
|  | } | 
|  | } | 
|  | if (rc_cfg->mode == AOM_CQ && p_rc->total_target_bits > 0) { | 
|  | const double x = (double)p_rc->total_actual_bits / p_rc->total_target_bits; | 
|  | if (x < cq_adjust_threshold) { | 
|  | active_cq_level = (int)(active_cq_level * x / cq_adjust_threshold); | 
|  | } | 
|  | } | 
|  | return active_cq_level; | 
|  | } | 
|  |  | 
|  | /*!\brief Picks q and q bounds given non-CBR rate control params in \c cpi->rc. | 
|  | * | 
|  | * Handles the special case when using: | 
|  | * - Any rate control other than constant bit-rate mode: | 
|  | * \c cpi->oxcf.rc_cfg.mode != \ref AOM_CBR, and | 
|  | * - 1-pass encoding without LAP (look-ahead processing), so 1st pass stats are | 
|  | * NOT available. | 
|  | * | 
|  | * \ingroup rate_control | 
|  | * \param[in]       cpi          Top level encoder structure | 
|  | * \param[in]       width        Coded frame width | 
|  | * \param[in]       height       Coded frame height | 
|  | * \param[out]      bottom_index Bottom bound for q index (best quality) | 
|  | * \param[out]      top_index    Top bound for q index (worst quality) | 
|  | * \return Returns selected q index to be used for encoding this frame. | 
|  | */ | 
|  | static int rc_pick_q_and_bounds_no_stats(const AV1_COMP *cpi, int width, | 
|  | int height, int *bottom_index, | 
|  | int *top_index) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const RATE_CONTROL *const rc = &cpi->rc; | 
|  | const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; | 
|  | const CurrentFrame *const current_frame = &cm->current_frame; | 
|  | const AV1EncoderConfig *const oxcf = &cpi->oxcf; | 
|  | const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame; | 
|  | const enum aom_rc_mode rc_mode = oxcf->rc_cfg.mode; | 
|  |  | 
|  | assert(has_no_stats_stage(cpi)); | 
|  | assert(rc_mode == AOM_VBR || | 
|  | (!USE_UNRESTRICTED_Q_IN_CQ_MODE && rc_mode == AOM_CQ) || | 
|  | rc_mode == AOM_Q); | 
|  |  | 
|  | const int cq_level = | 
|  | get_active_cq_level(rc, p_rc, oxcf, frame_is_intra_only(cm), | 
|  | cpi->superres_mode, cm->superres_scale_denominator); | 
|  | const int bit_depth = cm->seq_params->bit_depth; | 
|  |  | 
|  | int active_best_quality; | 
|  | int active_worst_quality = calc_active_worst_quality_no_stats_vbr(cpi); | 
|  | int q; | 
|  | int *inter_minq; | 
|  | ASSIGN_MINQ_TABLE(bit_depth, inter_minq); | 
|  |  | 
|  | if (frame_is_intra_only(cm)) { | 
|  | if (rc_mode == AOM_Q) { | 
|  | const int qindex = cq_level; | 
|  | const double q_val = av1_convert_qindex_to_q(qindex, bit_depth); | 
|  | const int delta_qindex = | 
|  | av1_compute_qdelta(rc, q_val, q_val * 0.25, bit_depth); | 
|  | active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality); | 
|  | } else if (p_rc->this_key_frame_forced) { | 
|  | #if CONFIG_FRAME_PARALLEL_ENCODE && CONFIG_FPMT_TEST | 
|  | const int simulate_parallel_frame = | 
|  | cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 && | 
|  | cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE; | 
|  | int qindex = simulate_parallel_frame ? p_rc->temp_last_boosted_qindex | 
|  | : p_rc->last_boosted_qindex; | 
|  | #else | 
|  | int qindex = p_rc->last_boosted_qindex; | 
|  | #endif | 
|  | const double last_boosted_q = av1_convert_qindex_to_q(qindex, bit_depth); | 
|  | const int delta_qindex = av1_compute_qdelta( | 
|  | rc, last_boosted_q, last_boosted_q * 0.75, bit_depth); | 
|  | active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality); | 
|  | } else {  // not first frame of one pass and kf_boost is set | 
|  | double q_adj_factor = 1.0; | 
|  |  | 
|  | active_best_quality = get_kf_active_quality( | 
|  | p_rc, p_rc->avg_frame_qindex[KEY_FRAME], bit_depth); | 
|  |  | 
|  | // Allow somewhat lower kf minq with small image formats. | 
|  | if ((width * height) <= (352 * 288)) { | 
|  | q_adj_factor -= 0.25; | 
|  | } | 
|  |  | 
|  | // Convert the adjustment factor to a qindex delta on active_best_quality. | 
|  | { | 
|  | const double q_val = | 
|  | av1_convert_qindex_to_q(active_best_quality, bit_depth); | 
|  | active_best_quality += | 
|  | av1_compute_qdelta(rc, q_val, q_val * q_adj_factor, bit_depth); | 
|  | } | 
|  | } | 
|  | } else if (!rc->is_src_frame_alt_ref && | 
|  | (refresh_frame->golden_frame || refresh_frame->alt_ref_frame)) { | 
|  | // Use the lower of active_worst_quality and recent | 
|  | // average Q as basis for GF/ARF best Q limit unless last frame was | 
|  | // a key frame. | 
|  | q = (rc->frames_since_key > 1 && | 
|  | p_rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) | 
|  | ? p_rc->avg_frame_qindex[INTER_FRAME] | 
|  | : p_rc->avg_frame_qindex[KEY_FRAME]; | 
|  | // For constrained quality dont allow Q less than the cq level | 
|  | if (rc_mode == AOM_CQ) { | 
|  | if (q < cq_level) q = cq_level; | 
|  | active_best_quality = get_gf_active_quality(p_rc, q, bit_depth); | 
|  | // Constrained quality use slightly lower active best. | 
|  | active_best_quality = active_best_quality * 15 / 16; | 
|  | } else if (rc_mode == AOM_Q) { | 
|  | const int qindex = cq_level; | 
|  | const double q_val = av1_convert_qindex_to_q(qindex, bit_depth); | 
|  | const int delta_qindex = | 
|  | (refresh_frame->alt_ref_frame) | 
|  | ? av1_compute_qdelta(rc, q_val, q_val * 0.40, bit_depth) | 
|  | : av1_compute_qdelta(rc, q_val, q_val * 0.50, bit_depth); | 
|  | active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality); | 
|  | } else { | 
|  | active_best_quality = get_gf_active_quality(p_rc, q, bit_depth); | 
|  | } | 
|  | } else { | 
|  | if (rc_mode == AOM_Q) { | 
|  | const int qindex = cq_level; | 
|  | const double q_val = av1_convert_qindex_to_q(qindex, bit_depth); | 
|  | const double delta_rate[FIXED_GF_INTERVAL] = { 0.50, 1.0, 0.85, 1.0, | 
|  | 0.70, 1.0, 0.85, 1.0 }; | 
|  | const int delta_qindex = av1_compute_qdelta( | 
|  | rc, q_val, | 
|  | q_val * delta_rate[current_frame->frame_number % FIXED_GF_INTERVAL], | 
|  | bit_depth); | 
|  | active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality); | 
|  | } else { | 
|  | // Use the lower of active_worst_quality and recent/average Q. | 
|  | active_best_quality = | 
|  | (current_frame->frame_number > 1) | 
|  | ? inter_minq[p_rc->avg_frame_qindex[INTER_FRAME]] | 
|  | : inter_minq[p_rc->avg_frame_qindex[KEY_FRAME]]; | 
|  | // For the constrained quality mode we don't want | 
|  | // q to fall below the cq level. | 
|  | if ((rc_mode == AOM_CQ) && (active_best_quality < cq_level)) { | 
|  | active_best_quality = cq_level; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Clip the active best and worst quality values to limits | 
|  | active_best_quality = | 
|  | clamp(active_best_quality, rc->best_quality, rc->worst_quality); | 
|  | active_worst_quality = | 
|  | clamp(active_worst_quality, active_best_quality, rc->worst_quality); | 
|  |  | 
|  | *top_index = active_worst_quality; | 
|  | *bottom_index = active_best_quality; | 
|  |  | 
|  | // Limit Q range for the adaptive loop. | 
|  | { | 
|  | int qdelta = 0; | 
|  | if (current_frame->frame_type == KEY_FRAME && | 
|  | !p_rc->this_key_frame_forced && current_frame->frame_number != 0) { | 
|  | qdelta = av1_compute_qdelta_by_rate( | 
|  | &cpi->rc, current_frame->frame_type, active_worst_quality, 2.0, | 
|  | cpi->is_screen_content_type, bit_depth); | 
|  | } else if (!rc->is_src_frame_alt_ref && | 
|  | (refresh_frame->golden_frame || refresh_frame->alt_ref_frame)) { | 
|  | qdelta = av1_compute_qdelta_by_rate( | 
|  | &cpi->rc, current_frame->frame_type, active_worst_quality, 1.75, | 
|  | cpi->is_screen_content_type, bit_depth); | 
|  | } | 
|  | *top_index = active_worst_quality + qdelta; | 
|  | *top_index = AOMMAX(*top_index, *bottom_index); | 
|  | } | 
|  |  | 
|  | if (rc_mode == AOM_Q) { | 
|  | q = active_best_quality; | 
|  | // Special case code to try and match quality with forced key frames | 
|  | } else if ((current_frame->frame_type == KEY_FRAME) && | 
|  | p_rc->this_key_frame_forced) { | 
|  | #if CONFIG_FRAME_PARALLEL_ENCODE && CONFIG_FPMT_TEST | 
|  | const int simulate_parallel_frame = | 
|  | cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 && | 
|  | cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE; | 
|  | q = simulate_parallel_frame ? p_rc->temp_last_boosted_qindex | 
|  | : p_rc->last_boosted_qindex; | 
|  | #else | 
|  | q = p_rc->last_boosted_qindex; | 
|  | #endif | 
|  | } else { | 
|  | q = av1_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality, | 
|  | active_worst_quality, width, height); | 
|  | if (q > *top_index) { | 
|  | // Special case when we are targeting the max allowed rate | 
|  | if (rc->this_frame_target >= rc->max_frame_bandwidth) | 
|  | *top_index = q; | 
|  | else | 
|  | q = *top_index; | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality); | 
|  | assert(*bottom_index <= rc->worst_quality && | 
|  | *bottom_index >= rc->best_quality); | 
|  | assert(q <= rc->worst_quality && q >= rc->best_quality); | 
|  | return q; | 
|  | } | 
|  |  | 
|  | static const double arf_layer_deltas[MAX_ARF_LAYERS + 1] = { 2.50, 2.00, 1.75, | 
|  | 1.50, 1.25, 1.15, | 
|  | 1.0 }; | 
|  | int av1_frame_type_qdelta(const AV1_COMP *cpi, int q) { | 
|  | const GF_GROUP *const gf_group = &cpi->ppi->gf_group; | 
|  | const RATE_FACTOR_LEVEL rf_lvl = | 
|  | get_rate_factor_level(gf_group, cpi->gf_frame_index); | 
|  | const FRAME_TYPE frame_type = gf_group->frame_type[cpi->gf_frame_index]; | 
|  | const int arf_layer = AOMMIN(gf_group->layer_depth[cpi->gf_frame_index], 6); | 
|  | const double rate_factor = | 
|  | (rf_lvl == INTER_NORMAL) ? 1.0 : arf_layer_deltas[arf_layer]; | 
|  |  | 
|  | return av1_compute_qdelta_by_rate(&cpi->rc, frame_type, q, rate_factor, | 
|  | cpi->is_screen_content_type, | 
|  | cpi->common.seq_params->bit_depth); | 
|  | } | 
|  |  | 
|  | // This unrestricted Q selection on CQ mode is useful when testing new features, | 
|  | // but may lead to Q being out of range on current RC restrictions | 
|  | #if USE_UNRESTRICTED_Q_IN_CQ_MODE | 
|  | static int rc_pick_q_and_bounds_no_stats_cq(const AV1_COMP *cpi, int width, | 
|  | int height, int *bottom_index, | 
|  | int *top_index) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const RATE_CONTROL *const rc = &cpi->rc; | 
|  | const AV1EncoderConfig *const oxcf = &cpi->oxcf; | 
|  | const int cq_level = | 
|  | get_active_cq_level(rc, oxcf, frame_is_intra_only(cm), cpi->superres_mode, | 
|  | cm->superres_scale_denominator); | 
|  | const int bit_depth = cm->seq_params->bit_depth; | 
|  | const int q = (int)av1_convert_qindex_to_q(cq_level, bit_depth); | 
|  | (void)width; | 
|  | (void)height; | 
|  | assert(has_no_stats_stage(cpi)); | 
|  | assert(cpi->oxcf.rc_cfg.mode == AOM_CQ); | 
|  |  | 
|  | *top_index = q; | 
|  | *bottom_index = q; | 
|  |  | 
|  | return q; | 
|  | } | 
|  | #endif  // USE_UNRESTRICTED_Q_IN_CQ_MODE | 
|  |  | 
|  | #define STATIC_MOTION_THRESH 95 | 
|  | static void get_intra_q_and_bounds(const AV1_COMP *cpi, int width, int height, | 
|  | int *active_best, int *active_worst, | 
|  | int cq_level) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const RATE_CONTROL *const rc = &cpi->rc; | 
|  | const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; | 
|  | const AV1EncoderConfig *const oxcf = &cpi->oxcf; | 
|  | int active_best_quality; | 
|  | int active_worst_quality = *active_worst; | 
|  | const int bit_depth = cm->seq_params->bit_depth; | 
|  |  | 
|  | if (rc->frames_to_key <= 1 && oxcf->rc_cfg.mode == AOM_Q) { | 
|  | // If the next frame is also a key frame or the current frame is the | 
|  | // only frame in the sequence in AOM_Q mode, just use the cq_level | 
|  | // as q. | 
|  | active_best_quality = cq_level; | 
|  | active_worst_quality = cq_level; | 
|  | } else if (p_rc->this_key_frame_forced) { | 
|  | // Handle the special case for key frames forced when we have reached | 
|  | // the maximum key frame interval. Here force the Q to a range | 
|  | // based on the ambient Q to reduce the risk of popping. | 
|  | double last_boosted_q; | 
|  | int delta_qindex; | 
|  | int qindex; | 
|  | #if CONFIG_FRAME_PARALLEL_ENCODE && CONFIG_FPMT_TEST | 
|  | const int simulate_parallel_frame = | 
|  | cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 && | 
|  | cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE; | 
|  | int last_boosted_qindex = simulate_parallel_frame | 
|  | ? p_rc->temp_last_boosted_qindex | 
|  | : p_rc->last_boosted_qindex; | 
|  | #else | 
|  | int last_boosted_qindex = p_rc->last_boosted_qindex; | 
|  | #endif | 
|  | if (is_stat_consumption_stage_twopass(cpi) && | 
|  | cpi->ppi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) { | 
|  | qindex = AOMMIN(p_rc->last_kf_qindex, last_boosted_qindex); | 
|  | active_best_quality = qindex; | 
|  | last_boosted_q = av1_convert_qindex_to_q(qindex, bit_depth); | 
|  | delta_qindex = av1_compute_qdelta(rc, last_boosted_q, | 
|  | last_boosted_q * 1.25, bit_depth); | 
|  | active_worst_quality = | 
|  | AOMMIN(qindex + delta_qindex, active_worst_quality); | 
|  | } else { | 
|  | qindex = last_boosted_qindex; | 
|  | last_boosted_q = av1_convert_qindex_to_q(qindex, bit_depth); | 
|  | delta_qindex = av1_compute_qdelta(rc, last_boosted_q, | 
|  | last_boosted_q * 0.50, bit_depth); | 
|  | active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality); | 
|  | } | 
|  | } else { | 
|  | // Not forced keyframe. | 
|  | double q_adj_factor = 1.0; | 
|  | double q_val; | 
|  |  | 
|  | // Baseline value derived from cpi->active_worst_quality and kf boost. | 
|  | active_best_quality = | 
|  | get_kf_active_quality(p_rc, active_worst_quality, bit_depth); | 
|  | if (cpi->is_screen_content_type) { | 
|  | active_best_quality /= 2; | 
|  | } | 
|  |  | 
|  | if (is_stat_consumption_stage_twopass(cpi) && | 
|  | cpi->ppi->twopass.kf_zeromotion_pct >= STATIC_KF_GROUP_THRESH) { | 
|  | active_best_quality /= 3; | 
|  | } | 
|  |  | 
|  | // Allow somewhat lower kf minq with small image formats. | 
|  | if ((width * height) <= (352 * 288)) { | 
|  | q_adj_factor -= 0.25; | 
|  | } | 
|  |  | 
|  | // Make a further adjustment based on the kf zero motion measure. | 
|  | if (is_stat_consumption_stage_twopass(cpi)) | 
|  | q_adj_factor += | 
|  | 0.05 - (0.001 * (double)cpi->ppi->twopass.kf_zeromotion_pct); | 
|  |  | 
|  | // Convert the adjustment factor to a qindex delta | 
|  | // on active_best_quality. | 
|  | q_val = av1_convert_qindex_to_q(active_best_quality, bit_depth); | 
|  | active_best_quality += | 
|  | av1_compute_qdelta(rc, q_val, q_val * q_adj_factor, bit_depth); | 
|  |  | 
|  | // Tweak active_best_quality for AOM_Q mode when superres is on, as this | 
|  | // will be used directly as 'q' later. | 
|  | if (oxcf->rc_cfg.mode == AOM_Q && | 
|  | (cpi->superres_mode == AOM_SUPERRES_QTHRESH || | 
|  | cpi->superres_mode == AOM_SUPERRES_AUTO) && | 
|  | cm->superres_scale_denominator != SCALE_NUMERATOR) { | 
|  | active_best_quality = | 
|  | AOMMAX(active_best_quality - | 
|  | ((cm->superres_scale_denominator - SCALE_NUMERATOR) * | 
|  | SUPERRES_QADJ_PER_DENOM_KEYFRAME), | 
|  | 0); | 
|  | } | 
|  | } | 
|  | *active_best = active_best_quality; | 
|  | *active_worst = active_worst_quality; | 
|  | } | 
|  |  | 
|  | static void adjust_active_best_and_worst_quality(const AV1_COMP *cpi, | 
|  | const int is_intrl_arf_boost, | 
|  | int *active_worst, | 
|  | int *active_best) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const RATE_CONTROL *const rc = &cpi->rc; | 
|  | const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; | 
|  | const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame; | 
|  | const int bit_depth = cpi->common.seq_params->bit_depth; | 
|  | int active_best_quality = *active_best; | 
|  | int active_worst_quality = *active_worst; | 
|  | #if CONFIG_FRAME_PARALLEL_ENCODE && CONFIG_FPMT_TEST | 
|  | const int simulate_parallel_frame = | 
|  | cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 && | 
|  | cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE; | 
|  | int extend_minq_fast = simulate_parallel_frame | 
|  | ? p_rc->temp_extend_minq_fast | 
|  | : cpi->ppi->twopass.extend_minq_fast; | 
|  | int extend_minq = simulate_parallel_frame ? p_rc->temp_extend_minq | 
|  | : cpi->ppi->twopass.extend_minq; | 
|  | int extend_maxq = simulate_parallel_frame ? p_rc->temp_extend_maxq | 
|  | : cpi->ppi->twopass.extend_maxq; | 
|  | #endif | 
|  | // Extension to max or min Q if undershoot or overshoot is outside | 
|  | // the permitted range. | 
|  | if (cpi->oxcf.rc_cfg.mode != AOM_Q) { | 
|  | if (frame_is_intra_only(cm) || | 
|  | (!rc->is_src_frame_alt_ref && | 
|  | (refresh_frame->golden_frame || is_intrl_arf_boost || | 
|  | refresh_frame->alt_ref_frame))) { | 
|  | #if CONFIG_FRAME_PARALLEL_ENCODE && CONFIG_FPMT_TEST | 
|  | active_best_quality -= (extend_minq + extend_minq_fast); | 
|  | active_worst_quality += (extend_maxq / 2); | 
|  | #else | 
|  | active_best_quality -= | 
|  | (cpi->ppi->twopass.extend_minq + cpi->ppi->twopass.extend_minq_fast); | 
|  | active_worst_quality += (cpi->ppi->twopass.extend_maxq / 2); | 
|  | #endif | 
|  | } else { | 
|  | #if CONFIG_FRAME_PARALLEL_ENCODE && CONFIG_FPMT_TEST | 
|  | active_best_quality -= (extend_minq + extend_minq_fast) / 2; | 
|  | active_worst_quality += extend_maxq; | 
|  | #else | 
|  | active_best_quality -= | 
|  | (cpi->ppi->twopass.extend_minq + cpi->ppi->twopass.extend_minq_fast) / | 
|  | 2; | 
|  | active_worst_quality += cpi->ppi->twopass.extend_maxq; | 
|  | #endif | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifndef STRICT_RC | 
|  | // Static forced key frames Q restrictions dealt with elsewhere. | 
|  | if (!(frame_is_intra_only(cm)) || !p_rc->this_key_frame_forced || | 
|  | (cpi->ppi->twopass.last_kfgroup_zeromotion_pct < STATIC_MOTION_THRESH)) { | 
|  | const int qdelta = av1_frame_type_qdelta(cpi, active_worst_quality); | 
|  | active_worst_quality = | 
|  | AOMMAX(active_worst_quality + qdelta, active_best_quality); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // Modify active_best_quality for downscaled normal frames. | 
|  | if (av1_frame_scaled(cm) && !frame_is_kf_gf_arf(cpi)) { | 
|  | int qdelta = av1_compute_qdelta_by_rate( | 
|  | rc, cm->current_frame.frame_type, active_best_quality, 2.0, | 
|  | cpi->is_screen_content_type, bit_depth); | 
|  | active_best_quality = | 
|  | AOMMAX(active_best_quality + qdelta, rc->best_quality); | 
|  | } | 
|  |  | 
|  | active_best_quality = | 
|  | clamp(active_best_quality, rc->best_quality, rc->worst_quality); | 
|  | active_worst_quality = | 
|  | clamp(active_worst_quality, active_best_quality, rc->worst_quality); | 
|  |  | 
|  | *active_best = active_best_quality; | 
|  | *active_worst = active_worst_quality; | 
|  | } | 
|  |  | 
|  | /*!\brief Gets a Q value to use  for the current frame | 
|  | * | 
|  | * | 
|  | * Selects a Q value from a permitted range that we estimate | 
|  | * will result in approximately the target number of bits. | 
|  | * | 
|  | * \ingroup rate_control | 
|  | * \param[in]   cpi                   Top level encoder instance structure | 
|  | * \param[in]   width                 Width of frame | 
|  | * \param[in]   height                Height of frame | 
|  | * \param[in]   active_worst_quality  Max Q allowed | 
|  | * \param[in]   active_best_quality   Min Q allowed | 
|  | * | 
|  | * \return The suggested Q for this frame. | 
|  | */ | 
|  | static int get_q(const AV1_COMP *cpi, const int width, const int height, | 
|  | const int active_worst_quality, | 
|  | const int active_best_quality) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const RATE_CONTROL *const rc = &cpi->rc; | 
|  | const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; | 
|  | int q; | 
|  | #if CONFIG_FRAME_PARALLEL_ENCODE && CONFIG_FPMT_TEST | 
|  | const int simulate_parallel_frame = | 
|  | cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 && | 
|  | cpi->ppi->fpmt_unit_test_cfg; | 
|  | int last_boosted_qindex = simulate_parallel_frame | 
|  | ? p_rc->temp_last_boosted_qindex | 
|  | : p_rc->last_boosted_qindex; | 
|  | #else | 
|  | int last_boosted_qindex = p_rc->last_boosted_qindex; | 
|  | #endif | 
|  |  | 
|  | if (cpi->oxcf.rc_cfg.mode == AOM_Q || | 
|  | (frame_is_intra_only(cm) && !p_rc->this_key_frame_forced && | 
|  | cpi->ppi->twopass.kf_zeromotion_pct >= STATIC_KF_GROUP_THRESH && | 
|  | rc->frames_to_key > 1)) { | 
|  | q = active_best_quality; | 
|  | // Special case code to try and match quality with forced key frames. | 
|  | } else if (frame_is_intra_only(cm) && p_rc->this_key_frame_forced) { | 
|  | // If static since last kf use better of last boosted and last kf q. | 
|  | if (cpi->ppi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) { | 
|  | q = AOMMIN(p_rc->last_kf_qindex, last_boosted_qindex); | 
|  | } else { | 
|  | q = AOMMIN(last_boosted_qindex, | 
|  | (active_best_quality + active_worst_quality) / 2); | 
|  | } | 
|  | q = clamp(q, active_best_quality, active_worst_quality); | 
|  | } else { | 
|  | q = av1_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality, | 
|  | active_worst_quality, width, height); | 
|  | if (q > active_worst_quality) { | 
|  | // Special case when we are targeting the max allowed rate. | 
|  | if (rc->this_frame_target < rc->max_frame_bandwidth) { | 
|  | q = active_worst_quality; | 
|  | } | 
|  | } | 
|  | q = AOMMAX(q, active_best_quality); | 
|  | } | 
|  | return q; | 
|  | } | 
|  |  | 
|  | // Returns |active_best_quality| for an inter frame. | 
|  | // The |active_best_quality| depends on different rate control modes: | 
|  | // VBR, Q, CQ, CBR. | 
|  | // The returning active_best_quality could further be adjusted in | 
|  | // adjust_active_best_and_worst_quality(). | 
|  | static int get_active_best_quality(const AV1_COMP *const cpi, | 
|  | const int active_worst_quality, | 
|  | const int cq_level, const int gf_index) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const int bit_depth = cm->seq_params->bit_depth; | 
|  | const RATE_CONTROL *const rc = &cpi->rc; | 
|  | const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; | 
|  | const AV1EncoderConfig *const oxcf = &cpi->oxcf; | 
|  | const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame; | 
|  | const GF_GROUP *gf_group = &cpi->ppi->gf_group; | 
|  | const enum aom_rc_mode rc_mode = oxcf->rc_cfg.mode; | 
|  | int *inter_minq; | 
|  | ASSIGN_MINQ_TABLE(bit_depth, inter_minq); | 
|  | int active_best_quality = 0; | 
|  | const int is_intrl_arf_boost = | 
|  | gf_group->update_type[gf_index] == INTNL_ARF_UPDATE; | 
|  | int is_leaf_frame = | 
|  | !(gf_group->update_type[gf_index] == ARF_UPDATE || | 
|  | gf_group->update_type[gf_index] == GF_UPDATE || is_intrl_arf_boost); | 
|  |  | 
|  | // TODO(jingning): Consider to rework this hack that covers issues incurred | 
|  | // in lightfield setting. | 
|  | if (cm->tiles.large_scale) { | 
|  | is_leaf_frame = !(refresh_frame->golden_frame || | 
|  | refresh_frame->alt_ref_frame || is_intrl_arf_boost); | 
|  | } | 
|  | const int is_overlay_frame = rc->is_src_frame_alt_ref; | 
|  |  | 
|  | if (is_leaf_frame || is_overlay_frame) { | 
|  | if (rc_mode == AOM_Q) return cq_level; | 
|  |  | 
|  | active_best_quality = inter_minq[active_worst_quality]; | 
|  | // For the constrained quality mode we don't want | 
|  | // q to fall below the cq level. | 
|  | if ((rc_mode == AOM_CQ) && (active_best_quality < cq_level)) { | 
|  | active_best_quality = cq_level; | 
|  | } | 
|  | return active_best_quality; | 
|  | } | 
|  |  | 
|  | // Determine active_best_quality for frames that are not leaf or overlay. | 
|  | int q = active_worst_quality; | 
|  | // Use the lower of active_worst_quality and recent | 
|  | // average Q as basis for GF/ARF best Q limit unless last frame was | 
|  | // a key frame. | 
|  | if (rc->frames_since_key > 1 && | 
|  | p_rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) { | 
|  | q = p_rc->avg_frame_qindex[INTER_FRAME]; | 
|  | } | 
|  | if (rc_mode == AOM_CQ && q < cq_level) q = cq_level; | 
|  | active_best_quality = get_gf_active_quality(p_rc, q, bit_depth); | 
|  | // Constrained quality use slightly lower active best. | 
|  | if (rc_mode == AOM_CQ) active_best_quality = active_best_quality * 15 / 16; | 
|  | const int min_boost = get_gf_high_motion_quality(q, bit_depth); | 
|  | const int boost = min_boost - active_best_quality; | 
|  | active_best_quality = min_boost - (int)(boost * p_rc->arf_boost_factor); | 
|  | if (!is_intrl_arf_boost) return active_best_quality; | 
|  |  | 
|  | if (rc_mode == AOM_Q || rc_mode == AOM_CQ) active_best_quality = p_rc->arf_q; | 
|  | int this_height = gf_group_pyramid_level(gf_group, gf_index); | 
|  | while (this_height > 1) { | 
|  | active_best_quality = (active_best_quality + active_worst_quality + 1) / 2; | 
|  | --this_height; | 
|  | } | 
|  | return active_best_quality; | 
|  | } | 
|  |  | 
|  | // Returns the q_index for a single frame in the GOP. | 
|  | // This function assumes that rc_mode == AOM_Q mode. | 
|  | int av1_q_mode_get_q_index(int base_q_index, int gf_update_type, | 
|  | int gf_pyramid_level, int arf_q) { | 
|  | const int is_intrl_arf_boost = gf_update_type == INTNL_ARF_UPDATE; | 
|  | int is_leaf_or_overlay_frame = gf_update_type == LF_UPDATE || | 
|  | gf_update_type == OVERLAY_UPDATE || | 
|  | gf_update_type == INTNL_OVERLAY_UPDATE; | 
|  |  | 
|  | if (is_leaf_or_overlay_frame) return base_q_index; | 
|  |  | 
|  | if (!is_intrl_arf_boost) return arf_q; | 
|  |  | 
|  | int active_best_quality = arf_q; | 
|  | int active_worst_quality = base_q_index; | 
|  |  | 
|  | while (gf_pyramid_level > 1) { | 
|  | active_best_quality = (active_best_quality + active_worst_quality + 1) / 2; | 
|  | --gf_pyramid_level; | 
|  | } | 
|  | return active_best_quality; | 
|  | } | 
|  |  | 
|  | // Returns the q_index for the ARF in the GOP. | 
|  | int av1_get_arf_q_index(int base_q_index, int gfu_boost, int bit_depth, | 
|  | double arf_boost_factor) { | 
|  | int active_best_quality = | 
|  | get_gf_active_quality_no_rc(gfu_boost, base_q_index, bit_depth); | 
|  | const int min_boost = get_gf_high_motion_quality(base_q_index, bit_depth); | 
|  | const int boost = min_boost - active_best_quality; | 
|  | return min_boost - (int)(boost * arf_boost_factor); | 
|  | } | 
|  |  | 
|  | static int rc_pick_q_and_bounds_q_mode(const AV1_COMP *cpi, int width, | 
|  | int height, int gf_index, | 
|  | int *bottom_index, int *top_index) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const RATE_CONTROL *const rc = &cpi->rc; | 
|  | const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; | 
|  | const AV1EncoderConfig *const oxcf = &cpi->oxcf; | 
|  | const int cq_level = | 
|  | get_active_cq_level(rc, p_rc, oxcf, frame_is_intra_only(cm), | 
|  | cpi->superres_mode, cm->superres_scale_denominator); | 
|  | int active_best_quality = 0; | 
|  | int active_worst_quality = rc->active_worst_quality; | 
|  | int q; | 
|  |  | 
|  | if (frame_is_intra_only(cm)) { | 
|  | get_intra_q_and_bounds(cpi, width, height, &active_best_quality, | 
|  | &active_worst_quality, cq_level); | 
|  | } else { | 
|  | //  Active best quality limited by previous layer. | 
|  | active_best_quality = | 
|  | get_active_best_quality(cpi, active_worst_quality, cq_level, gf_index); | 
|  | } | 
|  |  | 
|  | *top_index = active_worst_quality; | 
|  | *bottom_index = active_best_quality; | 
|  |  | 
|  | *top_index = AOMMAX(*top_index, rc->best_quality); | 
|  | *top_index = AOMMIN(*top_index, rc->worst_quality); | 
|  |  | 
|  | *bottom_index = AOMMAX(*bottom_index, rc->best_quality); | 
|  | *bottom_index = AOMMIN(*bottom_index, rc->worst_quality); | 
|  |  | 
|  | q = active_best_quality; | 
|  |  | 
|  | q = AOMMAX(q, rc->best_quality); | 
|  | q = AOMMIN(q, rc->worst_quality); | 
|  |  | 
|  | assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality); | 
|  | assert(*bottom_index <= rc->worst_quality && | 
|  | *bottom_index >= rc->best_quality); | 
|  | assert(q <= rc->worst_quality && q >= rc->best_quality); | 
|  |  | 
|  | return q; | 
|  | } | 
|  |  | 
|  | /*!\brief Picks q and q bounds given rate control parameters in \c cpi->rc. | 
|  | * | 
|  | * Handles the the general cases not covered by | 
|  | * \ref rc_pick_q_and_bounds_no_stats_cbr() and | 
|  | * \ref rc_pick_q_and_bounds_no_stats() | 
|  | * | 
|  | * \ingroup rate_control | 
|  | * \param[in]       cpi          Top level encoder structure | 
|  | * \param[in]       width        Coded frame width | 
|  | * \param[in]       height       Coded frame height | 
|  | * \param[in]       gf_index     Index of this frame in the golden frame group | 
|  | * \param[out]      bottom_index Bottom bound for q index (best quality) | 
|  | * \param[out]      top_index    Top bound for q index (worst quality) | 
|  | * \return Returns selected q index to be used for encoding this frame. | 
|  | */ | 
|  | static int rc_pick_q_and_bounds(const AV1_COMP *cpi, int width, int height, | 
|  | int gf_index, int *bottom_index, | 
|  | int *top_index) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const RATE_CONTROL *const rc = &cpi->rc; | 
|  | const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; | 
|  | const AV1EncoderConfig *const oxcf = &cpi->oxcf; | 
|  | const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame; | 
|  | const GF_GROUP *gf_group = &cpi->ppi->gf_group; | 
|  | assert(IMPLIES(has_no_stats_stage(cpi), | 
|  | cpi->oxcf.rc_cfg.mode == AOM_Q && | 
|  | gf_group->update_type[gf_index] != ARF_UPDATE)); | 
|  | const int cq_level = | 
|  | get_active_cq_level(rc, p_rc, oxcf, frame_is_intra_only(cm), | 
|  | cpi->superres_mode, cm->superres_scale_denominator); | 
|  |  | 
|  | if (oxcf->rc_cfg.mode == AOM_Q) { | 
|  | return rc_pick_q_and_bounds_q_mode(cpi, width, height, gf_index, | 
|  | bottom_index, top_index); | 
|  | } | 
|  |  | 
|  | int active_best_quality = 0; | 
|  | int active_worst_quality = rc->active_worst_quality; | 
|  | int q; | 
|  |  | 
|  | const int is_intrl_arf_boost = | 
|  | gf_group->update_type[gf_index] == INTNL_ARF_UPDATE; | 
|  |  | 
|  | if (frame_is_intra_only(cm)) { | 
|  | get_intra_q_and_bounds(cpi, width, height, &active_best_quality, | 
|  | &active_worst_quality, cq_level); | 
|  | #ifdef STRICT_RC | 
|  | active_best_quality = 0; | 
|  | #endif | 
|  | } else { | 
|  | //  Active best quality limited by previous layer. | 
|  | const int pyramid_level = gf_group_pyramid_level(gf_group, gf_index); | 
|  |  | 
|  | if ((pyramid_level <= 1) || (pyramid_level > MAX_ARF_LAYERS)) { | 
|  | active_best_quality = get_active_best_quality(cpi, active_worst_quality, | 
|  | cq_level, gf_index); | 
|  | } else { | 
|  | #if CONFIG_FRAME_PARALLEL_ENCODE && CONFIG_FPMT_TEST | 
|  | const int simulate_parallel_frame = | 
|  | cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 && | 
|  | cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE; | 
|  | int local_active_best_quality = | 
|  | simulate_parallel_frame | 
|  | ? p_rc->temp_active_best_quality[pyramid_level - 1] | 
|  | : p_rc->active_best_quality[pyramid_level - 1]; | 
|  | active_best_quality = local_active_best_quality + 1; | 
|  | #else | 
|  | active_best_quality = p_rc->active_best_quality[pyramid_level - 1] + 1; | 
|  | #endif | 
|  |  | 
|  | active_best_quality = AOMMIN(active_best_quality, active_worst_quality); | 
|  | #ifdef STRICT_RC | 
|  | active_best_quality += (active_worst_quality - active_best_quality) / 16; | 
|  | #else | 
|  | active_best_quality += (active_worst_quality - active_best_quality) / 2; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | // For alt_ref and GF frames (including internal arf frames) adjust the | 
|  | // worst allowed quality as well. This insures that even on hard | 
|  | // sections we dont clamp the Q at the same value for arf frames and | 
|  | // leaf (non arf) frames. This is important to the TPL model which assumes | 
|  | // Q drops with each arf level. | 
|  | if (!(rc->is_src_frame_alt_ref) && | 
|  | (refresh_frame->golden_frame || refresh_frame->alt_ref_frame || | 
|  | is_intrl_arf_boost)) { | 
|  | active_worst_quality = | 
|  | (active_best_quality + (3 * active_worst_quality) + 2) / 4; | 
|  | } | 
|  | } | 
|  |  | 
|  | adjust_active_best_and_worst_quality( | 
|  | cpi, is_intrl_arf_boost, &active_worst_quality, &active_best_quality); | 
|  | q = get_q(cpi, width, height, active_worst_quality, active_best_quality); | 
|  |  | 
|  | // Special case when we are targeting the max allowed rate. | 
|  | if (rc->this_frame_target >= rc->max_frame_bandwidth && | 
|  | q > active_worst_quality) { | 
|  | active_worst_quality = q; | 
|  | } | 
|  |  | 
|  | *top_index = active_worst_quality; | 
|  | *bottom_index = active_best_quality; | 
|  |  | 
|  | assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality); | 
|  | assert(*bottom_index <= rc->worst_quality && | 
|  | *bottom_index >= rc->best_quality); | 
|  | assert(q <= rc->worst_quality && q >= rc->best_quality); | 
|  |  | 
|  | return q; | 
|  | } | 
|  |  | 
|  | int av1_rc_pick_q_and_bounds(const AV1_COMP *cpi, int width, int height, | 
|  | int gf_index, int *bottom_index, int *top_index) { | 
|  | PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; | 
|  | int q; | 
|  | // TODO(sarahparker) merge no-stats vbr and altref q computation | 
|  | // with rc_pick_q_and_bounds(). | 
|  | const GF_GROUP *gf_group = &cpi->ppi->gf_group; | 
|  | if ((cpi->oxcf.rc_cfg.mode != AOM_Q || | 
|  | gf_group->update_type[gf_index] == ARF_UPDATE) && | 
|  | has_no_stats_stage(cpi)) { | 
|  | if (cpi->oxcf.rc_cfg.mode == AOM_CBR) { | 
|  | q = rc_pick_q_and_bounds_no_stats_cbr(cpi, width, height, bottom_index, | 
|  | top_index); | 
|  | #if USE_UNRESTRICTED_Q_IN_CQ_MODE | 
|  | } else if (cpi->oxcf.rc_cfg.mode == AOM_CQ) { | 
|  | q = rc_pick_q_and_bounds_no_stats_cq(cpi, width, height, bottom_index, | 
|  | top_index); | 
|  | #endif  // USE_UNRESTRICTED_Q_IN_CQ_MODE | 
|  | } else { | 
|  | q = rc_pick_q_and_bounds_no_stats(cpi, width, height, bottom_index, | 
|  | top_index); | 
|  | } | 
|  | } else { | 
|  | q = rc_pick_q_and_bounds(cpi, width, height, gf_index, bottom_index, | 
|  | top_index); | 
|  | } | 
|  | if (gf_group->update_type[gf_index] == ARF_UPDATE) p_rc->arf_q = q; | 
|  |  | 
|  | return q; | 
|  | } | 
|  |  | 
|  | void av1_rc_compute_frame_size_bounds(const AV1_COMP *cpi, int frame_target, | 
|  | int *frame_under_shoot_limit, | 
|  | int *frame_over_shoot_limit) { | 
|  | if (cpi->oxcf.rc_cfg.mode == AOM_Q) { | 
|  | *frame_under_shoot_limit = 0; | 
|  | *frame_over_shoot_limit = INT_MAX; | 
|  | } else { | 
|  | // For very small rate targets where the fractional adjustment | 
|  | // may be tiny make sure there is at least a minimum range. | 
|  | assert(cpi->sf.hl_sf.recode_tolerance <= 100); | 
|  | const int tolerance = (int)AOMMAX( | 
|  | 100, ((int64_t)cpi->sf.hl_sf.recode_tolerance * frame_target) / 100); | 
|  | *frame_under_shoot_limit = AOMMAX(frame_target - tolerance, 0); | 
|  | *frame_over_shoot_limit = | 
|  | AOMMIN(frame_target + tolerance, cpi->rc.max_frame_bandwidth); | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_rc_set_frame_target(AV1_COMP *cpi, int target, int width, int height) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  |  | 
|  | rc->this_frame_target = target; | 
|  |  | 
|  | // Modify frame size target when down-scaled. | 
|  | if (av1_frame_scaled(cm) && cpi->oxcf.rc_cfg.mode != AOM_CBR) { | 
|  | rc->this_frame_target = | 
|  | (int)(rc->this_frame_target * | 
|  | resize_rate_factor(&cpi->oxcf.frm_dim_cfg, width, height)); | 
|  | } | 
|  |  | 
|  | // Target rate per SB64 (including partial SB64s. | 
|  | rc->sb64_target_rate = | 
|  | (int)(((int64_t)rc->this_frame_target << 12) / (width * height)); | 
|  | } | 
|  |  | 
|  | static void update_alt_ref_frame_stats(AV1_COMP *cpi) { | 
|  | // this frame refreshes means next frames don't unless specified by user | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | rc->frames_since_golden = 0; | 
|  | } | 
|  |  | 
|  | static void update_golden_frame_stats(AV1_COMP *cpi) { | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  |  | 
|  | // Update the Golden frame usage counts. | 
|  | if (cpi->refresh_frame.golden_frame || rc->is_src_frame_alt_ref) { | 
|  | rc->frames_since_golden = 0; | 
|  | } else if (cpi->common.show_frame) { | 
|  | rc->frames_since_golden++; | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_rc_postencode_update(AV1_COMP *cpi, uint64_t bytes_used) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const CurrentFrame *const current_frame = &cm->current_frame; | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; | 
|  | const GF_GROUP *const gf_group = &cpi->ppi->gf_group; | 
|  | const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame; | 
|  |  | 
|  | const int is_intrnl_arf = | 
|  | gf_group->update_type[cpi->gf_frame_index] == INTNL_ARF_UPDATE; | 
|  |  | 
|  | const int qindex = cm->quant_params.base_qindex; | 
|  |  | 
|  | // Update rate control heuristics | 
|  | rc->projected_frame_size = (int)(bytes_used << 3); | 
|  |  | 
|  | // Post encode loop adjustment of Q prediction. | 
|  | av1_rc_update_rate_correction_factors(cpi, 0, cm->width, cm->height); | 
|  |  | 
|  | // Keep a record of last Q and ambient average Q. | 
|  | if (current_frame->frame_type == KEY_FRAME) { | 
|  | p_rc->last_q[KEY_FRAME] = qindex; | 
|  | p_rc->avg_frame_qindex[KEY_FRAME] = | 
|  | ROUND_POWER_OF_TWO(3 * p_rc->avg_frame_qindex[KEY_FRAME] + qindex, 2); | 
|  | } else { | 
|  | if ((cpi->ppi->use_svc && cpi->oxcf.rc_cfg.mode == AOM_CBR) || | 
|  | (!rc->is_src_frame_alt_ref && | 
|  | !(refresh_frame->golden_frame || is_intrnl_arf || | 
|  | refresh_frame->alt_ref_frame))) { | 
|  | p_rc->last_q[INTER_FRAME] = qindex; | 
|  | p_rc->avg_frame_qindex[INTER_FRAME] = ROUND_POWER_OF_TWO( | 
|  | 3 * p_rc->avg_frame_qindex[INTER_FRAME] + qindex, 2); | 
|  | p_rc->ni_frames++; | 
|  | p_rc->tot_q += av1_convert_qindex_to_q(qindex, cm->seq_params->bit_depth); | 
|  | p_rc->avg_q = p_rc->tot_q / p_rc->ni_frames; | 
|  | // Calculate the average Q for normal inter frames (not key or GFU | 
|  | // frames). | 
|  | rc->ni_tot_qi += qindex; | 
|  | rc->ni_av_qi = rc->ni_tot_qi / p_rc->ni_frames; | 
|  | } | 
|  | } | 
|  | // Keep record of last boosted (KF/GF/ARF) Q value. | 
|  | // If the current frame is coded at a lower Q then we also update it. | 
|  | // If all mbs in this group are skipped only update if the Q value is | 
|  | // better than that already stored. | 
|  | // This is used to help set quality in forced key frames to reduce popping | 
|  | if ((qindex < p_rc->last_boosted_qindex) || | 
|  | (current_frame->frame_type == KEY_FRAME) || | 
|  | (!p_rc->constrained_gf_group && | 
|  | (refresh_frame->alt_ref_frame || is_intrnl_arf || | 
|  | (refresh_frame->golden_frame && !rc->is_src_frame_alt_ref)))) { | 
|  | p_rc->last_boosted_qindex = qindex; | 
|  | } | 
|  | if (current_frame->frame_type == KEY_FRAME) p_rc->last_kf_qindex = qindex; | 
|  |  | 
|  | update_buffer_level(cpi, rc->projected_frame_size); | 
|  | rc->prev_avg_frame_bandwidth = rc->avg_frame_bandwidth; | 
|  |  | 
|  | // Rolling monitors of whether we are over or underspending used to help | 
|  | // regulate min and Max Q in two pass. | 
|  | if (av1_frame_scaled(cm)) | 
|  | rc->this_frame_target = (int)(rc->this_frame_target / | 
|  | resize_rate_factor(&cpi->oxcf.frm_dim_cfg, | 
|  | cm->width, cm->height)); | 
|  | if (current_frame->frame_type != KEY_FRAME) { | 
|  | p_rc->rolling_target_bits = (int)ROUND_POWER_OF_TWO_64( | 
|  | p_rc->rolling_target_bits * 3 + rc->this_frame_target, 2); | 
|  | p_rc->rolling_actual_bits = (int)ROUND_POWER_OF_TWO_64( | 
|  | p_rc->rolling_actual_bits * 3 + rc->projected_frame_size, 2); | 
|  | } | 
|  |  | 
|  | // Actual bits spent | 
|  | p_rc->total_actual_bits += rc->projected_frame_size; | 
|  | p_rc->total_target_bits += cm->show_frame ? rc->avg_frame_bandwidth : 0; | 
|  |  | 
|  | if (is_altref_enabled(cpi->oxcf.gf_cfg.lag_in_frames, | 
|  | cpi->oxcf.gf_cfg.enable_auto_arf) && | 
|  | refresh_frame->alt_ref_frame && | 
|  | (current_frame->frame_type != KEY_FRAME && !frame_is_sframe(cm))) | 
|  | // Update the alternate reference frame stats as appropriate. | 
|  | update_alt_ref_frame_stats(cpi); | 
|  | else | 
|  | // Update the Golden frame stats as appropriate. | 
|  | update_golden_frame_stats(cpi); | 
|  |  | 
|  | #if CONFIG_FRAME_PARALLEL_ENCODE && CONFIG_FPMT_TEST | 
|  | /*The variables temp_avg_frame_qindex, temp_last_q, temp_avg_q, | 
|  | * temp_last_boosted_qindex are introduced only for quality simulation | 
|  | * purpose, it retains the value previous to the parallel encode frames. The | 
|  | * variables are updated based on the update flag. | 
|  | * | 
|  | * If there exist show_existing_frames between parallel frames, then to | 
|  | * retain the temp state do not update it. */ | 
|  | int show_existing_between_parallel_frames = | 
|  | (cpi->ppi->gf_group.update_type[cpi->gf_frame_index] == | 
|  | INTNL_OVERLAY_UPDATE && | 
|  | cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index + 1] == 2); | 
|  |  | 
|  | if (cpi->do_frame_data_update && !show_existing_between_parallel_frames && | 
|  | cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) { | 
|  | for (int i = 0; i < FRAME_TYPES; i++) { | 
|  | p_rc->temp_last_q[i] = p_rc->last_q[i]; | 
|  | } | 
|  | p_rc->temp_avg_q = p_rc->avg_q; | 
|  | p_rc->temp_last_boosted_qindex = p_rc->last_boosted_qindex; | 
|  | p_rc->temp_total_actual_bits = p_rc->total_actual_bits; | 
|  | p_rc->temp_projected_frame_size = rc->projected_frame_size; | 
|  | for (int i = 0; i < RATE_FACTOR_LEVELS; i++) | 
|  | p_rc->temp_rate_correction_factors[i] = p_rc->rate_correction_factors[i]; | 
|  | } | 
|  | #endif | 
|  | if (current_frame->frame_type == KEY_FRAME) rc->frames_since_key = 0; | 
|  | // if (current_frame->frame_number == 1 && cm->show_frame) | 
|  | /* | 
|  | rc->this_frame_target = | 
|  | (int)(rc->this_frame_target / resize_rate_factor(&cpi->oxcf.frm_dim_cfg, | 
|  | cm->width, cm->height)); | 
|  | */ | 
|  | } | 
|  |  | 
|  | void av1_rc_postencode_update_drop_frame(AV1_COMP *cpi) { | 
|  | // Update buffer level with zero size, update frame counters, and return. | 
|  | update_buffer_level(cpi, 0); | 
|  | cpi->rc.frames_since_key++; | 
|  | cpi->rc.frames_to_key--; | 
|  | cpi->rc.rc_2_frame = 0; | 
|  | cpi->rc.rc_1_frame = 0; | 
|  | cpi->rc.prev_avg_frame_bandwidth = cpi->rc.avg_frame_bandwidth; | 
|  | } | 
|  |  | 
|  | int av1_find_qindex(double desired_q, aom_bit_depth_t bit_depth, | 
|  | int best_qindex, int worst_qindex) { | 
|  | assert(best_qindex <= worst_qindex); | 
|  | int low = best_qindex; | 
|  | int high = worst_qindex; | 
|  | while (low < high) { | 
|  | const int mid = (low + high) >> 1; | 
|  | const double mid_q = av1_convert_qindex_to_q(mid, bit_depth); | 
|  | if (mid_q < desired_q) { | 
|  | low = mid + 1; | 
|  | } else { | 
|  | high = mid; | 
|  | } | 
|  | } | 
|  | assert(low == high); | 
|  | assert(av1_convert_qindex_to_q(low, bit_depth) >= desired_q || | 
|  | low == worst_qindex); | 
|  | return low; | 
|  | } | 
|  |  | 
|  | int av1_compute_qdelta(const RATE_CONTROL *rc, double qstart, double qtarget, | 
|  | aom_bit_depth_t bit_depth) { | 
|  | const int start_index = | 
|  | av1_find_qindex(qstart, bit_depth, rc->best_quality, rc->worst_quality); | 
|  | const int target_index = | 
|  | av1_find_qindex(qtarget, bit_depth, rc->best_quality, rc->worst_quality); | 
|  | return target_index - start_index; | 
|  | } | 
|  |  | 
|  | // Find q_index for the desired_bits_per_mb, within [best_qindex, worst_qindex], | 
|  | // assuming 'correction_factor' is 1.0. | 
|  | // To be precise, 'q_index' is the smallest integer, for which the corresponding | 
|  | // bits per mb <= desired_bits_per_mb. | 
|  | // If no such q index is found, returns 'worst_qindex'. | 
|  | static int find_qindex_by_rate(int desired_bits_per_mb, | 
|  | aom_bit_depth_t bit_depth, FRAME_TYPE frame_type, | 
|  | const int is_screen_content_type, | 
|  | int best_qindex, int worst_qindex) { | 
|  | assert(best_qindex <= worst_qindex); | 
|  | int low = best_qindex; | 
|  | int high = worst_qindex; | 
|  | while (low < high) { | 
|  | const int mid = (low + high) >> 1; | 
|  | const int mid_bits_per_mb = av1_rc_bits_per_mb( | 
|  | frame_type, mid, 1.0, bit_depth, is_screen_content_type); | 
|  | if (mid_bits_per_mb > desired_bits_per_mb) { | 
|  | low = mid + 1; | 
|  | } else { | 
|  | high = mid; | 
|  | } | 
|  | } | 
|  | assert(low == high); | 
|  | assert(av1_rc_bits_per_mb(frame_type, low, 1.0, bit_depth, | 
|  | is_screen_content_type) <= desired_bits_per_mb || | 
|  | low == worst_qindex); | 
|  | return low; | 
|  | } | 
|  |  | 
|  | int av1_compute_qdelta_by_rate(const RATE_CONTROL *rc, FRAME_TYPE frame_type, | 
|  | int qindex, double rate_target_ratio, | 
|  | const int is_screen_content_type, | 
|  | aom_bit_depth_t bit_depth) { | 
|  | // Look up the current projected bits per block for the base index | 
|  | const int base_bits_per_mb = av1_rc_bits_per_mb( | 
|  | frame_type, qindex, 1.0, bit_depth, is_screen_content_type); | 
|  |  | 
|  | // Find the target bits per mb based on the base value and given ratio. | 
|  | const int target_bits_per_mb = (int)(rate_target_ratio * base_bits_per_mb); | 
|  |  | 
|  | const int target_index = find_qindex_by_rate( | 
|  | target_bits_per_mb, bit_depth, frame_type, is_screen_content_type, | 
|  | rc->best_quality, rc->worst_quality); | 
|  | return target_index - qindex; | 
|  | } | 
|  |  | 
|  | void av1_rc_set_gf_interval_range(const AV1_COMP *const cpi, | 
|  | RATE_CONTROL *const rc) { | 
|  | const AV1EncoderConfig *const oxcf = &cpi->oxcf; | 
|  |  | 
|  | // Special case code for 1 pass fixed Q mode tests | 
|  | if ((has_no_stats_stage(cpi)) && (oxcf->rc_cfg.mode == AOM_Q)) { | 
|  | rc->max_gf_interval = oxcf->gf_cfg.max_gf_interval; | 
|  | rc->min_gf_interval = oxcf->gf_cfg.min_gf_interval; | 
|  | rc->static_scene_max_gf_interval = rc->min_gf_interval + 1; | 
|  | } else { | 
|  | // Set Maximum gf/arf interval | 
|  | rc->max_gf_interval = oxcf->gf_cfg.max_gf_interval; | 
|  | rc->min_gf_interval = oxcf->gf_cfg.min_gf_interval; | 
|  | if (rc->min_gf_interval == 0) | 
|  | rc->min_gf_interval = av1_rc_get_default_min_gf_interval( | 
|  | oxcf->frm_dim_cfg.width, oxcf->frm_dim_cfg.height, cpi->framerate); | 
|  | if (rc->max_gf_interval == 0) | 
|  | rc->max_gf_interval = av1_rc_get_default_max_gf_interval( | 
|  | cpi->framerate, rc->min_gf_interval); | 
|  | /* | 
|  | * Extended max interval for genuinely static scenes like slide shows. | 
|  | * The no.of.stats available in the case of LAP is limited, | 
|  | * hence setting to max_gf_interval. | 
|  | */ | 
|  | if (cpi->ppi->lap_enabled) | 
|  | rc->static_scene_max_gf_interval = rc->max_gf_interval + 1; | 
|  | else | 
|  | rc->static_scene_max_gf_interval = MAX_STATIC_GF_GROUP_LENGTH; | 
|  |  | 
|  | if (rc->max_gf_interval > rc->static_scene_max_gf_interval) | 
|  | rc->max_gf_interval = rc->static_scene_max_gf_interval; | 
|  |  | 
|  | // Clamp min to max | 
|  | rc->min_gf_interval = AOMMIN(rc->min_gf_interval, rc->max_gf_interval); | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_rc_update_framerate(AV1_COMP *cpi, int width, int height) { | 
|  | const AV1EncoderConfig *const oxcf = &cpi->oxcf; | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | int vbr_max_bits; | 
|  | const int MBs = av1_get_MBs(width, height); | 
|  |  | 
|  | rc->avg_frame_bandwidth = | 
|  | (int)round(oxcf->rc_cfg.target_bandwidth / cpi->framerate); | 
|  | rc->min_frame_bandwidth = | 
|  | (int)(rc->avg_frame_bandwidth * oxcf->rc_cfg.vbrmin_section / 100); | 
|  |  | 
|  | rc->min_frame_bandwidth = | 
|  | AOMMAX(rc->min_frame_bandwidth, FRAME_OVERHEAD_BITS); | 
|  |  | 
|  | // A maximum bitrate for a frame is defined. | 
|  | // The baseline for this aligns with HW implementations that | 
|  | // can support decode of 1080P content up to a bitrate of MAX_MB_RATE bits | 
|  | // per 16x16 MB (averaged over a frame). However this limit is extended if | 
|  | // a very high rate is given on the command line or the the rate cannnot | 
|  | // be acheived because of a user specificed max q (e.g. when the user | 
|  | // specifies lossless encode. | 
|  | vbr_max_bits = | 
|  | (int)(((int64_t)rc->avg_frame_bandwidth * oxcf->rc_cfg.vbrmax_section) / | 
|  | 100); | 
|  | rc->max_frame_bandwidth = | 
|  | AOMMAX(AOMMAX((MBs * MAX_MB_RATE), MAXRATE_1080P), vbr_max_bits); | 
|  |  | 
|  | av1_rc_set_gf_interval_range(cpi, rc); | 
|  | } | 
|  |  | 
|  | #define VBR_PCT_ADJUSTMENT_LIMIT 50 | 
|  | // For VBR...adjustment to the frame target based on error from previous frames | 
|  | static void vbr_rate_correction(AV1_COMP *cpi, int *this_frame_target) { | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; | 
|  | #if CONFIG_FRAME_PARALLEL_ENCODE && CONFIG_FPMT_TEST | 
|  | const int simulate_parallel_frame = | 
|  | cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 && | 
|  | cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE; | 
|  | int64_t vbr_bits_off_target = simulate_parallel_frame | 
|  | ? cpi->ppi->p_rc.temp_vbr_bits_off_target | 
|  | : p_rc->vbr_bits_off_target; | 
|  | #else | 
|  | int64_t vbr_bits_off_target = p_rc->vbr_bits_off_target; | 
|  | #endif | 
|  | const int stats_count = | 
|  | cpi->ppi->twopass.stats_buf_ctx->total_stats != NULL | 
|  | ? (int)cpi->ppi->twopass.stats_buf_ctx->total_stats->count | 
|  | : 0; | 
|  | const int frame_window = AOMMIN( | 
|  | 16, (int)(stats_count - (int)cpi->common.current_frame.frame_number)); | 
|  | assert(VBR_PCT_ADJUSTMENT_LIMIT <= 100); | 
|  | if (frame_window > 0) { | 
|  | const int max_delta = (int)AOMMIN( | 
|  | abs((int)(vbr_bits_off_target / frame_window)), | 
|  | ((int64_t)(*this_frame_target) * VBR_PCT_ADJUSTMENT_LIMIT) / 100); | 
|  |  | 
|  | // vbr_bits_off_target > 0 means we have extra bits to spend | 
|  | // vbr_bits_off_target < 0 we are currently overshooting | 
|  | *this_frame_target += (vbr_bits_off_target >= 0) ? max_delta : -max_delta; | 
|  | } | 
|  |  | 
|  | #if CONFIG_FRAME_PARALLEL_ENCODE && CONFIG_FPMT_TEST | 
|  | int64_t vbr_bits_off_target_fast = | 
|  | simulate_parallel_frame ? cpi->ppi->p_rc.temp_vbr_bits_off_target_fast | 
|  | : p_rc->vbr_bits_off_target_fast; | 
|  | #endif | 
|  | // Fast redistribution of bits arising from massive local undershoot. | 
|  | // Dont do it for kf,arf,gf or overlay frames. | 
|  | if (!frame_is_kf_gf_arf(cpi) && | 
|  | #if CONFIG_FRAME_PARALLEL_ENCODE && CONFIG_FPMT_TEST | 
|  | vbr_bits_off_target_fast && | 
|  | #else | 
|  | p_rc->vbr_bits_off_target_fast && | 
|  | #endif | 
|  | !rc->is_src_frame_alt_ref) { | 
|  | int one_frame_bits = AOMMAX(rc->avg_frame_bandwidth, *this_frame_target); | 
|  | int fast_extra_bits; | 
|  | #if CONFIG_FRAME_PARALLEL_ENCODE && CONFIG_FPMT_TEST | 
|  | fast_extra_bits = (int)AOMMIN(vbr_bits_off_target_fast, one_frame_bits); | 
|  | fast_extra_bits = | 
|  | (int)AOMMIN(fast_extra_bits, | 
|  | AOMMAX(one_frame_bits / 8, vbr_bits_off_target_fast / 8)); | 
|  | #else | 
|  | fast_extra_bits = | 
|  | (int)AOMMIN(p_rc->vbr_bits_off_target_fast, one_frame_bits); | 
|  | fast_extra_bits = (int)AOMMIN( | 
|  | fast_extra_bits, | 
|  | AOMMAX(one_frame_bits / 8, p_rc->vbr_bits_off_target_fast / 8)); | 
|  | #endif | 
|  | if (fast_extra_bits > 0) { | 
|  | // Update this_frame_target only if additional bits are available from | 
|  | // local undershoot. | 
|  | *this_frame_target += (int)fast_extra_bits; | 
|  | } | 
|  | // Store the fast_extra_bits of the frame and reduce it from | 
|  | // vbr_bits_off_target_fast during postencode stage. | 
|  | rc->frame_level_fast_extra_bits = fast_extra_bits; | 
|  | // Retaining the condition to udpate during postencode stage since | 
|  | // fast_extra_bits are calculated based on vbr_bits_off_target_fast. | 
|  | cpi->do_update_vbr_bits_off_target_fast = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_set_target_rate(AV1_COMP *cpi, int width, int height) { | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | int target_rate = rc->base_frame_target; | 
|  |  | 
|  | // Correction to rate target based on prior over or under shoot. | 
|  | if (cpi->oxcf.rc_cfg.mode == AOM_VBR || cpi->oxcf.rc_cfg.mode == AOM_CQ) | 
|  | vbr_rate_correction(cpi, &target_rate); | 
|  | av1_rc_set_frame_target(cpi, target_rate, width, height); | 
|  | } | 
|  |  | 
|  | int av1_calc_pframe_target_size_one_pass_vbr( | 
|  | const AV1_COMP *const cpi, FRAME_UPDATE_TYPE frame_update_type) { | 
|  | static const int af_ratio = 10; | 
|  | const RATE_CONTROL *const rc = &cpi->rc; | 
|  | const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; | 
|  | int64_t target; | 
|  | #if USE_ALTREF_FOR_ONE_PASS | 
|  | if (frame_update_type == KF_UPDATE || frame_update_type == GF_UPDATE || | 
|  | frame_update_type == ARF_UPDATE) { | 
|  | target = ((int64_t)rc->avg_frame_bandwidth * p_rc->baseline_gf_interval * | 
|  | af_ratio) / | 
|  | (p_rc->baseline_gf_interval + af_ratio - 1); | 
|  | } else { | 
|  | target = ((int64_t)rc->avg_frame_bandwidth * p_rc->baseline_gf_interval) / | 
|  | (p_rc->baseline_gf_interval + af_ratio - 1); | 
|  | } | 
|  | if (target > INT_MAX) target = INT_MAX; | 
|  | #else | 
|  | target = rc->avg_frame_bandwidth; | 
|  | #endif | 
|  | return av1_rc_clamp_pframe_target_size(cpi, (int)target, frame_update_type); | 
|  | } | 
|  |  | 
|  | int av1_calc_iframe_target_size_one_pass_vbr(const AV1_COMP *const cpi) { | 
|  | static const int kf_ratio = 25; | 
|  | const RATE_CONTROL *rc = &cpi->rc; | 
|  | const int64_t target = (int64_t)rc->avg_frame_bandwidth * kf_ratio; | 
|  | return av1_rc_clamp_iframe_target_size(cpi, target); | 
|  | } | 
|  |  | 
|  | int av1_calc_pframe_target_size_one_pass_cbr( | 
|  | const AV1_COMP *cpi, FRAME_UPDATE_TYPE frame_update_type) { | 
|  | const AV1EncoderConfig *oxcf = &cpi->oxcf; | 
|  | const RATE_CONTROL *rc = &cpi->rc; | 
|  | const PRIMARY_RATE_CONTROL *p_rc = &cpi->ppi->p_rc; | 
|  | const RateControlCfg *rc_cfg = &oxcf->rc_cfg; | 
|  | const int64_t diff = p_rc->optimal_buffer_level - p_rc->buffer_level; | 
|  | const int64_t one_pct_bits = 1 + p_rc->optimal_buffer_level / 100; | 
|  | int min_frame_target = | 
|  | AOMMAX(rc->avg_frame_bandwidth >> 4, FRAME_OVERHEAD_BITS); | 
|  | int target; | 
|  |  | 
|  | if (rc_cfg->gf_cbr_boost_pct) { | 
|  | const int af_ratio_pct = rc_cfg->gf_cbr_boost_pct + 100; | 
|  | if (frame_update_type == GF_UPDATE || frame_update_type == OVERLAY_UPDATE) { | 
|  | target = (rc->avg_frame_bandwidth * p_rc->baseline_gf_interval * | 
|  | af_ratio_pct) / | 
|  | (p_rc->baseline_gf_interval * 100 + af_ratio_pct - 100); | 
|  | } else { | 
|  | target = (rc->avg_frame_bandwidth * p_rc->baseline_gf_interval * 100) / | 
|  | (p_rc->baseline_gf_interval * 100 + af_ratio_pct - 100); | 
|  | } | 
|  | } else { | 
|  | target = rc->avg_frame_bandwidth; | 
|  | } | 
|  | if (cpi->ppi->use_svc) { | 
|  | // Note that for layers, avg_frame_bandwidth is the cumulative | 
|  | // per-frame-bandwidth. For the target size of this frame, use the | 
|  | // layer average frame size (i.e., non-cumulative per-frame-bw). | 
|  | int layer = | 
|  | LAYER_IDS_TO_IDX(cpi->svc.spatial_layer_id, cpi->svc.temporal_layer_id, | 
|  | cpi->svc.number_temporal_layers); | 
|  | const LAYER_CONTEXT *lc = &cpi->svc.layer_context[layer]; | 
|  | target = lc->avg_frame_size; | 
|  | min_frame_target = AOMMAX(lc->avg_frame_size >> 4, FRAME_OVERHEAD_BITS); | 
|  | } | 
|  | if (diff > 0) { | 
|  | // Lower the target bandwidth for this frame. | 
|  | const int pct_low = | 
|  | (int)AOMMIN(diff / one_pct_bits, rc_cfg->under_shoot_pct); | 
|  | target -= (target * pct_low) / 200; | 
|  | } else if (diff < 0) { | 
|  | // Increase the target bandwidth for this frame. | 
|  | const int pct_high = | 
|  | (int)AOMMIN(-diff / one_pct_bits, rc_cfg->over_shoot_pct); | 
|  | target += (target * pct_high) / 200; | 
|  | } | 
|  | if (rc_cfg->max_inter_bitrate_pct) { | 
|  | const int max_rate = | 
|  | rc->avg_frame_bandwidth * rc_cfg->max_inter_bitrate_pct / 100; | 
|  | target = AOMMIN(target, max_rate); | 
|  | } | 
|  | return AOMMAX(min_frame_target, target); | 
|  | } | 
|  |  | 
|  | int av1_calc_iframe_target_size_one_pass_cbr(const AV1_COMP *cpi) { | 
|  | const RATE_CONTROL *rc = &cpi->rc; | 
|  | const PRIMARY_RATE_CONTROL *p_rc = &cpi->ppi->p_rc; | 
|  | int64_t target; | 
|  | if (cpi->common.current_frame.frame_number == 0) { | 
|  | target = ((p_rc->starting_buffer_level / 2) > INT_MAX) | 
|  | ? INT_MAX | 
|  | : (int)(p_rc->starting_buffer_level / 2); | 
|  | if (cpi->svc.number_temporal_layers > 1 && target < (INT_MAX >> 2)) { | 
|  | target = target << AOMMIN(2, (cpi->svc.number_temporal_layers - 1)); | 
|  | } | 
|  | } else { | 
|  | int kf_boost = 32; | 
|  | double framerate = cpi->framerate; | 
|  |  | 
|  | kf_boost = AOMMAX(kf_boost, (int)(2 * framerate - 16)); | 
|  | if (rc->frames_since_key < framerate / 2) { | 
|  | kf_boost = (int)(kf_boost * rc->frames_since_key / (framerate / 2)); | 
|  | } | 
|  | target = ((16 + kf_boost) * rc->avg_frame_bandwidth) >> 4; | 
|  | } | 
|  | return av1_rc_clamp_iframe_target_size(cpi, target); | 
|  | } | 
|  |  | 
|  | static void set_baseline_gf_interval(AV1_COMP *cpi, FRAME_TYPE frame_type) { | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; | 
|  | GF_GROUP *const gf_group = &cpi->ppi->gf_group; | 
|  | if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ) | 
|  | av1_cyclic_refresh_set_golden_update(cpi); | 
|  | else | 
|  | p_rc->baseline_gf_interval = FIXED_GF_INTERVAL; | 
|  | if (p_rc->baseline_gf_interval > rc->frames_to_key && | 
|  | cpi->oxcf.kf_cfg.auto_key) | 
|  | p_rc->baseline_gf_interval = rc->frames_to_key; | 
|  | p_rc->gfu_boost = DEFAULT_GF_BOOST_RT; | 
|  | p_rc->constrained_gf_group = | 
|  | (p_rc->baseline_gf_interval >= rc->frames_to_key && | 
|  | cpi->oxcf.kf_cfg.auto_key) | 
|  | ? 1 | 
|  | : 0; | 
|  | rc->frames_till_gf_update_due = p_rc->baseline_gf_interval; | 
|  | cpi->gf_frame_index = 0; | 
|  | // SVC does not use GF as periodic boost. | 
|  | // TODO(marpan): Find better way to disable this for SVC. | 
|  | if (cpi->ppi->use_svc) { | 
|  | SVC *const svc = &cpi->svc; | 
|  | p_rc->baseline_gf_interval = MAX_STATIC_GF_GROUP_LENGTH - 1; | 
|  | p_rc->gfu_boost = 1; | 
|  | p_rc->constrained_gf_group = 0; | 
|  | rc->frames_till_gf_update_due = p_rc->baseline_gf_interval; | 
|  | for (int layer = 0; | 
|  | layer < svc->number_spatial_layers * svc->number_temporal_layers; | 
|  | ++layer) { | 
|  | LAYER_CONTEXT *const lc = &svc->layer_context[layer]; | 
|  | lc->p_rc.baseline_gf_interval = p_rc->baseline_gf_interval; | 
|  | lc->p_rc.gfu_boost = p_rc->gfu_boost; | 
|  | lc->p_rc.constrained_gf_group = p_rc->constrained_gf_group; | 
|  | lc->rc.frames_till_gf_update_due = rc->frames_till_gf_update_due; | 
|  | lc->group_index = 0; | 
|  | } | 
|  | } | 
|  | gf_group->size = p_rc->baseline_gf_interval; | 
|  | gf_group->update_type[0] = (frame_type == KEY_FRAME) ? KF_UPDATE : GF_UPDATE; | 
|  | gf_group->refbuf_state[cpi->gf_frame_index] = | 
|  | (frame_type == KEY_FRAME) ? REFBUF_RESET : REFBUF_UPDATE; | 
|  | } | 
|  |  | 
|  | void av1_adjust_gf_refresh_qp_one_pass_rt(AV1_COMP *cpi) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | SVC *const svc = &cpi->svc; | 
|  | const int resize_pending = is_frame_resize_pending(cpi); | 
|  | if (!resize_pending && !rc->high_source_sad) { | 
|  | // Check if we should disable GF refresh (if period is up), | 
|  | // or force a GF refresh update (if we are at least halfway through | 
|  | // period) based on QP. Look into add info on segment deltaq. | 
|  | PRIMARY_RATE_CONTROL *p_rc = &cpi->ppi->p_rc; | 
|  | const int avg_qp = p_rc->avg_frame_qindex[INTER_FRAME]; | 
|  | const int allow_gf_update = | 
|  | rc->frames_till_gf_update_due <= (p_rc->baseline_gf_interval - 10); | 
|  | int gf_update_changed = 0; | 
|  | int thresh = 87; | 
|  | if (rc->frames_till_gf_update_due == 1 && | 
|  | cm->quant_params.base_qindex > avg_qp) { | 
|  | // Disable GF refresh since QP is above the runninhg average QP. | 
|  | svc->refresh[svc->gld_idx_1layer] = 0; | 
|  | gf_update_changed = 1; | 
|  | cpi->refresh_frame.golden_frame = 0; | 
|  | } else if (allow_gf_update && | 
|  | ((cm->quant_params.base_qindex < thresh * avg_qp / 100) || | 
|  | (rc->avg_frame_low_motion && rc->avg_frame_low_motion < 20))) { | 
|  | // Force refresh since QP is well below average QP or this is a high | 
|  | // motion frame. | 
|  | svc->refresh[svc->gld_idx_1layer] = 1; | 
|  | gf_update_changed = 1; | 
|  | cpi->refresh_frame.golden_frame = 1; | 
|  | } | 
|  | if (gf_update_changed) { | 
|  | set_baseline_gf_interval(cpi, INTER_FRAME); | 
|  | int refresh_mask = 0; | 
|  | for (unsigned int i = 0; i < INTER_REFS_PER_FRAME; i++) { | 
|  | int ref_frame_map_idx = svc->ref_idx[i]; | 
|  | refresh_mask |= svc->refresh[ref_frame_map_idx] << ref_frame_map_idx; | 
|  | } | 
|  | cm->current_frame.refresh_frame_flags = refresh_mask; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /*!\brief Setup the reference prediction structure for 1 pass real-time | 
|  | * | 
|  | * Set the reference prediction structure for 1 layer. | 
|  | * Current structue is to use 3 references (LAST, GOLDEN, ALTREF), | 
|  | * where ALT_REF always behind current by lag_alt frames, and GOLDEN is | 
|  | * either updated on LAST with period baseline_gf_interval (fixed slot) | 
|  | * or always behind current by lag_gld (gld_fixed_slot = 0, lag_gld <= 7). | 
|  | * | 
|  | * \ingroup rate_control | 
|  | * \param[in]       cpi          Top level encoder structure | 
|  | * \param[in]       gf_update    Flag to indicate if GF is updated | 
|  | * | 
|  | * \return Nothing is returned. Instead the settings for the prediction | 
|  | * structure are set in \c cpi-ext_flags; and the buffer slot index | 
|  | * (for each of 7 references) and refresh flags (for each of the 8 slots) | 
|  | * are set in \c cpi->svc.ref_idx[] and \c cpi->svc.refresh[]. | 
|  | */ | 
|  | void av1_set_reference_structure_one_pass_rt(AV1_COMP *cpi, int gf_update) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | ExternalFlags *const ext_flags = &cpi->ext_flags; | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | ExtRefreshFrameFlagsInfo *const ext_refresh_frame_flags = | 
|  | &ext_flags->refresh_frame; | 
|  | SVC *const svc = &cpi->svc; | 
|  | const int gld_fixed_slot = 1; | 
|  | unsigned int lag_alt = 4; | 
|  | int last_idx = 0; | 
|  | int last_idx_refresh = 0; | 
|  | int gld_idx = 0; | 
|  | int alt_ref_idx = 0; | 
|  | int last2_idx = 0; | 
|  | ext_refresh_frame_flags->update_pending = 1; | 
|  | svc->set_ref_frame_config = 1; | 
|  | ext_flags->ref_frame_flags = 0; | 
|  | ext_refresh_frame_flags->last_frame = 1; | 
|  | ext_refresh_frame_flags->golden_frame = 0; | 
|  | ext_refresh_frame_flags->alt_ref_frame = 0; | 
|  | // Decide altref lag adaptively for rt | 
|  | if (cpi->sf.rt_sf.sad_based_adp_altref_lag) { | 
|  | lag_alt = 6; | 
|  | const uint64_t th_frame_sad[4][3] = { | 
|  | { 18000, 18000, 18000 },  // HDRES CPU 9 | 
|  | { 25000, 25000, 25000 },  // MIDRES CPU 9 | 
|  | { 40000, 30000, 20000 },  // HDRES CPU10 | 
|  | { 30000, 25000, 20000 }   // MIDRES CPU 10 | 
|  | }; | 
|  | int th_idx = cpi->sf.rt_sf.sad_based_adp_altref_lag - 1; | 
|  | assert(th_idx < 4); | 
|  | if (rc->avg_source_sad > th_frame_sad[th_idx][0]) | 
|  | lag_alt = 3; | 
|  | else if (rc->avg_source_sad > th_frame_sad[th_idx][1]) | 
|  | lag_alt = 4; | 
|  | else if (rc->avg_source_sad > th_frame_sad[th_idx][2]) | 
|  | lag_alt = 5; | 
|  | } | 
|  | for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) svc->ref_idx[i] = 7; | 
|  | for (int i = 0; i < REF_FRAMES; ++i) svc->refresh[i] = 0; | 
|  | // Set the reference frame flags. | 
|  | ext_flags->ref_frame_flags ^= AOM_LAST_FLAG; | 
|  | ext_flags->ref_frame_flags ^= AOM_ALT_FLAG; | 
|  | ext_flags->ref_frame_flags ^= AOM_GOLD_FLAG; | 
|  | if (cpi->sf.rt_sf.ref_frame_comp_nonrd[1]) | 
|  | ext_flags->ref_frame_flags ^= AOM_LAST2_FLAG; | 
|  | const int sh = 7 - gld_fixed_slot; | 
|  | // Moving index slot for last: 0 - (sh - 1). | 
|  | if (cm->current_frame.frame_number > 1) | 
|  | last_idx = ((cm->current_frame.frame_number - 1) % sh); | 
|  | // Moving index for refresh of last: one ahead for next frame. | 
|  | last_idx_refresh = (cm->current_frame.frame_number % sh); | 
|  | gld_idx = 6; | 
|  | if (!gld_fixed_slot) { | 
|  | gld_idx = 7; | 
|  | const unsigned int lag_gld = 7;  // Must be <= 7. | 
|  | // Moving index for gld_ref, lag behind current by gld_interval frames. | 
|  | if (cm->current_frame.frame_number > lag_gld) | 
|  | gld_idx = ((cm->current_frame.frame_number - lag_gld) % sh); | 
|  | } | 
|  | // Moving index for alt_ref, lag behind LAST by lag_alt frames. | 
|  | if (cm->current_frame.frame_number > lag_alt) | 
|  | alt_ref_idx = ((cm->current_frame.frame_number - lag_alt) % sh); | 
|  | if (cpi->sf.rt_sf.ref_frame_comp_nonrd[1]) { | 
|  | // Moving index for LAST2, lag behind LAST by 2 frames. | 
|  | if (cm->current_frame.frame_number > 2) | 
|  | last2_idx = ((cm->current_frame.frame_number - 2) % sh); | 
|  | } | 
|  | svc->ref_idx[0] = last_idx;          // LAST | 
|  | svc->ref_idx[1] = last_idx_refresh;  // LAST2 (for refresh of last). | 
|  | if (cpi->sf.rt_sf.ref_frame_comp_nonrd[1]) { | 
|  | svc->ref_idx[1] = last2_idx;         // LAST2 | 
|  | svc->ref_idx[2] = last_idx_refresh;  // LAST3 (for refresh of last). | 
|  | } | 
|  | svc->ref_idx[3] = gld_idx;      // GOLDEN | 
|  | svc->ref_idx[6] = alt_ref_idx;  // ALT_REF | 
|  | // Refresh this slot, which will become LAST on next frame. | 
|  | svc->refresh[last_idx_refresh] = 1; | 
|  | // Update GOLDEN on period for fixed slot case. | 
|  | if (gld_fixed_slot && gf_update && | 
|  | cm->current_frame.frame_type != KEY_FRAME) { | 
|  | ext_refresh_frame_flags->golden_frame = 1; | 
|  | svc->refresh[gld_idx] = 1; | 
|  | } | 
|  | svc->gld_idx_1layer = gld_idx; | 
|  | } | 
|  |  | 
|  | /*!\brief Check for scene detection, for 1 pass real-time mode. | 
|  | * | 
|  | * Compute average source sad (temporal sad: between current source and | 
|  | * previous source) over a subset of superblocks. Use this is detect big changes | 
|  | * in content and set the \c cpi->rc.high_source_sad flag. | 
|  | * | 
|  | * \ingroup rate_control | 
|  | * \param[in]       cpi          Top level encoder structure | 
|  | * | 
|  | * \return Nothing is returned. Instead the flag \c cpi->rc.high_source_sad | 
|  | * is set if scene change is detected, and \c cpi->rc.avg_source_sad is updated. | 
|  | */ | 
|  | static void rc_scene_detection_onepass_rt(AV1_COMP *cpi) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | YV12_BUFFER_CONFIG const *unscaled_src = cpi->unscaled_source; | 
|  | YV12_BUFFER_CONFIG const *unscaled_last_src = cpi->unscaled_last_source; | 
|  | uint8_t *src_y; | 
|  | int src_ystride; | 
|  | int src_width; | 
|  | int src_height; | 
|  | uint8_t *last_src_y; | 
|  | int last_src_ystride; | 
|  | int last_src_width; | 
|  | int last_src_height; | 
|  | if (cm->spatial_layer_id != 0 || cm->width != cm->render_width || | 
|  | cm->height != cm->render_height || cpi->unscaled_source == NULL || | 
|  | cpi->unscaled_last_source == NULL) { | 
|  | if (cpi->src_sad_blk_64x64) { | 
|  | aom_free(cpi->src_sad_blk_64x64); | 
|  | cpi->src_sad_blk_64x64 = NULL; | 
|  | } | 
|  | } | 
|  | if (cpi->unscaled_source == NULL || cpi->unscaled_last_source == NULL) return; | 
|  | src_y = unscaled_src->y_buffer; | 
|  | src_ystride = unscaled_src->y_stride; | 
|  | src_width = unscaled_src->y_width; | 
|  | src_height = unscaled_src->y_height; | 
|  | last_src_y = unscaled_last_src->y_buffer; | 
|  | last_src_ystride = unscaled_last_src->y_stride; | 
|  | last_src_width = unscaled_last_src->y_width; | 
|  | last_src_height = unscaled_last_src->y_height; | 
|  | if (src_width != last_src_width || src_height != last_src_height) { | 
|  | if (cpi->src_sad_blk_64x64) { | 
|  | aom_free(cpi->src_sad_blk_64x64); | 
|  | cpi->src_sad_blk_64x64 = NULL; | 
|  | } | 
|  | return; | 
|  | } | 
|  | rc->high_source_sad = 0; | 
|  | rc->high_num_blocks_with_motion = 0; | 
|  | rc->prev_avg_source_sad = rc->avg_source_sad; | 
|  | if (src_width == last_src_width && src_height == last_src_height) { | 
|  | const int num_mi_cols = cm->mi_params.mi_cols; | 
|  | const int num_mi_rows = cm->mi_params.mi_rows; | 
|  | int num_zero_temp_sad = 0; | 
|  | uint32_t min_thresh = 10000; | 
|  | if (cpi->oxcf.tune_cfg.content != AOM_CONTENT_SCREEN) min_thresh = 100000; | 
|  | const BLOCK_SIZE bsize = BLOCK_64X64; | 
|  | int full_sampling = (cm->width * cm->height < 640 * 360) ? 1 : 0; | 
|  | // Loop over sub-sample of frame, compute average sad over 64x64 blocks. | 
|  | uint64_t avg_sad = 0; | 
|  | uint64_t tmp_sad = 0; | 
|  | int num_samples = 0; | 
|  | const int thresh = 6; | 
|  | // SAD is computed on 64x64 blocks | 
|  | const int sb_size_by_mb = (cm->seq_params->sb_size == BLOCK_128X128) | 
|  | ? (cm->seq_params->mib_size >> 1) | 
|  | : cm->seq_params->mib_size; | 
|  | const int sb_cols = (num_mi_cols + sb_size_by_mb - 1) / sb_size_by_mb; | 
|  | const int sb_rows = (num_mi_rows + sb_size_by_mb - 1) / sb_size_by_mb; | 
|  | uint64_t sum_sq_thresh = 10000;  // sum = sqrt(thresh / 64*64)) ~1.5 | 
|  | int num_low_var_high_sumdiff = 0; | 
|  | int light_change = 0; | 
|  | // Flag to check light change or not. | 
|  | const int check_light_change = 0; | 
|  | // Store blkwise SAD for later use | 
|  | if (cpi->sf.rt_sf.sad_based_comp_prune && (cm->spatial_layer_id == 0) && | 
|  | (cm->width == cm->render_width) && (cm->height == cm->render_height)) { | 
|  | full_sampling = 1; | 
|  | if (cpi->src_sad_blk_64x64 == NULL) { | 
|  | cpi->src_sad_blk_64x64 = (uint64_t *)aom_malloc( | 
|  | (sb_cols * sb_rows) * sizeof(*cpi->src_sad_blk_64x64)); | 
|  | memset(cpi->src_sad_blk_64x64, 0, | 
|  | (sb_cols * sb_rows) * sizeof(*cpi->src_sad_blk_64x64)); | 
|  | } | 
|  | } | 
|  | for (int sbi_row = 0; sbi_row < sb_rows; ++sbi_row) { | 
|  | for (int sbi_col = 0; sbi_col < sb_cols; ++sbi_col) { | 
|  | // Checker-board pattern, ignore boundary. | 
|  | if (full_sampling || | 
|  | ((sbi_row > 0 && sbi_col > 0) && | 
|  | (sbi_row < sb_rows - 1 && sbi_col < sb_cols - 1) && | 
|  | ((sbi_row % 2 == 0 && sbi_col % 2 == 0) || | 
|  | (sbi_row % 2 != 0 && sbi_col % 2 != 0)))) { | 
|  | tmp_sad = cpi->ppi->fn_ptr[bsize].sdf(src_y, src_ystride, last_src_y, | 
|  | last_src_ystride); | 
|  | if (cpi->src_sad_blk_64x64 != NULL) | 
|  | cpi->src_sad_blk_64x64[sbi_col + sbi_row * sb_cols] = tmp_sad; | 
|  | if (check_light_change) { | 
|  | unsigned int sse, variance; | 
|  | variance = cpi->ppi->fn_ptr[bsize].vf( | 
|  | src_y, src_ystride, last_src_y, last_src_ystride, &sse); | 
|  | // Note: sse - variance = ((sum * sum) >> 12) | 
|  | // Detect large lighting change. | 
|  | if (variance < (sse >> 1) && (sse - variance) > sum_sq_thresh) { | 
|  | num_low_var_high_sumdiff++; | 
|  | } | 
|  | } | 
|  | avg_sad += tmp_sad; | 
|  | num_samples++; | 
|  | if (tmp_sad == 0) num_zero_temp_sad++; | 
|  | } | 
|  | src_y += 64; | 
|  | last_src_y += 64; | 
|  | } | 
|  | src_y += (src_ystride << 6) - (sb_cols << 6); | 
|  | last_src_y += (last_src_ystride << 6) - (sb_cols << 6); | 
|  | } | 
|  | if (check_light_change && num_samples > 0 && | 
|  | num_low_var_high_sumdiff > (num_samples >> 1)) | 
|  | light_change = 1; | 
|  | if (num_samples > 0) avg_sad = avg_sad / num_samples; | 
|  | // Set high_source_sad flag if we detect very high increase in avg_sad | 
|  | // between current and previous frame value(s). Use minimum threshold | 
|  | // for cases where there is small change from content that is completely | 
|  | // static. | 
|  | if (!light_change && | 
|  | avg_sad > | 
|  | AOMMAX(min_thresh, (unsigned int)(rc->avg_source_sad * thresh)) && | 
|  | rc->frames_since_key > 1 + cpi->svc.number_spatial_layers && | 
|  | num_zero_temp_sad < 3 * (num_samples >> 2)) | 
|  | rc->high_source_sad = 1; | 
|  | else | 
|  | rc->high_source_sad = 0; | 
|  | rc->avg_source_sad = (3 * rc->avg_source_sad + avg_sad) >> 2; | 
|  | rc->frame_source_sad = avg_sad; | 
|  |  | 
|  | if (num_zero_temp_sad < (3 * num_samples >> 2)) | 
|  | rc->high_num_blocks_with_motion = 1; | 
|  | } | 
|  | cpi->svc.high_source_sad_superframe = rc->high_source_sad; | 
|  | } | 
|  |  | 
|  | /*!\brief Set the GF baseline interval for 1 pass real-time mode. | 
|  | * | 
|  | * | 
|  | * \ingroup rate_control | 
|  | * \param[in]       cpi          Top level encoder structure | 
|  | * \param[in]       frame_type   frame type | 
|  | * | 
|  | * \return Return GF update flag, and update the \c cpi->rc with | 
|  | * the next GF interval settings. | 
|  | */ | 
|  | static int set_gf_interval_update_onepass_rt(AV1_COMP *cpi, | 
|  | FRAME_TYPE frame_type) { | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | int gf_update = 0; | 
|  | const int resize_pending = is_frame_resize_pending(cpi); | 
|  | // GF update based on frames_till_gf_update_due, also | 
|  | // force upddate on resize pending frame or for scene change. | 
|  | if ((resize_pending || rc->high_source_sad || | 
|  | rc->frames_till_gf_update_due == 0) && | 
|  | cpi->svc.temporal_layer_id == 0 && cpi->svc.spatial_layer_id == 0) { | 
|  | set_baseline_gf_interval(cpi, frame_type); | 
|  | gf_update = 1; | 
|  | } | 
|  | return gf_update; | 
|  | } | 
|  |  | 
|  | static void resize_reset_rc(AV1_COMP *cpi, int resize_width, int resize_height, | 
|  | int prev_width, int prev_height) { | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; | 
|  | SVC *const svc = &cpi->svc; | 
|  | double tot_scale_change = 1.0; | 
|  | int target_bits_per_frame; | 
|  | int active_worst_quality; | 
|  | int qindex; | 
|  | tot_scale_change = (double)(resize_width * resize_height) / | 
|  | (double)(prev_width * prev_height); | 
|  | // Reset buffer level to optimal, update target size. | 
|  | p_rc->buffer_level = p_rc->optimal_buffer_level; | 
|  | p_rc->bits_off_target = p_rc->optimal_buffer_level; | 
|  | rc->this_frame_target = | 
|  | av1_calc_pframe_target_size_one_pass_cbr(cpi, INTER_FRAME); | 
|  | target_bits_per_frame = rc->this_frame_target; | 
|  | if (tot_scale_change > 4.0) | 
|  | p_rc->avg_frame_qindex[INTER_FRAME] = rc->worst_quality; | 
|  | else if (tot_scale_change > 1.0) | 
|  | p_rc->avg_frame_qindex[INTER_FRAME] = | 
|  | (p_rc->avg_frame_qindex[INTER_FRAME] + rc->worst_quality) >> 1; | 
|  | active_worst_quality = calc_active_worst_quality_no_stats_cbr(cpi); | 
|  | qindex = av1_rc_regulate_q(cpi, target_bits_per_frame, rc->best_quality, | 
|  | active_worst_quality, resize_width, resize_height); | 
|  | // If resize is down, check if projected q index is close to worst_quality, | 
|  | // and if so, reduce the rate correction factor (since likely can afford | 
|  | // lower q for resized frame). | 
|  | if (tot_scale_change < 1.0 && qindex > 90 * cpi->rc.worst_quality / 100) | 
|  | p_rc->rate_correction_factors[INTER_NORMAL] *= 0.85; | 
|  | // Apply the same rate control reset to all temporal layers. | 
|  | for (int tl = 0; tl < svc->number_temporal_layers; tl++) { | 
|  | LAYER_CONTEXT *lc = NULL; | 
|  | lc = &svc->layer_context[svc->spatial_layer_id * | 
|  | svc->number_temporal_layers + | 
|  | tl]; | 
|  | lc->rc.resize_state = rc->resize_state; | 
|  | lc->p_rc.buffer_level = lc->p_rc.optimal_buffer_level; | 
|  | lc->p_rc.bits_off_target = lc->p_rc.optimal_buffer_level; | 
|  | lc->p_rc.rate_correction_factors[INTER_FRAME] = | 
|  | p_rc->rate_correction_factors[INTER_FRAME]; | 
|  | } | 
|  | // If resize is back up: check if projected q index is too much above the | 
|  | // previous index, and if so, reduce the rate correction factor | 
|  | // (since prefer to keep q for resized frame at least closet to previous q). | 
|  | // Also check if projected qindex is close to previous qindex, if so | 
|  | // increase correction factor (to push qindex higher and avoid overshoot). | 
|  | if (tot_scale_change >= 1.0) { | 
|  | if (tot_scale_change < 4.0 && | 
|  | qindex > 130 * p_rc->last_q[INTER_FRAME] / 100) | 
|  | p_rc->rate_correction_factors[INTER_NORMAL] *= 0.8; | 
|  | if (qindex <= 120 * p_rc->last_q[INTER_FRAME] / 100) | 
|  | p_rc->rate_correction_factors[INTER_NORMAL] *= 2.0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /*!\brief ChecK for resize based on Q, for 1 pass real-time mode. | 
|  | * | 
|  | * Check if we should resize, based on average QP from past x frames. | 
|  | * Only allow for resize at most 1/2 scale down for now, Scaling factor | 
|  | * for each step may be 3/4 or 1/2. | 
|  | * | 
|  | * \ingroup rate_control | 
|  | * \param[in]       cpi          Top level encoder structure | 
|  | * | 
|  | * \return Return resized width/height in \c cpi->resize_pending_params, | 
|  | * and update some resize counters in \c rc. | 
|  | */ | 
|  | static void dynamic_resize_one_pass_cbr(AV1_COMP *cpi) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; | 
|  | RESIZE_ACTION resize_action = NO_RESIZE; | 
|  | const int avg_qp_thr1 = 70; | 
|  | const int avg_qp_thr2 = 50; | 
|  | // Don't allow for resized frame to go below 160x90, resize in steps of 3/4. | 
|  | const int min_width = (160 * 4) / 3; | 
|  | const int min_height = (90 * 4) / 3; | 
|  | int down_size_on = 1; | 
|  | // Don't resize on key frame; reset the counters on key frame. | 
|  | if (cm->current_frame.frame_type == KEY_FRAME) { | 
|  | rc->resize_avg_qp = 0; | 
|  | rc->resize_count = 0; | 
|  | rc->resize_buffer_underflow = 0; | 
|  | return; | 
|  | } | 
|  | // No resizing down if frame size is below some limit. | 
|  | if ((cm->width * cm->height) < min_width * min_height) down_size_on = 0; | 
|  |  | 
|  | // Resize based on average buffer underflow and QP over some window. | 
|  | // Ignore samples close to key frame, since QP is usually high after key. | 
|  | if (cpi->rc.frames_since_key > cpi->framerate) { | 
|  | const int window = AOMMIN(30, (int)(2 * cpi->framerate)); | 
|  | rc->resize_avg_qp += p_rc->last_q[INTER_FRAME]; | 
|  | if (cpi->ppi->p_rc.buffer_level < | 
|  | (int)(30 * p_rc->optimal_buffer_level / 100)) | 
|  | ++rc->resize_buffer_underflow; | 
|  | ++rc->resize_count; | 
|  | // Check for resize action every "window" frames. | 
|  | if (rc->resize_count >= window) { | 
|  | int avg_qp = rc->resize_avg_qp / rc->resize_count; | 
|  | // Resize down if buffer level has underflowed sufficient amount in past | 
|  | // window, and we are at original or 3/4 of original resolution. | 
|  | // Resize back up if average QP is low, and we are currently in a resized | 
|  | // down state, i.e. 1/2 or 3/4 of original resolution. | 
|  | // Currently, use a flag to turn 3/4 resizing feature on/off. | 
|  | if (rc->resize_buffer_underflow > (rc->resize_count >> 2) && | 
|  | down_size_on) { | 
|  | if (rc->resize_state == THREE_QUARTER) { | 
|  | resize_action = DOWN_ONEHALF; | 
|  | rc->resize_state = ONE_HALF; | 
|  | } else if (rc->resize_state == ORIG) { | 
|  | resize_action = DOWN_THREEFOUR; | 
|  | rc->resize_state = THREE_QUARTER; | 
|  | } | 
|  | } else if (rc->resize_state != ORIG && | 
|  | avg_qp < avg_qp_thr1 * cpi->rc.worst_quality / 100) { | 
|  | if (rc->resize_state == THREE_QUARTER || | 
|  | avg_qp < avg_qp_thr2 * cpi->rc.worst_quality / 100) { | 
|  | resize_action = UP_ORIG; | 
|  | rc->resize_state = ORIG; | 
|  | } else if (rc->resize_state == ONE_HALF) { | 
|  | resize_action = UP_THREEFOUR; | 
|  | rc->resize_state = THREE_QUARTER; | 
|  | } | 
|  | } | 
|  | // Reset for next window measurement. | 
|  | rc->resize_avg_qp = 0; | 
|  | rc->resize_count = 0; | 
|  | rc->resize_buffer_underflow = 0; | 
|  | } | 
|  | } | 
|  | // If decision is to resize, reset some quantities, and check is we should | 
|  | // reduce rate correction factor, | 
|  | if (resize_action != NO_RESIZE) { | 
|  | int resize_width = cpi->oxcf.frm_dim_cfg.width; | 
|  | int resize_height = cpi->oxcf.frm_dim_cfg.height; | 
|  | int resize_scale_num = 1; | 
|  | int resize_scale_den = 1; | 
|  | if (resize_action == DOWN_THREEFOUR || resize_action == UP_THREEFOUR) { | 
|  | resize_scale_num = 3; | 
|  | resize_scale_den = 4; | 
|  | } else if (resize_action == DOWN_ONEHALF) { | 
|  | resize_scale_num = 1; | 
|  | resize_scale_den = 2; | 
|  | } | 
|  | resize_width = resize_width * resize_scale_num / resize_scale_den; | 
|  | resize_height = resize_height * resize_scale_num / resize_scale_den; | 
|  | resize_reset_rc(cpi, resize_width, resize_height, cm->width, cm->height); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | static INLINE int set_key_frame(AV1_COMP *cpi, unsigned int frame_flags) { | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | SVC *const svc = &cpi->svc; | 
|  |  | 
|  | // Very first frame has to be key frame. | 
|  | if (cm->current_frame.frame_number == 0) return 1; | 
|  | // Set key frame if forced by frame flags. | 
|  | if (frame_flags & FRAMEFLAGS_KEY) return 1; | 
|  | if (!cpi->ppi->use_svc) { | 
|  | // Non-SVC | 
|  | if (cpi->oxcf.kf_cfg.auto_key && rc->frames_to_key == 0) return 1; | 
|  | } else { | 
|  | // SVC | 
|  | if (svc->spatial_layer_id == 0 && | 
|  | (cpi->oxcf.kf_cfg.auto_key && | 
|  | (cpi->oxcf.kf_cfg.key_freq_max == 0 || | 
|  | svc->current_superframe % cpi->oxcf.kf_cfg.key_freq_max == 0))) | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void av1_get_one_pass_rt_params(AV1_COMP *cpi, | 
|  | EncodeFrameParams *const frame_params, | 
|  | unsigned int frame_flags) { | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | GF_GROUP *const gf_group = &cpi->ppi->gf_group; | 
|  | SVC *const svc = &cpi->svc; | 
|  | ResizePendingParams *const resize_pending_params = | 
|  | &cpi->resize_pending_params; | 
|  | int target; | 
|  | const int layer = | 
|  | LAYER_IDS_TO_IDX(svc->spatial_layer_id, svc->temporal_layer_id, | 
|  | svc->number_temporal_layers); | 
|  | // Turn this on to explicitly set the reference structure rather than | 
|  | // relying on internal/default structure. | 
|  | if (cpi->ppi->use_svc) { | 
|  | av1_update_temporal_layer_framerate(cpi); | 
|  | av1_restore_layer_context(cpi); | 
|  | } | 
|  | // Set frame type. | 
|  | if (set_key_frame(cpi, frame_flags)) { | 
|  | frame_params->frame_type = KEY_FRAME; | 
|  | p_rc->this_key_frame_forced = | 
|  | cm->current_frame.frame_number != 0 && rc->frames_to_key == 0; | 
|  | rc->frames_to_key = cpi->oxcf.kf_cfg.key_freq_max; | 
|  | p_rc->kf_boost = DEFAULT_KF_BOOST_RT; | 
|  | gf_group->update_type[cpi->gf_frame_index] = KF_UPDATE; | 
|  | gf_group->frame_type[cpi->gf_frame_index] = KEY_FRAME; | 
|  | gf_group->refbuf_state[cpi->gf_frame_index] = REFBUF_RESET; | 
|  | if (cpi->ppi->use_svc) { | 
|  | if (cm->current_frame.frame_number > 0) | 
|  | av1_svc_reset_temporal_layers(cpi, 1); | 
|  | svc->layer_context[layer].is_key_frame = 1; | 
|  | } | 
|  | } else { | 
|  | frame_params->frame_type = INTER_FRAME; | 
|  | gf_group->update_type[cpi->gf_frame_index] = LF_UPDATE; | 
|  | gf_group->frame_type[cpi->gf_frame_index] = INTER_FRAME; | 
|  | gf_group->refbuf_state[cpi->gf_frame_index] = REFBUF_UPDATE; | 
|  | if (cpi->ppi->use_svc) { | 
|  | LAYER_CONTEXT *lc = &svc->layer_context[layer]; | 
|  | lc->is_key_frame = | 
|  | svc->spatial_layer_id == 0 | 
|  | ? 0 | 
|  | : svc->layer_context[svc->temporal_layer_id].is_key_frame; | 
|  | // If the user is setting the SVC pattern with set_ref_frame_config and | 
|  | // did not set any references, set the frame type to Intra-only. | 
|  | if (svc->set_ref_frame_config) { | 
|  | int no_references_set = 1; | 
|  | for (int i = 0; i < INTER_REFS_PER_FRAME; i++) { | 
|  | if (svc->reference[i]) { | 
|  | no_references_set = 0; | 
|  | break; | 
|  | } | 
|  | } | 
|  | // Set to intra_only_frame if no references are set. | 
|  | // The stream can start decoding on INTRA_ONLY_FRAME so long as the | 
|  | // layer with the intra_only_frame doesn't signal a reference to a slot | 
|  | // that hasn't been set yet. | 
|  | if (no_references_set) frame_params->frame_type = INTRA_ONLY_FRAME; | 
|  | } | 
|  | } | 
|  | } | 
|  | // Check for scene change: for SVC check on base spatial layer only. | 
|  | if (cpi->sf.rt_sf.check_scene_detection && svc->spatial_layer_id == 0) | 
|  | rc_scene_detection_onepass_rt(cpi); | 
|  | // Check for dynamic resize, for single spatial layer for now. | 
|  | // For temporal layers only check on base temporal layer. | 
|  | if (cpi->oxcf.resize_cfg.resize_mode == RESIZE_DYNAMIC) { | 
|  | if (svc->number_spatial_layers == 1 && svc->temporal_layer_id == 0) | 
|  | dynamic_resize_one_pass_cbr(cpi); | 
|  | if (rc->resize_state == THREE_QUARTER) { | 
|  | resize_pending_params->width = (3 + cpi->oxcf.frm_dim_cfg.width * 3) >> 2; | 
|  | resize_pending_params->height = | 
|  | (3 + cpi->oxcf.frm_dim_cfg.height * 3) >> 2; | 
|  | } else if (rc->resize_state == ONE_HALF) { | 
|  | resize_pending_params->width = (1 + cpi->oxcf.frm_dim_cfg.width) >> 1; | 
|  | resize_pending_params->height = (1 + cpi->oxcf.frm_dim_cfg.height) >> 1; | 
|  | } else { | 
|  | resize_pending_params->width = cpi->oxcf.frm_dim_cfg.width; | 
|  | resize_pending_params->height = cpi->oxcf.frm_dim_cfg.height; | 
|  | } | 
|  | } else if (is_frame_resize_pending(cpi)) { | 
|  | resize_reset_rc(cpi, resize_pending_params->width, | 
|  | resize_pending_params->height, cm->width, cm->height); | 
|  | } | 
|  | // Set the GF interval and update flag. | 
|  | if (!rc->rtc_external_ratectrl) | 
|  | set_gf_interval_update_onepass_rt(cpi, frame_params->frame_type); | 
|  | // Set target size. | 
|  | if (cpi->oxcf.rc_cfg.mode == AOM_CBR) { | 
|  | if (frame_params->frame_type == KEY_FRAME || | 
|  | frame_params->frame_type == INTRA_ONLY_FRAME) { | 
|  | target = av1_calc_iframe_target_size_one_pass_cbr(cpi); | 
|  | } else { | 
|  | target = av1_calc_pframe_target_size_one_pass_cbr( | 
|  | cpi, gf_group->update_type[cpi->gf_frame_index]); | 
|  | } | 
|  | } else { | 
|  | if (frame_params->frame_type == KEY_FRAME || | 
|  | frame_params->frame_type == INTRA_ONLY_FRAME) { | 
|  | target = av1_calc_iframe_target_size_one_pass_vbr(cpi); | 
|  | } else { | 
|  | target = av1_calc_pframe_target_size_one_pass_vbr( | 
|  | cpi, gf_group->update_type[cpi->gf_frame_index]); | 
|  | } | 
|  | } | 
|  | if (cpi->oxcf.rc_cfg.mode == AOM_Q) | 
|  | rc->active_worst_quality = cpi->oxcf.rc_cfg.cq_level; | 
|  |  | 
|  | av1_rc_set_frame_target(cpi, target, cm->width, cm->height); | 
|  | rc->base_frame_target = target; | 
|  | cm->current_frame.frame_type = frame_params->frame_type; | 
|  | // For fixed mode SVC: if KSVC is enabled remove inter layer | 
|  | // prediction on spatial enhancement layer frames for frames | 
|  | // whose base is not KEY frame. | 
|  | if (cpi->ppi->use_svc && !svc->use_flexible_mode && svc->ksvc_fixed_mode && | 
|  | svc->number_spatial_layers > 1 && | 
|  | !svc->layer_context[layer].is_key_frame) { | 
|  | ExternalFlags *const ext_flags = &cpi->ext_flags; | 
|  | ext_flags->ref_frame_flags ^= AOM_GOLD_FLAG; | 
|  | } | 
|  | } | 
|  |  | 
|  | int av1_encodedframe_overshoot_cbr(AV1_COMP *cpi, int *q) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | RATE_CONTROL *const rc = &cpi->rc; | 
|  | PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; | 
|  | SPEED_FEATURES *const sf = &cpi->sf; | 
|  | int thresh_qp = 7 * (rc->worst_quality >> 3); | 
|  | // Lower thresh_qp for video (more overshoot at lower Q) to be | 
|  | // more conservative for video. | 
|  | if (cpi->oxcf.tune_cfg.content != AOM_CONTENT_SCREEN) | 
|  | thresh_qp = 3 * (rc->worst_quality >> 2); | 
|  | if (sf->rt_sf.overshoot_detection_cbr == FAST_DETECTION_MAXQ && | 
|  | cm->quant_params.base_qindex < thresh_qp) { | 
|  | double rate_correction_factor = | 
|  | cpi->ppi->p_rc.rate_correction_factors[INTER_NORMAL]; | 
|  | const int target_size = cpi->rc.avg_frame_bandwidth; | 
|  | double new_correction_factor; | 
|  | int target_bits_per_mb; | 
|  | double q2; | 
|  | int enumerator; | 
|  | *q = (3 * cpi->rc.worst_quality + *q) >> 2; | 
|  | // For screen content use the max-q set by the user to allow for less | 
|  | // overshoot on slide changes. | 
|  | if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN) | 
|  | *q = cpi->rc.worst_quality; | 
|  | cpi->cyclic_refresh->counter_encode_maxq_scene_change = 0; | 
|  | // Adjust avg_frame_qindex, buffer_level, and rate correction factors, as | 
|  | // these parameters will affect QP selection for subsequent frames. If they | 
|  | // have settled down to a very different (low QP) state, then not adjusting | 
|  | // them may cause next frame to select low QP and overshoot again. | 
|  | p_rc->avg_frame_qindex[INTER_FRAME] = *q; | 
|  | p_rc->buffer_level = p_rc->optimal_buffer_level; | 
|  | p_rc->bits_off_target = p_rc->optimal_buffer_level; | 
|  | // Reset rate under/over-shoot flags. | 
|  | cpi->rc.rc_1_frame = 0; | 
|  | cpi->rc.rc_2_frame = 0; | 
|  | // Adjust rate correction factor. | 
|  | target_bits_per_mb = | 
|  | (int)(((uint64_t)target_size << BPER_MB_NORMBITS) / cm->mi_params.MBs); | 
|  | // Rate correction factor based on target_bits_per_mb and qp (==max_QP). | 
|  | // This comes from the inverse computation of vp9_rc_bits_per_mb(). | 
|  | q2 = av1_convert_qindex_to_q(*q, cm->seq_params->bit_depth); | 
|  | enumerator = 1800000;  // Factor for inter frame. | 
|  | enumerator += (int)(enumerator * q2) >> 12; | 
|  | new_correction_factor = (double)target_bits_per_mb * q2 / enumerator; | 
|  | if (new_correction_factor > rate_correction_factor) { | 
|  | rate_correction_factor = | 
|  | AOMMIN(2.0 * rate_correction_factor, new_correction_factor); | 
|  | if (rate_correction_factor > MAX_BPB_FACTOR) | 
|  | rate_correction_factor = MAX_BPB_FACTOR; | 
|  | cpi->ppi->p_rc.rate_correction_factors[INTER_NORMAL] = | 
|  | rate_correction_factor; | 
|  | } | 
|  | // For temporal layers: reset the rate control parameters across all | 
|  | // temporal layers. | 
|  | if (cpi->svc.number_temporal_layers > 1) { | 
|  | SVC *svc = &cpi->svc; | 
|  | for (int tl = 0; tl < svc->number_temporal_layers; ++tl) { | 
|  | int sl = svc->spatial_layer_id; | 
|  | const int layer = LAYER_IDS_TO_IDX(sl, tl, svc->number_temporal_layers); | 
|  | LAYER_CONTEXT *lc = &svc->layer_context[layer]; | 
|  | RATE_CONTROL *lrc = &lc->rc; | 
|  | PRIMARY_RATE_CONTROL *lp_rc = &lc->p_rc; | 
|  | lp_rc->avg_frame_qindex[INTER_FRAME] = *q; | 
|  | lp_rc->buffer_level = lp_rc->optimal_buffer_level; | 
|  | lp_rc->bits_off_target = lp_rc->optimal_buffer_level; | 
|  | lrc->rc_1_frame = 0; | 
|  | lrc->rc_2_frame = 0; | 
|  | lp_rc->rate_correction_factors[INTER_NORMAL] = rate_correction_factor; | 
|  | } | 
|  | } | 
|  | return 1; | 
|  | } else { | 
|  | return 0; | 
|  | } | 
|  | } |