|  | /* | 
|  | * Copyright (c) 2020, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  |  | 
|  | #include <stdbool.h> | 
|  | #include <assert.h> | 
|  | #include <arm_neon.h> | 
|  |  | 
|  | #include "config/av1_rtcd.h" | 
|  | #include "av1/encoder/ml.h" | 
|  |  | 
|  | static void nn_activate8(float32x4_t *out_h, float32x4_t *out_l, | 
|  | const float32x4_t *zero) { | 
|  | *out_h = vmaxq_f32(*out_h, *zero); | 
|  | *out_l = vmaxq_f32(*out_l, *zero); | 
|  | } | 
|  |  | 
|  | static void nn_activate4(float32x4_t *x, const float32x4_t *zero) { | 
|  | *x = vmaxq_f32(*x, *zero); | 
|  | } | 
|  |  | 
|  | #define CLAMP_0(x) (x = x > 0 ? x : 0) | 
|  |  | 
|  | static void nn_propagate_8to1(int num_inputs, const float *const inputs, | 
|  | const float *const weights, | 
|  | const float *layer_bias, | 
|  | float *const output_nodes, bool output_layer) { | 
|  | const float32x4_t zero = vdupq_n_f32(0); | 
|  | float32x4_t vadd = zero; | 
|  | float total = *layer_bias; | 
|  |  | 
|  | for (int in = 0; in < num_inputs; in += 8) { | 
|  | const float32x4_t inputs_h = vld1q_f32(&inputs[in + 4]); | 
|  | const float32x4_t inputs_l = vld1q_f32(&inputs[in]); | 
|  |  | 
|  | const float32x4_t weights_h = vld1q_f32(&weights[in + 4]); | 
|  | const float32x4_t weights_l = vld1q_f32(&weights[in]); | 
|  |  | 
|  | vadd = vmlaq_f32(vadd, inputs_h, weights_h); | 
|  | vadd = vmlaq_f32(vadd, inputs_l, weights_l); | 
|  | } | 
|  | #if defined(__aarch64__) | 
|  | total += vaddvq_f32(vadd); | 
|  | #else | 
|  | float32x2_t vadd_lo = vadd_f32(vget_low_f32(vadd), vget_high_f32(vadd)); | 
|  | vadd_lo = vpadd_f32(vadd_lo, vadd_lo); | 
|  | total += vget_lane_f32(vadd_lo, 0); | 
|  | #endif | 
|  |  | 
|  | if (!output_layer) CLAMP_0(total); | 
|  | *output_nodes = total; | 
|  | } | 
|  |  | 
|  | static void nn_propagate_xto1(int num_inputs, const float *const inputs, | 
|  | const float *const weights, | 
|  | const float *layer_bias, | 
|  | float *const output_nodes) { | 
|  | float32x4_t vadd = vdupq_n_f32(0); | 
|  |  | 
|  | float total = *layer_bias; | 
|  | int j = num_inputs; | 
|  | int in = 0; | 
|  | while (j > 7) { | 
|  | const float32x4_t inputs_h = vld1q_f32(&inputs[in + 4]); | 
|  | const float32x4_t inputs_l = vld1q_f32(&inputs[in]); | 
|  |  | 
|  | const float32x4_t weights_h = vld1q_f32(&weights[in + 4]); | 
|  | const float32x4_t weights_l = vld1q_f32(&weights[in]); | 
|  |  | 
|  | vadd = vmlaq_f32(vadd, inputs_h, weights_h); | 
|  | vadd = vmlaq_f32(vadd, inputs_l, weights_l); | 
|  | in += 8; | 
|  | j -= 8; | 
|  | } | 
|  |  | 
|  | #if defined(__aarch64__) | 
|  | total += vaddvq_f32(vadd); | 
|  |  | 
|  | #else | 
|  | float32x2_t vadd_lo = vadd_f32(vget_low_f32(vadd), vget_high_f32(vadd)); | 
|  | vadd_lo = vpadd_f32(vadd_lo, vadd_lo); | 
|  | total += vget_lane_f32(vadd_lo, 0); | 
|  | #endif | 
|  | for (; in < num_inputs; in++) total += weights[in] * inputs[in]; | 
|  |  | 
|  | *output_nodes = CLAMP_0(total); | 
|  | } | 
|  |  | 
|  | static void nn_propagate_xsto1(int num_inputs, const float *const inputs, | 
|  | const float *const weights, | 
|  | const float *layer_bias, | 
|  | float *const output_nodes) { | 
|  | float total = *layer_bias; | 
|  | #if defined(__aarch64__) | 
|  | const float32x4_t v_inputs = vld1q_f32(inputs); | 
|  | const float32x4_t v_weights = vld1q_f32(weights); | 
|  | const float32x4_t vadd = vmulq_f32(v_inputs, v_weights); | 
|  | total += vaddvq_f32(vadd); | 
|  | int in = 4; | 
|  | #else | 
|  | int in = 0; | 
|  | #endif | 
|  | for (; in < num_inputs; in++) total += weights[in] * inputs[in]; | 
|  |  | 
|  | *output_nodes = CLAMP_0(total); | 
|  | } | 
|  |  | 
|  | static void nn_propagate_4to1(int num_inputs, const float *const inputs, | 
|  | const float *const weights, | 
|  | const float *layer_bias, | 
|  | float *const output_nodes, bool output_layer) { | 
|  | const float32x4_t zero = vdupq_n_f32(0); | 
|  | float32x4_t vadd = zero; | 
|  | float total = *layer_bias; | 
|  |  | 
|  | for (int in = 0; in < num_inputs; in += 4) { | 
|  | const float32x4_t v_inputs = vld1q_f32(&inputs[in]); | 
|  | const float32x4_t v_weights = vld1q_f32(&weights[in]); | 
|  | vadd = vmlaq_f32(vadd, v_inputs, v_weights); | 
|  | } | 
|  |  | 
|  | #if defined(__aarch64__) | 
|  | total += vaddvq_f32(vadd); | 
|  | #else | 
|  | float32x2_t vadd_lo = vadd_f32(vget_low_f32(vadd), vget_high_f32(vadd)); | 
|  | vadd_lo = vpadd_f32(vadd_lo, vadd_lo); | 
|  | total += vget_lane_f32(vadd_lo, 0); | 
|  | #endif | 
|  |  | 
|  | if (!output_layer) CLAMP_0(total); | 
|  | *output_nodes = total; | 
|  | } | 
|  |  | 
|  | static void nn_propagate_4to4(int num_inputs, const float *const inputs, | 
|  | const float *const weights, | 
|  | const float *layer_bias, | 
|  | float *const output_nodes, bool output_layer) { | 
|  | float32x4_t outputs = vld1q_f32(layer_bias); | 
|  | const float32x4_t zero = vdupq_n_f32(0); | 
|  |  | 
|  | float32x4_t mul0[2] = { zero, zero }; | 
|  | float32x4_t mul1[2] = { zero, zero }; | 
|  | for (int in = 0; in < num_inputs; in += 4) { | 
|  | const float32x4_t v_input = vld1q_f32(&inputs[in]); | 
|  |  | 
|  | for (int i = 0; i < 2; i++) { | 
|  | const float32x4_t weight0 = vld1q_f32(&weights[in + 2 * i * num_inputs]); | 
|  | mul0[i] = vmlaq_f32(mul0[i], weight0, v_input); | 
|  | const float32x4_t weight1 = | 
|  | vld1q_f32(&weights[in + (2 * i + 1) * num_inputs]); | 
|  | mul1[i] = vmlaq_f32(mul1[i], weight1, v_input); | 
|  | } | 
|  | } | 
|  | for (int i = 0; i < 2; i++) | 
|  | #if defined(__aarch64__) | 
|  | mul0[i] = vpaddq_f32(mul0[i], mul1[i]); | 
|  | const float32x4_t hh = vpaddq_f32(mul0[0], mul0[1]); | 
|  | #else | 
|  | mul0[i] = | 
|  | vcombine_f32(vpadd_f32(vget_low_f32(mul0[i]), vget_high_f32(mul0[i])), | 
|  | vpadd_f32(vget_low_f32(mul1[i]), vget_high_f32(mul1[i]))); | 
|  | const float32x4_t hh = | 
|  | vcombine_f32(vpadd_f32(vget_low_f32(mul0[0]), vget_high_f32(mul0[0])), | 
|  | vpadd_f32(vget_low_f32(mul0[1]), vget_high_f32(mul0[1]))); | 
|  | #endif | 
|  |  | 
|  | outputs = vaddq_f32(outputs, hh); | 
|  | if (!output_layer) nn_activate4(&outputs, &zero); | 
|  | vst1q_f32(output_nodes, outputs); | 
|  | } | 
|  |  | 
|  | static void nn_propagate_4to8(const int num_inputs, const float *const inputs, | 
|  | const float *const weights, | 
|  | const float *layer_bias, | 
|  | float *const output_nodes, bool output_layer) { | 
|  | float32x4_t out_h = vld1q_f32(&layer_bias[4]); | 
|  | float32x4_t out_l = vld1q_f32(layer_bias); | 
|  | const float32x4_t zero = vdupq_n_f32(0); | 
|  | float32x4_t mul0[4] = { zero, zero, zero, zero }; | 
|  | float32x4_t mul1[4] = { zero, zero, zero, zero }; | 
|  |  | 
|  | for (int in = 0; in < num_inputs; in += 4) { | 
|  | const float32x4_t v_input = vld1q_f32(&inputs[in]); | 
|  | for (int i = 0; i < 4; i++) { | 
|  | const float32x4_t weight0 = vld1q_f32(&weights[in + 2 * i * num_inputs]); | 
|  | const float32x4_t weight1 = | 
|  | vld1q_f32(&weights[in + (2 * i + 1) * num_inputs]); | 
|  | mul0[i] = vmlaq_f32(mul0[i], v_input, weight0); | 
|  | mul1[i] = vmlaq_f32(mul1[i], v_input, weight1); | 
|  | } | 
|  | } | 
|  | for (int i = 0; i < 4; i++) | 
|  | #if defined(__aarch64__) | 
|  | mul0[i] = vpaddq_f32(mul0[i], mul1[i]); | 
|  | const float32x4_t hh0 = vpaddq_f32(mul0[0], mul0[1]); | 
|  | const float32x4_t hh1 = vpaddq_f32(mul0[2], mul0[3]); | 
|  | #else | 
|  | mul0[i] = | 
|  | vcombine_f32(vpadd_f32(vget_low_f32(mul0[i]), vget_high_f32(mul0[i])), | 
|  | vpadd_f32(vget_low_f32(mul1[i]), vget_high_f32(mul1[i]))); | 
|  | const float32x4_t hh0 = | 
|  | vcombine_f32(vpadd_f32(vget_low_f32(mul0[0]), vget_high_f32(mul0[0])), | 
|  | vpadd_f32(vget_low_f32(mul0[1]), vget_high_f32(mul0[1]))); | 
|  | const float32x4_t hh1 = | 
|  | vcombine_f32(vpadd_f32(vget_low_f32(mul0[2]), vget_high_f32(mul0[2])), | 
|  | vpadd_f32(vget_low_f32(mul0[3]), vget_high_f32(mul0[3]))); | 
|  | #endif | 
|  |  | 
|  | out_h = vaddq_f32(out_h, hh1); | 
|  | out_l = vaddq_f32(out_l, hh0); | 
|  |  | 
|  | if (!output_layer) nn_activate8(&out_h, &out_l, &zero); | 
|  | vst1q_f32(&output_nodes[4], out_h); | 
|  | vst1q_f32(output_nodes, out_l); | 
|  | } | 
|  |  | 
|  | static void nn_propagate_8to4(const int num_inputs, const float *const inputs, | 
|  | const float *const weights, | 
|  | const float *layer_bias, | 
|  | float *const output_nodes, bool output_layer) { | 
|  | float32x4_t outputs = vld1q_f32(layer_bias); | 
|  | const float32x4_t zero = vdupq_n_f32(0); | 
|  | float32x4_t add[4] = { zero, zero, zero, zero }; | 
|  | for (int in = 0; in < num_inputs; in += 8) { | 
|  | const float32x4_t inputs_l = vld1q_f32(&inputs[in]); | 
|  | const float32x4_t inputs_h = vld1q_f32(&inputs[in + 4]); | 
|  |  | 
|  | for (int i = 0; i < 4; i++) { | 
|  | const float32x4_t weight_l = vld1q_f32(&weights[in + i * num_inputs]); | 
|  | const float32x4_t weight_h = vld1q_f32(&weights[in + i * num_inputs + 4]); | 
|  | add[i] = vmlaq_f32(add[i], inputs_l, weight_l); | 
|  | add[i] = vmlaq_f32(add[i], inputs_h, weight_h); | 
|  | } | 
|  | } | 
|  | #if defined(__aarch64__) | 
|  | const float32x4_t hadd_h = vpaddq_f32(add[2], add[3]); | 
|  | const float32x4_t hadd_l = vpaddq_f32(add[0], add[1]); | 
|  | const float32x4_t haddhadd = vpaddq_f32(hadd_l, hadd_h); | 
|  | #else | 
|  | const float32x4_t hadd_h = | 
|  | vcombine_f32(vpadd_f32(vget_low_f32(add[2]), vget_high_f32(add[2])), | 
|  | vpadd_f32(vget_low_f32(add[3]), vget_high_f32(add[3]))); | 
|  | const float32x4_t hadd_l = | 
|  | vcombine_f32(vpadd_f32(vget_low_f32(add[0]), vget_high_f32(add[0])), | 
|  | vpadd_f32(vget_low_f32(add[1]), vget_high_f32(add[1]))); | 
|  | const float32x4_t haddhadd = | 
|  | vcombine_f32(vpadd_f32(vget_low_f32(hadd_l), vget_high_f32(hadd_l)), | 
|  | vpadd_f32(vget_low_f32(hadd_h), vget_high_f32(hadd_h))); | 
|  | #endif | 
|  |  | 
|  | outputs = vaddq_f32(outputs, haddhadd); | 
|  | if (!output_layer) nn_activate4(&outputs, &zero); | 
|  | vst1q_f32(output_nodes, outputs); | 
|  | } | 
|  |  | 
|  | // Calculate prediction based on the given input features and neural net config. | 
|  | // Assume there are no more than NN_MAX_NODES_PER_LAYER nodes in each hidden | 
|  | // layer. | 
|  | void av1_nn_predict_neon(const float *input_nodes, | 
|  | const NN_CONFIG *const nn_config, int reduce_prec, | 
|  | float *const output) { | 
|  | float buf[2][NN_MAX_NODES_PER_LAYER]; | 
|  | int buf_index = 0; | 
|  | int num_inputs = nn_config->num_inputs; | 
|  | // Hidden layers, except the final iteration is the output layer. | 
|  | for (int layer = 0; layer <= nn_config->num_hidden_layers; layer++) { | 
|  | const float *layer_weights = nn_config->weights[layer]; | 
|  | const float *layer_bias = nn_config->bias[layer]; | 
|  | bool output_layer = (layer == nn_config->num_hidden_layers); | 
|  | float *const output_nodes = output_layer ? output : buf[buf_index]; | 
|  | const int num_outputs = output_layer ? nn_config->num_outputs | 
|  | : nn_config->num_hidden_nodes[layer]; | 
|  |  | 
|  | if (num_inputs % 4 == 0 && num_outputs % 8 == 0) { | 
|  | for (int out = 0; out < num_outputs; out += 8) { | 
|  | nn_propagate_4to8(num_inputs, input_nodes, | 
|  | &layer_weights[out * num_inputs], &layer_bias[out], | 
|  | &output_nodes[out], output_layer); | 
|  | } | 
|  | } else if (num_inputs % 8 == 0 && num_outputs % 4 == 0) { | 
|  | for (int out = 0; out < num_outputs; out += 4) { | 
|  | nn_propagate_8to4(num_inputs, input_nodes, | 
|  | &layer_weights[out * num_inputs], &layer_bias[out], | 
|  | &output_nodes[out], output_layer); | 
|  | } | 
|  | } else if (num_inputs % 4 == 0 && num_outputs % 4 == 0) { | 
|  | for (int out = 0; out < num_outputs; out += 4) { | 
|  | nn_propagate_4to4(num_inputs, input_nodes, | 
|  | &layer_weights[out * num_inputs], &layer_bias[out], | 
|  | &output_nodes[out], output_layer); | 
|  | } | 
|  | } else if (num_inputs % 8 == 0) { | 
|  | for (int out = 0; out < num_outputs; out++) { | 
|  | nn_propagate_8to1(num_inputs, input_nodes, | 
|  | &layer_weights[out * num_inputs], &layer_bias[out], | 
|  | &output_nodes[out], output_layer); | 
|  | } | 
|  | } else if (num_inputs % 4 == 0) { | 
|  | for (int out = 0; out < num_outputs; out++) { | 
|  | nn_propagate_4to1(num_inputs, input_nodes, | 
|  | &layer_weights[out * num_inputs], &layer_bias[out], | 
|  | &output_nodes[out], output_layer); | 
|  | } | 
|  | } else if (num_inputs > 8) { | 
|  | for (int out = 0; out < num_outputs; out++) { | 
|  | nn_propagate_xto1(num_inputs, input_nodes, | 
|  | &layer_weights[out * num_inputs], &layer_bias[out], | 
|  | &output_nodes[out]); | 
|  | } | 
|  | } else if (num_inputs >= 4) { | 
|  | for (int out = 0; out < num_outputs; out++) { | 
|  | nn_propagate_xsto1(num_inputs, input_nodes, | 
|  | &layer_weights[out * num_inputs], &layer_bias[out], | 
|  | &output_nodes[out]); | 
|  | } | 
|  | } else { | 
|  | for (int node = 0; node < num_outputs; ++node) { | 
|  | float val = layer_bias[node]; | 
|  | for (int i = 0; i < num_inputs; ++i) | 
|  | val += layer_weights[node * num_inputs + i] * input_nodes[i]; | 
|  | // ReLU as activation function. | 
|  | val = val > 0.0f ? val : 0.0f;  // Could use AOMMAX(). | 
|  | output_nodes[node] = val; | 
|  | } | 
|  | } | 
|  | input_nodes = output_nodes; | 
|  | num_inputs = num_outputs; | 
|  | buf_index = 1 - buf_index; | 
|  | } | 
|  | if (reduce_prec) av1_nn_output_prec_reduce(output, nn_config->num_outputs); | 
|  | } |