| /* | 
 |  * Copyright (c) 2016, Alliance for Open Media. All rights reserved | 
 |  * | 
 |  * This source code is subject to the terms of the BSD 2 Clause License and | 
 |  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
 |  * was not distributed with this source code in the LICENSE file, you can | 
 |  * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
 |  * Media Patent License 1.0 was not distributed with this source code in the | 
 |  * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
 |  */ | 
 |  | 
 | #ifndef AOM_AV1_COMMON_AV1_COMMON_INT_H_ | 
 | #define AOM_AV1_COMMON_AV1_COMMON_INT_H_ | 
 |  | 
 | #include "config/aom_config.h" | 
 | #include "config/av1_rtcd.h" | 
 |  | 
 | #include "aom/internal/aom_codec_internal.h" | 
 | #include "aom_util/aom_thread.h" | 
 | #include "av1/common/alloccommon.h" | 
 | #include "av1/common/av1_loopfilter.h" | 
 | #include "av1/common/entropy.h" | 
 | #include "av1/common/entropymode.h" | 
 | #include "av1/common/entropymv.h" | 
 | #include "av1/common/enums.h" | 
 | #include "av1/common/frame_buffers.h" | 
 | #include "av1/common/mv.h" | 
 | #include "av1/common/quant_common.h" | 
 | #include "av1/common/restoration.h" | 
 | #include "av1/common/tile_common.h" | 
 | #include "av1/common/timing.h" | 
 | #include "aom_dsp/grain_params.h" | 
 | #include "aom_dsp/grain_table.h" | 
 | #include "aom_dsp/odintrin.h" | 
 | #ifdef __cplusplus | 
 | extern "C" { | 
 | #endif | 
 |  | 
 | #if defined(__clang__) && defined(__has_warning) | 
 | #if __has_feature(cxx_attributes) && __has_warning("-Wimplicit-fallthrough") | 
 | #define AOM_FALLTHROUGH_INTENDED [[clang::fallthrough]]  // NOLINT | 
 | #endif | 
 | #elif defined(__GNUC__) && __GNUC__ >= 7 | 
 | #define AOM_FALLTHROUGH_INTENDED __attribute__((fallthrough))  // NOLINT | 
 | #endif | 
 |  | 
 | #ifndef AOM_FALLTHROUGH_INTENDED | 
 | #define AOM_FALLTHROUGH_INTENDED \ | 
 |   do {                           \ | 
 |   } while (0) | 
 | #endif | 
 |  | 
 | #define CDEF_MAX_STRENGTHS 16 | 
 |  | 
 | /* Constant values while waiting for the sequence header */ | 
 | #define FRAME_ID_LENGTH 15 | 
 | #define DELTA_FRAME_ID_LENGTH 14 | 
 |  | 
 | #define FRAME_CONTEXTS (FRAME_BUFFERS + 1) | 
 | // Extra frame context which is always kept at default values | 
 | #define FRAME_CONTEXT_DEFAULTS (FRAME_CONTEXTS - 1) | 
 | #define PRIMARY_REF_BITS 3 | 
 | #define PRIMARY_REF_NONE 7 | 
 |  | 
 | #define NUM_PING_PONG_BUFFERS 2 | 
 |  | 
 | #define MAX_NUM_TEMPORAL_LAYERS 8 | 
 | #define MAX_NUM_SPATIAL_LAYERS 4 | 
 | /* clang-format off */ | 
 | // clang-format seems to think this is a pointer dereference and not a | 
 | // multiplication. | 
 | #define MAX_NUM_OPERATING_POINTS \ | 
 |   (MAX_NUM_TEMPORAL_LAYERS * MAX_NUM_SPATIAL_LAYERS) | 
 | /* clang-format on */ | 
 |  | 
 | // TODO(jingning): Turning this on to set up transform coefficient | 
 | // processing timer. | 
 | #define TXCOEFF_TIMER 0 | 
 | #define TXCOEFF_COST_TIMER 0 | 
 |  | 
 | /*!\cond */ | 
 |  | 
 | enum { | 
 |   SINGLE_REFERENCE = 0, | 
 |   COMPOUND_REFERENCE = 1, | 
 |   REFERENCE_MODE_SELECT = 2, | 
 |   REFERENCE_MODES = 3, | 
 | } UENUM1BYTE(REFERENCE_MODE); | 
 |  | 
 | enum { | 
 |   /** | 
 |    * Frame context updates are disabled | 
 |    */ | 
 |   REFRESH_FRAME_CONTEXT_DISABLED, | 
 |   /** | 
 |    * Update frame context to values resulting from backward probability | 
 |    * updates based on entropy/counts in the decoded frame | 
 |    */ | 
 |   REFRESH_FRAME_CONTEXT_BACKWARD, | 
 | } UENUM1BYTE(REFRESH_FRAME_CONTEXT_MODE); | 
 |  | 
 | #define MFMV_STACK_SIZE 3 | 
 | typedef struct { | 
 |   int_mv mfmv0; | 
 |   uint8_t ref_frame_offset; | 
 | } TPL_MV_REF; | 
 |  | 
 | typedef struct { | 
 |   int_mv mv; | 
 |   MV_REFERENCE_FRAME ref_frame; | 
 | } MV_REF; | 
 |  | 
 | typedef struct RefCntBuffer { | 
 |   // For a RefCntBuffer, the following are reference-holding variables: | 
 |   // - cm->ref_frame_map[] | 
 |   // - cm->cur_frame | 
 |   // - cm->scaled_ref_buf[] (encoder only) | 
 |   // - pbi->output_frame_index[] (decoder only) | 
 |   // With that definition, 'ref_count' is the number of reference-holding | 
 |   // variables that are currently referencing this buffer. | 
 |   // For example: | 
 |   // - suppose this buffer is at index 'k' in the buffer pool, and | 
 |   // - Total 'n' of the variables / array elements above have value 'k' (that | 
 |   // is, they are pointing to buffer at index 'k'). | 
 |   // Then, pool->frame_bufs[k].ref_count = n. | 
 |   int ref_count; | 
 |  | 
 |   unsigned int order_hint; | 
 |   unsigned int ref_order_hints[INTER_REFS_PER_FRAME]; | 
 |  | 
 |   // These variables are used only in encoder and compare the absolute | 
 |   // display order hint to compute the relative distance and overcome | 
 |   // the limitation of get_relative_dist() which returns incorrect | 
 |   // distance when a very old frame is used as a reference. | 
 |   unsigned int display_order_hint; | 
 |   unsigned int ref_display_order_hint[INTER_REFS_PER_FRAME]; | 
 |   // Frame's level within the hierarchical structure. | 
 |   unsigned int pyramid_level; | 
 |   MV_REF *mvs; | 
 |   uint8_t *seg_map; | 
 |   struct segmentation seg; | 
 |   int mi_rows; | 
 |   int mi_cols; | 
 |   // Width and height give the size of the buffer (before any upscaling, unlike | 
 |   // the sizes that can be derived from the buf structure) | 
 |   int width; | 
 |   int height; | 
 |   WarpedMotionParams global_motion[REF_FRAMES]; | 
 |   int showable_frame;  // frame can be used as show existing frame in future | 
 |   uint8_t film_grain_params_present; | 
 |   aom_film_grain_t film_grain_params; | 
 |   aom_codec_frame_buffer_t raw_frame_buffer; | 
 |   YV12_BUFFER_CONFIG buf; | 
 |   int temporal_id;  // Temporal layer ID of the frame | 
 |   int spatial_id;   // Spatial layer ID of the frame | 
 |   FRAME_TYPE frame_type; | 
 |  | 
 |   // This is only used in the encoder but needs to be indexed per ref frame | 
 |   // so it's extremely convenient to keep it here. | 
 |   int interp_filter_selected[SWITCHABLE]; | 
 |  | 
 |   // Inter frame reference frame delta for loop filter | 
 |   int8_t ref_deltas[REF_FRAMES]; | 
 |  | 
 |   // 0 = ZERO_MV, MV | 
 |   int8_t mode_deltas[MAX_MODE_LF_DELTAS]; | 
 |  | 
 |   FRAME_CONTEXT frame_context; | 
 | } RefCntBuffer; | 
 |  | 
 | typedef struct BufferPool { | 
 | // Protect BufferPool from being accessed by several FrameWorkers at | 
 | // the same time during frame parallel decode. | 
 | // TODO(hkuang): Try to use atomic variable instead of locking the whole pool. | 
 | // TODO(wtc): Remove this. See | 
 | // https://chromium-review.googlesource.com/c/webm/libvpx/+/560630. | 
 | #if CONFIG_MULTITHREAD | 
 |   pthread_mutex_t pool_mutex; | 
 | #endif | 
 |  | 
 |   // Private data associated with the frame buffer callbacks. | 
 |   void *cb_priv; | 
 |  | 
 |   aom_get_frame_buffer_cb_fn_t get_fb_cb; | 
 |   aom_release_frame_buffer_cb_fn_t release_fb_cb; | 
 |  | 
 |   RefCntBuffer frame_bufs[FRAME_BUFFERS]; | 
 |  | 
 |   // Frame buffers allocated internally by the codec. | 
 |   InternalFrameBufferList int_frame_buffers; | 
 | } BufferPool; | 
 |  | 
 | /*!\endcond */ | 
 |  | 
 | /*!\brief Parameters related to CDEF */ | 
 | typedef struct { | 
 |   //! CDEF column line buffer | 
 |   uint16_t *colbuf[MAX_MB_PLANE]; | 
 |   //! CDEF top & bottom line buffer | 
 |   uint16_t *linebuf[MAX_MB_PLANE]; | 
 |   //! CDEF intermediate buffer | 
 |   uint16_t *srcbuf; | 
 |   //! CDEF column line buffer sizes | 
 |   size_t allocated_colbuf_size[MAX_MB_PLANE]; | 
 |   //! CDEF top and bottom line buffer sizes | 
 |   size_t allocated_linebuf_size[MAX_MB_PLANE]; | 
 |   //! CDEF intermediate buffer size | 
 |   size_t allocated_srcbuf_size; | 
 |   //! CDEF damping factor | 
 |   int cdef_damping; | 
 |   //! Number of CDEF strength values | 
 |   int nb_cdef_strengths; | 
 |   //! CDEF strength values for luma | 
 |   int cdef_strengths[CDEF_MAX_STRENGTHS]; | 
 |   //! CDEF strength values for chroma | 
 |   int cdef_uv_strengths[CDEF_MAX_STRENGTHS]; | 
 |   //! Number of CDEF strength values in bits | 
 |   int cdef_bits; | 
 |   //! Number of rows in the frame in 4 pixel | 
 |   int allocated_mi_rows; | 
 |   //! Number of CDEF workers | 
 |   int allocated_num_workers; | 
 | } CdefInfo; | 
 |  | 
 | /*!\cond */ | 
 |  | 
 | typedef struct { | 
 |   int delta_q_present_flag; | 
 |   // Resolution of delta quant | 
 |   int delta_q_res; | 
 |   int delta_lf_present_flag; | 
 |   // Resolution of delta lf level | 
 |   int delta_lf_res; | 
 |   // This is a flag for number of deltas of loop filter level | 
 |   // 0: use 1 delta, for y_vertical, y_horizontal, u, and v | 
 |   // 1: use separate deltas for each filter level | 
 |   int delta_lf_multi; | 
 | } DeltaQInfo; | 
 |  | 
 | typedef struct { | 
 |   int enable_order_hint;        // 0 - disable order hint, and related tools | 
 |   int order_hint_bits_minus_1;  // dist_wtd_comp, ref_frame_mvs, | 
 |                                 // frame_sign_bias | 
 |                                 // if 0, enable_dist_wtd_comp and | 
 |                                 // enable_ref_frame_mvs must be set as 0. | 
 |   int enable_dist_wtd_comp;     // 0 - disable dist-wtd compound modes | 
 |                                 // 1 - enable it | 
 |   int enable_ref_frame_mvs;     // 0 - disable ref frame mvs | 
 |                                 // 1 - enable it | 
 | } OrderHintInfo; | 
 |  | 
 | // Sequence header structure. | 
 | // Note: All syntax elements of sequence_header_obu that need to be | 
 | // bit-identical across multiple sequence headers must be part of this struct, | 
 | // so that consistency is checked by are_seq_headers_consistent() function. | 
 | // One exception is the last member 'op_params' that is ignored by | 
 | // are_seq_headers_consistent() function. | 
 | typedef struct SequenceHeader { | 
 |   int num_bits_width; | 
 |   int num_bits_height; | 
 |   int max_frame_width; | 
 |   int max_frame_height; | 
 |   // Whether current and reference frame IDs are signaled in the bitstream. | 
 |   // Frame id numbers are additional information that do not affect the | 
 |   // decoding process, but provide decoders with a way of detecting missing | 
 |   // reference frames so that appropriate action can be taken. | 
 |   uint8_t frame_id_numbers_present_flag; | 
 |   int frame_id_length; | 
 |   int delta_frame_id_length; | 
 |   BLOCK_SIZE sb_size;  // Size of the superblock used for this frame | 
 |   int mib_size;        // Size of the superblock in units of MI blocks | 
 |   int mib_size_log2;   // Log 2 of above. | 
 |  | 
 |   OrderHintInfo order_hint_info; | 
 |  | 
 |   uint8_t force_screen_content_tools;  // 0 - force off | 
 |                                        // 1 - force on | 
 |                                        // 2 - adaptive | 
 |   uint8_t still_picture;               // Video is a single frame still picture | 
 |   uint8_t reduced_still_picture_hdr;   // Use reduced header for still picture | 
 |   uint8_t force_integer_mv;            // 0 - Don't force. MV can use subpel | 
 |                                        // 1 - force to integer | 
 |                                        // 2 - adaptive | 
 |   uint8_t enable_filter_intra;         // enables/disables filterintra | 
 |   uint8_t enable_intra_edge_filter;    // enables/disables edge upsampling | 
 |   uint8_t enable_interintra_compound;  // enables/disables interintra_compound | 
 |   uint8_t enable_masked_compound;      // enables/disables masked compound | 
 |   uint8_t enable_dual_filter;          // 0 - disable dual interpolation filter | 
 |                                        // 1 - enable vert/horz filter selection | 
 |   uint8_t enable_warped_motion;        // 0 - disable warp for the sequence | 
 |                                        // 1 - enable warp for the sequence | 
 |   uint8_t enable_superres;             // 0 - Disable superres for the sequence | 
 |                                        //     and no frame level superres flag | 
 |                                        // 1 - Enable superres for the sequence | 
 |                                        //     enable per-frame superres flag | 
 |   uint8_t enable_cdef;                 // To turn on/off CDEF | 
 |   uint8_t enable_restoration;          // To turn on/off loop restoration | 
 |   BITSTREAM_PROFILE profile; | 
 |  | 
 |   // Color config. | 
 |   aom_bit_depth_t bit_depth;  // AOM_BITS_8 in profile 0 or 1, | 
 |                               // AOM_BITS_10 or AOM_BITS_12 in profile 2 or 3. | 
 |   uint8_t use_highbitdepth;   // If true, we need to use 16bit frame buffers. | 
 |   uint8_t monochrome;         // Monochrome video | 
 |   aom_color_primaries_t color_primaries; | 
 |   aom_transfer_characteristics_t transfer_characteristics; | 
 |   aom_matrix_coefficients_t matrix_coefficients; | 
 |   int color_range; | 
 |   int subsampling_x;  // Chroma subsampling for x | 
 |   int subsampling_y;  // Chroma subsampling for y | 
 |   aom_chroma_sample_position_t chroma_sample_position; | 
 |   uint8_t separate_uv_delta_q; | 
 |   uint8_t film_grain_params_present; | 
 |  | 
 |   // Operating point info. | 
 |   int operating_points_cnt_minus_1; | 
 |   int operating_point_idc[MAX_NUM_OPERATING_POINTS]; | 
 |   int timing_info_present; | 
 |   aom_timing_info_t timing_info; | 
 |   uint8_t decoder_model_info_present_flag; | 
 |   aom_dec_model_info_t decoder_model_info; | 
 |   uint8_t display_model_info_present_flag; | 
 |   AV1_LEVEL seq_level_idx[MAX_NUM_OPERATING_POINTS]; | 
 |   uint8_t tier[MAX_NUM_OPERATING_POINTS];  // seq_tier in spec. One bit: 0 or 1. | 
 |  | 
 |   // IMPORTANT: the op_params member must be at the end of the struct so that | 
 |   // are_seq_headers_consistent() can be implemented with a memcmp() call. | 
 |   // TODO(urvang): We probably don't need the +1 here. | 
 |   aom_dec_model_op_parameters_t op_params[MAX_NUM_OPERATING_POINTS + 1]; | 
 | } SequenceHeader; | 
 |  | 
 | typedef struct { | 
 |   int skip_mode_allowed; | 
 |   int skip_mode_flag; | 
 |   int ref_frame_idx_0; | 
 |   int ref_frame_idx_1; | 
 | } SkipModeInfo; | 
 |  | 
 | typedef struct { | 
 |   FRAME_TYPE frame_type; | 
 |   REFERENCE_MODE reference_mode; | 
 |  | 
 |   unsigned int order_hint; | 
 |   unsigned int display_order_hint; | 
 |   // Frame's level within the hierarchical structure. | 
 |   unsigned int pyramid_level; | 
 |   unsigned int frame_number; | 
 |   SkipModeInfo skip_mode_info; | 
 |   int refresh_frame_flags;  // Which ref frames are overwritten by this frame | 
 |   int frame_refs_short_signaling; | 
 | } CurrentFrame; | 
 |  | 
 | /*!\endcond */ | 
 |  | 
 | /*! | 
 |  * \brief Frame level features. | 
 |  */ | 
 | typedef struct { | 
 |   /*! | 
 |    * If true, CDF update in the symbol encoding/decoding process is disabled. | 
 |    */ | 
 |   bool disable_cdf_update; | 
 |   /*! | 
 |    * If true, motion vectors are specified to eighth pel precision; and | 
 |    * if false, motion vectors are specified to quarter pel precision. | 
 |    */ | 
 |   bool allow_high_precision_mv; | 
 |   /*! | 
 |    * If true, force integer motion vectors; if false, use the default. | 
 |    */ | 
 |   bool cur_frame_force_integer_mv; | 
 |   /*! | 
 |    * If true, palette tool and/or intra block copy tools may be used. | 
 |    */ | 
 |   bool allow_screen_content_tools; | 
 |   bool allow_intrabc;       /*!< If true, intra block copy tool may be used. */ | 
 |   bool allow_warped_motion; /*!< If true, frame may use warped motion mode. */ | 
 |   /*! | 
 |    * If true, using previous frames' motion vectors for prediction is allowed. | 
 |    */ | 
 |   bool allow_ref_frame_mvs; | 
 |   /*! | 
 |    * If true, frame is fully lossless at coded resolution. | 
 |    * */ | 
 |   bool coded_lossless; | 
 |   /*! | 
 |    * If true, frame is fully lossless at upscaled resolution. | 
 |    */ | 
 |   bool all_lossless; | 
 |   /*! | 
 |    * If true, the frame is restricted to a reduced subset of the full set of | 
 |    * transform types. | 
 |    */ | 
 |   bool reduced_tx_set_used; | 
 |   /*! | 
 |    * If true, error resilient mode is enabled. | 
 |    * Note: Error resilient mode allows the syntax of a frame to be parsed | 
 |    * independently of previously decoded frames. | 
 |    */ | 
 |   bool error_resilient_mode; | 
 |   /*! | 
 |    * If false, only MOTION_MODE that may be used is SIMPLE_TRANSLATION; | 
 |    * if true, all MOTION_MODES may be used. | 
 |    */ | 
 |   bool switchable_motion_mode; | 
 |   TX_MODE tx_mode;            /*!< Transform mode at frame level. */ | 
 |   InterpFilter interp_filter; /*!< Interpolation filter at frame level. */ | 
 |   /*! | 
 |    * The reference frame that contains the CDF values and other state that | 
 |    * should be loaded at the start of the frame. | 
 |    */ | 
 |   int primary_ref_frame; | 
 |   /*! | 
 |    * Byte alignment of the planes in the reference buffers. | 
 |    */ | 
 |   int byte_alignment; | 
 |   /*! | 
 |    * Flag signaling how frame contexts should be updated at the end of | 
 |    * a frame decode. | 
 |    */ | 
 |   REFRESH_FRAME_CONTEXT_MODE refresh_frame_context; | 
 | } FeatureFlags; | 
 |  | 
 | /*! | 
 |  * \brief Params related to tiles. | 
 |  */ | 
 | typedef struct CommonTileParams { | 
 |   int cols;          /*!< number of tile columns that frame is divided into */ | 
 |   int rows;          /*!< number of tile rows that frame is divided into */ | 
 |   int max_width_sb;  /*!< maximum tile width in superblock units. */ | 
 |   int max_height_sb; /*!< maximum tile height in superblock units. */ | 
 |  | 
 |   /*! | 
 |    * Min width of non-rightmost tile in MI units. Only valid if cols > 1. | 
 |    */ | 
 |   int min_inner_width; | 
 |  | 
 |   /*! | 
 |    * If true, tiles are uniformly spaced with power-of-two number of rows and | 
 |    * columns. | 
 |    * If false, tiles have explicitly configured widths and heights. | 
 |    */ | 
 |   int uniform_spacing; | 
 |  | 
 |   /** | 
 |    * \name Members only valid when uniform_spacing == 1 | 
 |    */ | 
 |   /**@{*/ | 
 |   int log2_cols; /*!< log2 of 'cols'. */ | 
 |   int log2_rows; /*!< log2 of 'rows'. */ | 
 |   int width;     /*!< tile width in MI units */ | 
 |   int height;    /*!< tile height in MI units */ | 
 |   /**@}*/ | 
 |  | 
 |   /*! | 
 |    * Min num of tile columns possible based on 'max_width_sb' and frame width. | 
 |    */ | 
 |   int min_log2_cols; | 
 |   /*! | 
 |    * Min num of tile rows possible based on 'max_height_sb' and frame height. | 
 |    */ | 
 |   int min_log2_rows; | 
 |   /*! | 
 |    * Max num of tile columns possible based on frame width. | 
 |    */ | 
 |   int max_log2_cols; | 
 |   /*! | 
 |    * Max num of tile rows possible based on frame height. | 
 |    */ | 
 |   int max_log2_rows; | 
 |   /*! | 
 |    * log2 of min number of tiles (same as min_log2_cols + min_log2_rows). | 
 |    */ | 
 |   int min_log2; | 
 |   /*! | 
 |    * col_start_sb[i] is the start position of tile column i in superblock units. | 
 |    * valid for 0 <= i <= cols | 
 |    */ | 
 |   int col_start_sb[MAX_TILE_COLS + 1]; | 
 |   /*! | 
 |    * row_start_sb[i] is the start position of tile row i in superblock units. | 
 |    * valid for 0 <= i <= rows | 
 |    */ | 
 |   int row_start_sb[MAX_TILE_ROWS + 1]; | 
 |   /*! | 
 |    * If true, we are using large scale tile mode. | 
 |    */ | 
 |   unsigned int large_scale; | 
 |   /*! | 
 |    * Only relevant when large_scale == 1. | 
 |    * If true, the independent decoding of a single tile or a section of a frame | 
 |    * is allowed. | 
 |    */ | 
 |   unsigned int single_tile_decoding; | 
 | } CommonTileParams; | 
 |  | 
 | typedef struct CommonModeInfoParams CommonModeInfoParams; | 
 | /*! | 
 |  * \brief Params related to MB_MODE_INFO arrays and related info. | 
 |  */ | 
 | struct CommonModeInfoParams { | 
 |   /*! | 
 |    * Number of rows in the frame in 16 pixel units. | 
 |    * This is computed from frame height aligned to a multiple of 8. | 
 |    */ | 
 |   int mb_rows; | 
 |   /*! | 
 |    * Number of cols in the frame in 16 pixel units. | 
 |    * This is computed from frame width aligned to a multiple of 8. | 
 |    */ | 
 |   int mb_cols; | 
 |  | 
 |   /*! | 
 |    * Total MBs = mb_rows * mb_cols. | 
 |    */ | 
 |   int MBs; | 
 |  | 
 |   /*! | 
 |    * Number of rows in the frame in 4 pixel (MB_MODE_INFO) units. | 
 |    * This is computed from frame height aligned to a multiple of 8. | 
 |    */ | 
 |   int mi_rows; | 
 |   /*! | 
 |    * Number of cols in the frame in 4 pixel (MB_MODE_INFO) units. | 
 |    * This is computed from frame width aligned to a multiple of 8. | 
 |    */ | 
 |   int mi_cols; | 
 |  | 
 |   /*! | 
 |    * An array of MB_MODE_INFO structs for every 'mi_alloc_bsize' sized block | 
 |    * in the frame. | 
 |    * Note: This array should be treated like a scratch memory, and should NOT be | 
 |    * accessed directly, in most cases. Please use 'mi_grid_base' array instead. | 
 |    */ | 
 |   MB_MODE_INFO *mi_alloc; | 
 |   /*! | 
 |    * Number of allocated elements in 'mi_alloc'. | 
 |    */ | 
 |   int mi_alloc_size; | 
 |   /*! | 
 |    * Stride for 'mi_alloc' array. | 
 |    */ | 
 |   int mi_alloc_stride; | 
 |   /*! | 
 |    * The minimum block size that each element in 'mi_alloc' can correspond to. | 
 |    * For decoder, this is always BLOCK_4X4. | 
 |    * For encoder, this is BLOCK_8X8 for resolution >= 4k case or REALTIME mode | 
 |    * case. Otherwise, this is BLOCK_4X4. | 
 |    */ | 
 |   BLOCK_SIZE mi_alloc_bsize; | 
 |  | 
 |   /*! | 
 |    * Grid of pointers to 4x4 MB_MODE_INFO structs allocated in 'mi_alloc'. | 
 |    * It's possible that: | 
 |    * - Multiple pointers in the grid point to the same element in 'mi_alloc' | 
 |    * (for example, for all 4x4 blocks that belong to the same partition block). | 
 |    * - Some pointers can be NULL (for example, for blocks outside visible area). | 
 |    */ | 
 |   MB_MODE_INFO **mi_grid_base; | 
 |   /*! | 
 |    * Number of allocated elements in 'mi_grid_base' (and 'tx_type_map' also). | 
 |    */ | 
 |   int mi_grid_size; | 
 |   /*! | 
 |    * Stride for 'mi_grid_base' (and 'tx_type_map' also). | 
 |    */ | 
 |   int mi_stride; | 
 |  | 
 |   /*! | 
 |    * An array of tx types for each 4x4 block in the frame. | 
 |    * Number of allocated elements is same as 'mi_grid_size', and stride is | 
 |    * same as 'mi_grid_size'. So, indexing into 'tx_type_map' is same as that of | 
 |    * 'mi_grid_base'. | 
 |    */ | 
 |   TX_TYPE *tx_type_map; | 
 |  | 
 |   /** | 
 |    * \name Function pointers to allow separate logic for encoder and decoder. | 
 |    */ | 
 |   /**@{*/ | 
 |   /*! | 
 |    * Free the memory allocated to arrays in 'mi_params'. | 
 |    * \param[in,out]   mi_params   object containing common mode info parameters | 
 |    */ | 
 |   void (*free_mi)(struct CommonModeInfoParams *mi_params); | 
 |   /*! | 
 |    * Initialize / reset appropriate arrays in 'mi_params'. | 
 |    * \param[in,out]   mi_params   object containing common mode info parameters | 
 |    */ | 
 |   void (*setup_mi)(struct CommonModeInfoParams *mi_params); | 
 |   /*! | 
 |    * Allocate required memory for arrays in 'mi_params'. | 
 |    * \param[in,out]   mi_params           object containing common mode info | 
 |    *                                      parameters | 
 |    * \param           width               frame width | 
 |    * \param           height              frame height | 
 |    * \param           min_partition_size  minimum partition size allowed while | 
 |    *                                      encoding | 
 |    */ | 
 |   void (*set_mb_mi)(struct CommonModeInfoParams *mi_params, int width, | 
 |                     int height, BLOCK_SIZE min_partition_size); | 
 |   /**@}*/ | 
 | }; | 
 |  | 
 | typedef struct CommonQuantParams CommonQuantParams; | 
 | /*! | 
 |  * \brief Parameters related to quantization at the frame level. | 
 |  */ | 
 | struct CommonQuantParams { | 
 |   /*! | 
 |    * Base qindex of the frame in the range 0 to 255. | 
 |    */ | 
 |   int base_qindex; | 
 |  | 
 |   /*! | 
 |    * Delta of qindex (from base_qindex) for Y plane DC coefficient. | 
 |    * Note: y_ac_delta_q is implicitly 0. | 
 |    */ | 
 |   int y_dc_delta_q; | 
 |  | 
 |   /*! | 
 |    * Delta of qindex (from base_qindex) for U plane DC coefficients. | 
 |    */ | 
 |   int u_dc_delta_q; | 
 |   /*! | 
 |    * Delta of qindex (from base_qindex) for U plane AC coefficients. | 
 |    */ | 
 |   int v_dc_delta_q; | 
 |  | 
 |   /*! | 
 |    * Delta of qindex (from base_qindex) for V plane DC coefficients. | 
 |    * Same as those for U plane if cm->seq_params->separate_uv_delta_q == 0. | 
 |    */ | 
 |   int u_ac_delta_q; | 
 |   /*! | 
 |    * Delta of qindex (from base_qindex) for V plane AC coefficients. | 
 |    * Same as those for U plane if cm->seq_params->separate_uv_delta_q == 0. | 
 |    */ | 
 |   int v_ac_delta_q; | 
 |  | 
 |   /* | 
 |    * Note: The qindex per superblock may have a delta from the qindex obtained | 
 |    * at frame level from parameters above, based on 'cm->delta_q_info'. | 
 |    */ | 
 |  | 
 |   /** | 
 |    * \name True dequantizers. | 
 |    * The dequantizers below are true dequantizers used only in the | 
 |    * dequantization process.  They have the same coefficient | 
 |    * shift/scale as TX. | 
 |    */ | 
 |   /**@{*/ | 
 |   int16_t y_dequant_QTX[MAX_SEGMENTS][2]; /*!< Dequant for Y plane */ | 
 |   int16_t u_dequant_QTX[MAX_SEGMENTS][2]; /*!< Dequant for U plane */ | 
 |   int16_t v_dequant_QTX[MAX_SEGMENTS][2]; /*!< Dequant for V plane */ | 
 |   /**@}*/ | 
 |  | 
 |   /** | 
 |    * \name Global quantization matrix tables. | 
 |    */ | 
 |   /**@{*/ | 
 |   /*! | 
 |    * Global dequantization matrix table. | 
 |    */ | 
 |   const qm_val_t *giqmatrix[NUM_QM_LEVELS][3][TX_SIZES_ALL]; | 
 |   /*! | 
 |    * Global quantization matrix table. | 
 |    */ | 
 |   const qm_val_t *gqmatrix[NUM_QM_LEVELS][3][TX_SIZES_ALL]; | 
 |   /**@}*/ | 
 |  | 
 |   /** | 
 |    * \name Local dequantization matrix tables for each frame. | 
 |    */ | 
 |   /**@{*/ | 
 |   /*! | 
 |    * Local dequant matrix for Y plane. | 
 |    */ | 
 |   const qm_val_t *y_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL]; | 
 |   /*! | 
 |    * Local dequant matrix for U plane. | 
 |    */ | 
 |   const qm_val_t *u_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL]; | 
 |   /*! | 
 |    * Local dequant matrix for V plane. | 
 |    */ | 
 |   const qm_val_t *v_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL]; | 
 |   /**@}*/ | 
 |  | 
 |   /*! | 
 |    * Flag indicating whether quantization matrices are being used: | 
 |    *  - If true, qm_level_y, qm_level_u and qm_level_v indicate the level | 
 |    *    indices to be used to access appropriate global quant matrix tables. | 
 |    *  - If false, we implicitly use level index 'NUM_QM_LEVELS - 1'. | 
 |    */ | 
 |   bool using_qmatrix; | 
 |   /** | 
 |    * \name Valid only when using_qmatrix == true | 
 |    * Indicate the level indices to be used to access appropriate global quant | 
 |    * matrix tables. | 
 |    */ | 
 |   /**@{*/ | 
 |   int qmatrix_level_y; /*!< Level index for Y plane */ | 
 |   int qmatrix_level_u; /*!< Level index for U plane */ | 
 |   int qmatrix_level_v; /*!< Level index for V plane */ | 
 |   /**@}*/ | 
 | }; | 
 |  | 
 | typedef struct CommonContexts CommonContexts; | 
 | /*! | 
 |  * \brief Contexts used for transmitting various symbols in the bitstream. | 
 |  */ | 
 | struct CommonContexts { | 
 |   /*! | 
 |    * Context used by 'FRAME_CONTEXT.partition_cdf' to transmit partition type. | 
 |    * partition[i][j] is the context for ith tile row, jth mi_col. | 
 |    */ | 
 |   PARTITION_CONTEXT **partition; | 
 |  | 
 |   /*! | 
 |    * Context used to derive context for multiple symbols: | 
 |    * - 'TXB_CTX.txb_skip_ctx' used by 'FRAME_CONTEXT.txb_skip_cdf' to transmit | 
 |    * to transmit skip_txfm flag. | 
 |    * - 'TXB_CTX.dc_sign_ctx' used by 'FRAME_CONTEXT.dc_sign_cdf' to transmit | 
 |    * sign. | 
 |    * entropy[i][j][k] is the context for ith plane, jth tile row, kth mi_col. | 
 |    */ | 
 |   ENTROPY_CONTEXT **entropy[MAX_MB_PLANE]; | 
 |  | 
 |   /*! | 
 |    * Context used to derive context for 'FRAME_CONTEXT.txfm_partition_cdf' to | 
 |    * transmit 'is_split' flag to indicate if this transform block should be | 
 |    * split into smaller sub-blocks. | 
 |    * txfm[i][j] is the context for ith tile row, jth mi_col. | 
 |    */ | 
 |   TXFM_CONTEXT **txfm; | 
 |  | 
 |   /*! | 
 |    * Dimensions that were used to allocate the arrays above. | 
 |    * If these dimensions change, the arrays may have to be re-allocated. | 
 |    */ | 
 |   int num_planes;    /*!< Corresponds to av1_num_planes(cm) */ | 
 |   int num_tile_rows; /*!< Corresponds to cm->tiles.row */ | 
 |   int num_mi_cols;   /*!< Corresponds to cm->mi_params.mi_cols */ | 
 | }; | 
 |  | 
 | /*! | 
 |  * \brief Top level common structure used by both encoder and decoder. | 
 |  */ | 
 | typedef struct AV1Common { | 
 |   /*! | 
 |    * Information about the current frame that is being coded. | 
 |    */ | 
 |   CurrentFrame current_frame; | 
 |   /*! | 
 |    * Code and details about current error status. | 
 |    */ | 
 |   struct aom_internal_error_info *error; | 
 |  | 
 |   /*! | 
 |    * AV1 allows two types of frame scaling operations: | 
 |    * 1. Frame super-resolution: that allows coding a frame at lower resolution | 
 |    * and after decoding the frame, normatively scales and restores the frame -- | 
 |    * inside the coding loop. | 
 |    * 2. Frame resize: that allows coding frame at lower/higher resolution, and | 
 |    * then non-normatively upscale the frame at the time of rendering -- outside | 
 |    * the coding loop. | 
 |    * Hence, the need for 3 types of dimensions. | 
 |    */ | 
 |  | 
 |   /** | 
 |    * \name Coded frame dimensions. | 
 |    */ | 
 |   /**@{*/ | 
 |   int width;  /*!< Coded frame width */ | 
 |   int height; /*!< Coded frame height */ | 
 |   /**@}*/ | 
 |  | 
 |   /** | 
 |    * \name Rendered frame dimensions. | 
 |    * Dimensions after applying both super-resolution and resize to the coded | 
 |    * frame. Different from coded dimensions if super-resolution and/or resize | 
 |    * are being used for this frame. | 
 |    */ | 
 |   /**@{*/ | 
 |   int render_width;  /*!< Rendered frame width */ | 
 |   int render_height; /*!< Rendered frame height */ | 
 |   /**@}*/ | 
 |  | 
 |   /** | 
 |    * \name Super-resolved frame dimensions. | 
 |    * Frame dimensions after applying super-resolution to the coded frame (if | 
 |    * present), but before applying resize. | 
 |    * Larger than the coded dimensions if super-resolution is being used for | 
 |    * this frame. | 
 |    * Different from rendered dimensions if resize is being used for this frame. | 
 |    */ | 
 |   /**@{*/ | 
 |   int superres_upscaled_width;  /*!< Super-resolved frame width */ | 
 |   int superres_upscaled_height; /*!< Super-resolved frame height */ | 
 |   /**@}*/ | 
 |  | 
 |   /*! | 
 |    * The denominator of the superres scale used by this frame. | 
 |    * Note: The numerator is fixed to be SCALE_NUMERATOR. | 
 |    */ | 
 |   uint8_t superres_scale_denominator; | 
 |  | 
 |   /*! | 
 |    * buffer_removal_times[op_num] specifies the frame removal time in units of | 
 |    * DecCT clock ticks counted from the removal time of the last random access | 
 |    * point for operating point op_num. | 
 |    * TODO(urvang): We probably don't need the +1 here. | 
 |    */ | 
 |   uint32_t buffer_removal_times[MAX_NUM_OPERATING_POINTS + 1]; | 
 |   /*! | 
 |    * Presentation time of the frame in clock ticks DispCT counted from the | 
 |    * removal time of the last random access point for the operating point that | 
 |    * is being decoded. | 
 |    */ | 
 |   uint32_t frame_presentation_time; | 
 |  | 
 |   /*! | 
 |    * Buffer where previous frame is stored. | 
 |    */ | 
 |   RefCntBuffer *prev_frame; | 
 |  | 
 |   /*! | 
 |    * Buffer into which the current frame will be stored and other related info. | 
 |    * TODO(hkuang): Combine this with cur_buf in macroblockd. | 
 |    */ | 
 |   RefCntBuffer *cur_frame; | 
 |  | 
 |   /*! | 
 |    * For encoder, we have a two-level mapping from reference frame type to the | 
 |    * corresponding buffer in the buffer pool: | 
 |    * * 'remapped_ref_idx[i - 1]' maps reference type 'i' (range: LAST_FRAME ... | 
 |    * EXTREF_FRAME) to a remapped index 'j' (in range: 0 ... REF_FRAMES - 1) | 
 |    * * Later, 'cm->ref_frame_map[j]' maps the remapped index 'j' to a pointer to | 
 |    * the reference counted buffer structure RefCntBuffer, taken from the buffer | 
 |    * pool cm->buffer_pool->frame_bufs. | 
 |    * | 
 |    * LAST_FRAME,                        ...,      EXTREF_FRAME | 
 |    *      |                                           | | 
 |    *      v                                           v | 
 |    * remapped_ref_idx[LAST_FRAME - 1],  ...,  remapped_ref_idx[EXTREF_FRAME - 1] | 
 |    *      |                                           | | 
 |    *      v                                           v | 
 |    * ref_frame_map[],                   ...,     ref_frame_map[] | 
 |    * | 
 |    * Note: INTRA_FRAME always refers to the current frame, so there's no need to | 
 |    * have a remapped index for the same. | 
 |    */ | 
 |   int remapped_ref_idx[REF_FRAMES]; | 
 |  | 
 |   /*! | 
 |    * Scale of the current frame with respect to itself. | 
 |    * This is currently used for intra block copy, which behaves like an inter | 
 |    * prediction mode, where the reference frame is the current frame itself. | 
 |    */ | 
 |   struct scale_factors sf_identity; | 
 |  | 
 |   /*! | 
 |    * Scale factors of the reference frame with respect to the current frame. | 
 |    * This is required for generating inter prediction and will be non-identity | 
 |    * for a reference frame, if it has different dimensions than the coded | 
 |    * dimensions of the current frame. | 
 |    */ | 
 |   struct scale_factors ref_scale_factors[REF_FRAMES]; | 
 |  | 
 |   /*! | 
 |    * For decoder, ref_frame_map[i] maps reference type 'i' to a pointer to | 
 |    * the buffer in the buffer pool 'cm->buffer_pool.frame_bufs'. | 
 |    * For encoder, ref_frame_map[j] (where j = remapped_ref_idx[i]) maps | 
 |    * remapped reference index 'j' (that is, original reference type 'i') to | 
 |    * a pointer to the buffer in the buffer pool 'cm->buffer_pool.frame_bufs'. | 
 |    */ | 
 |   RefCntBuffer *ref_frame_map[REF_FRAMES]; | 
 |  | 
 |   /*! | 
 |    * If true, this frame is actually shown after decoding. | 
 |    * If false, this frame is coded in the bitstream, but not shown. It is only | 
 |    * used as a reference for other frames coded later. | 
 |    */ | 
 |   int show_frame; | 
 |  | 
 |   /*! | 
 |    * If true, this frame can be used as a show-existing frame for other frames | 
 |    * coded later. | 
 |    * When 'show_frame' is true, this is always true for all non-keyframes. | 
 |    * When 'show_frame' is false, this value is transmitted in the bitstream. | 
 |    */ | 
 |   int showable_frame; | 
 |  | 
 |   /*! | 
 |    * If true, show an existing frame coded before, instead of actually coding a | 
 |    * frame. The existing frame comes from one of the existing reference buffers, | 
 |    * as signaled in the bitstream. | 
 |    */ | 
 |   int show_existing_frame; | 
 |  | 
 |   /*! | 
 |    * Whether some features are allowed or not. | 
 |    */ | 
 |   FeatureFlags features; | 
 |  | 
 |   /*! | 
 |    * Params related to MB_MODE_INFO arrays and related info. | 
 |    */ | 
 |   CommonModeInfoParams mi_params; | 
 |  | 
 | #if CONFIG_ENTROPY_STATS | 
 |   /*! | 
 |    * Context type used by token CDFs, in the range 0 .. (TOKEN_CDF_Q_CTXS - 1). | 
 |    */ | 
 |   int coef_cdf_category; | 
 | #endif  // CONFIG_ENTROPY_STATS | 
 |  | 
 |   /*! | 
 |    * Quantization params. | 
 |    */ | 
 |   CommonQuantParams quant_params; | 
 |  | 
 |   /*! | 
 |    * Segmentation info for current frame. | 
 |    */ | 
 |   struct segmentation seg; | 
 |  | 
 |   /*! | 
 |    * Segmentation map for previous frame. | 
 |    */ | 
 |   uint8_t *last_frame_seg_map; | 
 |  | 
 |   /** | 
 |    * \name Deblocking filter parameters. | 
 |    */ | 
 |   /**@{*/ | 
 |   loop_filter_info_n lf_info; /*!< Loop filter info */ | 
 |   struct loopfilter lf;       /*!< Loop filter parameters */ | 
 |   /**@}*/ | 
 |  | 
 |   /** | 
 |    * \name Loop Restoration filter parameters. | 
 |    */ | 
 |   /**@{*/ | 
 |   RestorationInfo rst_info[MAX_MB_PLANE]; /*!< Loop Restoration filter info */ | 
 |   int32_t *rst_tmpbuf; /*!< Scratch buffer for self-guided restoration */ | 
 |   RestorationLineBuffers *rlbs; /*!< Line buffers needed by loop restoration */ | 
 |   YV12_BUFFER_CONFIG rst_frame; /*!< Stores the output of loop restoration */ | 
 |   /**@}*/ | 
 |  | 
 |   /*! | 
 |    * CDEF (Constrained Directional Enhancement Filter) parameters. | 
 |    */ | 
 |   CdefInfo cdef_info; | 
 |  | 
 |   /*! | 
 |    * Parameters for film grain synthesis. | 
 |    */ | 
 |   aom_film_grain_t film_grain_params; | 
 |  | 
 |   /*! | 
 |    * Parameters for delta quantization and delta loop filter level. | 
 |    */ | 
 |   DeltaQInfo delta_q_info; | 
 |  | 
 |   /*! | 
 |    * Global motion parameters for each reference frame. | 
 |    */ | 
 |   WarpedMotionParams global_motion[REF_FRAMES]; | 
 |  | 
 |   /*! | 
 |    * Elements part of the sequence header, that are applicable for all the | 
 |    * frames in the video. | 
 |    */ | 
 |   SequenceHeader *seq_params; | 
 |  | 
 |   /*! | 
 |    * Current CDFs of all the symbols for the current frame. | 
 |    */ | 
 |   FRAME_CONTEXT *fc; | 
 |   /*! | 
 |    * Default CDFs used when features.primary_ref_frame = PRIMARY_REF_NONE | 
 |    * (e.g. for a keyframe). These default CDFs are defined by the bitstream and | 
 |    * copied from default CDF tables for each symbol. | 
 |    */ | 
 |   FRAME_CONTEXT *default_frame_context; | 
 |  | 
 |   /*! | 
 |    * Parameters related to tiling. | 
 |    */ | 
 |   CommonTileParams tiles; | 
 |  | 
 |   /*! | 
 |    * External BufferPool passed from outside. | 
 |    */ | 
 |   BufferPool *buffer_pool; | 
 |  | 
 |   /*! | 
 |    * Above context buffers and their sizes. | 
 |    * Note: above contexts are allocated in this struct, as their size is | 
 |    * dependent on frame width, while left contexts are declared and allocated in | 
 |    * MACROBLOCKD struct, as they have a fixed size. | 
 |    */ | 
 |   CommonContexts above_contexts; | 
 |  | 
 |   /** | 
 |    * \name Signaled when cm->seq_params->frame_id_numbers_present_flag == 1 | 
 |    */ | 
 |   /**@{*/ | 
 |   int current_frame_id;         /*!< frame ID for the current frame. */ | 
 |   int ref_frame_id[REF_FRAMES]; /*!< frame IDs for the reference frames. */ | 
 |   /**@}*/ | 
 |  | 
 |   /*! | 
 |    * Motion vectors provided by motion field estimation. | 
 |    * tpl_mvs[row * stride + col] stores MV for block at [mi_row, mi_col] where: | 
 |    * mi_row = 2 * row, | 
 |    * mi_col = 2 * col, and | 
 |    * stride = cm->mi_params.mi_stride / 2 | 
 |    */ | 
 |   TPL_MV_REF *tpl_mvs; | 
 |   /*! | 
 |    * Allocated size of 'tpl_mvs' array. Refer to 'ensure_mv_buffer()' function. | 
 |    */ | 
 |   int tpl_mvs_mem_size; | 
 |   /*! | 
 |    * ref_frame_sign_bias[k] is 1 if relative distance between reference 'k' and | 
 |    * current frame is positive; and 0 otherwise. | 
 |    */ | 
 |   int ref_frame_sign_bias[REF_FRAMES]; | 
 |   /*! | 
 |    * ref_frame_side[k] is 1 if relative distance between reference 'k' and | 
 |    * current frame is positive, -1 if relative distance is 0; and 0 otherwise. | 
 |    * TODO(jingning): This can be combined with sign_bias later. | 
 |    */ | 
 |   int8_t ref_frame_side[REF_FRAMES]; | 
 |  | 
 |   /*! | 
 |    * Temporal layer ID of this frame | 
 |    * (in the range 0 ... (number_temporal_layers - 1)). | 
 |    */ | 
 |   int temporal_layer_id; | 
 |  | 
 |   /*! | 
 |    * Spatial layer ID of this frame | 
 |    * (in the range 0 ... (number_spatial_layers - 1)). | 
 |    */ | 
 |   int spatial_layer_id; | 
 |  | 
 | #if TXCOEFF_TIMER | 
 |   int64_t cum_txcoeff_timer; | 
 |   int64_t txcoeff_timer; | 
 |   int txb_count; | 
 | #endif  // TXCOEFF_TIMER | 
 |  | 
 | #if TXCOEFF_COST_TIMER | 
 |   int64_t cum_txcoeff_cost_timer; | 
 |   int64_t txcoeff_cost_timer; | 
 |   int64_t txcoeff_cost_count; | 
 | #endif  // TXCOEFF_COST_TIMER | 
 | } AV1_COMMON; | 
 |  | 
 | /*!\cond */ | 
 |  | 
 | // TODO(hkuang): Don't need to lock the whole pool after implementing atomic | 
 | // frame reference count. | 
 | static void lock_buffer_pool(BufferPool *const pool) { | 
 | #if CONFIG_MULTITHREAD | 
 |   pthread_mutex_lock(&pool->pool_mutex); | 
 | #else | 
 |   (void)pool; | 
 | #endif | 
 | } | 
 |  | 
 | static void unlock_buffer_pool(BufferPool *const pool) { | 
 | #if CONFIG_MULTITHREAD | 
 |   pthread_mutex_unlock(&pool->pool_mutex); | 
 | #else | 
 |   (void)pool; | 
 | #endif | 
 | } | 
 |  | 
 | static INLINE YV12_BUFFER_CONFIG *get_ref_frame(AV1_COMMON *cm, int index) { | 
 |   if (index < 0 || index >= REF_FRAMES) return NULL; | 
 |   if (cm->ref_frame_map[index] == NULL) return NULL; | 
 |   return &cm->ref_frame_map[index]->buf; | 
 | } | 
 |  | 
 | static INLINE int get_free_fb(AV1_COMMON *cm) { | 
 |   RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs; | 
 |   int i; | 
 |  | 
 |   lock_buffer_pool(cm->buffer_pool); | 
 |   for (i = 0; i < FRAME_BUFFERS; ++i) | 
 |     if (frame_bufs[i].ref_count == 0) break; | 
 |  | 
 |   if (i != FRAME_BUFFERS) { | 
 |     if (frame_bufs[i].buf.use_external_reference_buffers) { | 
 |       // If this frame buffer's y_buffer, u_buffer, and v_buffer point to the | 
 |       // external reference buffers. Restore the buffer pointers to point to the | 
 |       // internally allocated memory. | 
 |       YV12_BUFFER_CONFIG *ybf = &frame_bufs[i].buf; | 
 |       ybf->y_buffer = ybf->store_buf_adr[0]; | 
 |       ybf->u_buffer = ybf->store_buf_adr[1]; | 
 |       ybf->v_buffer = ybf->store_buf_adr[2]; | 
 |       ybf->use_external_reference_buffers = 0; | 
 |     } | 
 |  | 
 |     frame_bufs[i].ref_count = 1; | 
 |   } else { | 
 |     // We should never run out of free buffers. If this assertion fails, there | 
 |     // is a reference leak. | 
 |     assert(0 && "Ran out of free frame buffers. Likely a reference leak."); | 
 |     // Reset i to be INVALID_IDX to indicate no free buffer found. | 
 |     i = INVALID_IDX; | 
 |   } | 
 |  | 
 |   unlock_buffer_pool(cm->buffer_pool); | 
 |   return i; | 
 | } | 
 |  | 
 | static INLINE RefCntBuffer *assign_cur_frame_new_fb(AV1_COMMON *const cm) { | 
 |   // Release the previously-used frame-buffer | 
 |   if (cm->cur_frame != NULL) { | 
 |     --cm->cur_frame->ref_count; | 
 |     cm->cur_frame = NULL; | 
 |   } | 
 |  | 
 |   // Assign a new framebuffer | 
 |   const int new_fb_idx = get_free_fb(cm); | 
 |   if (new_fb_idx == INVALID_IDX) return NULL; | 
 |  | 
 |   cm->cur_frame = &cm->buffer_pool->frame_bufs[new_fb_idx]; | 
 |   cm->cur_frame->buf.buf_8bit_valid = 0; | 
 |   av1_zero(cm->cur_frame->interp_filter_selected); | 
 |   return cm->cur_frame; | 
 | } | 
 |  | 
 | // Modify 'lhs_ptr' to reference the buffer at 'rhs_ptr', and update the ref | 
 | // counts accordingly. | 
 | static INLINE void assign_frame_buffer_p(RefCntBuffer **lhs_ptr, | 
 |                                          RefCntBuffer *rhs_ptr) { | 
 |   RefCntBuffer *const old_ptr = *lhs_ptr; | 
 |   if (old_ptr != NULL) { | 
 |     assert(old_ptr->ref_count > 0); | 
 |     // One less reference to the buffer at 'old_ptr', so decrease ref count. | 
 |     --old_ptr->ref_count; | 
 |   } | 
 |  | 
 |   *lhs_ptr = rhs_ptr; | 
 |   // One more reference to the buffer at 'rhs_ptr', so increase ref count. | 
 |   ++rhs_ptr->ref_count; | 
 | } | 
 |  | 
 | static INLINE int frame_is_intra_only(const AV1_COMMON *const cm) { | 
 |   return cm->current_frame.frame_type == KEY_FRAME || | 
 |          cm->current_frame.frame_type == INTRA_ONLY_FRAME; | 
 | } | 
 |  | 
 | static INLINE int frame_is_sframe(const AV1_COMMON *cm) { | 
 |   return cm->current_frame.frame_type == S_FRAME; | 
 | } | 
 |  | 
 | // These functions take a reference frame label between LAST_FRAME and | 
 | // EXTREF_FRAME inclusive.  Note that this is different to the indexing | 
 | // previously used by the frame_refs[] array. | 
 | static INLINE int get_ref_frame_map_idx(const AV1_COMMON *const cm, | 
 |                                         const MV_REFERENCE_FRAME ref_frame) { | 
 |   return (ref_frame >= LAST_FRAME && ref_frame <= EXTREF_FRAME) | 
 |              ? cm->remapped_ref_idx[ref_frame - LAST_FRAME] | 
 |              : INVALID_IDX; | 
 | } | 
 |  | 
 | static INLINE RefCntBuffer *get_ref_frame_buf( | 
 |     const AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) { | 
 |   const int map_idx = get_ref_frame_map_idx(cm, ref_frame); | 
 |   return (map_idx != INVALID_IDX) ? cm->ref_frame_map[map_idx] : NULL; | 
 | } | 
 |  | 
 | // Both const and non-const versions of this function are provided so that it | 
 | // can be used with a const AV1_COMMON if needed. | 
 | static INLINE const struct scale_factors *get_ref_scale_factors_const( | 
 |     const AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) { | 
 |   const int map_idx = get_ref_frame_map_idx(cm, ref_frame); | 
 |   return (map_idx != INVALID_IDX) ? &cm->ref_scale_factors[map_idx] : NULL; | 
 | } | 
 |  | 
 | static INLINE struct scale_factors *get_ref_scale_factors( | 
 |     AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) { | 
 |   const int map_idx = get_ref_frame_map_idx(cm, ref_frame); | 
 |   return (map_idx != INVALID_IDX) ? &cm->ref_scale_factors[map_idx] : NULL; | 
 | } | 
 |  | 
 | static INLINE RefCntBuffer *get_primary_ref_frame_buf( | 
 |     const AV1_COMMON *const cm) { | 
 |   const int primary_ref_frame = cm->features.primary_ref_frame; | 
 |   if (primary_ref_frame == PRIMARY_REF_NONE) return NULL; | 
 |   const int map_idx = get_ref_frame_map_idx(cm, primary_ref_frame + 1); | 
 |   return (map_idx != INVALID_IDX) ? cm->ref_frame_map[map_idx] : NULL; | 
 | } | 
 |  | 
 | // Returns 1 if this frame might allow mvs from some reference frame. | 
 | static INLINE int frame_might_allow_ref_frame_mvs(const AV1_COMMON *cm) { | 
 |   return !cm->features.error_resilient_mode && | 
 |          cm->seq_params->order_hint_info.enable_ref_frame_mvs && | 
 |          cm->seq_params->order_hint_info.enable_order_hint && | 
 |          !frame_is_intra_only(cm); | 
 | } | 
 |  | 
 | // Returns 1 if this frame might use warped_motion | 
 | static INLINE int frame_might_allow_warped_motion(const AV1_COMMON *cm) { | 
 |   return !cm->features.error_resilient_mode && !frame_is_intra_only(cm) && | 
 |          cm->seq_params->enable_warped_motion; | 
 | } | 
 |  | 
 | static INLINE void ensure_mv_buffer(RefCntBuffer *buf, AV1_COMMON *cm) { | 
 |   const int buf_rows = buf->mi_rows; | 
 |   const int buf_cols = buf->mi_cols; | 
 |   const CommonModeInfoParams *const mi_params = &cm->mi_params; | 
 |  | 
 |   if (buf->mvs == NULL || buf_rows != mi_params->mi_rows || | 
 |       buf_cols != mi_params->mi_cols) { | 
 |     aom_free(buf->mvs); | 
 |     buf->mi_rows = mi_params->mi_rows; | 
 |     buf->mi_cols = mi_params->mi_cols; | 
 |     CHECK_MEM_ERROR(cm, buf->mvs, | 
 |                     (MV_REF *)aom_calloc(((mi_params->mi_rows + 1) >> 1) * | 
 |                                              ((mi_params->mi_cols + 1) >> 1), | 
 |                                          sizeof(*buf->mvs))); | 
 |     aom_free(buf->seg_map); | 
 |     CHECK_MEM_ERROR( | 
 |         cm, buf->seg_map, | 
 |         (uint8_t *)aom_calloc(mi_params->mi_rows * mi_params->mi_cols, | 
 |                               sizeof(*buf->seg_map))); | 
 |   } | 
 |  | 
 |   const int mem_size = | 
 |       ((mi_params->mi_rows + MAX_MIB_SIZE) >> 1) * (mi_params->mi_stride >> 1); | 
 |   int realloc = cm->tpl_mvs == NULL; | 
 |   if (cm->tpl_mvs) realloc |= cm->tpl_mvs_mem_size < mem_size; | 
 |  | 
 |   if (realloc) { | 
 |     aom_free(cm->tpl_mvs); | 
 |     CHECK_MEM_ERROR(cm, cm->tpl_mvs, | 
 |                     (TPL_MV_REF *)aom_calloc(mem_size, sizeof(*cm->tpl_mvs))); | 
 |     cm->tpl_mvs_mem_size = mem_size; | 
 |   } | 
 | } | 
 |  | 
 | void cfl_init(CFL_CTX *cfl, const SequenceHeader *seq_params); | 
 |  | 
 | static INLINE int av1_num_planes(const AV1_COMMON *cm) { | 
 |   return cm->seq_params->monochrome ? 1 : MAX_MB_PLANE; | 
 | } | 
 |  | 
 | static INLINE void av1_init_above_context(CommonContexts *above_contexts, | 
 |                                           int num_planes, int tile_row, | 
 |                                           MACROBLOCKD *xd) { | 
 |   for (int i = 0; i < num_planes; ++i) { | 
 |     xd->above_entropy_context[i] = above_contexts->entropy[i][tile_row]; | 
 |   } | 
 |   xd->above_partition_context = above_contexts->partition[tile_row]; | 
 |   xd->above_txfm_context = above_contexts->txfm[tile_row]; | 
 | } | 
 |  | 
 | static INLINE void av1_init_macroblockd(AV1_COMMON *cm, MACROBLOCKD *xd) { | 
 |   const int num_planes = av1_num_planes(cm); | 
 |   const CommonQuantParams *const quant_params = &cm->quant_params; | 
 |  | 
 |   for (int i = 0; i < num_planes; ++i) { | 
 |     if (xd->plane[i].plane_type == PLANE_TYPE_Y) { | 
 |       memcpy(xd->plane[i].seg_dequant_QTX, quant_params->y_dequant_QTX, | 
 |              sizeof(quant_params->y_dequant_QTX)); | 
 |       memcpy(xd->plane[i].seg_iqmatrix, quant_params->y_iqmatrix, | 
 |              sizeof(quant_params->y_iqmatrix)); | 
 |  | 
 |     } else { | 
 |       if (i == AOM_PLANE_U) { | 
 |         memcpy(xd->plane[i].seg_dequant_QTX, quant_params->u_dequant_QTX, | 
 |                sizeof(quant_params->u_dequant_QTX)); | 
 |         memcpy(xd->plane[i].seg_iqmatrix, quant_params->u_iqmatrix, | 
 |                sizeof(quant_params->u_iqmatrix)); | 
 |       } else { | 
 |         memcpy(xd->plane[i].seg_dequant_QTX, quant_params->v_dequant_QTX, | 
 |                sizeof(quant_params->v_dequant_QTX)); | 
 |         memcpy(xd->plane[i].seg_iqmatrix, quant_params->v_iqmatrix, | 
 |                sizeof(quant_params->v_iqmatrix)); | 
 |       } | 
 |     } | 
 |   } | 
 |   xd->mi_stride = cm->mi_params.mi_stride; | 
 |   xd->error_info = cm->error; | 
 |   cfl_init(&xd->cfl, cm->seq_params); | 
 | } | 
 |  | 
 | static INLINE void set_entropy_context(MACROBLOCKD *xd, int mi_row, int mi_col, | 
 |                                        const int num_planes) { | 
 |   int i; | 
 |   int row_offset = mi_row; | 
 |   int col_offset = mi_col; | 
 |   for (i = 0; i < num_planes; ++i) { | 
 |     struct macroblockd_plane *const pd = &xd->plane[i]; | 
 |     // Offset the buffer pointer | 
 |     const BLOCK_SIZE bsize = xd->mi[0]->bsize; | 
 |     if (pd->subsampling_y && (mi_row & 0x01) && (mi_size_high[bsize] == 1)) | 
 |       row_offset = mi_row - 1; | 
 |     if (pd->subsampling_x && (mi_col & 0x01) && (mi_size_wide[bsize] == 1)) | 
 |       col_offset = mi_col - 1; | 
 |     int above_idx = col_offset; | 
 |     int left_idx = row_offset & MAX_MIB_MASK; | 
 |     pd->above_entropy_context = | 
 |         &xd->above_entropy_context[i][above_idx >> pd->subsampling_x]; | 
 |     pd->left_entropy_context = | 
 |         &xd->left_entropy_context[i][left_idx >> pd->subsampling_y]; | 
 |   } | 
 | } | 
 |  | 
 | static INLINE int calc_mi_size(int len) { | 
 |   // len is in mi units. Align to a multiple of SBs. | 
 |   return ALIGN_POWER_OF_TWO(len, MAX_MIB_SIZE_LOG2); | 
 | } | 
 |  | 
 | static INLINE void set_plane_n4(MACROBLOCKD *const xd, int bw, int bh, | 
 |                                 const int num_planes) { | 
 |   int i; | 
 |   for (i = 0; i < num_planes; i++) { | 
 |     xd->plane[i].width = (bw * MI_SIZE) >> xd->plane[i].subsampling_x; | 
 |     xd->plane[i].height = (bh * MI_SIZE) >> xd->plane[i].subsampling_y; | 
 |  | 
 |     xd->plane[i].width = AOMMAX(xd->plane[i].width, 4); | 
 |     xd->plane[i].height = AOMMAX(xd->plane[i].height, 4); | 
 |   } | 
 | } | 
 |  | 
 | static INLINE void set_mi_row_col(MACROBLOCKD *xd, const TileInfo *const tile, | 
 |                                   int mi_row, int bh, int mi_col, int bw, | 
 |                                   int mi_rows, int mi_cols) { | 
 |   xd->mb_to_top_edge = -GET_MV_SUBPEL(mi_row * MI_SIZE); | 
 |   xd->mb_to_bottom_edge = GET_MV_SUBPEL((mi_rows - bh - mi_row) * MI_SIZE); | 
 |   xd->mb_to_left_edge = -GET_MV_SUBPEL((mi_col * MI_SIZE)); | 
 |   xd->mb_to_right_edge = GET_MV_SUBPEL((mi_cols - bw - mi_col) * MI_SIZE); | 
 |  | 
 |   xd->mi_row = mi_row; | 
 |   xd->mi_col = mi_col; | 
 |  | 
 |   // Are edges available for intra prediction? | 
 |   xd->up_available = (mi_row > tile->mi_row_start); | 
 |  | 
 |   const int ss_x = xd->plane[1].subsampling_x; | 
 |   const int ss_y = xd->plane[1].subsampling_y; | 
 |  | 
 |   xd->left_available = (mi_col > tile->mi_col_start); | 
 |   xd->chroma_up_available = xd->up_available; | 
 |   xd->chroma_left_available = xd->left_available; | 
 |   if (ss_x && bw < mi_size_wide[BLOCK_8X8]) | 
 |     xd->chroma_left_available = (mi_col - 1) > tile->mi_col_start; | 
 |   if (ss_y && bh < mi_size_high[BLOCK_8X8]) | 
 |     xd->chroma_up_available = (mi_row - 1) > tile->mi_row_start; | 
 |   if (xd->up_available) { | 
 |     xd->above_mbmi = xd->mi[-xd->mi_stride]; | 
 |   } else { | 
 |     xd->above_mbmi = NULL; | 
 |   } | 
 |  | 
 |   if (xd->left_available) { | 
 |     xd->left_mbmi = xd->mi[-1]; | 
 |   } else { | 
 |     xd->left_mbmi = NULL; | 
 |   } | 
 |  | 
 |   const int chroma_ref = ((mi_row & 0x01) || !(bh & 0x01) || !ss_y) && | 
 |                          ((mi_col & 0x01) || !(bw & 0x01) || !ss_x); | 
 |   xd->is_chroma_ref = chroma_ref; | 
 |   if (chroma_ref) { | 
 |     // To help calculate the "above" and "left" chroma blocks, note that the | 
 |     // current block may cover multiple luma blocks (e.g., if partitioned into | 
 |     // 4x4 luma blocks). | 
 |     // First, find the top-left-most luma block covered by this chroma block | 
 |     MB_MODE_INFO **base_mi = | 
 |         &xd->mi[-(mi_row & ss_y) * xd->mi_stride - (mi_col & ss_x)]; | 
 |  | 
 |     // Then, we consider the luma region covered by the left or above 4x4 chroma | 
 |     // prediction. We want to point to the chroma reference block in that | 
 |     // region, which is the bottom-right-most mi unit. | 
 |     // This leads to the following offsets: | 
 |     MB_MODE_INFO *chroma_above_mi = | 
 |         xd->chroma_up_available ? base_mi[-xd->mi_stride + ss_x] : NULL; | 
 |     xd->chroma_above_mbmi = chroma_above_mi; | 
 |  | 
 |     MB_MODE_INFO *chroma_left_mi = | 
 |         xd->chroma_left_available ? base_mi[ss_y * xd->mi_stride - 1] : NULL; | 
 |     xd->chroma_left_mbmi = chroma_left_mi; | 
 |   } | 
 |  | 
 |   xd->height = bh; | 
 |   xd->width = bw; | 
 |  | 
 |   xd->is_last_vertical_rect = 0; | 
 |   if (xd->width < xd->height) { | 
 |     if (!((mi_col + xd->width) & (xd->height - 1))) { | 
 |       xd->is_last_vertical_rect = 1; | 
 |     } | 
 |   } | 
 |  | 
 |   xd->is_first_horizontal_rect = 0; | 
 |   if (xd->width > xd->height) | 
 |     if (!(mi_row & (xd->width - 1))) xd->is_first_horizontal_rect = 1; | 
 | } | 
 |  | 
 | static INLINE aom_cdf_prob *get_y_mode_cdf(FRAME_CONTEXT *tile_ctx, | 
 |                                            const MB_MODE_INFO *above_mi, | 
 |                                            const MB_MODE_INFO *left_mi) { | 
 |   const PREDICTION_MODE above = av1_above_block_mode(above_mi); | 
 |   const PREDICTION_MODE left = av1_left_block_mode(left_mi); | 
 |   const int above_ctx = intra_mode_context[above]; | 
 |   const int left_ctx = intra_mode_context[left]; | 
 |   return tile_ctx->kf_y_cdf[above_ctx][left_ctx]; | 
 | } | 
 |  | 
 | static INLINE void update_partition_context(MACROBLOCKD *xd, int mi_row, | 
 |                                             int mi_col, BLOCK_SIZE subsize, | 
 |                                             BLOCK_SIZE bsize) { | 
 |   PARTITION_CONTEXT *const above_ctx = xd->above_partition_context + mi_col; | 
 |   PARTITION_CONTEXT *const left_ctx = | 
 |       xd->left_partition_context + (mi_row & MAX_MIB_MASK); | 
 |  | 
 |   const int bw = mi_size_wide[bsize]; | 
 |   const int bh = mi_size_high[bsize]; | 
 |   memset(above_ctx, partition_context_lookup[subsize].above, bw); | 
 |   memset(left_ctx, partition_context_lookup[subsize].left, bh); | 
 | } | 
 |  | 
 | static INLINE int is_chroma_reference(int mi_row, int mi_col, BLOCK_SIZE bsize, | 
 |                                       int subsampling_x, int subsampling_y) { | 
 |   assert(bsize < BLOCK_SIZES_ALL); | 
 |   const int bw = mi_size_wide[bsize]; | 
 |   const int bh = mi_size_high[bsize]; | 
 |   int ref_pos = ((mi_row & 0x01) || !(bh & 0x01) || !subsampling_y) && | 
 |                 ((mi_col & 0x01) || !(bw & 0x01) || !subsampling_x); | 
 |   return ref_pos; | 
 | } | 
 |  | 
 | static INLINE aom_cdf_prob cdf_element_prob(const aom_cdf_prob *cdf, | 
 |                                             size_t element) { | 
 |   assert(cdf != NULL); | 
 |   return (element > 0 ? cdf[element - 1] : CDF_PROB_TOP) - cdf[element]; | 
 | } | 
 |  | 
 | static INLINE void partition_gather_horz_alike(aom_cdf_prob *out, | 
 |                                                const aom_cdf_prob *const in, | 
 |                                                BLOCK_SIZE bsize) { | 
 |   (void)bsize; | 
 |   out[0] = CDF_PROB_TOP; | 
 |   out[0] -= cdf_element_prob(in, PARTITION_HORZ); | 
 |   out[0] -= cdf_element_prob(in, PARTITION_SPLIT); | 
 |   out[0] -= cdf_element_prob(in, PARTITION_HORZ_A); | 
 |   out[0] -= cdf_element_prob(in, PARTITION_HORZ_B); | 
 |   out[0] -= cdf_element_prob(in, PARTITION_VERT_A); | 
 |   if (bsize != BLOCK_128X128) out[0] -= cdf_element_prob(in, PARTITION_HORZ_4); | 
 |   out[0] = AOM_ICDF(out[0]); | 
 |   out[1] = AOM_ICDF(CDF_PROB_TOP); | 
 | } | 
 |  | 
 | static INLINE void partition_gather_vert_alike(aom_cdf_prob *out, | 
 |                                                const aom_cdf_prob *const in, | 
 |                                                BLOCK_SIZE bsize) { | 
 |   (void)bsize; | 
 |   out[0] = CDF_PROB_TOP; | 
 |   out[0] -= cdf_element_prob(in, PARTITION_VERT); | 
 |   out[0] -= cdf_element_prob(in, PARTITION_SPLIT); | 
 |   out[0] -= cdf_element_prob(in, PARTITION_HORZ_A); | 
 |   out[0] -= cdf_element_prob(in, PARTITION_VERT_A); | 
 |   out[0] -= cdf_element_prob(in, PARTITION_VERT_B); | 
 |   if (bsize != BLOCK_128X128) out[0] -= cdf_element_prob(in, PARTITION_VERT_4); | 
 |   out[0] = AOM_ICDF(out[0]); | 
 |   out[1] = AOM_ICDF(CDF_PROB_TOP); | 
 | } | 
 |  | 
 | static INLINE void update_ext_partition_context(MACROBLOCKD *xd, int mi_row, | 
 |                                                 int mi_col, BLOCK_SIZE subsize, | 
 |                                                 BLOCK_SIZE bsize, | 
 |                                                 PARTITION_TYPE partition) { | 
 |   if (bsize >= BLOCK_8X8) { | 
 |     const int hbs = mi_size_wide[bsize] / 2; | 
 |     BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT); | 
 |     switch (partition) { | 
 |       case PARTITION_SPLIT: | 
 |         if (bsize != BLOCK_8X8) break; | 
 |         AOM_FALLTHROUGH_INTENDED; | 
 |       case PARTITION_NONE: | 
 |       case PARTITION_HORZ: | 
 |       case PARTITION_VERT: | 
 |       case PARTITION_HORZ_4: | 
 |       case PARTITION_VERT_4: | 
 |         update_partition_context(xd, mi_row, mi_col, subsize, bsize); | 
 |         break; | 
 |       case PARTITION_HORZ_A: | 
 |         update_partition_context(xd, mi_row, mi_col, bsize2, subsize); | 
 |         update_partition_context(xd, mi_row + hbs, mi_col, subsize, subsize); | 
 |         break; | 
 |       case PARTITION_HORZ_B: | 
 |         update_partition_context(xd, mi_row, mi_col, subsize, subsize); | 
 |         update_partition_context(xd, mi_row + hbs, mi_col, bsize2, subsize); | 
 |         break; | 
 |       case PARTITION_VERT_A: | 
 |         update_partition_context(xd, mi_row, mi_col, bsize2, subsize); | 
 |         update_partition_context(xd, mi_row, mi_col + hbs, subsize, subsize); | 
 |         break; | 
 |       case PARTITION_VERT_B: | 
 |         update_partition_context(xd, mi_row, mi_col, subsize, subsize); | 
 |         update_partition_context(xd, mi_row, mi_col + hbs, bsize2, subsize); | 
 |         break; | 
 |       default: assert(0 && "Invalid partition type"); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static INLINE int partition_plane_context(const MACROBLOCKD *xd, int mi_row, | 
 |                                           int mi_col, BLOCK_SIZE bsize) { | 
 |   const PARTITION_CONTEXT *above_ctx = xd->above_partition_context + mi_col; | 
 |   const PARTITION_CONTEXT *left_ctx = | 
 |       xd->left_partition_context + (mi_row & MAX_MIB_MASK); | 
 |   // Minimum partition point is 8x8. Offset the bsl accordingly. | 
 |   const int bsl = mi_size_wide_log2[bsize] - mi_size_wide_log2[BLOCK_8X8]; | 
 |   int above = (*above_ctx >> bsl) & 1, left = (*left_ctx >> bsl) & 1; | 
 |  | 
 |   assert(mi_size_wide_log2[bsize] == mi_size_high_log2[bsize]); | 
 |   assert(bsl >= 0); | 
 |  | 
 |   return (left * 2 + above) + bsl * PARTITION_PLOFFSET; | 
 | } | 
 |  | 
 | // Return the number of elements in the partition CDF when | 
 | // partitioning the (square) block with luma block size of bsize. | 
 | static INLINE int partition_cdf_length(BLOCK_SIZE bsize) { | 
 |   if (bsize <= BLOCK_8X8) | 
 |     return PARTITION_TYPES; | 
 |   else if (bsize == BLOCK_128X128) | 
 |     return EXT_PARTITION_TYPES - 2; | 
 |   else | 
 |     return EXT_PARTITION_TYPES; | 
 | } | 
 |  | 
 | static INLINE int max_block_wide(const MACROBLOCKD *xd, BLOCK_SIZE bsize, | 
 |                                  int plane) { | 
 |   assert(bsize < BLOCK_SIZES_ALL); | 
 |   int max_blocks_wide = block_size_wide[bsize]; | 
 |  | 
 |   if (xd->mb_to_right_edge < 0) { | 
 |     const struct macroblockd_plane *const pd = &xd->plane[plane]; | 
 |     max_blocks_wide += xd->mb_to_right_edge >> (3 + pd->subsampling_x); | 
 |   } | 
 |  | 
 |   // Scale the width in the transform block unit. | 
 |   return max_blocks_wide >> MI_SIZE_LOG2; | 
 | } | 
 |  | 
 | static INLINE int max_block_high(const MACROBLOCKD *xd, BLOCK_SIZE bsize, | 
 |                                  int plane) { | 
 |   int max_blocks_high = block_size_high[bsize]; | 
 |  | 
 |   if (xd->mb_to_bottom_edge < 0) { | 
 |     const struct macroblockd_plane *const pd = &xd->plane[plane]; | 
 |     max_blocks_high += xd->mb_to_bottom_edge >> (3 + pd->subsampling_y); | 
 |   } | 
 |  | 
 |   // Scale the height in the transform block unit. | 
 |   return max_blocks_high >> MI_SIZE_LOG2; | 
 | } | 
 |  | 
 | static INLINE void av1_zero_above_context(AV1_COMMON *const cm, | 
 |                                           const MACROBLOCKD *xd, | 
 |                                           int mi_col_start, int mi_col_end, | 
 |                                           const int tile_row) { | 
 |   const SequenceHeader *const seq_params = cm->seq_params; | 
 |   const int num_planes = av1_num_planes(cm); | 
 |   const int width = mi_col_end - mi_col_start; | 
 |   const int aligned_width = | 
 |       ALIGN_POWER_OF_TWO(width, seq_params->mib_size_log2); | 
 |   const int offset_y = mi_col_start; | 
 |   const int width_y = aligned_width; | 
 |   const int offset_uv = offset_y >> seq_params->subsampling_x; | 
 |   const int width_uv = width_y >> seq_params->subsampling_x; | 
 |   CommonContexts *const above_contexts = &cm->above_contexts; | 
 |  | 
 |   av1_zero_array(above_contexts->entropy[0][tile_row] + offset_y, width_y); | 
 |   if (num_planes > 1) { | 
 |     if (above_contexts->entropy[1][tile_row] && | 
 |         above_contexts->entropy[2][tile_row]) { | 
 |       av1_zero_array(above_contexts->entropy[1][tile_row] + offset_uv, | 
 |                      width_uv); | 
 |       av1_zero_array(above_contexts->entropy[2][tile_row] + offset_uv, | 
 |                      width_uv); | 
 |     } else { | 
 |       aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME, | 
 |                          "Invalid value of planes"); | 
 |     } | 
 |   } | 
 |  | 
 |   av1_zero_array(above_contexts->partition[tile_row] + mi_col_start, | 
 |                  aligned_width); | 
 |  | 
 |   memset(above_contexts->txfm[tile_row] + mi_col_start, | 
 |          tx_size_wide[TX_SIZES_LARGEST], aligned_width * sizeof(TXFM_CONTEXT)); | 
 | } | 
 |  | 
 | static INLINE void av1_zero_left_context(MACROBLOCKD *const xd) { | 
 |   av1_zero(xd->left_entropy_context); | 
 |   av1_zero(xd->left_partition_context); | 
 |  | 
 |   memset(xd->left_txfm_context_buffer, tx_size_high[TX_SIZES_LARGEST], | 
 |          sizeof(xd->left_txfm_context_buffer)); | 
 | } | 
 |  | 
 | // Disable array-bounds checks as the TX_SIZE enum contains values larger than | 
 | // TX_SIZES_ALL (TX_INVALID) which make extending the array as a workaround | 
 | // infeasible. The assert is enough for static analysis and this or other tools | 
 | // asan, valgrind would catch oob access at runtime. | 
 | #if defined(__GNUC__) && __GNUC__ >= 4 | 
 | #pragma GCC diagnostic ignored "-Warray-bounds" | 
 | #endif | 
 |  | 
 | #if defined(__GNUC__) && __GNUC__ >= 4 | 
 | #pragma GCC diagnostic warning "-Warray-bounds" | 
 | #endif | 
 |  | 
 | static INLINE void set_txfm_ctx(TXFM_CONTEXT *txfm_ctx, uint8_t txs, int len) { | 
 |   int i; | 
 |   for (i = 0; i < len; ++i) txfm_ctx[i] = txs; | 
 | } | 
 |  | 
 | static INLINE void set_txfm_ctxs(TX_SIZE tx_size, int n4_w, int n4_h, int skip, | 
 |                                  const MACROBLOCKD *xd) { | 
 |   uint8_t bw = tx_size_wide[tx_size]; | 
 |   uint8_t bh = tx_size_high[tx_size]; | 
 |  | 
 |   if (skip) { | 
 |     bw = n4_w * MI_SIZE; | 
 |     bh = n4_h * MI_SIZE; | 
 |   } | 
 |  | 
 |   set_txfm_ctx(xd->above_txfm_context, bw, n4_w); | 
 |   set_txfm_ctx(xd->left_txfm_context, bh, n4_h); | 
 | } | 
 |  | 
 | static INLINE int get_mi_grid_idx(const CommonModeInfoParams *const mi_params, | 
 |                                   int mi_row, int mi_col) { | 
 |   return mi_row * mi_params->mi_stride + mi_col; | 
 | } | 
 |  | 
 | static INLINE int get_alloc_mi_idx(const CommonModeInfoParams *const mi_params, | 
 |                                    int mi_row, int mi_col) { | 
 |   const int mi_alloc_size_1d = mi_size_wide[mi_params->mi_alloc_bsize]; | 
 |   const int mi_alloc_row = mi_row / mi_alloc_size_1d; | 
 |   const int mi_alloc_col = mi_col / mi_alloc_size_1d; | 
 |  | 
 |   return mi_alloc_row * mi_params->mi_alloc_stride + mi_alloc_col; | 
 | } | 
 |  | 
 | // For this partition block, set pointers in mi_params->mi_grid_base and xd->mi. | 
 | static INLINE void set_mi_offsets(const CommonModeInfoParams *const mi_params, | 
 |                                   MACROBLOCKD *const xd, int mi_row, | 
 |                                   int mi_col) { | 
 |   // 'mi_grid_base' should point to appropriate memory in 'mi'. | 
 |   const int mi_grid_idx = get_mi_grid_idx(mi_params, mi_row, mi_col); | 
 |   const int mi_alloc_idx = get_alloc_mi_idx(mi_params, mi_row, mi_col); | 
 |   mi_params->mi_grid_base[mi_grid_idx] = &mi_params->mi_alloc[mi_alloc_idx]; | 
 |   // 'xd->mi' should point to an offset in 'mi_grid_base'; | 
 |   xd->mi = mi_params->mi_grid_base + mi_grid_idx; | 
 |   // 'xd->tx_type_map' should point to an offset in 'mi_params->tx_type_map'. | 
 |   xd->tx_type_map = mi_params->tx_type_map + mi_grid_idx; | 
 |   xd->tx_type_map_stride = mi_params->mi_stride; | 
 | } | 
 |  | 
 | static INLINE void txfm_partition_update(TXFM_CONTEXT *above_ctx, | 
 |                                          TXFM_CONTEXT *left_ctx, | 
 |                                          TX_SIZE tx_size, TX_SIZE txb_size) { | 
 |   BLOCK_SIZE bsize = txsize_to_bsize[txb_size]; | 
 |   int bh = mi_size_high[bsize]; | 
 |   int bw = mi_size_wide[bsize]; | 
 |   uint8_t txw = tx_size_wide[tx_size]; | 
 |   uint8_t txh = tx_size_high[tx_size]; | 
 |   int i; | 
 |   for (i = 0; i < bh; ++i) left_ctx[i] = txh; | 
 |   for (i = 0; i < bw; ++i) above_ctx[i] = txw; | 
 | } | 
 |  | 
 | static INLINE TX_SIZE get_sqr_tx_size(int tx_dim) { | 
 |   switch (tx_dim) { | 
 |     case 128: | 
 |     case 64: return TX_64X64; break; | 
 |     case 32: return TX_32X32; break; | 
 |     case 16: return TX_16X16; break; | 
 |     case 8: return TX_8X8; break; | 
 |     default: return TX_4X4; | 
 |   } | 
 | } | 
 |  | 
 | static INLINE TX_SIZE get_tx_size(int width, int height) { | 
 |   if (width == height) { | 
 |     return get_sqr_tx_size(width); | 
 |   } | 
 |   if (width < height) { | 
 |     if (width + width == height) { | 
 |       switch (width) { | 
 |         case 4: return TX_4X8; break; | 
 |         case 8: return TX_8X16; break; | 
 |         case 16: return TX_16X32; break; | 
 |         case 32: return TX_32X64; break; | 
 |       } | 
 |     } else { | 
 |       switch (width) { | 
 |         case 4: return TX_4X16; break; | 
 |         case 8: return TX_8X32; break; | 
 |         case 16: return TX_16X64; break; | 
 |       } | 
 |     } | 
 |   } else { | 
 |     if (height + height == width) { | 
 |       switch (height) { | 
 |         case 4: return TX_8X4; break; | 
 |         case 8: return TX_16X8; break; | 
 |         case 16: return TX_32X16; break; | 
 |         case 32: return TX_64X32; break; | 
 |       } | 
 |     } else { | 
 |       switch (height) { | 
 |         case 4: return TX_16X4; break; | 
 |         case 8: return TX_32X8; break; | 
 |         case 16: return TX_64X16; break; | 
 |       } | 
 |     } | 
 |   } | 
 |   assert(0); | 
 |   return TX_4X4; | 
 | } | 
 |  | 
 | static INLINE int txfm_partition_context(const TXFM_CONTEXT *const above_ctx, | 
 |                                          const TXFM_CONTEXT *const left_ctx, | 
 |                                          BLOCK_SIZE bsize, TX_SIZE tx_size) { | 
 |   const uint8_t txw = tx_size_wide[tx_size]; | 
 |   const uint8_t txh = tx_size_high[tx_size]; | 
 |   const int above = *above_ctx < txw; | 
 |   const int left = *left_ctx < txh; | 
 |   int category = TXFM_PARTITION_CONTEXTS; | 
 |  | 
 |   // dummy return, not used by others. | 
 |   if (tx_size <= TX_4X4) return 0; | 
 |  | 
 |   TX_SIZE max_tx_size = | 
 |       get_sqr_tx_size(AOMMAX(block_size_wide[bsize], block_size_high[bsize])); | 
 |  | 
 |   if (max_tx_size >= TX_8X8) { | 
 |     category = | 
 |         (txsize_sqr_up_map[tx_size] != max_tx_size && max_tx_size > TX_8X8) + | 
 |         (TX_SIZES - 1 - max_tx_size) * 2; | 
 |   } | 
 |   assert(category != TXFM_PARTITION_CONTEXTS); | 
 |   return category * 3 + above + left; | 
 | } | 
 |  | 
 | // Compute the next partition in the direction of the sb_type stored in the mi | 
 | // array, starting with bsize. | 
 | static INLINE PARTITION_TYPE get_partition(const AV1_COMMON *const cm, | 
 |                                            int mi_row, int mi_col, | 
 |                                            BLOCK_SIZE bsize) { | 
 |   const CommonModeInfoParams *const mi_params = &cm->mi_params; | 
 |   if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) | 
 |     return PARTITION_INVALID; | 
 |  | 
 |   const int offset = mi_row * mi_params->mi_stride + mi_col; | 
 |   MB_MODE_INFO **mi = mi_params->mi_grid_base + offset; | 
 |   const BLOCK_SIZE subsize = mi[0]->bsize; | 
 |  | 
 |   assert(bsize < BLOCK_SIZES_ALL); | 
 |  | 
 |   if (subsize == bsize) return PARTITION_NONE; | 
 |  | 
 |   const int bhigh = mi_size_high[bsize]; | 
 |   const int bwide = mi_size_wide[bsize]; | 
 |   const int sshigh = mi_size_high[subsize]; | 
 |   const int sswide = mi_size_wide[subsize]; | 
 |  | 
 |   if (bsize > BLOCK_8X8 && mi_row + bwide / 2 < mi_params->mi_rows && | 
 |       mi_col + bhigh / 2 < mi_params->mi_cols) { | 
 |     // In this case, the block might be using an extended partition | 
 |     // type. | 
 |     const MB_MODE_INFO *const mbmi_right = mi[bwide / 2]; | 
 |     const MB_MODE_INFO *const mbmi_below = mi[bhigh / 2 * mi_params->mi_stride]; | 
 |  | 
 |     if (sswide == bwide) { | 
 |       // Smaller height but same width. Is PARTITION_HORZ_4, PARTITION_HORZ or | 
 |       // PARTITION_HORZ_B. To distinguish the latter two, check if the lower | 
 |       // half was split. | 
 |       if (sshigh * 4 == bhigh) return PARTITION_HORZ_4; | 
 |       assert(sshigh * 2 == bhigh); | 
 |  | 
 |       if (mbmi_below->bsize == subsize) | 
 |         return PARTITION_HORZ; | 
 |       else | 
 |         return PARTITION_HORZ_B; | 
 |     } else if (sshigh == bhigh) { | 
 |       // Smaller width but same height. Is PARTITION_VERT_4, PARTITION_VERT or | 
 |       // PARTITION_VERT_B. To distinguish the latter two, check if the right | 
 |       // half was split. | 
 |       if (sswide * 4 == bwide) return PARTITION_VERT_4; | 
 |       assert(sswide * 2 == bhigh); | 
 |  | 
 |       if (mbmi_right->bsize == subsize) | 
 |         return PARTITION_VERT; | 
 |       else | 
 |         return PARTITION_VERT_B; | 
 |     } else { | 
 |       // Smaller width and smaller height. Might be PARTITION_SPLIT or could be | 
 |       // PARTITION_HORZ_A or PARTITION_VERT_A. If subsize isn't halved in both | 
 |       // dimensions, we immediately know this is a split (which will recurse to | 
 |       // get to subsize). Otherwise look down and to the right. With | 
 |       // PARTITION_VERT_A, the right block will have height bhigh; with | 
 |       // PARTITION_HORZ_A, the lower block with have width bwide. Otherwise | 
 |       // it's PARTITION_SPLIT. | 
 |       if (sswide * 2 != bwide || sshigh * 2 != bhigh) return PARTITION_SPLIT; | 
 |  | 
 |       if (mi_size_wide[mbmi_below->bsize] == bwide) return PARTITION_HORZ_A; | 
 |       if (mi_size_high[mbmi_right->bsize] == bhigh) return PARTITION_VERT_A; | 
 |  | 
 |       return PARTITION_SPLIT; | 
 |     } | 
 |   } | 
 |   const int vert_split = sswide < bwide; | 
 |   const int horz_split = sshigh < bhigh; | 
 |   const int split_idx = (vert_split << 1) | horz_split; | 
 |   assert(split_idx != 0); | 
 |  | 
 |   static const PARTITION_TYPE base_partitions[4] = { | 
 |     PARTITION_INVALID, PARTITION_HORZ, PARTITION_VERT, PARTITION_SPLIT | 
 |   }; | 
 |  | 
 |   return base_partitions[split_idx]; | 
 | } | 
 |  | 
 | static INLINE void set_sb_size(SequenceHeader *const seq_params, | 
 |                                BLOCK_SIZE sb_size) { | 
 |   seq_params->sb_size = sb_size; | 
 |   seq_params->mib_size = mi_size_wide[seq_params->sb_size]; | 
 |   seq_params->mib_size_log2 = mi_size_wide_log2[seq_params->sb_size]; | 
 | } | 
 |  | 
 | // Returns true if the frame is fully lossless at the coded resolution. | 
 | // Note: If super-resolution is used, such a frame will still NOT be lossless at | 
 | // the upscaled resolution. | 
 | static INLINE int is_coded_lossless(const AV1_COMMON *cm, | 
 |                                     const MACROBLOCKD *xd) { | 
 |   int coded_lossless = 1; | 
 |   if (cm->seg.enabled) { | 
 |     for (int i = 0; i < MAX_SEGMENTS; ++i) { | 
 |       if (!xd->lossless[i]) { | 
 |         coded_lossless = 0; | 
 |         break; | 
 |       } | 
 |     } | 
 |   } else { | 
 |     coded_lossless = xd->lossless[0]; | 
 |   } | 
 |   return coded_lossless; | 
 | } | 
 |  | 
 | static INLINE int is_valid_seq_level_idx(AV1_LEVEL seq_level_idx) { | 
 |   return seq_level_idx == SEQ_LEVEL_MAX || | 
 |          (seq_level_idx < SEQ_LEVELS && | 
 |           // The following levels are currently undefined. | 
 |           seq_level_idx != SEQ_LEVEL_2_2 && seq_level_idx != SEQ_LEVEL_2_3 && | 
 |           seq_level_idx != SEQ_LEVEL_3_2 && seq_level_idx != SEQ_LEVEL_3_3 && | 
 |           seq_level_idx != SEQ_LEVEL_4_2 && seq_level_idx != SEQ_LEVEL_4_3); | 
 | } | 
 |  | 
 | /*!\endcond */ | 
 |  | 
 | #ifdef __cplusplus | 
 | }  // extern "C" | 
 | #endif | 
 |  | 
 | #endif  // AOM_AV1_COMMON_AV1_COMMON_INT_H_ |