| /* | 
 |  * Copyright (c) 2018, Alliance for Open Media. All rights reserved | 
 |  * | 
 |  * This source code is subject to the terms of the BSD 2 Clause License and | 
 |  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
 |  * was not distributed with this source code in the LICENSE file, you can | 
 |  * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
 |  * Media Patent License 1.0 was not distributed with this source code in the | 
 |  * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
 |  */ | 
 |  | 
 | #include <tuple> | 
 | #include <vector> | 
 |  | 
 | #include "third_party/googletest/src/googletest/include/gtest/gtest.h" | 
 |  | 
 | #include "test/register_state_check.h" | 
 | #include "test/acm_random.h" | 
 | #include "test/util.h" | 
 |  | 
 | #include "config/aom_config.h" | 
 | #include "config/aom_dsp_rtcd.h" | 
 |  | 
 | #include "aom/aom_integer.h" | 
 | #include "aom_ports/aom_timer.h" | 
 | #include "av1/encoder/pickrst.h" | 
 |  | 
 | #define MAX_WIENER_BLOCK 384 | 
 | #define MAX_DATA_BLOCK (MAX_WIENER_BLOCK + WIENER_WIN) | 
 |  | 
 | // 8-bit-depth tests | 
 | namespace wiener_lowbd { | 
 |  | 
 | // C implementation of the algorithm implmented by the SIMD code. | 
 | // This is a little more efficient than the version in av1_compute_stats_c(). | 
 | static void compute_stats_win_opt_c(int wiener_win, const uint8_t *dgd, | 
 |                                     const uint8_t *src, int h_start, int h_end, | 
 |                                     int v_start, int v_end, int dgd_stride, | 
 |                                     int src_stride, int64_t *M, int64_t *H, | 
 |                                     int use_downsampled_wiener_stats) { | 
 |   ASSERT_TRUE(wiener_win == WIENER_WIN || wiener_win == WIENER_WIN_CHROMA); | 
 |   int i, j, k, l, m, n; | 
 |   const int pixel_count = (h_end - h_start) * (v_end - v_start); | 
 |   const int wiener_win2 = wiener_win * wiener_win; | 
 |   const int wiener_halfwin = (wiener_win >> 1); | 
 |   uint8_t avg = find_average(dgd, h_start, h_end, v_start, v_end, dgd_stride); | 
 |   int downsample_factor = | 
 |       use_downsampled_wiener_stats ? WIENER_STATS_DOWNSAMPLE_FACTOR : 1; | 
 |  | 
 |   std::vector<std::vector<int64_t> > M_int(wiener_win, | 
 |                                            std::vector<int64_t>(wiener_win, 0)); | 
 |   std::vector<std::vector<int64_t> > H_int( | 
 |       wiener_win * wiener_win, std::vector<int64_t>(wiener_win * 8, 0)); | 
 |   std::vector<std::vector<int32_t> > sumY(wiener_win, | 
 |                                           std::vector<int32_t>(wiener_win, 0)); | 
 |   int32_t sumX = 0; | 
 |   const uint8_t *dgd_win = dgd - wiener_halfwin * dgd_stride - wiener_halfwin; | 
 |  | 
 |   // Main loop handles two pixels at a time | 
 |   // We can assume that h_start is even, since it will always be aligned to | 
 |   // a tile edge + some number of restoration units, and both of those will | 
 |   // be 64-pixel aligned. | 
 |   // However, at the edge of the image, h_end may be odd, so we need to handle | 
 |   // that case correctly. | 
 |   assert(h_start % 2 == 0); | 
 |   for (i = v_start; i < v_end; i = i + downsample_factor) { | 
 |     if (use_downsampled_wiener_stats && | 
 |         (v_end - i < WIENER_STATS_DOWNSAMPLE_FACTOR)) { | 
 |       downsample_factor = v_end - i; | 
 |     } | 
 |     int32_t sumX_row_i32 = 0; | 
 |     std::vector<std::vector<int32_t> > sumY_row( | 
 |         wiener_win, std::vector<int32_t>(wiener_win, 0)); | 
 |     std::vector<std::vector<int32_t> > M_row_i32( | 
 |         wiener_win, std::vector<int32_t>(wiener_win, 0)); | 
 |     std::vector<std::vector<int32_t> > H_row_i32( | 
 |         wiener_win * wiener_win, std::vector<int32_t>(wiener_win * 8, 0)); | 
 |     const int h_end_even = h_end & ~1; | 
 |     const int has_odd_pixel = h_end & 1; | 
 |     for (j = h_start; j < h_end_even; j += 2) { | 
 |       const uint8_t X1 = src[i * src_stride + j]; | 
 |       const uint8_t X2 = src[i * src_stride + j + 1]; | 
 |       sumX_row_i32 += X1 + X2; | 
 |  | 
 |       const uint8_t *dgd_ij = dgd_win + i * dgd_stride + j; | 
 |       for (k = 0; k < wiener_win; k++) { | 
 |         for (l = 0; l < wiener_win; l++) { | 
 |           const uint8_t *dgd_ijkl = dgd_ij + k * dgd_stride + l; | 
 |           int32_t *H_int_temp = &H_row_i32[(l * wiener_win + k)][0]; | 
 |           const uint8_t D1 = dgd_ijkl[0]; | 
 |           const uint8_t D2 = dgd_ijkl[1]; | 
 |           sumY_row[k][l] += D1 + D2; | 
 |           M_row_i32[l][k] += D1 * X1 + D2 * X2; | 
 |           for (m = 0; m < wiener_win; m++) { | 
 |             for (n = 0; n < wiener_win; n++) { | 
 |               H_int_temp[m * 8 + n] += D1 * dgd_ij[n + dgd_stride * m] + | 
 |                                        D2 * dgd_ij[n + dgd_stride * m + 1]; | 
 |             } | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |     // If the width is odd, add in the final pixel | 
 |     if (has_odd_pixel) { | 
 |       const uint8_t X1 = src[i * src_stride + j]; | 
 |       sumX_row_i32 += X1; | 
 |  | 
 |       const uint8_t *dgd_ij = dgd_win + i * dgd_stride + j; | 
 |       for (k = 0; k < wiener_win; k++) { | 
 |         for (l = 0; l < wiener_win; l++) { | 
 |           const uint8_t *dgd_ijkl = dgd_ij + k * dgd_stride + l; | 
 |           int32_t *H_int_temp = &H_row_i32[(l * wiener_win + k)][0]; | 
 |           const uint8_t D1 = dgd_ijkl[0]; | 
 |           sumY_row[k][l] += D1; | 
 |           M_row_i32[l][k] += D1 * X1; | 
 |           for (m = 0; m < wiener_win; m++) { | 
 |             for (n = 0; n < wiener_win; n++) { | 
 |               H_int_temp[m * 8 + n] += D1 * dgd_ij[n + dgd_stride * m]; | 
 |             } | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     sumX += sumX_row_i32 * downsample_factor; | 
 |     // Scale M matrix based on the downsampling factor | 
 |     for (k = 0; k < wiener_win; ++k) { | 
 |       for (l = 0; l < wiener_win; ++l) { | 
 |         sumY[k][l] += sumY_row[k][l] * downsample_factor; | 
 |         M_int[k][l] += (int64_t)M_row_i32[k][l] * downsample_factor; | 
 |       } | 
 |     } | 
 |     // Scale H matrix based on the downsampling factor | 
 |     for (k = 0; k < wiener_win * wiener_win; ++k) { | 
 |       for (l = 0; l < wiener_win * 8; ++l) { | 
 |         H_int[k][l] += (int64_t)H_row_i32[k][l] * downsample_factor; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   const int64_t avg_square_sum = (int64_t)avg * (int64_t)avg * pixel_count; | 
 |   for (k = 0; k < wiener_win; k++) { | 
 |     for (l = 0; l < wiener_win; l++) { | 
 |       M[l * wiener_win + k] = | 
 |           M_int[l][k] + avg_square_sum - (int64_t)avg * (sumX + sumY[k][l]); | 
 |       for (m = 0; m < wiener_win; m++) { | 
 |         for (n = 0; n < wiener_win; n++) { | 
 |           H[(l * wiener_win + k) * wiener_win2 + m * wiener_win + n] = | 
 |               H_int[(l * wiener_win + k)][n * 8 + m] + avg_square_sum - | 
 |               (int64_t)avg * (sumY[k][l] + sumY[n][m]); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void compute_stats_opt_c(int wiener_win, const uint8_t *dgd, const uint8_t *src, | 
 |                          int h_start, int h_end, int v_start, int v_end, | 
 |                          int dgd_stride, int src_stride, int64_t *M, int64_t *H, | 
 |                          int use_downsampled_wiener_stats) { | 
 |   if (wiener_win == WIENER_WIN || wiener_win == WIENER_WIN_CHROMA) { | 
 |     compute_stats_win_opt_c(wiener_win, dgd, src, h_start, h_end, v_start, | 
 |                             v_end, dgd_stride, src_stride, M, H, | 
 |                             use_downsampled_wiener_stats); | 
 |   } else { | 
 |     av1_compute_stats_c(wiener_win, dgd, src, h_start, h_end, v_start, v_end, | 
 |                         dgd_stride, src_stride, M, H, | 
 |                         use_downsampled_wiener_stats); | 
 |   } | 
 | } | 
 |  | 
 | static const int kIterations = 100; | 
 | typedef void (*compute_stats_Func)(int wiener_win, const uint8_t *dgd, | 
 |                                    const uint8_t *src, int h_start, int h_end, | 
 |                                    int v_start, int v_end, int dgd_stride, | 
 |                                    int src_stride, int64_t *M, int64_t *H, | 
 |                                    int use_downsampled_wiener_stats); | 
 |  | 
 | //////////////////////////////////////////////////////////////////////////////// | 
 | // 8 bit | 
 | //////////////////////////////////////////////////////////////////////////////// | 
 |  | 
 | typedef std::tuple<const compute_stats_Func> WienerTestParam; | 
 |  | 
 | class WienerTest : public ::testing::TestWithParam<WienerTestParam> { | 
 |  public: | 
 |   virtual void SetUp() { | 
 |     src_buf = (uint8_t *)aom_memalign( | 
 |         32, MAX_DATA_BLOCK * MAX_DATA_BLOCK * sizeof(*src_buf)); | 
 |     ASSERT_NE(src_buf, nullptr); | 
 |     dgd_buf = (uint8_t *)aom_memalign( | 
 |         32, MAX_DATA_BLOCK * MAX_DATA_BLOCK * sizeof(*dgd_buf)); | 
 |     ASSERT_NE(dgd_buf, nullptr); | 
 |     target_func_ = GET_PARAM(0); | 
 |   } | 
 |   virtual void TearDown() { | 
 |     aom_free(src_buf); | 
 |     aom_free(dgd_buf); | 
 |   } | 
 |   void RunWienerTest(const int32_t wiener_win, int32_t run_times); | 
 |   void RunWienerTest_ExtremeValues(const int32_t wiener_win); | 
 |  | 
 |  private: | 
 |   compute_stats_Func target_func_; | 
 |   libaom_test::ACMRandom rng_; | 
 |   uint8_t *src_buf; | 
 |   uint8_t *dgd_buf; | 
 | }; | 
 |  | 
 | void WienerTest::RunWienerTest(const int32_t wiener_win, int32_t run_times) { | 
 |   const int32_t wiener_halfwin = wiener_win >> 1; | 
 |   const int32_t wiener_win2 = wiener_win * wiener_win; | 
 |   DECLARE_ALIGNED(32, int64_t, M_ref[WIENER_WIN2]); | 
 |   DECLARE_ALIGNED(32, int64_t, H_ref[WIENER_WIN2 * WIENER_WIN2]); | 
 |   DECLARE_ALIGNED(32, int64_t, M_test[WIENER_WIN2]); | 
 |   DECLARE_ALIGNED(32, int64_t, H_test[WIENER_WIN2 * WIENER_WIN2]); | 
 |   // Note(rachelbarker): | 
 |   // The SIMD code requires `h_start` to be even, but can otherwise | 
 |   // deal with any values of `h_end`, `v_start`, `v_end`. We cover this | 
 |   // entire range, even though (at the time of writing) `h_start` and `v_start` | 
 |   // will always be multiples of 64 when called from non-test code. | 
 |   // If in future any new requirements are added, these lines will | 
 |   // need changing. | 
 |   const int h_start = (rng_.Rand16() % (MAX_WIENER_BLOCK / 2)) & ~1; | 
 |   int h_end = run_times != 1 ? 256 : (rng_.Rand16() % MAX_WIENER_BLOCK); | 
 |   const int v_start = rng_.Rand16() % (MAX_WIENER_BLOCK / 2); | 
 |   int v_end = run_times != 1 ? 256 : (rng_.Rand16() % MAX_WIENER_BLOCK); | 
 |   const int dgd_stride = h_end; | 
 |   const int src_stride = MAX_DATA_BLOCK; | 
 |   const int iters = run_times == 1 ? kIterations : 2; | 
 |   const int max_value_downsample_stats = 1; | 
 |  | 
 |   for (int iter = 0; iter < iters && !HasFatalFailure(); ++iter) { | 
 |     for (int i = 0; i < MAX_DATA_BLOCK * MAX_DATA_BLOCK; ++i) { | 
 |       dgd_buf[i] = rng_.Rand8(); | 
 |       src_buf[i] = rng_.Rand8(); | 
 |     } | 
 |     uint8_t *dgd = dgd_buf + wiener_halfwin * MAX_DATA_BLOCK + wiener_halfwin; | 
 |     uint8_t *src = src_buf; | 
 |     for (int use_downsampled_stats = 0; | 
 |          use_downsampled_stats <= max_value_downsample_stats; | 
 |          use_downsampled_stats++) { | 
 |       aom_usec_timer timer; | 
 |       aom_usec_timer_start(&timer); | 
 |       for (int i = 0; i < run_times; ++i) { | 
 |         av1_compute_stats_c(wiener_win, dgd, src, h_start, h_end, v_start, | 
 |                             v_end, dgd_stride, src_stride, M_ref, H_ref, | 
 |                             use_downsampled_stats); | 
 |       } | 
 |       aom_usec_timer_mark(&timer); | 
 |       const double time1 = static_cast<double>(aom_usec_timer_elapsed(&timer)); | 
 |       aom_usec_timer_start(&timer); | 
 |       for (int i = 0; i < run_times; ++i) { | 
 |         target_func_(wiener_win, dgd, src, h_start, h_end, v_start, v_end, | 
 |                      dgd_stride, src_stride, M_test, H_test, | 
 |                      use_downsampled_stats); | 
 |       } | 
 |       aom_usec_timer_mark(&timer); | 
 |       const double time2 = static_cast<double>(aom_usec_timer_elapsed(&timer)); | 
 |       if (run_times > 10) { | 
 |         printf("win %d %3dx%-3d:%7.2f/%7.2fns", wiener_win, h_end, v_end, time1, | 
 |                time2); | 
 |         printf("(%3.2f)\n", time1 / time2); | 
 |       } | 
 |       int failed = 0; | 
 |       for (int i = 0; i < wiener_win2; ++i) { | 
 |         if (M_ref[i] != M_test[i]) { | 
 |           failed = 1; | 
 |           printf("win %d M iter %d [%4d] ref %6" PRId64 " test %6" PRId64 " \n", | 
 |                  wiener_win, iter, i, M_ref[i], M_test[i]); | 
 |           break; | 
 |         } | 
 |       } | 
 |       for (int i = 0; i < wiener_win2 * wiener_win2; ++i) { | 
 |         if (H_ref[i] != H_test[i]) { | 
 |           failed = 1; | 
 |           printf("win %d H iter %d [%4d] ref %6" PRId64 " test %6" PRId64 " \n", | 
 |                  wiener_win, iter, i, H_ref[i], H_test[i]); | 
 |           break; | 
 |         } | 
 |       } | 
 |       ASSERT_EQ(failed, 0); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void WienerTest::RunWienerTest_ExtremeValues(const int32_t wiener_win) { | 
 |   const int32_t wiener_halfwin = wiener_win >> 1; | 
 |   const int32_t wiener_win2 = wiener_win * wiener_win; | 
 |   DECLARE_ALIGNED(32, int64_t, M_ref[WIENER_WIN2]); | 
 |   DECLARE_ALIGNED(32, int64_t, H_ref[WIENER_WIN2 * WIENER_WIN2]); | 
 |   DECLARE_ALIGNED(32, int64_t, M_test[WIENER_WIN2]); | 
 |   DECLARE_ALIGNED(32, int64_t, H_test[WIENER_WIN2 * WIENER_WIN2]); | 
 |   const int h_start = 16; | 
 |   const int h_end = MAX_WIENER_BLOCK; | 
 |   const int v_start = 16; | 
 |   const int v_end = MAX_WIENER_BLOCK; | 
 |   const int dgd_stride = h_end; | 
 |   const int src_stride = MAX_DATA_BLOCK; | 
 |   const int iters = 1; | 
 |   const int max_value_downsample_stats = 1; | 
 |  | 
 |   for (int iter = 0; iter < iters && !HasFatalFailure(); ++iter) { | 
 |     for (int i = 0; i < MAX_DATA_BLOCK * MAX_DATA_BLOCK; ++i) { | 
 |       dgd_buf[i] = 255; | 
 |       src_buf[i] = 255; | 
 |     } | 
 |     uint8_t *dgd = dgd_buf + wiener_halfwin * MAX_DATA_BLOCK + wiener_halfwin; | 
 |     uint8_t *src = src_buf; | 
 |     for (int use_downsampled_stats = 0; | 
 |          use_downsampled_stats <= max_value_downsample_stats; | 
 |          use_downsampled_stats++) { | 
 |       av1_compute_stats_c(wiener_win, dgd, src, h_start, h_end, v_start, v_end, | 
 |                           dgd_stride, src_stride, M_ref, H_ref, | 
 |                           use_downsampled_stats); | 
 |  | 
 |       target_func_(wiener_win, dgd, src, h_start, h_end, v_start, v_end, | 
 |                    dgd_stride, src_stride, M_test, H_test, | 
 |                    use_downsampled_stats); | 
 |  | 
 |       int failed = 0; | 
 |       for (int i = 0; i < wiener_win2; ++i) { | 
 |         if (M_ref[i] != M_test[i]) { | 
 |           failed = 1; | 
 |           printf("win %d M iter %d [%4d] ref %6" PRId64 " test %6" PRId64 " \n", | 
 |                  wiener_win, iter, i, M_ref[i], M_test[i]); | 
 |           break; | 
 |         } | 
 |       } | 
 |       for (int i = 0; i < wiener_win2 * wiener_win2; ++i) { | 
 |         if (H_ref[i] != H_test[i]) { | 
 |           failed = 1; | 
 |           printf("win %d H iter %d [%4d] ref %6" PRId64 " test %6" PRId64 " \n", | 
 |                  wiener_win, iter, i, H_ref[i], H_test[i]); | 
 |           break; | 
 |         } | 
 |       } | 
 |       ASSERT_EQ(failed, 0); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | TEST_P(WienerTest, RandomValues) { | 
 |   RunWienerTest(WIENER_WIN, 1); | 
 |   RunWienerTest(WIENER_WIN_CHROMA, 1); | 
 | } | 
 |  | 
 | TEST_P(WienerTest, ExtremeValues) { | 
 |   RunWienerTest_ExtremeValues(WIENER_WIN); | 
 |   RunWienerTest_ExtremeValues(WIENER_WIN_CHROMA); | 
 | } | 
 |  | 
 | TEST_P(WienerTest, DISABLED_Speed) { | 
 |   RunWienerTest(WIENER_WIN, 200); | 
 |   RunWienerTest(WIENER_WIN_CHROMA, 200); | 
 | } | 
 |  | 
 | INSTANTIATE_TEST_SUITE_P(C, WienerTest, ::testing::Values(compute_stats_opt_c)); | 
 |  | 
 | #if HAVE_SSE4_1 | 
 | INSTANTIATE_TEST_SUITE_P(SSE4_1, WienerTest, | 
 |                          ::testing::Values(av1_compute_stats_sse4_1)); | 
 | #endif  // HAVE_SSE4_1 | 
 |  | 
 | #if HAVE_AVX2 | 
 |  | 
 | INSTANTIATE_TEST_SUITE_P(AVX2, WienerTest, | 
 |                          ::testing::Values(av1_compute_stats_avx2)); | 
 | #endif  // HAVE_AVX2 | 
 |  | 
 | }  // namespace wiener_lowbd | 
 |  | 
 | #if CONFIG_AV1_HIGHBITDEPTH | 
 | // High bit-depth tests: | 
 | namespace wiener_highbd { | 
 |  | 
 | static void compute_stats_highbd_win_opt_c(int wiener_win, const uint8_t *dgd8, | 
 |                                            const uint8_t *src8, int h_start, | 
 |                                            int h_end, int v_start, int v_end, | 
 |                                            int dgd_stride, int src_stride, | 
 |                                            int64_t *M, int64_t *H, | 
 |                                            aom_bit_depth_t bit_depth) { | 
 |   ASSERT_TRUE(wiener_win == WIENER_WIN || wiener_win == WIENER_WIN_CHROMA); | 
 |   int i, j, k, l, m, n; | 
 |   const int pixel_count = (h_end - h_start) * (v_end - v_start); | 
 |   const int wiener_win2 = wiener_win * wiener_win; | 
 |   const int wiener_halfwin = (wiener_win >> 1); | 
 |   const uint16_t *src = CONVERT_TO_SHORTPTR(src8); | 
 |   const uint16_t *dgd = CONVERT_TO_SHORTPTR(dgd8); | 
 |   const uint16_t avg = | 
 |       find_average_highbd(dgd, h_start, h_end, v_start, v_end, dgd_stride); | 
 |  | 
 |   std::vector<std::vector<int64_t> > M_int(wiener_win, | 
 |                                            std::vector<int64_t>(wiener_win, 0)); | 
 |   std::vector<std::vector<int64_t> > H_int( | 
 |       wiener_win * wiener_win, std::vector<int64_t>(wiener_win * 8, 0)); | 
 |   std::vector<std::vector<int32_t> > sumY(wiener_win, | 
 |                                           std::vector<int32_t>(wiener_win, 0)); | 
 |  | 
 |   memset(M, 0, sizeof(*M) * wiener_win2); | 
 |   memset(H, 0, sizeof(*H) * wiener_win2 * wiener_win2); | 
 |  | 
 |   int64_t sumX = 0; | 
 |   const uint16_t *dgd_win = dgd - wiener_halfwin * dgd_stride - wiener_halfwin; | 
 |  | 
 |   // Main loop handles two pixels at a time | 
 |   // We can assume that h_start is even, since it will always be aligned to | 
 |   // a tile edge + some number of restoration units, and both of those will | 
 |   // be 64-pixel aligned. | 
 |   // However, at the edge of the image, h_end may be odd, so we need to handle | 
 |   // that case correctly. | 
 |   assert(h_start % 2 == 0); | 
 |   for (i = v_start; i < v_end; i++) { | 
 |     const int h_end_even = h_end & ~1; | 
 |     const int has_odd_pixel = h_end & 1; | 
 |     for (j = h_start; j < h_end_even; j += 2) { | 
 |       const uint16_t X1 = src[i * src_stride + j]; | 
 |       const uint16_t X2 = src[i * src_stride + j + 1]; | 
 |       sumX += X1 + X2; | 
 |  | 
 |       const uint16_t *dgd_ij = dgd_win + i * dgd_stride + j; | 
 |       for (k = 0; k < wiener_win; k++) { | 
 |         for (l = 0; l < wiener_win; l++) { | 
 |           const uint16_t *dgd_ijkl = dgd_ij + k * dgd_stride + l; | 
 |           int64_t *H_int_temp = &H_int[(l * wiener_win + k)][0]; | 
 |           const uint16_t D1 = dgd_ijkl[0]; | 
 |           const uint16_t D2 = dgd_ijkl[1]; | 
 |           sumY[k][l] += D1 + D2; | 
 |           M_int[l][k] += D1 * X1 + D2 * X2; | 
 |           for (m = 0; m < wiener_win; m++) { | 
 |             for (n = 0; n < wiener_win; n++) { | 
 |               H_int_temp[m * 8 + n] += D1 * dgd_ij[n + dgd_stride * m] + | 
 |                                        D2 * dgd_ij[n + dgd_stride * m + 1]; | 
 |             } | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |     // If the width is odd, add in the final pixel | 
 |     if (has_odd_pixel) { | 
 |       const uint16_t X1 = src[i * src_stride + j]; | 
 |       sumX += X1; | 
 |  | 
 |       const uint16_t *dgd_ij = dgd_win + i * dgd_stride + j; | 
 |       for (k = 0; k < wiener_win; k++) { | 
 |         for (l = 0; l < wiener_win; l++) { | 
 |           const uint16_t *dgd_ijkl = dgd_ij + k * dgd_stride + l; | 
 |           int64_t *H_int_temp = &H_int[(l * wiener_win + k)][0]; | 
 |           const uint16_t D1 = dgd_ijkl[0]; | 
 |           sumY[k][l] += D1; | 
 |           M_int[l][k] += D1 * X1; | 
 |           for (m = 0; m < wiener_win; m++) { | 
 |             for (n = 0; n < wiener_win; n++) { | 
 |               H_int_temp[m * 8 + n] += D1 * dgd_ij[n + dgd_stride * m]; | 
 |             } | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   uint8_t bit_depth_divider = 1; | 
 |   if (bit_depth == AOM_BITS_12) | 
 |     bit_depth_divider = 16; | 
 |   else if (bit_depth == AOM_BITS_10) | 
 |     bit_depth_divider = 4; | 
 |  | 
 |   const int64_t avg_square_sum = (int64_t)avg * (int64_t)avg * pixel_count; | 
 |   for (k = 0; k < wiener_win; k++) { | 
 |     for (l = 0; l < wiener_win; l++) { | 
 |       M[l * wiener_win + k] = | 
 |           (M_int[l][k] + | 
 |            (avg_square_sum - (int64_t)avg * (sumX + sumY[k][l]))) / | 
 |           bit_depth_divider; | 
 |       for (m = 0; m < wiener_win; m++) { | 
 |         for (n = 0; n < wiener_win; n++) { | 
 |           H[(l * wiener_win + k) * wiener_win2 + m * wiener_win + n] = | 
 |               (H_int[(l * wiener_win + k)][n * 8 + m] + | 
 |                (avg_square_sum - (int64_t)avg * (sumY[k][l] + sumY[n][m]))) / | 
 |               bit_depth_divider; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void compute_stats_highbd_opt_c(int wiener_win, const uint8_t *dgd, | 
 |                                 const uint8_t *src, int h_start, int h_end, | 
 |                                 int v_start, int v_end, int dgd_stride, | 
 |                                 int src_stride, int64_t *M, int64_t *H, | 
 |                                 aom_bit_depth_t bit_depth) { | 
 |   if (wiener_win == WIENER_WIN || wiener_win == WIENER_WIN_CHROMA) { | 
 |     compute_stats_highbd_win_opt_c(wiener_win, dgd, src, h_start, h_end, | 
 |                                    v_start, v_end, dgd_stride, src_stride, M, H, | 
 |                                    bit_depth); | 
 |   } else { | 
 |     av1_compute_stats_highbd_c(wiener_win, dgd, src, h_start, h_end, v_start, | 
 |                                v_end, dgd_stride, src_stride, M, H, bit_depth); | 
 |   } | 
 | } | 
 |  | 
 | static const int kIterations = 100; | 
 | typedef void (*compute_stats_Func)(int wiener_win, const uint8_t *dgd, | 
 |                                    const uint8_t *src, int h_start, int h_end, | 
 |                                    int v_start, int v_end, int dgd_stride, | 
 |                                    int src_stride, int64_t *M, int64_t *H, | 
 |                                    aom_bit_depth_t bit_depth); | 
 |  | 
 | typedef std::tuple<const compute_stats_Func> WienerTestParam; | 
 |  | 
 | class WienerTestHighbd : public ::testing::TestWithParam<WienerTestParam> { | 
 |  public: | 
 |   virtual void SetUp() { | 
 |     src_buf = (uint16_t *)aom_memalign( | 
 |         32, MAX_DATA_BLOCK * MAX_DATA_BLOCK * sizeof(*src_buf)); | 
 |     ASSERT_NE(src_buf, nullptr); | 
 |     dgd_buf = (uint16_t *)aom_memalign( | 
 |         32, MAX_DATA_BLOCK * MAX_DATA_BLOCK * sizeof(*dgd_buf)); | 
 |     ASSERT_NE(dgd_buf, nullptr); | 
 |     target_func_ = GET_PARAM(0); | 
 |   } | 
 |   virtual void TearDown() { | 
 |     aom_free(src_buf); | 
 |     aom_free(dgd_buf); | 
 |   } | 
 |   void RunWienerTest(const int32_t wiener_win, int32_t run_times, | 
 |                      aom_bit_depth_t bit_depth); | 
 |   void RunWienerTest_ExtremeValues(const int32_t wiener_win, | 
 |                                    aom_bit_depth_t bit_depth); | 
 |  | 
 |  private: | 
 |   compute_stats_Func target_func_; | 
 |   libaom_test::ACMRandom rng_; | 
 |   uint16_t *src_buf; | 
 |   uint16_t *dgd_buf; | 
 | }; | 
 |  | 
 | void WienerTestHighbd::RunWienerTest(const int32_t wiener_win, | 
 |                                      int32_t run_times, | 
 |                                      aom_bit_depth_t bit_depth) { | 
 |   const int32_t wiener_halfwin = wiener_win >> 1; | 
 |   const int32_t wiener_win2 = wiener_win * wiener_win; | 
 |   DECLARE_ALIGNED(32, int64_t, M_ref[WIENER_WIN2]); | 
 |   DECLARE_ALIGNED(32, int64_t, H_ref[WIENER_WIN2 * WIENER_WIN2]); | 
 |   DECLARE_ALIGNED(32, int64_t, M_test[WIENER_WIN2]); | 
 |   DECLARE_ALIGNED(32, int64_t, H_test[WIENER_WIN2 * WIENER_WIN2]); | 
 |   // Note(rachelbarker): | 
 |   // The SIMD code requires `h_start` to be even, but can otherwise | 
 |   // deal with any values of `h_end`, `v_start`, `v_end`. We cover this | 
 |   // entire range, even though (at the time of writing) `h_start` and `v_start` | 
 |   // will always be multiples of 64 when called from non-test code. | 
 |   // If in future any new requirements are added, these lines will | 
 |   // need changing. | 
 |   const int h_start = (rng_.Rand16() % (MAX_WIENER_BLOCK / 2)) & ~1; | 
 |   int h_end = run_times != 1 ? 256 : (rng_.Rand16() % MAX_WIENER_BLOCK); | 
 |   const int v_start = rng_.Rand16() % (MAX_WIENER_BLOCK / 2); | 
 |   int v_end = run_times != 1 ? 256 : (rng_.Rand16() % MAX_WIENER_BLOCK); | 
 |   const int dgd_stride = h_end; | 
 |   const int src_stride = MAX_DATA_BLOCK; | 
 |   const int iters = run_times == 1 ? kIterations : 2; | 
 |   for (int iter = 0; iter < iters && !HasFatalFailure(); ++iter) { | 
 |     for (int i = 0; i < MAX_DATA_BLOCK * MAX_DATA_BLOCK; ++i) { | 
 |       dgd_buf[i] = rng_.Rand16() % (1 << bit_depth); | 
 |       src_buf[i] = rng_.Rand16() % (1 << bit_depth); | 
 |     } | 
 |     const uint8_t *dgd8 = CONVERT_TO_BYTEPTR( | 
 |         dgd_buf + wiener_halfwin * MAX_DATA_BLOCK + wiener_halfwin); | 
 |     const uint8_t *src8 = CONVERT_TO_BYTEPTR(src_buf); | 
 |  | 
 |     aom_usec_timer timer; | 
 |     aom_usec_timer_start(&timer); | 
 |     for (int i = 0; i < run_times; ++i) { | 
 |       av1_compute_stats_highbd_c(wiener_win, dgd8, src8, h_start, h_end, | 
 |                                  v_start, v_end, dgd_stride, src_stride, M_ref, | 
 |                                  H_ref, bit_depth); | 
 |     } | 
 |     aom_usec_timer_mark(&timer); | 
 |     const double time1 = static_cast<double>(aom_usec_timer_elapsed(&timer)); | 
 |     aom_usec_timer_start(&timer); | 
 |     for (int i = 0; i < run_times; ++i) { | 
 |       target_func_(wiener_win, dgd8, src8, h_start, h_end, v_start, v_end, | 
 |                    dgd_stride, src_stride, M_test, H_test, bit_depth); | 
 |     } | 
 |     aom_usec_timer_mark(&timer); | 
 |     const double time2 = static_cast<double>(aom_usec_timer_elapsed(&timer)); | 
 |     if (run_times > 10) { | 
 |       printf("win %d bd %d %3dx%-3d:%7.2f/%7.2fns", wiener_win, bit_depth, | 
 |              h_end, v_end, time1, time2); | 
 |       printf("(%3.2f)\n", time1 / time2); | 
 |     } | 
 |     int failed = 0; | 
 |     for (int i = 0; i < wiener_win2; ++i) { | 
 |       if (M_ref[i] != M_test[i]) { | 
 |         failed = 1; | 
 |         printf("win %d bd %d M iter %d [%4d] ref %6" PRId64 " test %6" PRId64 | 
 |                " \n", | 
 |                wiener_win, bit_depth, iter, i, M_ref[i], M_test[i]); | 
 |         break; | 
 |       } | 
 |     } | 
 |     for (int i = 0; i < wiener_win2 * wiener_win2; ++i) { | 
 |       if (H_ref[i] != H_test[i]) { | 
 |         failed = 1; | 
 |         printf("win %d bd %d H iter %d [%4d] ref %6" PRId64 " test %6" PRId64 | 
 |                " \n", | 
 |                wiener_win, bit_depth, iter, i, H_ref[i], H_test[i]); | 
 |         break; | 
 |       } | 
 |     } | 
 |     ASSERT_EQ(failed, 0); | 
 |   } | 
 | } | 
 |  | 
 | void WienerTestHighbd::RunWienerTest_ExtremeValues(const int32_t wiener_win, | 
 |                                                    aom_bit_depth_t bit_depth) { | 
 |   const int32_t wiener_halfwin = wiener_win >> 1; | 
 |   const int32_t wiener_win2 = wiener_win * wiener_win; | 
 |   DECLARE_ALIGNED(32, int64_t, M_ref[WIENER_WIN2]); | 
 |   DECLARE_ALIGNED(32, int64_t, H_ref[WIENER_WIN2 * WIENER_WIN2]); | 
 |   DECLARE_ALIGNED(32, int64_t, M_test[WIENER_WIN2]); | 
 |   DECLARE_ALIGNED(32, int64_t, H_test[WIENER_WIN2 * WIENER_WIN2]); | 
 |   const int h_start = 16; | 
 |   const int h_end = MAX_WIENER_BLOCK; | 
 |   const int v_start = 16; | 
 |   const int v_end = MAX_WIENER_BLOCK; | 
 |   const int dgd_stride = h_end; | 
 |   const int src_stride = MAX_DATA_BLOCK; | 
 |   const int iters = 1; | 
 |   for (int iter = 0; iter < iters && !HasFatalFailure(); ++iter) { | 
 |     for (int i = 0; i < MAX_DATA_BLOCK * MAX_DATA_BLOCK; ++i) { | 
 |       dgd_buf[i] = ((uint16_t)1 << bit_depth) - 1; | 
 |       src_buf[i] = ((uint16_t)1 << bit_depth) - 1; | 
 |     } | 
 |     const uint8_t *dgd8 = CONVERT_TO_BYTEPTR( | 
 |         dgd_buf + wiener_halfwin * MAX_DATA_BLOCK + wiener_halfwin); | 
 |     const uint8_t *src8 = CONVERT_TO_BYTEPTR(src_buf); | 
 |  | 
 |     av1_compute_stats_highbd_c(wiener_win, dgd8, src8, h_start, h_end, v_start, | 
 |                                v_end, dgd_stride, src_stride, M_ref, H_ref, | 
 |                                bit_depth); | 
 |  | 
 |     target_func_(wiener_win, dgd8, src8, h_start, h_end, v_start, v_end, | 
 |                  dgd_stride, src_stride, M_test, H_test, bit_depth); | 
 |  | 
 |     int failed = 0; | 
 |     for (int i = 0; i < wiener_win2; ++i) { | 
 |       if (M_ref[i] != M_test[i]) { | 
 |         failed = 1; | 
 |         printf("win %d bd %d M iter %d [%4d] ref %6" PRId64 " test %6" PRId64 | 
 |                " \n", | 
 |                wiener_win, bit_depth, iter, i, M_ref[i], M_test[i]); | 
 |         break; | 
 |       } | 
 |     } | 
 |     for (int i = 0; i < wiener_win2 * wiener_win2; ++i) { | 
 |       if (H_ref[i] != H_test[i]) { | 
 |         failed = 1; | 
 |         printf("win %d bd %d H iter %d [%4d] ref %6" PRId64 " test %6" PRId64 | 
 |                " \n", | 
 |                wiener_win, bit_depth, iter, i, H_ref[i], H_test[i]); | 
 |         break; | 
 |       } | 
 |     } | 
 |     ASSERT_EQ(failed, 0); | 
 |   } | 
 | } | 
 |  | 
 | TEST_P(WienerTestHighbd, RandomValues) { | 
 |   RunWienerTest(WIENER_WIN, 1, AOM_BITS_8); | 
 |   RunWienerTest(WIENER_WIN_CHROMA, 1, AOM_BITS_8); | 
 |   RunWienerTest(WIENER_WIN, 1, AOM_BITS_10); | 
 |   RunWienerTest(WIENER_WIN_CHROMA, 1, AOM_BITS_10); | 
 |   RunWienerTest(WIENER_WIN, 1, AOM_BITS_12); | 
 |   RunWienerTest(WIENER_WIN_CHROMA, 1, AOM_BITS_12); | 
 | } | 
 |  | 
 | TEST_P(WienerTestHighbd, ExtremeValues) { | 
 |   RunWienerTest_ExtremeValues(WIENER_WIN, AOM_BITS_8); | 
 |   RunWienerTest_ExtremeValues(WIENER_WIN_CHROMA, AOM_BITS_8); | 
 |   RunWienerTest_ExtremeValues(WIENER_WIN, AOM_BITS_10); | 
 |   RunWienerTest_ExtremeValues(WIENER_WIN_CHROMA, AOM_BITS_10); | 
 |   RunWienerTest_ExtremeValues(WIENER_WIN, AOM_BITS_12); | 
 |   RunWienerTest_ExtremeValues(WIENER_WIN_CHROMA, AOM_BITS_12); | 
 | } | 
 |  | 
 | TEST_P(WienerTestHighbd, DISABLED_Speed) { | 
 |   RunWienerTest(WIENER_WIN, 200, AOM_BITS_8); | 
 |   RunWienerTest(WIENER_WIN_CHROMA, 200, AOM_BITS_8); | 
 |   RunWienerTest(WIENER_WIN, 200, AOM_BITS_10); | 
 |   RunWienerTest(WIENER_WIN_CHROMA, 200, AOM_BITS_10); | 
 |   RunWienerTest(WIENER_WIN, 200, AOM_BITS_12); | 
 |   RunWienerTest(WIENER_WIN_CHROMA, 200, AOM_BITS_12); | 
 | } | 
 |  | 
 | INSTANTIATE_TEST_SUITE_P(C, WienerTestHighbd, | 
 |                          ::testing::Values(compute_stats_highbd_opt_c)); | 
 |  | 
 | #if HAVE_SSE4_1 | 
 | INSTANTIATE_TEST_SUITE_P(SSE4_1, WienerTestHighbd, | 
 |                          ::testing::Values(av1_compute_stats_highbd_sse4_1)); | 
 | #endif  // HAVE_SSE4_1 | 
 |  | 
 | #if HAVE_AVX2 | 
 | INSTANTIATE_TEST_SUITE_P(AVX2, WienerTestHighbd, | 
 |                          ::testing::Values(av1_compute_stats_highbd_avx2)); | 
 | #endif  // HAVE_AVX2 | 
 |  | 
 | }  // namespace wiener_highbd | 
 | #endif  // CONFIG_AV1_HIGHBITDEPTH |