blob: 8dee801af1132c016975fa3702d8ff5179a6189a [file] [log] [blame] [edit]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "config/aom_config.h"
#include "config/av1_rtcd.h"
#include "config/aom_dsp_rtcd.h"
#include "aom_dsp/bitwriter.h"
#include "aom_dsp/quantize.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/mem.h"
#if CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG
#include "aom_util/debug_util.h"
#endif // CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG
#include "av1/common/cfl.h"
#include "av1/common/idct.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#include "av1/common/scan.h"
#include "av1/encoder/av1_quantize.h"
#include "av1/encoder/encodemb.h"
#include "av1/encoder/hybrid_fwd_txfm.h"
#include "av1/encoder/txb_rdopt.h"
#include "av1/encoder/rd.h"
#include "av1/encoder/rdopt.h"
void av1_subtract_block(BitDepthInfo bd_info, int rows, int cols, int16_t *diff,
ptrdiff_t diff_stride, const uint8_t *src8,
ptrdiff_t src_stride, const uint8_t *pred8,
ptrdiff_t pred_stride) {
assert(rows >= 4 && cols >= 4);
#if CONFIG_AV1_HIGHBITDEPTH
if (bd_info.use_highbitdepth_buf) {
aom_highbd_subtract_block(rows, cols, diff, diff_stride, src8, src_stride,
pred8, pred_stride);
return;
}
#endif
(void)bd_info;
aom_subtract_block(rows, cols, diff, diff_stride, src8, src_stride, pred8,
pred_stride);
}
void av1_subtract_txb(MACROBLOCK *x, int plane, BLOCK_SIZE plane_bsize,
int blk_col, int blk_row, TX_SIZE tx_size) {
MACROBLOCKD *const xd = &x->e_mbd;
const BitDepthInfo bd_info = get_bit_depth_info(xd);
struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane];
const int diff_stride = block_size_wide[plane_bsize];
const int src_stride = p->src.stride;
const int dst_stride = pd->dst.stride;
const int tx1d_width = tx_size_wide[tx_size];
const int tx1d_height = tx_size_high[tx_size];
uint8_t *dst = &pd->dst.buf[(blk_row * dst_stride + blk_col) << MI_SIZE_LOG2];
uint8_t *src = &p->src.buf[(blk_row * src_stride + blk_col) << MI_SIZE_LOG2];
int16_t *src_diff =
&p->src_diff[(blk_row * diff_stride + blk_col) << MI_SIZE_LOG2];
av1_subtract_block(bd_info, tx1d_height, tx1d_width, src_diff, diff_stride,
src, src_stride, dst, dst_stride);
}
void av1_subtract_plane(MACROBLOCK *x, BLOCK_SIZE plane_bsize, int plane) {
struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane];
assert(plane_bsize < BLOCK_SIZES_ALL);
const int bw = block_size_wide[plane_bsize];
const int bh = block_size_high[plane_bsize];
const MACROBLOCKD *xd = &x->e_mbd;
const BitDepthInfo bd_info = get_bit_depth_info(xd);
av1_subtract_block(bd_info, bh, bw, p->src_diff, bw, p->src.buf,
p->src.stride, pd->dst.buf, pd->dst.stride);
}
int av1_optimize_b(const struct AV1_COMP *cpi, MACROBLOCK *x, int plane,
int block, TX_SIZE tx_size, TX_TYPE tx_type,
const TXB_CTX *const txb_ctx, int *rate_cost) {
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *const p = &x->plane[plane];
const int eob = p->eobs[block];
const int segment_id = xd->mi[0]->segment_id;
if (eob == 0 || !cpi->optimize_seg_arr[segment_id] ||
xd->lossless[segment_id]) {
*rate_cost = av1_cost_skip_txb(&x->coeff_costs, txb_ctx, plane, tx_size);
return eob;
}
return av1_optimize_txb(cpi, x, plane, block, tx_size, tx_type, txb_ctx,
rate_cost, cpi->oxcf.algo_cfg.sharpness);
}
// Hyper-parameters for dropout optimization, based on following logics.
// TODO(yjshen): These settings are tuned by experiments. They may still be
// optimized for better performance.
// (1) Coefficients which are large enough will ALWAYS be kept.
const tran_low_t DROPOUT_COEFF_MAX = 2; // Max dropout-able coefficient.
// (2) Continuous coefficients will ALWAYS be kept. Here rigorous continuity is
// NOT required. For example, `5 0 0 0 7` is treated as two continuous
// coefficients if three zeros do not fulfill the dropout condition.
const int DROPOUT_CONTINUITY_MAX = 2; // Max dropout-able continuous coeff.
// (3) Dropout operation is NOT applicable to blocks with large or small
// quantization index.
const int DROPOUT_Q_MAX = 128;
const int DROPOUT_Q_MIN = 16;
// (4) Recall that dropout optimization will forcibly set some quantized
// coefficients to zero. The key logic on determining whether a coefficient
// should be dropped is to check the number of continuous zeros before AND
// after this coefficient. The exact number of zeros for judgement depends
// on block size and quantization index. More concretely, block size
// determines the base number of zeros, while quantization index determines
// the multiplier. Intuitively, larger block requires more zeros and larger
// quantization index also requires more zeros (more information is lost
// when using larger quantization index).
const int DROPOUT_BEFORE_BASE_MAX = 32; // Max base number for leading zeros.
const int DROPOUT_BEFORE_BASE_MIN = 16; // Min base number for leading zeros.
const int DROPOUT_AFTER_BASE_MAX = 32; // Max base number for trailing zeros.
const int DROPOUT_AFTER_BASE_MIN = 16; // Min base number for trailing zeros.
const int DROPOUT_MULTIPLIER_MAX = 8; // Max multiplier on number of zeros.
const int DROPOUT_MULTIPLIER_MIN = 2; // Min multiplier on number of zeros.
const int DROPOUT_MULTIPLIER_Q_BASE = 32; // Base Q to compute multiplier.
void av1_dropout_qcoeff(MACROBLOCK *mb, int plane, int block, TX_SIZE tx_size,
TX_TYPE tx_type, int qindex) {
const int tx_width = tx_size_wide[tx_size];
const int tx_height = tx_size_high[tx_size];
// Early return if `qindex` is out of range.
if (qindex > DROPOUT_Q_MAX || qindex < DROPOUT_Q_MIN) {
return;
}
// Compute number of zeros used for dropout judgement.
const int base_size = AOMMAX(tx_width, tx_height);
const int multiplier = CLIP(qindex / DROPOUT_MULTIPLIER_Q_BASE,
DROPOUT_MULTIPLIER_MIN, DROPOUT_MULTIPLIER_MAX);
const int dropout_num_before =
multiplier *
CLIP(base_size, DROPOUT_BEFORE_BASE_MIN, DROPOUT_BEFORE_BASE_MAX);
const int dropout_num_after =
multiplier *
CLIP(base_size, DROPOUT_AFTER_BASE_MIN, DROPOUT_AFTER_BASE_MAX);
av1_dropout_qcoeff_num(mb, plane, block, tx_size, tx_type, dropout_num_before,
dropout_num_after);
}
void av1_dropout_qcoeff_num(MACROBLOCK *mb, int plane, int block,
TX_SIZE tx_size, TX_TYPE tx_type,
int dropout_num_before, int dropout_num_after) {
const struct macroblock_plane *const p = &mb->plane[plane];
tran_low_t *const qcoeff = p->qcoeff + BLOCK_OFFSET(block);
tran_low_t *const dqcoeff = p->dqcoeff + BLOCK_OFFSET(block);
const int max_eob = av1_get_max_eob(tx_size);
const SCAN_ORDER *const scan_order = get_scan(tx_size, tx_type);
// Early return if there are not enough non-zero coefficients.
if (p->eobs[block] == 0 || p->eobs[block] <= dropout_num_before ||
max_eob <= dropout_num_before + dropout_num_after) {
return;
}
int count_zeros_before = 0;
int count_zeros_after = 0;
int count_nonzeros = 0;
// Index of the first non-zero coefficient after sufficient number of
// continuous zeros. If equals to `-1`, it means number of leading zeros
// hasn't reach `dropout_num_before`.
int idx = -1;
int eob = 0; // New end of block.
for (int i = 0; i < p->eobs[block]; ++i) {
const int scan_idx = scan_order->scan[i];
if (abs(qcoeff[scan_idx]) > DROPOUT_COEFF_MAX) {
// Keep large coefficients.
count_zeros_before = 0;
count_zeros_after = 0;
idx = -1;
eob = i + 1;
} else if (qcoeff[scan_idx] == 0) { // Count zeros.
if (idx == -1) {
++count_zeros_before;
} else {
++count_zeros_after;
}
} else { // Count non-zeros.
if (count_zeros_before >= dropout_num_before) {
idx = (idx == -1) ? i : idx;
++count_nonzeros;
} else {
count_zeros_before = 0;
eob = i + 1;
}
}
// Handle continuity.
if (count_nonzeros > DROPOUT_CONTINUITY_MAX) {
count_zeros_before = 0;
count_zeros_after = 0;
count_nonzeros = 0;
idx = -1;
eob = i + 1;
}
// Handle the trailing zeros after original end of block.
if (idx != -1 && i == p->eobs[block] - 1) {
count_zeros_after += (max_eob - p->eobs[block]);
}
// Set redundant coefficients to zeros if needed.
if (count_zeros_after >= dropout_num_after) {
for (int j = idx; j <= i; ++j) {
qcoeff[scan_order->scan[j]] = 0;
dqcoeff[scan_order->scan[j]] = 0;
}
count_zeros_before += (i - idx + 1);
count_zeros_after = 0;
count_nonzeros = 0;
} else if (i == p->eobs[block] - 1) {
eob = i + 1;
}
}
if (eob != p->eobs[block]) {
p->eobs[block] = eob;
p->txb_entropy_ctx[block] =
av1_get_txb_entropy_context(qcoeff, scan_order, eob);
}
}
// Settings for optimization type. NOTE: To set optimization type for all intra
// frames, both `KEY_BLOCK_OPT_TYPE` and `INTRA_BLOCK_OPT_TYPE` should be set.
// TODO(yjshen): These settings are hard-coded and look okay for now. They
// should be made configurable later.
// Blocks of key frames ONLY.
const OPT_TYPE KEY_BLOCK_OPT_TYPE = TRELLIS_DROPOUT_OPT;
// Blocks of intra frames (key frames EXCLUSIVE).
const OPT_TYPE INTRA_BLOCK_OPT_TYPE = TRELLIS_DROPOUT_OPT;
// Blocks of inter frames. (NOTE: Dropout optimization is DISABLED by default
// if trellis optimization is on for inter frames.)
const OPT_TYPE INTER_BLOCK_OPT_TYPE = TRELLIS_DROPOUT_OPT;
enum {
QUANT_FUNC_LOWBD = 0,
QUANT_FUNC_HIGHBD = 1,
QUANT_FUNC_TYPES = 2
} UENUM1BYTE(QUANT_FUNC);
#if CONFIG_AV1_HIGHBITDEPTH
static AV1_QUANT_FACADE
quant_func_list[AV1_XFORM_QUANT_TYPES][QUANT_FUNC_TYPES] = {
{ av1_quantize_fp_facade, av1_highbd_quantize_fp_facade },
{ av1_quantize_b_facade, av1_highbd_quantize_b_facade },
{ av1_quantize_dc_facade, av1_highbd_quantize_dc_facade },
{ NULL, NULL }
};
#else
static AV1_QUANT_FACADE quant_func_list[AV1_XFORM_QUANT_TYPES] = {
av1_quantize_fp_facade, av1_quantize_b_facade, av1_quantize_dc_facade, NULL
};
#endif
// Computes the transform for DC only blocks
void av1_xform_dc_only(MACROBLOCK *x, int plane, int block,
TxfmParam *txfm_param, int64_t per_px_mean) {
assert(per_px_mean != INT64_MAX);
const struct macroblock_plane *const p = &x->plane[plane];
const int block_offset = BLOCK_OFFSET(block);
tran_low_t *const coeff = p->coeff + block_offset;
const int n_coeffs = av1_get_max_eob(txfm_param->tx_size);
memset(coeff, 0, sizeof(*coeff) * n_coeffs);
coeff[0] =
(tran_low_t)((per_px_mean * dc_coeff_scale[txfm_param->tx_size]) >> 12);
}
void av1_xform_quant(MACROBLOCK *x, int plane, int block, int blk_row,
int blk_col, BLOCK_SIZE plane_bsize, TxfmParam *txfm_param,
const QUANT_PARAM *qparam) {
av1_xform(x, plane, block, blk_row, blk_col, plane_bsize, txfm_param);
av1_quant(x, plane, block, txfm_param, qparam);
}
void av1_xform(MACROBLOCK *x, int plane, int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TxfmParam *txfm_param) {
const struct macroblock_plane *const p = &x->plane[plane];
const int block_offset = BLOCK_OFFSET(block);
tran_low_t *const coeff = p->coeff + block_offset;
const int diff_stride = block_size_wide[plane_bsize];
const int src_offset = (blk_row * diff_stride + blk_col);
const int16_t *src_diff = &p->src_diff[src_offset << MI_SIZE_LOG2];
av1_fwd_txfm(src_diff, coeff, diff_stride, txfm_param);
}
void av1_quant(MACROBLOCK *x, int plane, int block, TxfmParam *txfm_param,
const QUANT_PARAM *qparam) {
const struct macroblock_plane *const p = &x->plane[plane];
const SCAN_ORDER *const scan_order =
get_scan(txfm_param->tx_size, txfm_param->tx_type);
const int block_offset = BLOCK_OFFSET(block);
tran_low_t *const coeff = p->coeff + block_offset;
tran_low_t *const qcoeff = p->qcoeff + block_offset;
tran_low_t *const dqcoeff = p->dqcoeff + block_offset;
uint16_t *const eob = &p->eobs[block];
if (qparam->xform_quant_idx != AV1_XFORM_QUANT_SKIP_QUANT) {
const int n_coeffs = av1_get_max_eob(txfm_param->tx_size);
if (LIKELY(!x->seg_skip_block)) {
#if CONFIG_AV1_HIGHBITDEPTH
quant_func_list[qparam->xform_quant_idx][txfm_param->is_hbd](
coeff, n_coeffs, p, qcoeff, dqcoeff, eob, scan_order, qparam);
#else
quant_func_list[qparam->xform_quant_idx](
coeff, n_coeffs, p, qcoeff, dqcoeff, eob, scan_order, qparam);
#endif
} else {
av1_quantize_skip(n_coeffs, qcoeff, dqcoeff, eob);
}
}
// use_optimize_b is true means av1_optimze_b will be called,
// thus cannot update entropy ctx now (performed in optimize_b)
if (qparam->use_optimize_b) {
p->txb_entropy_ctx[block] = 0;
} else {
p->txb_entropy_ctx[block] =
av1_get_txb_entropy_context(qcoeff, scan_order, *eob);
}
}
void av1_setup_xform(const AV1_COMMON *cm, MACROBLOCK *x, TX_SIZE tx_size,
TX_TYPE tx_type, TxfmParam *txfm_param) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
txfm_param->tx_type = tx_type;
txfm_param->tx_size = tx_size;
txfm_param->lossless = xd->lossless[mbmi->segment_id];
txfm_param->tx_set_type = av1_get_ext_tx_set_type(
tx_size, is_inter_block(mbmi), cm->features.reduced_tx_set_used);
txfm_param->bd = xd->bd;
txfm_param->is_hbd = is_cur_buf_hbd(xd);
}
void av1_setup_quant(TX_SIZE tx_size, int use_optimize_b, int xform_quant_idx,
int use_quant_b_adapt, QUANT_PARAM *qparam) {
qparam->log_scale = av1_get_tx_scale(tx_size);
qparam->tx_size = tx_size;
qparam->use_quant_b_adapt = use_quant_b_adapt;
// TODO(bohanli): optimize_b and quantization idx has relationship,
// but is kind of buried and complicated in different encoding stages.
// Should have a unified function to derive quant_idx, rather than
// determine and pass in the quant_idx
qparam->use_optimize_b = use_optimize_b;
qparam->xform_quant_idx = xform_quant_idx;
qparam->qmatrix = NULL;
qparam->iqmatrix = NULL;
}
void av1_setup_qmatrix(const CommonQuantParams *quant_params,
const MACROBLOCKD *xd, int plane, TX_SIZE tx_size,
TX_TYPE tx_type, QUANT_PARAM *qparam) {
qparam->qmatrix = av1_get_qmatrix(quant_params, xd, plane, tx_size, tx_type);
qparam->iqmatrix =
av1_get_iqmatrix(quant_params, xd, plane, tx_size, tx_type);
}
static void encode_block(int plane, int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg,
RUN_TYPE dry_run) {
(void)dry_run;
struct encode_b_args *const args = arg;
const AV1_COMP *const cpi = args->cpi;
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi = xd->mi[0];
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
tran_low_t *const dqcoeff = p->dqcoeff + BLOCK_OFFSET(block);
uint8_t *dst;
ENTROPY_CONTEXT *a, *l;
int dummy_rate_cost = 0;
const int bw = mi_size_wide[plane_bsize];
dst = &pd->dst.buf[(blk_row * pd->dst.stride + blk_col) << MI_SIZE_LOG2];
a = &args->ta[blk_col];
l = &args->tl[blk_row];
TX_TYPE tx_type = DCT_DCT;
const int blk_skip_idx =
(cpi->sf.rt_sf.use_nonrd_pick_mode && is_inter_block(mbmi))
? blk_row * bw / 4 + blk_col / 2
: blk_row * bw + blk_col;
if (!is_blk_skip(x->txfm_search_info.blk_skip, plane, blk_skip_idx) &&
!mbmi->skip_mode) {
tx_type = av1_get_tx_type(xd, pd->plane_type, blk_row, blk_col, tx_size,
cm->features.reduced_tx_set_used);
TxfmParam txfm_param;
QUANT_PARAM quant_param;
const int use_trellis = is_trellis_used(args->enable_optimize_b, dry_run);
int quant_idx;
if (use_trellis)
quant_idx = AV1_XFORM_QUANT_FP;
else
quant_idx =
USE_B_QUANT_NO_TRELLIS ? AV1_XFORM_QUANT_B : AV1_XFORM_QUANT_FP;
av1_setup_xform(cm, x, tx_size, tx_type, &txfm_param);
av1_setup_quant(tx_size, use_trellis, quant_idx,
cpi->oxcf.q_cfg.quant_b_adapt, &quant_param);
av1_setup_qmatrix(&cm->quant_params, xd, plane, tx_size, tx_type,
&quant_param);
av1_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, &txfm_param,
&quant_param);
// Whether trellis or dropout optimization is required for inter frames.
const bool do_trellis = INTER_BLOCK_OPT_TYPE == TRELLIS_OPT ||
INTER_BLOCK_OPT_TYPE == TRELLIS_DROPOUT_OPT;
const bool do_dropout = INTER_BLOCK_OPT_TYPE == DROPOUT_OPT ||
INTER_BLOCK_OPT_TYPE == TRELLIS_DROPOUT_OPT;
if (quant_param.use_optimize_b && do_trellis) {
TXB_CTX txb_ctx;
get_txb_ctx(plane_bsize, tx_size, plane, a, l, &txb_ctx);
av1_optimize_b(args->cpi, x, plane, block, tx_size, tx_type, &txb_ctx,
&dummy_rate_cost);
}
if (!quant_param.use_optimize_b && do_dropout) {
av1_dropout_qcoeff(x, plane, block, tx_size, tx_type,
cm->quant_params.base_qindex);
}
} else {
p->eobs[block] = 0;
p->txb_entropy_ctx[block] = 0;
}
av1_set_txb_context(x, plane, block, tx_size, a, l);
if (p->eobs[block]) {
*(args->skip) = 0;
av1_inverse_transform_block(xd, dqcoeff, plane, tx_type, tx_size, dst,
pd->dst.stride, p->eobs[block],
cm->features.reduced_tx_set_used);
}
// TODO(debargha, jingning): Temporarily disable txk_type check for eob=0
// case. It is possible that certain collision in hash index would cause
// the assertion failure. To further optimize the rate-distortion
// performance, we need to re-visit this part and enable this assert
// again.
if (p->eobs[block] == 0 && plane == 0) {
#if 0
if (args->cpi->oxcf.q_cfg.aq_mode == NO_AQ &&
args->cpi->oxcf.q_cfg.deltaq_mode == NO_DELTA_Q) {
// TODO(jingning,angiebird,huisu@google.com): enable txk_check when
// enable_optimize_b is true to detect potential RD bug.
const uint8_t disable_txk_check = args->enable_optimize_b;
if (!disable_txk_check) {
assert(xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col)] ==
DCT_DCT);
}
}
#endif
update_txk_array(xd, blk_row, blk_col, tx_size, DCT_DCT);
}
#if CONFIG_MISMATCH_DEBUG
if (dry_run == OUTPUT_ENABLED) {
int pixel_c, pixel_r;
BLOCK_SIZE bsize = txsize_to_bsize[tx_size];
int blk_w = block_size_wide[bsize];
int blk_h = block_size_high[bsize];
mi_to_pixel_loc(&pixel_c, &pixel_r, xd->mi_col, xd->mi_row, blk_col,
blk_row, pd->subsampling_x, pd->subsampling_y);
mismatch_record_block_tx(dst, pd->dst.stride, cm->current_frame.order_hint,
plane, pixel_c, pixel_r, blk_w, blk_h,
xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH);
}
#endif
}
static void encode_block_inter(int plane, int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
void *arg, RUN_TYPE dry_run) {
struct encode_b_args *const args = arg;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
const struct macroblockd_plane *const pd = &xd->plane[plane];
const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
const TX_SIZE plane_tx_size =
plane ? av1_get_max_uv_txsize(mbmi->bsize, pd->subsampling_x,
pd->subsampling_y)
: mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row,
blk_col)];
if (!plane) {
assert(tx_size_wide[tx_size] >= tx_size_wide[plane_tx_size] &&
tx_size_high[tx_size] >= tx_size_high[plane_tx_size]);
}
if (tx_size == plane_tx_size || plane) {
encode_block(plane, block, blk_row, blk_col, plane_bsize, tx_size, arg,
dry_run);
} else {
assert(tx_size < TX_SIZES_ALL);
const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
assert(IMPLIES(tx_size <= TX_4X4, sub_txs == tx_size));
assert(IMPLIES(tx_size > TX_4X4, sub_txs < tx_size));
// This is the square transform block partition entry point.
const int bsw = tx_size_wide_unit[sub_txs];
const int bsh = tx_size_high_unit[sub_txs];
const int step = bsh * bsw;
const int row_end =
AOMMIN(tx_size_high_unit[tx_size], max_blocks_high - blk_row);
const int col_end =
AOMMIN(tx_size_wide_unit[tx_size], max_blocks_wide - blk_col);
assert(bsw > 0 && bsh > 0);
for (int row = 0; row < row_end; row += bsh) {
const int offsetr = blk_row + row;
for (int col = 0; col < col_end; col += bsw) {
const int offsetc = blk_col + col;
encode_block_inter(plane, block, offsetr, offsetc, plane_bsize, sub_txs,
arg, dry_run);
block += step;
}
}
}
}
void av1_foreach_transformed_block_in_plane(
const MACROBLOCKD *const xd, BLOCK_SIZE plane_bsize, int plane,
foreach_transformed_block_visitor visit, void *arg) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
// block and transform sizes, in number of 4x4 blocks log 2 ("*_b")
// 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8
// transform size varies per plane, look it up in a common way.
const TX_SIZE tx_size = av1_get_tx_size(plane, xd);
const uint8_t txw_unit = tx_size_wide_unit[tx_size];
const uint8_t txh_unit = tx_size_high_unit[tx_size];
const int step = txw_unit * txh_unit;
// If mb_to_right_edge is < 0 we are in a situation in which
// the current block size extends into the UMV and we won't
// visit the sub blocks that are wholly within the UMV.
const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
const BLOCK_SIZE max_unit_bsize =
get_plane_block_size(BLOCK_64X64, pd->subsampling_x, pd->subsampling_y);
const int mu_blocks_wide =
AOMMIN(mi_size_wide[max_unit_bsize], max_blocks_wide);
const int mu_blocks_high =
AOMMIN(mi_size_high[max_unit_bsize], max_blocks_high);
// Keep track of the row and column of the blocks we use so that we know
// if we are in the unrestricted motion border.
int i = 0;
for (int r = 0; r < max_blocks_high; r += mu_blocks_high) {
const int unit_height = AOMMIN(mu_blocks_high + r, max_blocks_high);
// Skip visiting the sub blocks that are wholly within the UMV.
for (int c = 0; c < max_blocks_wide; c += mu_blocks_wide) {
const int unit_width = AOMMIN(mu_blocks_wide + c, max_blocks_wide);
for (int blk_row = r; blk_row < unit_height; blk_row += txh_unit) {
for (int blk_col = c; blk_col < unit_width; blk_col += txw_unit) {
visit(plane, i, blk_row, blk_col, plane_bsize, tx_size, arg);
i += step;
}
}
}
}
}
typedef struct encode_block_pass1_args {
AV1_COMP *cpi;
MACROBLOCK *x;
} encode_block_pass1_args;
static void encode_block_pass1(int plane, int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
void *arg) {
encode_block_pass1_args *args = (encode_block_pass1_args *)arg;
AV1_COMP *cpi = args->cpi;
AV1_COMMON *cm = &cpi->common;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
tran_low_t *const dqcoeff = p->dqcoeff + BLOCK_OFFSET(block);
uint8_t *dst;
dst = &pd->dst.buf[(blk_row * pd->dst.stride + blk_col) << MI_SIZE_LOG2];
TxfmParam txfm_param;
QUANT_PARAM quant_param;
av1_setup_xform(cm, x, tx_size, DCT_DCT, &txfm_param);
av1_setup_quant(tx_size, 0, AV1_XFORM_QUANT_B, cpi->oxcf.q_cfg.quant_b_adapt,
&quant_param);
av1_setup_qmatrix(&cm->quant_params, xd, plane, tx_size, DCT_DCT,
&quant_param);
av1_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, &txfm_param,
&quant_param);
if (p->eobs[block] > 0) {
txfm_param.eob = p->eobs[block];
if (txfm_param.is_hbd) {
av1_highbd_inv_txfm_add(dqcoeff, dst, pd->dst.stride, &txfm_param);
return;
}
av1_inv_txfm_add(dqcoeff, dst, pd->dst.stride, &txfm_param);
}
}
void av1_encode_sby_pass1(AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize) {
encode_block_pass1_args args = { cpi, x };
av1_subtract_plane(x, bsize, 0);
av1_foreach_transformed_block_in_plane(&x->e_mbd, bsize, 0,
encode_block_pass1, &args);
}
void av1_encode_sb(const struct AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize,
RUN_TYPE dry_run) {
assert(bsize < BLOCK_SIZES_ALL);
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi = xd->mi[0];
mbmi->skip_txfm = 1;
if (x->txfm_search_info.skip_txfm) return;
struct optimize_ctx ctx;
struct encode_b_args arg = {
cpi, x, &ctx, &mbmi->skip_txfm,
NULL, NULL, dry_run, cpi->optimize_seg_arr[mbmi->segment_id]
};
const AV1_COMMON *const cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
for (int plane = 0; plane < num_planes; ++plane) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
const int subsampling_x = pd->subsampling_x;
const int subsampling_y = pd->subsampling_y;
if (plane && !xd->is_chroma_ref) break;
const BLOCK_SIZE plane_bsize =
get_plane_block_size(bsize, subsampling_x, subsampling_y);
assert(plane_bsize < BLOCK_SIZES_ALL);
const int mi_width = mi_size_wide[plane_bsize];
const int mi_height = mi_size_high[plane_bsize];
const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, plane);
const BLOCK_SIZE txb_size = txsize_to_bsize[max_tx_size];
const int bw = mi_size_wide[txb_size];
const int bh = mi_size_high[txb_size];
int block = 0;
const int step =
tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size];
av1_get_entropy_contexts(plane_bsize, pd, ctx.ta[plane], ctx.tl[plane]);
av1_subtract_plane(x, plane_bsize, plane);
arg.ta = ctx.ta[plane];
arg.tl = ctx.tl[plane];
const BLOCK_SIZE max_unit_bsize =
get_plane_block_size(BLOCK_64X64, subsampling_x, subsampling_y);
int mu_blocks_wide = mi_size_wide[max_unit_bsize];
int mu_blocks_high = mi_size_high[max_unit_bsize];
mu_blocks_wide = AOMMIN(mi_width, mu_blocks_wide);
mu_blocks_high = AOMMIN(mi_height, mu_blocks_high);
for (int idy = 0; idy < mi_height; idy += mu_blocks_high) {
for (int idx = 0; idx < mi_width; idx += mu_blocks_wide) {
int blk_row, blk_col;
const int unit_height = AOMMIN(mu_blocks_high + idy, mi_height);
const int unit_width = AOMMIN(mu_blocks_wide + idx, mi_width);
for (blk_row = idy; blk_row < unit_height; blk_row += bh) {
for (blk_col = idx; blk_col < unit_width; blk_col += bw) {
encode_block_inter(plane, block, blk_row, blk_col, plane_bsize,
max_tx_size, &arg, dry_run);
block += step;
}
}
}
}
}
}
static void encode_block_intra_and_set_context(int plane, int block,
int blk_row, int blk_col,
BLOCK_SIZE plane_bsize,
TX_SIZE tx_size, void *arg) {
av1_encode_block_intra(plane, block, blk_row, blk_col, plane_bsize, tx_size,
arg);
struct encode_b_args *const args = arg;
MACROBLOCK *x = args->x;
ENTROPY_CONTEXT *a = &args->ta[blk_col];
ENTROPY_CONTEXT *l = &args->tl[blk_row];
av1_set_txb_context(x, plane, block, tx_size, a, l);
}
void av1_encode_block_intra(int plane, int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
void *arg) {
struct encode_b_args *const args = arg;
const AV1_COMP *const cpi = args->cpi;
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
tran_low_t *dqcoeff = p->dqcoeff + BLOCK_OFFSET(block);
PLANE_TYPE plane_type = get_plane_type(plane);
uint16_t *eob = &p->eobs[block];
const int dst_stride = pd->dst.stride;
uint8_t *dst = &pd->dst.buf[(blk_row * dst_stride + blk_col) << MI_SIZE_LOG2];
int dummy_rate_cost = 0;
av1_predict_intra_block_facade(cm, xd, plane, blk_col, blk_row, tx_size);
TX_TYPE tx_type = DCT_DCT;
const int bw = mi_size_wide[plane_bsize];
if (plane == 0 && is_blk_skip(x->txfm_search_info.blk_skip, plane,
blk_row * bw + blk_col)) {
*eob = 0;
p->txb_entropy_ctx[block] = 0;
} else {
av1_subtract_txb(x, plane, plane_bsize, blk_col, blk_row, tx_size);
const ENTROPY_CONTEXT *a = &args->ta[blk_col];
const ENTROPY_CONTEXT *l = &args->tl[blk_row];
tx_type = av1_get_tx_type(xd, plane_type, blk_row, blk_col, tx_size,
cm->features.reduced_tx_set_used);
TxfmParam txfm_param;
QUANT_PARAM quant_param;
const int use_trellis =
is_trellis_used(args->enable_optimize_b, args->dry_run);
int quant_idx;
if (use_trellis)
quant_idx = AV1_XFORM_QUANT_FP;
else
quant_idx =
USE_B_QUANT_NO_TRELLIS ? AV1_XFORM_QUANT_B : AV1_XFORM_QUANT_FP;
av1_setup_xform(cm, x, tx_size, tx_type, &txfm_param);
av1_setup_quant(tx_size, use_trellis, quant_idx,
cpi->oxcf.q_cfg.quant_b_adapt, &quant_param);
av1_setup_qmatrix(&cm->quant_params, xd, plane, tx_size, tx_type,
&quant_param);
av1_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, &txfm_param,
&quant_param);
// Whether trellis or dropout optimization is required for key frames and
// intra frames.
const bool do_trellis = (frame_is_intra_only(cm) &&
(KEY_BLOCK_OPT_TYPE == TRELLIS_OPT ||
KEY_BLOCK_OPT_TYPE == TRELLIS_DROPOUT_OPT)) ||
(!frame_is_intra_only(cm) &&
(INTRA_BLOCK_OPT_TYPE == TRELLIS_OPT ||
INTRA_BLOCK_OPT_TYPE == TRELLIS_DROPOUT_OPT));
const bool do_dropout = (frame_is_intra_only(cm) &&
(KEY_BLOCK_OPT_TYPE == DROPOUT_OPT ||
KEY_BLOCK_OPT_TYPE == TRELLIS_DROPOUT_OPT)) ||
(!frame_is_intra_only(cm) &&
(INTRA_BLOCK_OPT_TYPE == DROPOUT_OPT ||
INTRA_BLOCK_OPT_TYPE == TRELLIS_DROPOUT_OPT));
if (quant_param.use_optimize_b && do_trellis) {
TXB_CTX txb_ctx;
get_txb_ctx(plane_bsize, tx_size, plane, a, l, &txb_ctx);
av1_optimize_b(args->cpi, x, plane, block, tx_size, tx_type, &txb_ctx,
&dummy_rate_cost);
}
if (do_dropout) {
av1_dropout_qcoeff(x, plane, block, tx_size, tx_type,
cm->quant_params.base_qindex);
}
}
if (*eob) {
av1_inverse_transform_block(xd, dqcoeff, plane, tx_type, tx_size, dst,
dst_stride, *eob,
cm->features.reduced_tx_set_used);
}
// TODO(jingning): Temporarily disable txk_type check for eob=0 case.
// It is possible that certain collision in hash index would cause
// the assertion failure. To further optimize the rate-distortion
// performance, we need to re-visit this part and enable this assert
// again.
if (*eob == 0 && plane == 0) {
#if 0
if (args->cpi->oxcf.q_cfg.aq_mode == NO_AQ
&& args->cpi->oxcf.q_cfg.deltaq_mode == NO_DELTA_Q) {
assert(xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col)] ==
DCT_DCT);
}
#endif
update_txk_array(xd, blk_row, blk_col, tx_size, DCT_DCT);
}
// For intra mode, skipped blocks are so rare that transmitting skip=1 is
// very expensive.
*(args->skip) = 0;
if (plane == AOM_PLANE_Y && xd->cfl.store_y) {
cfl_store_tx(xd, blk_row, blk_col, tx_size, plane_bsize);
}
}
void av1_encode_intra_block_plane(const struct AV1_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE bsize, int plane, RUN_TYPE dry_run,
TRELLIS_OPT_TYPE enable_optimize_b) {
assert(bsize < BLOCK_SIZES_ALL);
const MACROBLOCKD *const xd = &x->e_mbd;
if (plane && !xd->is_chroma_ref) return;
const struct macroblockd_plane *const pd = &xd->plane[plane];
const int ss_x = pd->subsampling_x;
const int ss_y = pd->subsampling_y;
ENTROPY_CONTEXT ta[MAX_MIB_SIZE] = { 0 };
ENTROPY_CONTEXT tl[MAX_MIB_SIZE] = { 0 };
struct encode_b_args arg = { cpi, x, NULL, &(xd->mi[0]->skip_txfm),
ta, tl, dry_run, enable_optimize_b };
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, ss_x, ss_y);
if (enable_optimize_b) {
av1_get_entropy_contexts(plane_bsize, pd, ta, tl);
}
av1_foreach_transformed_block_in_plane(
xd, plane_bsize, plane, encode_block_intra_and_set_context, &arg);
}