|  | /* | 
|  | * Copyright (c) 2016, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  |  | 
|  | */ | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <limits.h> | 
|  | #include <math.h> | 
|  | #include <stdio.h> | 
|  |  | 
|  | #include "config/aom_dsp_rtcd.h" | 
|  | #include "config/av1_rtcd.h" | 
|  |  | 
|  | #include "aom_dsp/aom_dsp_common.h" | 
|  | #include "aom_dsp/txfm_common.h" | 
|  | #include "aom_ports/mem.h" | 
|  |  | 
|  | #include "av1/common/blockd.h" | 
|  | #include "av1/common/mvref_common.h" | 
|  | #include "av1/common/pred_common.h" | 
|  | #include "av1/common/reconinter.h" | 
|  | #include "av1/common/reconintra.h" | 
|  |  | 
|  | #include "av1/encoder/encodemv.h" | 
|  | #include "av1/encoder/encoder.h" | 
|  | #include "av1/encoder/intra_mode_search.h" | 
|  | #include "av1/encoder/model_rd.h" | 
|  | #include "av1/encoder/motion_search_facade.h" | 
|  | #include "av1/encoder/nonrd_opt.h" | 
|  | #include "av1/encoder/rdopt.h" | 
|  | #include "av1/encoder/reconinter_enc.h" | 
|  | #include "av1/encoder/var_based_part.h" | 
|  |  | 
|  | #define CALC_BIASED_RDCOST(rdcost) (7 * (rdcost) >> 3) | 
|  | extern int g_pick_inter_mode_cnt; | 
|  | /*!\cond */ | 
|  | typedef struct { | 
|  | uint8_t *data; | 
|  | int stride; | 
|  | int in_use; | 
|  | } PRED_BUFFER; | 
|  |  | 
|  | typedef struct { | 
|  | PRED_BUFFER *best_pred; | 
|  | PREDICTION_MODE best_mode; | 
|  | TX_SIZE best_tx_size; | 
|  | TX_TYPE tx_type; | 
|  | MV_REFERENCE_FRAME best_ref_frame; | 
|  | MV_REFERENCE_FRAME best_second_ref_frame; | 
|  | uint8_t best_mode_skip_txfm; | 
|  | uint8_t best_mode_initial_skip_flag; | 
|  | int_interpfilters best_pred_filter; | 
|  | MOTION_MODE best_motion_mode; | 
|  | WarpedMotionParams wm_params; | 
|  | int num_proj_ref; | 
|  | uint8_t blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE / 4]; | 
|  | PALETTE_MODE_INFO pmi; | 
|  | int64_t best_sse; | 
|  | } BEST_PICKMODE; | 
|  |  | 
|  | typedef struct { | 
|  | MV_REFERENCE_FRAME ref_frame; | 
|  | PREDICTION_MODE pred_mode; | 
|  | } REF_MODE; | 
|  |  | 
|  | typedef struct { | 
|  | MV_REFERENCE_FRAME ref_frame[2]; | 
|  | PREDICTION_MODE pred_mode; | 
|  | } COMP_REF_MODE; | 
|  |  | 
|  | typedef struct { | 
|  | InterpFilter filter_x; | 
|  | InterpFilter filter_y; | 
|  | } INTER_FILTER; | 
|  |  | 
|  | /*!\brief Structure to store parameters and statistics used in non-rd inter mode | 
|  | * evaluation. | 
|  | */ | 
|  | typedef struct { | 
|  | BEST_PICKMODE best_pickmode; | 
|  | RD_STATS this_rdc; | 
|  | RD_STATS best_rdc; | 
|  | int64_t uv_dist[RTC_INTER_MODES][REF_FRAMES]; | 
|  | struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE]; | 
|  | unsigned int vars[RTC_INTER_MODES][REF_FRAMES]; | 
|  | unsigned int ref_costs_single[REF_FRAMES]; | 
|  | int_mv frame_mv[MB_MODE_COUNT][REF_FRAMES]; | 
|  | int_mv frame_mv_best[MB_MODE_COUNT][REF_FRAMES]; | 
|  | int single_inter_mode_costs[RTC_INTER_MODES][REF_FRAMES]; | 
|  | int use_ref_frame_mask[REF_FRAMES]; | 
|  | uint8_t mode_checked[MB_MODE_COUNT][REF_FRAMES]; | 
|  | } InterModeSearchStateNonrd; | 
|  | /*!\endcond */ | 
|  |  | 
|  | #define NUM_COMP_INTER_MODES_RT (6) | 
|  | #define NUM_INTER_MODES 12 | 
|  |  | 
|  | // GLOBALMV in the set below is in fact ZEROMV as we don't do global ME in RT | 
|  | // mode | 
|  | static const REF_MODE ref_mode_set[NUM_INTER_MODES] = { | 
|  | { LAST_FRAME, NEARESTMV },   { LAST_FRAME, NEARMV }, | 
|  | { LAST_FRAME, GLOBALMV },    { LAST_FRAME, NEWMV }, | 
|  | { GOLDEN_FRAME, NEARESTMV }, { GOLDEN_FRAME, NEARMV }, | 
|  | { GOLDEN_FRAME, GLOBALMV },  { GOLDEN_FRAME, NEWMV }, | 
|  | { ALTREF_FRAME, NEARESTMV }, { ALTREF_FRAME, NEARMV }, | 
|  | { ALTREF_FRAME, GLOBALMV },  { ALTREF_FRAME, NEWMV }, | 
|  | }; | 
|  |  | 
|  | static const COMP_REF_MODE comp_ref_mode_set[NUM_COMP_INTER_MODES_RT] = { | 
|  | { { LAST_FRAME, GOLDEN_FRAME }, GLOBAL_GLOBALMV }, | 
|  | { { LAST_FRAME, GOLDEN_FRAME }, NEAREST_NEARESTMV }, | 
|  | { { LAST_FRAME, LAST2_FRAME }, GLOBAL_GLOBALMV }, | 
|  | { { LAST_FRAME, LAST2_FRAME }, NEAREST_NEARESTMV }, | 
|  | { { LAST_FRAME, ALTREF_FRAME }, GLOBAL_GLOBALMV }, | 
|  | { { LAST_FRAME, ALTREF_FRAME }, NEAREST_NEARESTMV }, | 
|  | }; | 
|  |  | 
|  | static const INTER_FILTER filters_ref_set[9] = { | 
|  | { EIGHTTAP_REGULAR, EIGHTTAP_REGULAR }, { EIGHTTAP_SMOOTH, EIGHTTAP_SMOOTH }, | 
|  | { EIGHTTAP_REGULAR, EIGHTTAP_SMOOTH },  { EIGHTTAP_SMOOTH, EIGHTTAP_REGULAR }, | 
|  | { MULTITAP_SHARP, MULTITAP_SHARP },     { EIGHTTAP_REGULAR, MULTITAP_SHARP }, | 
|  | { MULTITAP_SHARP, EIGHTTAP_REGULAR },   { EIGHTTAP_SMOOTH, MULTITAP_SHARP }, | 
|  | { MULTITAP_SHARP, EIGHTTAP_SMOOTH } | 
|  | }; | 
|  |  | 
|  | enum { | 
|  | //  INTER_ALL = (1 << NEARESTMV) | (1 << NEARMV) | (1 << NEWMV), | 
|  | INTER_NEAREST = (1 << NEARESTMV), | 
|  | INTER_NEAREST_NEW = (1 << NEARESTMV) | (1 << NEWMV), | 
|  | INTER_NEAREST_NEAR = (1 << NEARESTMV) | (1 << NEARMV), | 
|  | INTER_NEAR_NEW = (1 << NEARMV) | (1 << NEWMV), | 
|  | }; | 
|  |  | 
|  | // The original scan order (default_scan_8x8) is modified according to the extra | 
|  | // transpose in hadamard c implementation, i.e., aom_hadamard_lp_8x8_c and | 
|  | // aom_hadamard_8x8_c. | 
|  | static const int16_t default_scan_8x8_transpose[64] = { | 
|  | 0,  8,  1,  2,  9,  16, 24, 17, 10, 3,  4,  11, 18, 25, 32, 40, | 
|  | 33, 26, 19, 12, 5,  6,  13, 20, 27, 34, 41, 48, 56, 49, 42, 35, | 
|  | 28, 21, 14, 7,  15, 22, 29, 36, 43, 50, 57, 58, 51, 44, 37, 30, | 
|  | 23, 31, 38, 45, 52, 59, 60, 53, 46, 39, 47, 54, 61, 62, 55, 63 | 
|  | }; | 
|  |  | 
|  | // The original scan order (av1_default_iscan_8x8) is modified to match | 
|  | // hadamard AVX2 implementation, i.e., aom_hadamard_lp_8x8_avx2 and | 
|  | // aom_hadamard_8x8_avx2. Since hadamard AVX2 implementation will modify the | 
|  | // order of coefficients, such that the normal scan order is no longer | 
|  | // guaranteed to scan low coefficients first, therefore we modify the scan order | 
|  | // accordingly. | 
|  | // Note that this one has to be used together with default_scan_8x8_transpose. | 
|  | static const int16_t av1_default_iscan_8x8_transpose[64] = { | 
|  | 0,  2,  3,  9,  10, 20, 21, 35, 1,  4,  8,  11, 19, 22, 34, 36, | 
|  | 5,  7,  12, 18, 23, 33, 37, 48, 6,  13, 17, 24, 32, 38, 47, 49, | 
|  | 14, 16, 25, 31, 39, 46, 50, 57, 15, 26, 30, 40, 45, 51, 56, 58, | 
|  | 27, 29, 41, 44, 52, 55, 59, 62, 28, 42, 43, 53, 54, 60, 61, 63 | 
|  | }; | 
|  |  | 
|  | // The original scan order (default_scan_16x16) is modified according to the | 
|  | // extra transpose in hadamard c implementation in lp case, i.e., | 
|  | // aom_hadamard_lp_16x16_c. | 
|  | static const int16_t default_scan_lp_16x16_transpose[256] = { | 
|  | 0,   8,   2,   4,   10,  16,  24,  18,  12,  6,   64,  14,  20,  26,  32, | 
|  | 40,  34,  28,  22,  72,  66,  68,  74,  80,  30,  36,  42,  48,  56,  50, | 
|  | 44,  38,  88,  82,  76,  70,  128, 78,  84,  90,  96,  46,  52,  58,  1, | 
|  | 9,   3,   60,  54,  104, 98,  92,  86,  136, 130, 132, 138, 144, 94,  100, | 
|  | 106, 112, 62,  5,   11,  17,  25,  19,  13,  7,   120, 114, 108, 102, 152, | 
|  | 146, 140, 134, 192, 142, 148, 154, 160, 110, 116, 122, 65,  15,  21,  27, | 
|  | 33,  41,  35,  29,  23,  73,  67,  124, 118, 168, 162, 156, 150, 200, 194, | 
|  | 196, 202, 208, 158, 164, 170, 176, 126, 69,  75,  81,  31,  37,  43,  49, | 
|  | 57,  51,  45,  39,  89,  83,  77,  71,  184, 178, 172, 166, 216, 210, 204, | 
|  | 198, 206, 212, 218, 224, 174, 180, 186, 129, 79,  85,  91,  97,  47,  53, | 
|  | 59,  61,  55,  105, 99,  93,  87,  137, 131, 188, 182, 232, 226, 220, 214, | 
|  | 222, 228, 234, 240, 190, 133, 139, 145, 95,  101, 107, 113, 63,  121, 115, | 
|  | 109, 103, 153, 147, 141, 135, 248, 242, 236, 230, 238, 244, 250, 193, 143, | 
|  | 149, 155, 161, 111, 117, 123, 125, 119, 169, 163, 157, 151, 201, 195, 252, | 
|  | 246, 254, 197, 203, 209, 159, 165, 171, 177, 127, 185, 179, 173, 167, 217, | 
|  | 211, 205, 199, 207, 213, 219, 225, 175, 181, 187, 189, 183, 233, 227, 221, | 
|  | 215, 223, 229, 235, 241, 191, 249, 243, 237, 231, 239, 245, 251, 253, 247, | 
|  | 255 | 
|  | }; | 
|  |  | 
|  | #if CONFIG_AV1_HIGHBITDEPTH | 
|  | // The original scan order (default_scan_16x16) is modified according to the | 
|  | // extra shift in hadamard c implementation in fp case, i.e., | 
|  | // aom_hadamard_16x16_c. Note that 16x16 lp and fp hadamard generate different | 
|  | // outputs, so we handle them separately. | 
|  | static const int16_t default_scan_fp_16x16_transpose[256] = { | 
|  | 0,   4,   2,   8,   6,   16,  20,  18,  12,  10,  64,  14,  24,  22,  32, | 
|  | 36,  34,  28,  26,  68,  66,  72,  70,  80,  30,  40,  38,  48,  52,  50, | 
|  | 44,  42,  84,  82,  76,  74,  128, 78,  88,  86,  96,  46,  56,  54,  1, | 
|  | 5,   3,   60,  58,  100, 98,  92,  90,  132, 130, 136, 134, 144, 94,  104, | 
|  | 102, 112, 62,  9,   7,   17,  21,  19,  13,  11,  116, 114, 108, 106, 148, | 
|  | 146, 140, 138, 192, 142, 152, 150, 160, 110, 120, 118, 65,  15,  25,  23, | 
|  | 33,  37,  35,  29,  27,  69,  67,  124, 122, 164, 162, 156, 154, 196, 194, | 
|  | 200, 198, 208, 158, 168, 166, 176, 126, 73,  71,  81,  31,  41,  39,  49, | 
|  | 53,  51,  45,  43,  85,  83,  77,  75,  180, 178, 172, 170, 212, 210, 204, | 
|  | 202, 206, 216, 214, 224, 174, 184, 182, 129, 79,  89,  87,  97,  47,  57, | 
|  | 55,  61,  59,  101, 99,  93,  91,  133, 131, 188, 186, 228, 226, 220, 218, | 
|  | 222, 232, 230, 240, 190, 137, 135, 145, 95,  105, 103, 113, 63,  117, 115, | 
|  | 109, 107, 149, 147, 141, 139, 244, 242, 236, 234, 238, 248, 246, 193, 143, | 
|  | 153, 151, 161, 111, 121, 119, 125, 123, 165, 163, 157, 155, 197, 195, 252, | 
|  | 250, 254, 201, 199, 209, 159, 169, 167, 177, 127, 181, 179, 173, 171, 213, | 
|  | 211, 205, 203, 207, 217, 215, 225, 175, 185, 183, 189, 187, 229, 227, 221, | 
|  | 219, 223, 233, 231, 241, 191, 245, 243, 237, 235, 239, 249, 247, 253, 251, | 
|  | 255 | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | // The original scan order (av1_default_iscan_16x16) is modified to match | 
|  | // hadamard AVX2 implementation, i.e., aom_hadamard_lp_16x16_avx2. | 
|  | // Since hadamard AVX2 implementation will modify the order of coefficients, | 
|  | // such that the normal scan order is no longer guaranteed to scan low | 
|  | // coefficients first, therefore we modify the scan order accordingly. Note that | 
|  | // this one has to be used together with default_scan_lp_16x16_transpose. | 
|  | static const int16_t av1_default_iscan_lp_16x16_transpose[256] = { | 
|  | 0,   44,  2,   46,  3,   63,  9,   69,  1,   45,  4,   64,  8,   68,  11, | 
|  | 87,  5,   65,  7,   67,  12,  88,  18,  94,  6,   66,  13,  89,  17,  93, | 
|  | 24,  116, 14,  90,  16,  92,  25,  117, 31,  123, 15,  91,  26,  118, 30, | 
|  | 122, 41,  148, 27,  119, 29,  121, 42,  149, 48,  152, 28,  120, 43,  150, | 
|  | 47,  151, 62,  177, 10,  86,  20,  96,  21,  113, 35,  127, 19,  95,  22, | 
|  | 114, 34,  126, 37,  144, 23,  115, 33,  125, 38,  145, 52,  156, 32,  124, | 
|  | 39,  146, 51,  155, 58,  173, 40,  147, 50,  154, 59,  174, 73,  181, 49, | 
|  | 153, 60,  175, 72,  180, 83,  198, 61,  176, 71,  179, 84,  199, 98,  202, | 
|  | 70,  178, 85,  200, 97,  201, 112, 219, 36,  143, 54,  158, 55,  170, 77, | 
|  | 185, 53,  157, 56,  171, 76,  184, 79,  194, 57,  172, 75,  183, 80,  195, | 
|  | 102, 206, 74,  182, 81,  196, 101, 205, 108, 215, 82,  197, 100, 204, 109, | 
|  | 216, 131, 223, 99,  203, 110, 217, 130, 222, 140, 232, 111, 218, 129, 221, | 
|  | 141, 233, 160, 236, 128, 220, 142, 234, 159, 235, 169, 245, 78,  193, 104, | 
|  | 208, 105, 212, 135, 227, 103, 207, 106, 213, 134, 226, 136, 228, 107, 214, | 
|  | 133, 225, 137, 229, 164, 240, 132, 224, 138, 230, 163, 239, 165, 241, 139, | 
|  | 231, 162, 238, 166, 242, 189, 249, 161, 237, 167, 243, 188, 248, 190, 250, | 
|  | 168, 244, 187, 247, 191, 251, 210, 254, 186, 246, 192, 252, 209, 253, 211, | 
|  | 255 | 
|  | }; | 
|  |  | 
|  | #if CONFIG_AV1_HIGHBITDEPTH | 
|  | // The original scan order (av1_default_iscan_16x16) is modified to match | 
|  | // hadamard AVX2 implementation, i.e., aom_hadamard_16x16_avx2. | 
|  | // Since hadamard AVX2 implementation will modify the order of coefficients, | 
|  | // such that the normal scan order is no longer guaranteed to scan low | 
|  | // coefficients first, therefore we modify the scan order accordingly. Note that | 
|  | // this one has to be used together with default_scan_fp_16x16_transpose. | 
|  | static const int16_t av1_default_iscan_fp_16x16_transpose[256] = { | 
|  | 0,   44,  2,   46,  1,   45,  4,   64,  3,   63,  9,   69,  8,   68,  11, | 
|  | 87,  5,   65,  7,   67,  6,   66,  13,  89,  12,  88,  18,  94,  17,  93, | 
|  | 24,  116, 14,  90,  16,  92,  15,  91,  26,  118, 25,  117, 31,  123, 30, | 
|  | 122, 41,  148, 27,  119, 29,  121, 28,  120, 43,  150, 42,  149, 48,  152, | 
|  | 47,  151, 62,  177, 10,  86,  20,  96,  19,  95,  22,  114, 21,  113, 35, | 
|  | 127, 34,  126, 37,  144, 23,  115, 33,  125, 32,  124, 39,  146, 38,  145, | 
|  | 52,  156, 51,  155, 58,  173, 40,  147, 50,  154, 49,  153, 60,  175, 59, | 
|  | 174, 73,  181, 72,  180, 83,  198, 61,  176, 71,  179, 70,  178, 85,  200, | 
|  | 84,  199, 98,  202, 97,  201, 112, 219, 36,  143, 54,  158, 53,  157, 56, | 
|  | 171, 55,  170, 77,  185, 76,  184, 79,  194, 57,  172, 75,  183, 74,  182, | 
|  | 81,  196, 80,  195, 102, 206, 101, 205, 108, 215, 82,  197, 100, 204, 99, | 
|  | 203, 110, 217, 109, 216, 131, 223, 130, 222, 140, 232, 111, 218, 129, 221, | 
|  | 128, 220, 142, 234, 141, 233, 160, 236, 159, 235, 169, 245, 78,  193, 104, | 
|  | 208, 103, 207, 106, 213, 105, 212, 135, 227, 134, 226, 136, 228, 107, 214, | 
|  | 133, 225, 132, 224, 138, 230, 137, 229, 164, 240, 163, 239, 165, 241, 139, | 
|  | 231, 162, 238, 161, 237, 167, 243, 166, 242, 189, 249, 188, 248, 190, 250, | 
|  | 168, 244, 187, 247, 186, 246, 192, 252, 191, 251, 210, 254, 209, 253, 211, | 
|  | 255 | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | static INLINE int early_term_inter_search_with_sse(int early_term_idx, | 
|  | BLOCK_SIZE bsize, | 
|  | int64_t this_sse, | 
|  | int64_t best_sse, | 
|  | PREDICTION_MODE this_mode) { | 
|  | // Aggressiveness to terminate inter mode search early is adjusted based on | 
|  | // speed and block size. | 
|  | static const double early_term_thresh[4][4] = { { 0.65, 0.65, 0.65, 0.7 }, | 
|  | { 0.6, 0.65, 0.85, 0.9 }, | 
|  | { 0.5, 0.5, 0.55, 0.6 }, | 
|  | { 0.6, 0.75, 0.85, 0.85 } }; | 
|  | static const double early_term_thresh_newmv_nearestmv[4] = { 0.3, 0.3, 0.3, | 
|  | 0.3 }; | 
|  |  | 
|  | const int size_group = size_group_lookup[bsize]; | 
|  | assert(size_group < 4); | 
|  | assert((early_term_idx > 0) && (early_term_idx < EARLY_TERM_INDICES)); | 
|  | const double threshold = | 
|  | ((early_term_idx == EARLY_TERM_IDX_4) && | 
|  | (this_mode == NEWMV || this_mode == NEARESTMV)) | 
|  | ? early_term_thresh_newmv_nearestmv[size_group] | 
|  | : early_term_thresh[early_term_idx - 1][size_group]; | 
|  |  | 
|  | // Terminate inter mode search early based on best sse so far. | 
|  | if ((early_term_idx > 0) && (threshold * this_sse > best_sse)) { | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static INLINE void init_best_pickmode(BEST_PICKMODE *bp) { | 
|  | bp->best_sse = INT64_MAX; | 
|  | bp->best_mode = NEARESTMV; | 
|  | bp->best_ref_frame = LAST_FRAME; | 
|  | bp->best_second_ref_frame = NONE_FRAME; | 
|  | bp->best_tx_size = TX_8X8; | 
|  | bp->tx_type = DCT_DCT; | 
|  | bp->best_pred_filter = av1_broadcast_interp_filter(EIGHTTAP_REGULAR); | 
|  | bp->best_mode_skip_txfm = 0; | 
|  | bp->best_mode_initial_skip_flag = 0; | 
|  | bp->best_pred = NULL; | 
|  | bp->best_motion_mode = SIMPLE_TRANSLATION; | 
|  | bp->num_proj_ref = 0; | 
|  | memset(&bp->wm_params, 0, sizeof(bp->wm_params)); | 
|  | memset(&bp->blk_skip, 0, sizeof(bp->blk_skip)); | 
|  | memset(&bp->pmi, 0, sizeof(bp->pmi)); | 
|  | } | 
|  |  | 
|  | static INLINE int subpel_select(AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, | 
|  | int_mv *mv, MV ref_mv, FULLPEL_MV start_mv, | 
|  | bool fullpel_performed_well) { | 
|  | const int frame_lowmotion = cpi->rc.avg_frame_low_motion; | 
|  | // Reduce MV precision for higher int MV value & frame-level motion | 
|  | if (cpi->sf.rt_sf.reduce_mv_pel_precision_highmotion >= 3) { | 
|  | int mv_thresh = 4; | 
|  | const int is_low_resoln = | 
|  | (cpi->common.width * cpi->common.height <= 320 * 240); | 
|  | mv_thresh = (bsize > BLOCK_32X32) ? 2 : (bsize > BLOCK_16X16) ? 4 : 6; | 
|  | if (frame_lowmotion > 0 && frame_lowmotion < 40) mv_thresh = 12; | 
|  | mv_thresh = (is_low_resoln) ? mv_thresh >> 1 : mv_thresh; | 
|  | if (abs(mv->as_fullmv.row) >= mv_thresh || | 
|  | abs(mv->as_fullmv.col) >= mv_thresh) | 
|  | return HALF_PEL; | 
|  | } else if (cpi->sf.rt_sf.reduce_mv_pel_precision_highmotion >= 1) { | 
|  | int mv_thresh; | 
|  | const int th_vals[2][3] = { { 4, 8, 10 }, { 4, 6, 8 } }; | 
|  | const int th_idx = cpi->sf.rt_sf.reduce_mv_pel_precision_highmotion - 1; | 
|  | assert(th_idx >= 0 && th_idx < 2); | 
|  | if (frame_lowmotion > 0 && frame_lowmotion < 40) | 
|  | mv_thresh = 12; | 
|  | else | 
|  | mv_thresh = (bsize >= BLOCK_32X32)   ? th_vals[th_idx][0] | 
|  | : (bsize >= BLOCK_16X16) ? th_vals[th_idx][1] | 
|  | : th_vals[th_idx][2]; | 
|  | if (abs(mv->as_fullmv.row) >= (mv_thresh << 1) || | 
|  | abs(mv->as_fullmv.col) >= (mv_thresh << 1)) | 
|  | return FULL_PEL; | 
|  | else if (abs(mv->as_fullmv.row) >= mv_thresh || | 
|  | abs(mv->as_fullmv.col) >= mv_thresh) | 
|  | return HALF_PEL; | 
|  | } | 
|  | // Reduce MV precision for relatively static (e.g. background), low-complex | 
|  | // large areas | 
|  | if (cpi->sf.rt_sf.reduce_mv_pel_precision_lowcomplex >= 2) { | 
|  | const int qband = x->qindex >> (QINDEX_BITS - 2); | 
|  | assert(qband < 4); | 
|  | if (x->content_state_sb.source_sad_nonrd <= kVeryLowSad && | 
|  | bsize > BLOCK_16X16 && qband != 0) { | 
|  | if (x->source_variance < 500) | 
|  | return FULL_PEL; | 
|  | else if (x->source_variance < 5000) | 
|  | return HALF_PEL; | 
|  | } | 
|  | } else if (cpi->sf.rt_sf.reduce_mv_pel_precision_lowcomplex >= 1) { | 
|  | if (fullpel_performed_well && ref_mv.row == 0 && ref_mv.col == 0 && | 
|  | start_mv.row == 0 && start_mv.col == 0) | 
|  | return HALF_PEL; | 
|  | } | 
|  | return cpi->sf.mv_sf.subpel_force_stop; | 
|  | } | 
|  |  | 
|  | static bool use_aggressive_subpel_search_method( | 
|  | MACROBLOCK *x, bool use_adaptive_subpel_search, | 
|  | const bool fullpel_performed_well) { | 
|  | if (!use_adaptive_subpel_search) return false; | 
|  | const int qband = x->qindex >> (QINDEX_BITS - 2); | 
|  | assert(qband < 4); | 
|  | if ((qband > 0) && (fullpel_performed_well || | 
|  | (x->content_state_sb.source_sad_nonrd <= kLowSad) || | 
|  | (x->source_variance < 100))) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /*!\brief Runs Motion Estimation for a specific block and specific ref frame. | 
|  | * | 
|  | * \ingroup nonrd_mode_search | 
|  | * \callgraph | 
|  | * \callergraph | 
|  | * Finds the best Motion Vector by running Motion Estimation for a specific | 
|  | * block and a specific reference frame. Exits early if RDCost of Full Pel part | 
|  | * exceeds best RD Cost fund so far | 
|  | * \param[in]    cpi                      Top-level encoder structure | 
|  | * \param[in]    x                        Pointer to structure holding all the | 
|  | *                                        data for the current macroblock | 
|  | * \param[in]    bsize                    Current block size | 
|  | * \param[in]    mi_row                   Row index in 4x4 units | 
|  | * \param[in]    mi_col                   Column index in 4x4 units | 
|  | * \param[in]    tmp_mv                   Pointer to best found New MV | 
|  | * \param[in]    rate_mv                  Pointer to Rate of the best new MV | 
|  | * \param[in]    best_rd_sofar            RD Cost of the best mode found so far | 
|  | * \param[in]    use_base_mv              Flag, indicating that tmp_mv holds | 
|  | *                                        specific MV to start the search with | 
|  | * | 
|  | * \return Returns 0 if ME was terminated after Full Pel Search because too | 
|  | * high RD Cost. Otherwise returns 1. Best New MV is placed into \c tmp_mv. | 
|  | * Rate estimation for this vector is placed to \c rate_mv | 
|  | */ | 
|  | static int combined_motion_search(AV1_COMP *cpi, MACROBLOCK *x, | 
|  | BLOCK_SIZE bsize, int mi_row, int mi_col, | 
|  | int_mv *tmp_mv, int *rate_mv, | 
|  | int64_t best_rd_sofar, int use_base_mv) { | 
|  | MACROBLOCKD *xd = &x->e_mbd; | 
|  | const AV1_COMMON *cm = &cpi->common; | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | const SPEED_FEATURES *sf = &cpi->sf; | 
|  | MB_MODE_INFO *mi = xd->mi[0]; | 
|  | struct buf_2d backup_yv12[MAX_MB_PLANE] = { { 0, 0, 0, 0, 0 } }; | 
|  | int step_param = (sf->rt_sf.fullpel_search_step_param) | 
|  | ? sf->rt_sf.fullpel_search_step_param | 
|  | : cpi->mv_search_params.mv_step_param; | 
|  | FULLPEL_MV start_mv; | 
|  | const int ref = mi->ref_frame[0]; | 
|  | const MV ref_mv = av1_get_ref_mv(x, mi->ref_mv_idx).as_mv; | 
|  | MV center_mv; | 
|  | int dis; | 
|  | int rv = 0; | 
|  | int cost_list[5]; | 
|  | int search_subpel = 1; | 
|  | const YV12_BUFFER_CONFIG *scaled_ref_frame = | 
|  | av1_get_scaled_ref_frame(cpi, ref); | 
|  |  | 
|  | if (scaled_ref_frame) { | 
|  | int i; | 
|  | // Swap out the reference frame for a version that's been scaled to | 
|  | // match the resolution of the current frame, allowing the existing | 
|  | // motion search code to be used without additional modifications. | 
|  | for (i = 0; i < MAX_MB_PLANE; i++) backup_yv12[i] = xd->plane[i].pre[0]; | 
|  | av1_setup_pre_planes(xd, 0, scaled_ref_frame, mi_row, mi_col, NULL, | 
|  | num_planes); | 
|  | } | 
|  |  | 
|  | start_mv = get_fullmv_from_mv(&ref_mv); | 
|  |  | 
|  | if (!use_base_mv) | 
|  | center_mv = ref_mv; | 
|  | else | 
|  | center_mv = tmp_mv->as_mv; | 
|  |  | 
|  | const SEARCH_METHODS search_method = sf->mv_sf.search_method; | 
|  | const MotionVectorSearchParams *mv_search_params = &cpi->mv_search_params; | 
|  | const int ref_stride = xd->plane[0].pre[0].stride; | 
|  | const search_site_config *src_search_sites = av1_get_search_site_config( | 
|  | x->search_site_cfg_buf, mv_search_params, search_method, ref_stride); | 
|  | FULLPEL_MOTION_SEARCH_PARAMS full_ms_params; | 
|  | av1_make_default_fullpel_ms_params(&full_ms_params, cpi, x, bsize, ¢er_mv, | 
|  | src_search_sites, | 
|  | /*fine_search_interval=*/0); | 
|  |  | 
|  | const unsigned int full_var_rd = av1_full_pixel_search( | 
|  | start_mv, &full_ms_params, step_param, cond_cost_list(cpi, cost_list), | 
|  | &tmp_mv->as_fullmv, NULL); | 
|  |  | 
|  | // calculate the bit cost on motion vector | 
|  | MV mvp_full = get_mv_from_fullmv(&tmp_mv->as_fullmv); | 
|  |  | 
|  | *rate_mv = av1_mv_bit_cost(&mvp_full, &ref_mv, x->mv_costs->nmv_joint_cost, | 
|  | x->mv_costs->mv_cost_stack, MV_COST_WEIGHT); | 
|  |  | 
|  | // TODO(kyslov) Account for Rate Mode! | 
|  | rv = !(RDCOST(x->rdmult, (*rate_mv), 0) > best_rd_sofar); | 
|  |  | 
|  | if (rv && search_subpel) { | 
|  | SUBPEL_MOTION_SEARCH_PARAMS ms_params; | 
|  | av1_make_default_subpel_ms_params(&ms_params, cpi, x, bsize, &ref_mv, | 
|  | cost_list); | 
|  | const bool fullpel_performed_well = | 
|  | (bsize == BLOCK_64X64 && full_var_rd * 40 < 62267 * 7) || | 
|  | (bsize == BLOCK_32X32 && full_var_rd * 8 < 42380) || | 
|  | (bsize == BLOCK_16X16 && full_var_rd * 8 < 10127); | 
|  | if (sf->rt_sf.reduce_mv_pel_precision_highmotion || | 
|  | sf->rt_sf.reduce_mv_pel_precision_lowcomplex) | 
|  | ms_params.forced_stop = subpel_select(cpi, x, bsize, tmp_mv, ref_mv, | 
|  | start_mv, fullpel_performed_well); | 
|  |  | 
|  | MV subpel_start_mv = get_mv_from_fullmv(&tmp_mv->as_fullmv); | 
|  | // adaptively downgrade subpel search method based on block properties | 
|  | if (use_aggressive_subpel_search_method( | 
|  | x, sf->rt_sf.use_adaptive_subpel_search, fullpel_performed_well)) | 
|  | av1_find_best_sub_pixel_tree_pruned_more(xd, cm, &ms_params, | 
|  | subpel_start_mv, &tmp_mv->as_mv, | 
|  | &dis, &x->pred_sse[ref], NULL); | 
|  | else | 
|  | cpi->mv_search_params.find_fractional_mv_step( | 
|  | xd, cm, &ms_params, subpel_start_mv, &tmp_mv->as_mv, &dis, | 
|  | &x->pred_sse[ref], NULL); | 
|  | *rate_mv = | 
|  | av1_mv_bit_cost(&tmp_mv->as_mv, &ref_mv, x->mv_costs->nmv_joint_cost, | 
|  | x->mv_costs->mv_cost_stack, MV_COST_WEIGHT); | 
|  | } | 
|  |  | 
|  | if (scaled_ref_frame) { | 
|  | int i; | 
|  | for (i = 0; i < MAX_MB_PLANE; i++) xd->plane[i].pre[0] = backup_yv12[i]; | 
|  | } | 
|  | // The final MV can not be equal to the reference MV as this will trigger an | 
|  | // assert later. This can happen if both NEAREST and NEAR modes were skipped. | 
|  | rv = (tmp_mv->as_mv.col != ref_mv.col || tmp_mv->as_mv.row != ref_mv.row); | 
|  | return rv; | 
|  | } | 
|  |  | 
|  | /*!\brief Searches for the best New Motion Vector. | 
|  | * | 
|  | * \ingroup nonrd_mode_search | 
|  | * \callgraph | 
|  | * \callergraph | 
|  | * Finds the best Motion Vector by doing Motion Estimation. Uses reduced | 
|  | * complexity ME for non-LAST frames or calls \c combined_motion_search | 
|  | * for LAST reference frame | 
|  | * \param[in]    cpi                      Top-level encoder structure | 
|  | * \param[in]    x                        Pointer to structure holding all the | 
|  | *                                        data for the current macroblock | 
|  | * \param[in]    frame_mv                 Array that holds MVs for all modes | 
|  | *                                        and ref frames | 
|  | * \param[in]    ref_frame                Reference frame for which to find | 
|  | *                                        the best New MVs | 
|  | * \param[in]    gf_temporal_ref          Flag, indicating temporal reference | 
|  | *                                        for GOLDEN frame | 
|  | * \param[in]    bsize                    Current block size | 
|  | * \param[in]    mi_row                   Row index in 4x4 units | 
|  | * \param[in]    mi_col                   Column index in 4x4 units | 
|  | * \param[in]    rate_mv                  Pointer to Rate of the best new MV | 
|  | * \param[in]    best_rdc                 Pointer to the RD Cost for the best | 
|  | *                                        mode found so far | 
|  | * | 
|  | * \return Returns -1 if the search was not done, otherwise returns 0. | 
|  | * Best New MV is placed into \c frame_mv array, Rate estimation for this | 
|  | * vector is placed to \c rate_mv | 
|  | */ | 
|  | static int search_new_mv(AV1_COMP *cpi, MACROBLOCK *x, | 
|  | int_mv frame_mv[][REF_FRAMES], | 
|  | MV_REFERENCE_FRAME ref_frame, int gf_temporal_ref, | 
|  | BLOCK_SIZE bsize, int mi_row, int mi_col, int *rate_mv, | 
|  | RD_STATS *best_rdc) { | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | MB_MODE_INFO *const mi = xd->mi[0]; | 
|  | AV1_COMMON *cm = &cpi->common; | 
|  | if (ref_frame > LAST_FRAME && cpi->oxcf.rc_cfg.mode == AOM_CBR && | 
|  | gf_temporal_ref) { | 
|  | int tmp_sad; | 
|  | int dis; | 
|  |  | 
|  | if (bsize < BLOCK_16X16) return -1; | 
|  |  | 
|  | tmp_sad = av1_int_pro_motion_estimation( | 
|  | cpi, x, bsize, mi_row, mi_col, | 
|  | &x->mbmi_ext.ref_mv_stack[ref_frame][0].this_mv.as_mv); | 
|  |  | 
|  | if (tmp_sad > x->pred_mv_sad[LAST_FRAME]) return -1; | 
|  |  | 
|  | frame_mv[NEWMV][ref_frame].as_int = mi->mv[0].as_int; | 
|  | int_mv best_mv = mi->mv[0]; | 
|  | best_mv.as_mv.row >>= 3; | 
|  | best_mv.as_mv.col >>= 3; | 
|  | MV ref_mv = av1_get_ref_mv(x, 0).as_mv; | 
|  | frame_mv[NEWMV][ref_frame].as_mv.row >>= 3; | 
|  | frame_mv[NEWMV][ref_frame].as_mv.col >>= 3; | 
|  |  | 
|  | SUBPEL_MOTION_SEARCH_PARAMS ms_params; | 
|  | av1_make_default_subpel_ms_params(&ms_params, cpi, x, bsize, &ref_mv, NULL); | 
|  | if (cpi->sf.rt_sf.reduce_mv_pel_precision_highmotion || | 
|  | cpi->sf.rt_sf.reduce_mv_pel_precision_lowcomplex) { | 
|  | FULLPEL_MV start_mv = { .row = 0, .col = 0 }; | 
|  | ms_params.forced_stop = | 
|  | subpel_select(cpi, x, bsize, &best_mv, ref_mv, start_mv, false); | 
|  | } | 
|  | MV start_mv = get_mv_from_fullmv(&best_mv.as_fullmv); | 
|  | cpi->mv_search_params.find_fractional_mv_step( | 
|  | xd, cm, &ms_params, start_mv, &best_mv.as_mv, &dis, | 
|  | &x->pred_sse[ref_frame], NULL); | 
|  | frame_mv[NEWMV][ref_frame].as_int = best_mv.as_int; | 
|  |  | 
|  | // When NEWMV is same as ref_mv from the drl, it is preferred to code the | 
|  | // MV as NEARESTMV or NEARMV. In this case, NEWMV needs to be skipped to | 
|  | // avoid an assert failure at a later stage. The scenario can occur if | 
|  | // NEARESTMV was not evaluated for ALTREF. | 
|  | if (frame_mv[NEWMV][ref_frame].as_mv.col == ref_mv.col && | 
|  | frame_mv[NEWMV][ref_frame].as_mv.row == ref_mv.row) | 
|  | return -1; | 
|  |  | 
|  | *rate_mv = av1_mv_bit_cost(&frame_mv[NEWMV][ref_frame].as_mv, &ref_mv, | 
|  | x->mv_costs->nmv_joint_cost, | 
|  | x->mv_costs->mv_cost_stack, MV_COST_WEIGHT); | 
|  | } else if (!combined_motion_search(cpi, x, bsize, mi_row, mi_col, | 
|  | &frame_mv[NEWMV][ref_frame], rate_mv, | 
|  | best_rdc->rdcost, 0)) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void estimate_single_ref_frame_costs(const AV1_COMMON *cm, | 
|  | const MACROBLOCKD *xd, | 
|  | const ModeCosts *mode_costs, | 
|  | int segment_id, BLOCK_SIZE bsize, | 
|  | unsigned int *ref_costs_single) { | 
|  | int seg_ref_active = | 
|  | segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME); | 
|  | if (seg_ref_active) { | 
|  | memset(ref_costs_single, 0, REF_FRAMES * sizeof(*ref_costs_single)); | 
|  | } else { | 
|  | int intra_inter_ctx = av1_get_intra_inter_context(xd); | 
|  | ref_costs_single[INTRA_FRAME] = | 
|  | mode_costs->intra_inter_cost[intra_inter_ctx][0]; | 
|  | unsigned int base_cost = mode_costs->intra_inter_cost[intra_inter_ctx][1]; | 
|  | if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT && | 
|  | is_comp_ref_allowed(bsize)) { | 
|  | const int comp_ref_type_ctx = av1_get_comp_reference_type_context(xd); | 
|  | base_cost += mode_costs->comp_ref_type_cost[comp_ref_type_ctx][1]; | 
|  | } | 
|  | ref_costs_single[LAST_FRAME] = base_cost; | 
|  | ref_costs_single[GOLDEN_FRAME] = base_cost; | 
|  | ref_costs_single[ALTREF_FRAME] = base_cost; | 
|  | // add cost for last, golden, altref | 
|  | ref_costs_single[LAST_FRAME] += mode_costs->single_ref_cost[0][0][0]; | 
|  | ref_costs_single[GOLDEN_FRAME] += mode_costs->single_ref_cost[0][0][1]; | 
|  | ref_costs_single[GOLDEN_FRAME] += mode_costs->single_ref_cost[0][1][0]; | 
|  | ref_costs_single[ALTREF_FRAME] += mode_costs->single_ref_cost[0][0][1]; | 
|  | ref_costs_single[ALTREF_FRAME] += mode_costs->single_ref_cost[0][2][0]; | 
|  | } | 
|  | } | 
|  |  | 
|  | static INLINE void set_force_skip_flag(const AV1_COMP *const cpi, | 
|  | MACROBLOCK *const x, unsigned int sse, | 
|  | int *force_skip) { | 
|  | if (x->txfm_search_params.tx_mode_search_type == TX_MODE_SELECT && | 
|  | cpi->sf.rt_sf.tx_size_level_based_on_qstep && | 
|  | cpi->sf.rt_sf.tx_size_level_based_on_qstep >= 2) { | 
|  | const int qstep = x->plane[0].dequant_QTX[1] >> (x->e_mbd.bd - 5); | 
|  | const unsigned int qstep_sq = qstep * qstep; | 
|  | // If the sse is low for low source variance blocks, mark those as | 
|  | // transform skip. | 
|  | // Note: Though qstep_sq is based on ac qstep, the threshold is kept | 
|  | // low so that reliable early estimate of tx skip can be obtained | 
|  | // through its comparison with sse. | 
|  | if (sse < qstep_sq && x->source_variance < qstep_sq && | 
|  | x->color_sensitivity[0] == 0 && x->color_sensitivity[1] == 0) | 
|  | *force_skip = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | #define CAP_TX_SIZE_FOR_BSIZE_GT32(tx_mode_search_type, bsize) \ | 
|  | (((tx_mode_search_type) != ONLY_4X4 && (bsize) > BLOCK_32X32) ? true : false) | 
|  | #define TX_SIZE_FOR_BSIZE_GT32 (TX_16X16) | 
|  |  | 
|  | static TX_SIZE calculate_tx_size(const AV1_COMP *const cpi, BLOCK_SIZE bsize, | 
|  | MACROBLOCK *const x, unsigned int var, | 
|  | unsigned int sse, int *force_skip) { | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | TX_SIZE tx_size; | 
|  | const TxfmSearchParams *txfm_params = &x->txfm_search_params; | 
|  | if (txfm_params->tx_mode_search_type == TX_MODE_SELECT) { | 
|  | int multiplier = 8; | 
|  | unsigned int var_thresh = 0; | 
|  | unsigned int is_high_var = 1; | 
|  | // Use quantizer based thresholds to determine transform size. | 
|  | if (cpi->sf.rt_sf.tx_size_level_based_on_qstep) { | 
|  | const int qband = x->qindex >> (QINDEX_BITS - 2); | 
|  | const int mult[4] = { 8, 7, 6, 5 }; | 
|  | assert(qband < 4); | 
|  | multiplier = mult[qband]; | 
|  | const int qstep = x->plane[0].dequant_QTX[1] >> (xd->bd - 5); | 
|  | const unsigned int qstep_sq = qstep * qstep; | 
|  | var_thresh = qstep_sq * 2; | 
|  | if (cpi->sf.rt_sf.tx_size_level_based_on_qstep >= 2) { | 
|  | // If the sse is low for low source variance blocks, mark those as | 
|  | // transform skip. | 
|  | // Note: Though qstep_sq is based on ac qstep, the threshold is kept | 
|  | // low so that reliable early estimate of tx skip can be obtained | 
|  | // through its comparison with sse. | 
|  | if (sse < qstep_sq && x->source_variance < qstep_sq && | 
|  | x->color_sensitivity[0] == 0 && x->color_sensitivity[1] == 0) | 
|  | *force_skip = 1; | 
|  | // Further lower transform size based on aq mode only if residual | 
|  | // variance is high. | 
|  | is_high_var = (var >= var_thresh); | 
|  | } | 
|  | } | 
|  | // Choose larger transform size for blocks where dc component is dominant or | 
|  | // the ac component is low. | 
|  | if (sse > ((var * multiplier) >> 2) || (var < var_thresh)) | 
|  | tx_size = | 
|  | AOMMIN(max_txsize_lookup[bsize], | 
|  | tx_mode_to_biggest_tx_size[txfm_params->tx_mode_search_type]); | 
|  | else | 
|  | tx_size = TX_8X8; | 
|  |  | 
|  | if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ && | 
|  | cyclic_refresh_segment_id_boosted(xd->mi[0]->segment_id) && is_high_var) | 
|  | tx_size = TX_8X8; | 
|  | else if (tx_size > TX_16X16) | 
|  | tx_size = TX_16X16; | 
|  | } else { | 
|  | tx_size = | 
|  | AOMMIN(max_txsize_lookup[bsize], | 
|  | tx_mode_to_biggest_tx_size[txfm_params->tx_mode_search_type]); | 
|  | } | 
|  |  | 
|  | if (CAP_TX_SIZE_FOR_BSIZE_GT32(txfm_params->tx_mode_search_type, bsize)) | 
|  | tx_size = TX_SIZE_FOR_BSIZE_GT32; | 
|  |  | 
|  | return AOMMIN(tx_size, TX_16X16); | 
|  | } | 
|  |  | 
|  | static const uint8_t b_width_log2_lookup[BLOCK_SIZES] = { 0, 0, 1, 1, 1, 2, | 
|  | 2, 2, 3, 3, 3, 4, | 
|  | 4, 4, 5, 5 }; | 
|  | static const uint8_t b_height_log2_lookup[BLOCK_SIZES] = { 0, 1, 0, 1, 2, 1, | 
|  | 2, 3, 2, 3, 4, 3, | 
|  | 4, 5, 4, 5 }; | 
|  |  | 
|  | static void block_variance(const uint8_t *src, int src_stride, | 
|  | const uint8_t *ref, int ref_stride, int w, int h, | 
|  | unsigned int *sse, int *sum, int block_size, | 
|  | uint32_t *sse8x8, int *sum8x8, uint32_t *var8x8) { | 
|  | int k = 0; | 
|  | *sse = 0; | 
|  | *sum = 0; | 
|  |  | 
|  | // This function is called for block sizes >= BLOCK_32x32. As per the design | 
|  | // the aom_get_var_sse_sum_8x8_quad() processes four 8x8 blocks (in a 8x32) | 
|  | // per call. Hence the width and height of the block need to be at least 8 and | 
|  | // 32 samples respectively. | 
|  | assert(w >= 32); | 
|  | assert(h >= 8); | 
|  | for (int i = 0; i < h; i += block_size) { | 
|  | for (int j = 0; j < w; j += 32) { | 
|  | aom_get_var_sse_sum_8x8_quad( | 
|  | src + src_stride * i + j, src_stride, ref + ref_stride * i + j, | 
|  | ref_stride, &sse8x8[k], &sum8x8[k], sse, sum, &var8x8[k]); | 
|  | k += 4; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void block_variance_16x16_dual(const uint8_t *src, int src_stride, | 
|  | const uint8_t *ref, int ref_stride, int w, | 
|  | int h, unsigned int *sse, int *sum, | 
|  | int block_size, uint32_t *sse16x16, | 
|  | uint32_t *var16x16) { | 
|  | int k = 0; | 
|  | *sse = 0; | 
|  | *sum = 0; | 
|  | // This function is called for block sizes >= BLOCK_32x32. As per the design | 
|  | // the aom_get_var_sse_sum_16x16_dual() processes four 16x16 blocks (in a | 
|  | // 16x32) per call. Hence the width and height of the block need to be at | 
|  | // least 16 and 32 samples respectively. | 
|  | assert(w >= 32); | 
|  | assert(h >= 16); | 
|  | for (int i = 0; i < h; i += block_size) { | 
|  | for (int j = 0; j < w; j += 32) { | 
|  | aom_get_var_sse_sum_16x16_dual(src + src_stride * i + j, src_stride, | 
|  | ref + ref_stride * i + j, ref_stride, | 
|  | &sse16x16[k], sse, sum, &var16x16[k]); | 
|  | k += 2; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void calculate_variance(int bw, int bh, TX_SIZE tx_size, | 
|  | unsigned int *sse_i, int *sum_i, | 
|  | unsigned int *var_o, unsigned int *sse_o, | 
|  | int *sum_o) { | 
|  | const BLOCK_SIZE unit_size = txsize_to_bsize[tx_size]; | 
|  | const int nw = 1 << (bw - b_width_log2_lookup[unit_size]); | 
|  | const int nh = 1 << (bh - b_height_log2_lookup[unit_size]); | 
|  | int i, j, k = 0; | 
|  |  | 
|  | for (i = 0; i < nh; i += 2) { | 
|  | for (j = 0; j < nw; j += 2) { | 
|  | sse_o[k] = sse_i[i * nw + j] + sse_i[i * nw + j + 1] + | 
|  | sse_i[(i + 1) * nw + j] + sse_i[(i + 1) * nw + j + 1]; | 
|  | sum_o[k] = sum_i[i * nw + j] + sum_i[i * nw + j + 1] + | 
|  | sum_i[(i + 1) * nw + j] + sum_i[(i + 1) * nw + j + 1]; | 
|  | var_o[k] = sse_o[k] - (uint32_t)(((int64_t)sum_o[k] * sum_o[k]) >> | 
|  | (b_width_log2_lookup[unit_size] + | 
|  | b_height_log2_lookup[unit_size] + 6)); | 
|  | k++; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Adjust the ac_thr according to speed, width, height and normalized sum | 
|  | static int ac_thr_factor(const int speed, const int width, const int height, | 
|  | const int norm_sum) { | 
|  | if (speed >= 8 && norm_sum < 5) { | 
|  | if (width <= 640 && height <= 480) | 
|  | return 4; | 
|  | else | 
|  | return 2; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // Sets early_term flag based on chroma planes prediction | 
|  | static INLINE void set_early_term_based_on_uv_plane( | 
|  | AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, MACROBLOCKD *xd, int mi_row, | 
|  | int mi_col, int *early_term, int num_blk, const unsigned int *sse_tx, | 
|  | const unsigned int *var_tx, int sum, unsigned int var, unsigned int sse) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | struct macroblock_plane *const p = &x->plane[0]; | 
|  | const uint32_t dc_quant = p->dequant_QTX[0]; | 
|  | const uint32_t ac_quant = p->dequant_QTX[1]; | 
|  | const int64_t dc_thr = dc_quant * dc_quant >> 6; | 
|  | int64_t ac_thr = ac_quant * ac_quant >> 6; | 
|  | const int bw = b_width_log2_lookup[bsize]; | 
|  | const int bh = b_height_log2_lookup[bsize]; | 
|  | int ac_test = 1; | 
|  | int dc_test = 1; | 
|  | const int norm_sum = abs(sum) >> (bw + bh); | 
|  |  | 
|  | #if CONFIG_AV1_TEMPORAL_DENOISING | 
|  | if (cpi->oxcf.noise_sensitivity > 0 && denoise_svc(cpi) && | 
|  | cpi->oxcf.speed > 5) | 
|  | ac_thr = av1_scale_acskip_thresh(ac_thr, cpi->denoiser.denoising_level, | 
|  | norm_sum, cpi->svc.temporal_layer_id); | 
|  | else | 
|  | ac_thr *= ac_thr_factor(cpi->oxcf.speed, cm->width, cm->height, norm_sum); | 
|  | #else | 
|  | ac_thr *= ac_thr_factor(cpi->oxcf.speed, cm->width, cm->height, norm_sum); | 
|  |  | 
|  | #endif | 
|  |  | 
|  | for (int k = 0; k < num_blk; k++) { | 
|  | // Check if all ac coefficients can be quantized to zero. | 
|  | if (!(var_tx[k] < ac_thr || var == 0)) { | 
|  | ac_test = 0; | 
|  | break; | 
|  | } | 
|  | // Check if dc coefficient can be quantized to zero. | 
|  | if (!(sse_tx[k] - var_tx[k] < dc_thr || sse == var)) { | 
|  | dc_test = 0; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check if chroma can be skipped based on ac and dc test flags. | 
|  | if (ac_test && dc_test) { | 
|  | int skip_uv[2] = { 0 }; | 
|  | unsigned int var_uv[2]; | 
|  | unsigned int sse_uv[2]; | 
|  | // Transform skipping test in UV planes. | 
|  | for (int i = 1; i <= 2; i++) { | 
|  | int j = i - 1; | 
|  | skip_uv[j] = 1; | 
|  | if (x->color_sensitivity[j]) { | 
|  | skip_uv[j] = 0; | 
|  | struct macroblock_plane *const puv = &x->plane[i]; | 
|  | struct macroblockd_plane *const puvd = &xd->plane[i]; | 
|  | const BLOCK_SIZE uv_bsize = get_plane_block_size( | 
|  | bsize, puvd->subsampling_x, puvd->subsampling_y); | 
|  | // Adjust these thresholds for UV. | 
|  | const int64_t uv_dc_thr = | 
|  | (puv->dequant_QTX[0] * puv->dequant_QTX[0]) >> 3; | 
|  | const int64_t uv_ac_thr = | 
|  | (puv->dequant_QTX[1] * puv->dequant_QTX[1]) >> 3; | 
|  | av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, i, | 
|  | i); | 
|  | var_uv[j] = cpi->ppi->fn_ptr[uv_bsize].vf(puv->src.buf, puv->src.stride, | 
|  | puvd->dst.buf, | 
|  | puvd->dst.stride, &sse_uv[j]); | 
|  | if ((var_uv[j] < uv_ac_thr || var_uv[j] == 0) && | 
|  | (sse_uv[j] - var_uv[j] < uv_dc_thr || sse_uv[j] == var_uv[j])) | 
|  | skip_uv[j] = 1; | 
|  | else | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (skip_uv[0] & skip_uv[1]) { | 
|  | *early_term = 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static INLINE void calc_rate_dist_block_param(AV1_COMP *cpi, MACROBLOCK *x, | 
|  | RD_STATS *rd_stats, | 
|  | int calculate_rd, int *early_term, | 
|  | BLOCK_SIZE bsize, | 
|  | unsigned int sse) { | 
|  | if (calculate_rd) { | 
|  | if (!*early_term) { | 
|  | const int bw = block_size_wide[bsize]; | 
|  | const int bh = block_size_high[bsize]; | 
|  |  | 
|  | model_rd_with_curvfit(cpi, x, bsize, AOM_PLANE_Y, rd_stats->sse, bw * bh, | 
|  | &rd_stats->rate, &rd_stats->dist); | 
|  | } | 
|  |  | 
|  | if (*early_term) { | 
|  | rd_stats->rate = 0; | 
|  | rd_stats->dist = sse << 4; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void model_skip_for_sb_y_large_64(AV1_COMP *cpi, BLOCK_SIZE bsize, | 
|  | int mi_row, int mi_col, MACROBLOCK *x, | 
|  | MACROBLOCKD *xd, RD_STATS *rd_stats, | 
|  | int *early_term, int calculate_rd, | 
|  | int64_t best_sse, | 
|  | unsigned int *var_output, | 
|  | unsigned int var_prune_threshold) { | 
|  | // Note our transform coeffs are 8 times an orthogonal transform. | 
|  | // Hence quantizer step is also 8 times. To get effective quantizer | 
|  | // we need to divide by 8 before sending to modeling function. | 
|  | unsigned int sse; | 
|  | struct macroblock_plane *const p = &x->plane[0]; | 
|  | struct macroblockd_plane *const pd = &xd->plane[0]; | 
|  | int test_skip = 1; | 
|  | unsigned int var; | 
|  | int sum; | 
|  | const int bw = b_width_log2_lookup[bsize]; | 
|  | const int bh = b_height_log2_lookup[bsize]; | 
|  | unsigned int sse16x16[64] = { 0 }; | 
|  | unsigned int var16x16[64] = { 0 }; | 
|  | assert(xd->mi[0]->tx_size == TX_16X16); | 
|  | assert(bsize > BLOCK_32X32); | 
|  |  | 
|  | // Calculate variance for whole partition, and also save 16x16 blocks' | 
|  | // variance to be used in following transform skipping test. | 
|  | block_variance_16x16_dual(p->src.buf, p->src.stride, pd->dst.buf, | 
|  | pd->dst.stride, 4 << bw, 4 << bh, &sse, &sum, 16, | 
|  | sse16x16, var16x16); | 
|  |  | 
|  | var = sse - (unsigned int)(((int64_t)sum * sum) >> (bw + bh + 4)); | 
|  | if (var_output) { | 
|  | *var_output = var; | 
|  | if (*var_output > var_prune_threshold) { | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | rd_stats->sse = sse; | 
|  | // Skipping test | 
|  | *early_term = 0; | 
|  | set_force_skip_flag(cpi, x, sse, early_term); | 
|  | // The code below for setting skip flag assumes transform size of at least | 
|  | // 8x8, so force this lower limit on transform. | 
|  | MB_MODE_INFO *const mi = xd->mi[0]; | 
|  | if (!calculate_rd && cpi->sf.rt_sf.sse_early_term_inter_search && | 
|  | early_term_inter_search_with_sse( | 
|  | cpi->sf.rt_sf.sse_early_term_inter_search, bsize, sse, best_sse, | 
|  | mi->mode)) | 
|  | test_skip = 0; | 
|  |  | 
|  | if (*early_term) test_skip = 0; | 
|  |  | 
|  | // Evaluate if the partition block is a skippable block in Y plane. | 
|  | if (test_skip) { | 
|  | const unsigned int *sse_tx = sse16x16; | 
|  | const unsigned int *var_tx = var16x16; | 
|  | const unsigned int num_block = (1 << (bw + bh - 2)) >> 2; | 
|  | set_early_term_based_on_uv_plane(cpi, x, bsize, xd, mi_row, mi_col, | 
|  | early_term, num_block, sse_tx, var_tx, sum, | 
|  | var, sse); | 
|  | } | 
|  | calc_rate_dist_block_param(cpi, x, rd_stats, calculate_rd, early_term, bsize, | 
|  | sse); | 
|  | } | 
|  |  | 
|  | static void model_skip_for_sb_y_large(AV1_COMP *cpi, BLOCK_SIZE bsize, | 
|  | int mi_row, int mi_col, MACROBLOCK *x, | 
|  | MACROBLOCKD *xd, RD_STATS *rd_stats, | 
|  | int *early_term, int calculate_rd, | 
|  | int64_t best_sse, | 
|  | unsigned int *var_output, | 
|  | unsigned int var_prune_threshold) { | 
|  | if (x->force_zeromv_skip_for_blk) { | 
|  | *early_term = 1; | 
|  | rd_stats->rate = 0; | 
|  | rd_stats->dist = 0; | 
|  | rd_stats->sse = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // For block sizes greater than 32x32, the transform size is always 16x16. | 
|  | // This function avoids calling calculate_variance() for tx_size 16x16 cases | 
|  | // by directly populating variance at tx_size level from | 
|  | // block_variance_16x16_dual() function. | 
|  | const TxfmSearchParams *txfm_params = &x->txfm_search_params; | 
|  | if (CAP_TX_SIZE_FOR_BSIZE_GT32(txfm_params->tx_mode_search_type, bsize)) { | 
|  | xd->mi[0]->tx_size = TX_SIZE_FOR_BSIZE_GT32; | 
|  | model_skip_for_sb_y_large_64(cpi, bsize, mi_row, mi_col, x, xd, rd_stats, | 
|  | early_term, calculate_rd, best_sse, var_output, | 
|  | var_prune_threshold); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Note our transform coeffs are 8 times an orthogonal transform. | 
|  | // Hence quantizer step is also 8 times. To get effective quantizer | 
|  | // we need to divide by 8 before sending to modeling function. | 
|  | unsigned int sse; | 
|  | struct macroblock_plane *const p = &x->plane[0]; | 
|  | struct macroblockd_plane *const pd = &xd->plane[0]; | 
|  | int test_skip = 1; | 
|  | unsigned int var; | 
|  | int sum; | 
|  |  | 
|  | const int bw = b_width_log2_lookup[bsize]; | 
|  | const int bh = b_height_log2_lookup[bsize]; | 
|  | unsigned int sse8x8[256] = { 0 }; | 
|  | int sum8x8[256] = { 0 }; | 
|  | unsigned int var8x8[256] = { 0 }; | 
|  | TX_SIZE tx_size; | 
|  |  | 
|  | // Calculate variance for whole partition, and also save 8x8 blocks' variance | 
|  | // to be used in following transform skipping test. | 
|  | block_variance(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, | 
|  | 4 << bw, 4 << bh, &sse, &sum, 8, sse8x8, sum8x8, var8x8); | 
|  | var = sse - (unsigned int)(((int64_t)sum * sum) >> (bw + bh + 4)); | 
|  | if (var_output) { | 
|  | *var_output = var; | 
|  | if (*var_output > var_prune_threshold) { | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | rd_stats->sse = sse; | 
|  | // Skipping test | 
|  | *early_term = 0; | 
|  | tx_size = calculate_tx_size(cpi, bsize, x, var, sse, early_term); | 
|  | assert(tx_size <= TX_16X16); | 
|  | // The code below for setting skip flag assumes transform size of at least | 
|  | // 8x8, so force this lower limit on transform. | 
|  | if (tx_size < TX_8X8) tx_size = TX_8X8; | 
|  | xd->mi[0]->tx_size = tx_size; | 
|  |  | 
|  | MB_MODE_INFO *const mi = xd->mi[0]; | 
|  | if (!calculate_rd && cpi->sf.rt_sf.sse_early_term_inter_search && | 
|  | early_term_inter_search_with_sse( | 
|  | cpi->sf.rt_sf.sse_early_term_inter_search, bsize, sse, best_sse, | 
|  | mi->mode)) | 
|  | test_skip = 0; | 
|  |  | 
|  | if (*early_term) test_skip = 0; | 
|  |  | 
|  | // Evaluate if the partition block is a skippable block in Y plane. | 
|  | if (test_skip) { | 
|  | unsigned int sse16x16[64] = { 0 }; | 
|  | int sum16x16[64] = { 0 }; | 
|  | unsigned int var16x16[64] = { 0 }; | 
|  | const unsigned int *sse_tx = sse8x8; | 
|  | const unsigned int *var_tx = var8x8; | 
|  | unsigned int num_blks = 1 << (bw + bh - 2); | 
|  |  | 
|  | if (tx_size >= TX_16X16) { | 
|  | calculate_variance(bw, bh, TX_8X8, sse8x8, sum8x8, var16x16, sse16x16, | 
|  | sum16x16); | 
|  | sse_tx = sse16x16; | 
|  | var_tx = var16x16; | 
|  | num_blks = num_blks >> 2; | 
|  | } | 
|  | set_early_term_based_on_uv_plane(cpi, x, bsize, xd, mi_row, mi_col, | 
|  | early_term, num_blks, sse_tx, var_tx, sum, | 
|  | var, sse); | 
|  | } | 
|  | calc_rate_dist_block_param(cpi, x, rd_stats, calculate_rd, early_term, bsize, | 
|  | sse); | 
|  | } | 
|  |  | 
|  | static void model_rd_for_sb_y(const AV1_COMP *const cpi, BLOCK_SIZE bsize, | 
|  | MACROBLOCK *x, MACROBLOCKD *xd, | 
|  | RD_STATS *rd_stats, unsigned int *var_out, | 
|  | int calculate_rd, int *early_term) { | 
|  | if (x->force_zeromv_skip_for_blk && early_term != NULL) { | 
|  | *early_term = 1; | 
|  | rd_stats->rate = 0; | 
|  | rd_stats->dist = 0; | 
|  | rd_stats->sse = 0; | 
|  | } | 
|  |  | 
|  | // Note our transform coeffs are 8 times an orthogonal transform. | 
|  | // Hence quantizer step is also 8 times. To get effective quantizer | 
|  | // we need to divide by 8 before sending to modeling function. | 
|  | const int ref = xd->mi[0]->ref_frame[0]; | 
|  |  | 
|  | assert(bsize < BLOCK_SIZES_ALL); | 
|  |  | 
|  | struct macroblock_plane *const p = &x->plane[0]; | 
|  | struct macroblockd_plane *const pd = &xd->plane[0]; | 
|  | unsigned int sse; | 
|  | int rate; | 
|  | int64_t dist; | 
|  |  | 
|  | unsigned int var = cpi->ppi->fn_ptr[bsize].vf( | 
|  | p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, &sse); | 
|  | int force_skip = 0; | 
|  | xd->mi[0]->tx_size = calculate_tx_size(cpi, bsize, x, var, sse, &force_skip); | 
|  | if (var_out) { | 
|  | *var_out = var; | 
|  | } | 
|  |  | 
|  | if (calculate_rd && (!force_skip || ref == INTRA_FRAME)) { | 
|  | const int bwide = block_size_wide[bsize]; | 
|  | const int bhigh = block_size_high[bsize]; | 
|  | model_rd_with_curvfit(cpi, x, bsize, AOM_PLANE_Y, sse, bwide * bhigh, &rate, | 
|  | &dist); | 
|  | } else { | 
|  | rate = INT_MAX;  // this will be overwritten later with block_yrd | 
|  | dist = INT_MAX; | 
|  | } | 
|  | rd_stats->sse = sse; | 
|  | x->pred_sse[ref] = (unsigned int)AOMMIN(sse, UINT_MAX); | 
|  |  | 
|  | if (force_skip && ref > INTRA_FRAME) { | 
|  | rate = 0; | 
|  | dist = (int64_t)sse << 4; | 
|  | } | 
|  |  | 
|  | assert(rate >= 0); | 
|  |  | 
|  | rd_stats->skip_txfm = (rate == 0); | 
|  | rate = AOMMIN(rate, INT_MAX); | 
|  | rd_stats->rate = rate; | 
|  | rd_stats->dist = dist; | 
|  | } | 
|  |  | 
|  | static INLINE void aom_process_hadamard_lp_8x16(MACROBLOCK *x, | 
|  | int max_blocks_high, | 
|  | int max_blocks_wide, | 
|  | int num_4x4_w, int step, | 
|  | int block_step) { | 
|  | struct macroblock_plane *const p = &x->plane[0]; | 
|  | const int bw = 4 * num_4x4_w; | 
|  | const int num_4x4 = AOMMIN(num_4x4_w, max_blocks_wide); | 
|  | int block = 0; | 
|  |  | 
|  | for (int r = 0; r < max_blocks_high; r += block_step) { | 
|  | for (int c = 0; c < num_4x4; c += 2 * block_step) { | 
|  | const int16_t *src_diff = &p->src_diff[(r * bw + c) << 2]; | 
|  | int16_t *low_coeff = (int16_t *)p->coeff + BLOCK_OFFSET(block); | 
|  | aom_hadamard_lp_8x8_dual(src_diff, (ptrdiff_t)bw, low_coeff); | 
|  | block += 2 * step; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #define DECLARE_BLOCK_YRD_BUFFERS()                      \ | 
|  | DECLARE_ALIGNED(64, tran_low_t, dqcoeff_buf[16 * 16]); \ | 
|  | DECLARE_ALIGNED(64, tran_low_t, qcoeff_buf[16 * 16]);  \ | 
|  | DECLARE_ALIGNED(64, tran_low_t, coeff_buf[16 * 16]);   \ | 
|  | uint16_t eob[1]; | 
|  |  | 
|  | #define DECLARE_BLOCK_YRD_VARS()                                           \ | 
|  | /* When is_tx_8x8_dual_applicable is true, we compute the txfm for the   \ | 
|  | * entire bsize and write macroblock_plane::coeff. So low_coeff is kept  \ | 
|  | * as a non-const so we can reassign it to macroblock_plane::coeff. */   \ | 
|  | int16_t *low_coeff = (int16_t *)coeff_buf;                               \ | 
|  | int16_t *const low_qcoeff = (int16_t *)qcoeff_buf;                       \ | 
|  | int16_t *const low_dqcoeff = (int16_t *)dqcoeff_buf;                     \ | 
|  | const SCAN_ORDER *const scan_order = &av1_scan_orders[tx_size][DCT_DCT]; \ | 
|  | const int diff_stride = bw; | 
|  |  | 
|  | #define DECLARE_LOOP_VARS_BLOCK_YRD() \ | 
|  | const int16_t *src_diff = &p->src_diff[(r * diff_stride + c) << 2]; | 
|  |  | 
|  | #if CONFIG_AV1_HIGHBITDEPTH | 
|  | #define DECLARE_BLOCK_YRD_HBD_VARS()     \ | 
|  | tran_low_t *const coeff = coeff_buf;   \ | 
|  | tran_low_t *const qcoeff = qcoeff_buf; \ | 
|  | tran_low_t *const dqcoeff = dqcoeff_buf; | 
|  |  | 
|  | static AOM_FORCE_INLINE void update_yrd_loop_vars_hbd( | 
|  | MACROBLOCK *x, int *skippable, const int step, const int ncoeffs, | 
|  | tran_low_t *const coeff, tran_low_t *const qcoeff, | 
|  | tran_low_t *const dqcoeff, RD_STATS *this_rdc, int *eob_cost, | 
|  | const int tx_blk_id) { | 
|  | const int is_txfm_skip = (ncoeffs == 0); | 
|  | *skippable &= is_txfm_skip; | 
|  | x->txfm_search_info.blk_skip[tx_blk_id] = is_txfm_skip; | 
|  | *eob_cost += get_msb(ncoeffs + 1); | 
|  |  | 
|  | int64_t dummy; | 
|  | if (ncoeffs == 1) | 
|  | this_rdc->rate += (int)abs(qcoeff[0]); | 
|  | else if (ncoeffs > 1) | 
|  | this_rdc->rate += aom_satd(qcoeff, step << 4); | 
|  |  | 
|  | this_rdc->dist += av1_block_error(coeff, dqcoeff, step << 4, &dummy) >> 2; | 
|  | } | 
|  | #endif | 
|  | static AOM_FORCE_INLINE void update_yrd_loop_vars( | 
|  | MACROBLOCK *x, int *skippable, const int step, const int ncoeffs, | 
|  | int16_t *const low_coeff, int16_t *const low_qcoeff, | 
|  | int16_t *const low_dqcoeff, RD_STATS *this_rdc, int *eob_cost, | 
|  | const int tx_blk_id) { | 
|  | const int is_txfm_skip = (ncoeffs == 0); | 
|  | *skippable &= is_txfm_skip; | 
|  | x->txfm_search_info.blk_skip[tx_blk_id] = is_txfm_skip; | 
|  | *eob_cost += get_msb(ncoeffs + 1); | 
|  | if (ncoeffs == 1) | 
|  | this_rdc->rate += (int)abs(low_qcoeff[0]); | 
|  | else if (ncoeffs > 1) | 
|  | this_rdc->rate += aom_satd_lp(low_qcoeff, step << 4); | 
|  |  | 
|  | this_rdc->dist += av1_block_error_lp(low_coeff, low_dqcoeff, step << 4) >> 2; | 
|  | } | 
|  |  | 
|  | /*!\brief Calculates RD Cost using Hadamard transform. | 
|  | * | 
|  | * \ingroup nonrd_mode_search | 
|  | * \callgraph | 
|  | * \callergraph | 
|  | * Calculates RD Cost using Hadamard transform. For low bit depth this function | 
|  | * uses low-precision set of functions (16-bit) and 32 bit for high bit depth | 
|  | * \param[in]    x              Pointer to structure holding all the data for | 
|  | the current macroblock | 
|  | * \param[in]    this_rdc       Pointer to calculated RD Cost | 
|  | * \param[in]    skippable      Pointer to a flag indicating possible tx skip | 
|  | * \param[in]    bsize          Current block size | 
|  | * \param[in]    tx_size        Transform size | 
|  | * \param[in]    is_inter_mode  Flag to indicate inter mode | 
|  | * | 
|  | * \remark Nothing is returned. Instead, calculated RD cost is placed to | 
|  | * \c this_rdc. \c skippable flag is set if there is no non-zero quantized | 
|  | * coefficients for Hadamard transform | 
|  | */ | 
|  | static void block_yrd(MACROBLOCK *x, RD_STATS *this_rdc, int *skippable, | 
|  | const BLOCK_SIZE bsize, const TX_SIZE tx_size, | 
|  | const int is_inter_mode) { | 
|  | MACROBLOCKD *xd = &x->e_mbd; | 
|  | const struct macroblockd_plane *pd = &xd->plane[0]; | 
|  | struct macroblock_plane *const p = &x->plane[0]; | 
|  | assert(bsize < BLOCK_SIZES_ALL); | 
|  | const int num_4x4_w = mi_size_wide[bsize]; | 
|  | const int num_4x4_h = mi_size_high[bsize]; | 
|  | const int step = 1 << (tx_size << 1); | 
|  | const int block_step = (1 << tx_size); | 
|  | const int row_step = step * num_4x4_w >> tx_size; | 
|  | int block = 0; | 
|  | const int max_blocks_wide = | 
|  | num_4x4_w + (xd->mb_to_right_edge >= 0 ? 0 : xd->mb_to_right_edge >> 5); | 
|  | const int max_blocks_high = | 
|  | num_4x4_h + (xd->mb_to_bottom_edge >= 0 ? 0 : xd->mb_to_bottom_edge >> 5); | 
|  | int eob_cost = 0; | 
|  | const int bw = 4 * num_4x4_w; | 
|  | const int bh = 4 * num_4x4_h; | 
|  | const int use_hbd = is_cur_buf_hbd(xd); | 
|  | int num_blk_skip_w = num_4x4_w; | 
|  | int sh_blk_skip = 0; | 
|  | if (is_inter_mode) { | 
|  | num_blk_skip_w = num_4x4_w >> 1; | 
|  | sh_blk_skip = 1; | 
|  | } | 
|  |  | 
|  | #if CONFIG_AV1_HIGHBITDEPTH | 
|  | if (use_hbd) { | 
|  | aom_highbd_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, | 
|  | p->src.stride, pd->dst.buf, pd->dst.stride); | 
|  | } else { | 
|  | aom_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride, | 
|  | pd->dst.buf, pd->dst.stride); | 
|  | } | 
|  | #else | 
|  | aom_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride, | 
|  | pd->dst.buf, pd->dst.stride); | 
|  | #endif | 
|  |  | 
|  | // Keep the intermediate value on the stack here. Writing directly to | 
|  | // skippable causes speed regression due to load-and-store issues in | 
|  | // update_yrd_loop_vars. | 
|  | int temp_skippable = 1; | 
|  | this_rdc->dist = 0; | 
|  | this_rdc->rate = 0; | 
|  | // For block sizes 8x16 or above, Hadamard txfm of two adjacent 8x8 blocks | 
|  | // can be done per function call. Hence the call of Hadamard txfm is | 
|  | // abstracted here for the specified cases. | 
|  | int is_tx_8x8_dual_applicable = | 
|  | (tx_size == TX_8X8 && block_size_wide[bsize] >= 16 && | 
|  | block_size_high[bsize] >= 8); | 
|  |  | 
|  | #if CONFIG_AV1_HIGHBITDEPTH | 
|  | // As of now, dual implementation of hadamard txfm is available for low | 
|  | // bitdepth. | 
|  | if (use_hbd) is_tx_8x8_dual_applicable = 0; | 
|  | #endif | 
|  |  | 
|  | if (is_tx_8x8_dual_applicable) { | 
|  | aom_process_hadamard_lp_8x16(x, max_blocks_high, max_blocks_wide, num_4x4_w, | 
|  | step, block_step); | 
|  | } | 
|  |  | 
|  | DECLARE_BLOCK_YRD_BUFFERS() | 
|  | DECLARE_BLOCK_YRD_VARS() | 
|  | #if CONFIG_AV1_HIGHBITDEPTH | 
|  | DECLARE_BLOCK_YRD_HBD_VARS() | 
|  | #else | 
|  | (void)use_hbd; | 
|  | #endif | 
|  |  | 
|  | // Keep track of the row and column of the blocks we use so that we know | 
|  | // if we are in the unrestricted motion border. | 
|  | for (int r = 0; r < max_blocks_high; r += block_step) { | 
|  | for (int c = 0, s = 0; c < max_blocks_wide; c += block_step, s += step) { | 
|  | DECLARE_LOOP_VARS_BLOCK_YRD() | 
|  |  | 
|  | switch (tx_size) { | 
|  | #if CONFIG_AV1_HIGHBITDEPTH | 
|  | case TX_16X16: | 
|  | if (use_hbd) { | 
|  | aom_hadamard_16x16(src_diff, diff_stride, coeff); | 
|  | av1_quantize_fp(coeff, 16 * 16, p->zbin_QTX, p->round_fp_QTX, | 
|  | p->quant_fp_QTX, p->quant_shift_QTX, qcoeff, | 
|  | dqcoeff, p->dequant_QTX, eob, | 
|  | // default_scan_fp_16x16_transpose and | 
|  | // av1_default_iscan_fp_16x16_transpose have to be | 
|  | // used together. | 
|  | default_scan_fp_16x16_transpose, | 
|  | av1_default_iscan_fp_16x16_transpose); | 
|  | } else { | 
|  | aom_hadamard_lp_16x16(src_diff, diff_stride, low_coeff); | 
|  | av1_quantize_lp(low_coeff, 16 * 16, p->round_fp_QTX, | 
|  | p->quant_fp_QTX, low_qcoeff, low_dqcoeff, | 
|  | p->dequant_QTX, eob, | 
|  | // default_scan_lp_16x16_transpose and | 
|  | // av1_default_iscan_lp_16x16_transpose have to be | 
|  | // used together. | 
|  | default_scan_lp_16x16_transpose, | 
|  | av1_default_iscan_lp_16x16_transpose); | 
|  | } | 
|  | break; | 
|  | case TX_8X8: | 
|  | if (use_hbd) { | 
|  | aom_hadamard_8x8(src_diff, diff_stride, coeff); | 
|  | av1_quantize_fp( | 
|  | coeff, 8 * 8, p->zbin_QTX, p->round_fp_QTX, p->quant_fp_QTX, | 
|  | p->quant_shift_QTX, qcoeff, dqcoeff, p->dequant_QTX, eob, | 
|  | default_scan_8x8_transpose, av1_default_iscan_8x8_transpose); | 
|  | } else { | 
|  | if (is_tx_8x8_dual_applicable) { | 
|  | // The coeffs are pre-computed for the whole block, so re-assign | 
|  | // low_coeff to the appropriate location. | 
|  | const int block_offset = BLOCK_OFFSET(block + s); | 
|  | low_coeff = (int16_t *)p->coeff + block_offset; | 
|  | } else { | 
|  | aom_hadamard_lp_8x8(src_diff, diff_stride, low_coeff); | 
|  | } | 
|  | av1_quantize_lp( | 
|  | low_coeff, 8 * 8, p->round_fp_QTX, p->quant_fp_QTX, low_qcoeff, | 
|  | low_dqcoeff, p->dequant_QTX, eob, | 
|  | // default_scan_8x8_transpose and | 
|  | // av1_default_iscan_8x8_transpose have to be used together. | 
|  | default_scan_8x8_transpose, av1_default_iscan_8x8_transpose); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | assert(tx_size == TX_4X4); | 
|  | // In tx_size=4x4 case, aom_fdct4x4 and aom_fdct4x4_lp generate | 
|  | // normal coefficients order, so we don't need to change the scan | 
|  | // order here. | 
|  | if (use_hbd) { | 
|  | aom_fdct4x4(src_diff, coeff, diff_stride); | 
|  | av1_quantize_fp(coeff, 4 * 4, p->zbin_QTX, p->round_fp_QTX, | 
|  | p->quant_fp_QTX, p->quant_shift_QTX, qcoeff, | 
|  | dqcoeff, p->dequant_QTX, eob, scan_order->scan, | 
|  | scan_order->iscan); | 
|  | } else { | 
|  | aom_fdct4x4_lp(src_diff, low_coeff, diff_stride); | 
|  | av1_quantize_lp(low_coeff, 4 * 4, p->round_fp_QTX, p->quant_fp_QTX, | 
|  | low_qcoeff, low_dqcoeff, p->dequant_QTX, eob, | 
|  | scan_order->scan, scan_order->iscan); | 
|  | } | 
|  | break; | 
|  | #else | 
|  | case TX_16X16: | 
|  | aom_hadamard_lp_16x16(src_diff, diff_stride, low_coeff); | 
|  | av1_quantize_lp(low_coeff, 16 * 16, p->round_fp_QTX, p->quant_fp_QTX, | 
|  | low_qcoeff, low_dqcoeff, p->dequant_QTX, eob, | 
|  | default_scan_lp_16x16_transpose, | 
|  | av1_default_iscan_lp_16x16_transpose); | 
|  | break; | 
|  | case TX_8X8: | 
|  | if (is_tx_8x8_dual_applicable) { | 
|  | // The coeffs are pre-computed for the whole block, so re-assign | 
|  | // low_coeff to the appropriate location. | 
|  | const int block_offset = BLOCK_OFFSET(block + s); | 
|  | low_coeff = (int16_t *)p->coeff + block_offset; | 
|  | } else { | 
|  | aom_hadamard_lp_8x8(src_diff, diff_stride, low_coeff); | 
|  | } | 
|  | av1_quantize_lp(low_coeff, 8 * 8, p->round_fp_QTX, p->quant_fp_QTX, | 
|  | low_qcoeff, low_dqcoeff, p->dequant_QTX, eob, | 
|  | default_scan_8x8_transpose, | 
|  | av1_default_iscan_8x8_transpose); | 
|  | break; | 
|  | default: | 
|  | aom_fdct4x4_lp(src_diff, low_coeff, diff_stride); | 
|  | av1_quantize_lp(low_coeff, 4 * 4, p->round_fp_QTX, p->quant_fp_QTX, | 
|  | low_qcoeff, low_dqcoeff, p->dequant_QTX, eob, | 
|  | scan_order->scan, scan_order->iscan); | 
|  | break; | 
|  | #endif | 
|  | } | 
|  | assert(*eob <= 1024); | 
|  | #if CONFIG_AV1_HIGHBITDEPTH | 
|  | if (use_hbd) | 
|  | update_yrd_loop_vars_hbd(x, &temp_skippable, step, *eob, coeff, qcoeff, | 
|  | dqcoeff, this_rdc, &eob_cost, | 
|  | (r * num_blk_skip_w + c) >> sh_blk_skip); | 
|  | else | 
|  | #endif | 
|  | update_yrd_loop_vars(x, &temp_skippable, step, *eob, low_coeff, | 
|  | low_qcoeff, low_dqcoeff, this_rdc, &eob_cost, | 
|  | (r * num_blk_skip_w + c) >> sh_blk_skip); | 
|  | } | 
|  | block += row_step; | 
|  | } | 
|  |  | 
|  | this_rdc->skip_txfm = *skippable = temp_skippable; | 
|  | if (this_rdc->sse < INT64_MAX) { | 
|  | this_rdc->sse = (this_rdc->sse << 6) >> 2; | 
|  | if (temp_skippable) { | 
|  | this_rdc->dist = 0; | 
|  | this_rdc->dist = this_rdc->sse; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If skippable is set, rate gets clobbered later. | 
|  | this_rdc->rate <<= (2 + AV1_PROB_COST_SHIFT); | 
|  | this_rdc->rate += (eob_cost << AV1_PROB_COST_SHIFT); | 
|  | } | 
|  |  | 
|  | // Explicitly enumerate the cases so the compiler can generate SIMD for the | 
|  | // function. According to the disassembler, gcc generates SSE codes for each of | 
|  | // the possible block sizes. The hottest case is tx_width 16, which takes up | 
|  | // about 8% of the self cycle of av1_nonrd_pick_inter_mode_sb. Since | 
|  | // av1_nonrd_pick_inter_mode_sb takes up about 3% of total encoding time, the | 
|  | // potential room of improvement for writing AVX2 optimization is only 3% * 8% = | 
|  | // 0.24% of total encoding time. | 
|  | static AOM_INLINE void scale_square_buf_vals(int16_t *dst, const int tx_width, | 
|  | const int16_t *src, | 
|  | const int src_stride) { | 
|  | #define DO_SCALING                                                   \ | 
|  | do {                                                               \ | 
|  | for (int idy = 0; idy < tx_width; ++idy) {                       \ | 
|  | for (int idx = 0; idx < tx_width; ++idx) {                     \ | 
|  | dst[idy * tx_width + idx] = src[idy * src_stride + idx] * 8; \ | 
|  | }                                                              \ | 
|  | }                                                                \ | 
|  | } while (0) | 
|  |  | 
|  | if (tx_width == 4) { | 
|  | DO_SCALING; | 
|  | } else if (tx_width == 8) { | 
|  | DO_SCALING; | 
|  | } else if (tx_width == 16) { | 
|  | DO_SCALING; | 
|  | } else { | 
|  | assert(0); | 
|  | } | 
|  |  | 
|  | #undef DO_SCALING | 
|  | } | 
|  |  | 
|  | /*!\brief Calculates RD Cost when the block uses Identity transform. | 
|  | * Note that thie function is only for low bit depth encoding, since it | 
|  | * is called in real-time mode for now, which sets high bit depth to 0: | 
|  | * -DCONFIG_AV1_HIGHBITDEPTH=0 | 
|  | * | 
|  | * \ingroup nonrd_mode_search | 
|  | * \callgraph | 
|  | * \callergraph | 
|  | * Calculates RD Cost. For low bit depth this function | 
|  | * uses low-precision set of functions (16-bit) and 32 bit for high bit depth | 
|  | * \param[in]    x              Pointer to structure holding all the data for | 
|  | the current macroblock | 
|  | * \param[in]    this_rdc       Pointer to calculated RD Cost | 
|  | * \param[in]    skippable      Pointer to a flag indicating possible tx skip | 
|  | * \param[in]    bsize          Current block size | 
|  | * \param[in]    tx_size        Transform size | 
|  | * | 
|  | * \remark Nothing is returned. Instead, calculated RD cost is placed to | 
|  | * \c this_rdc. \c skippable flag is set if all coefficients are zero. | 
|  | */ | 
|  | static void block_yrd_idtx(MACROBLOCK *x, RD_STATS *this_rdc, int *skippable, | 
|  | const BLOCK_SIZE bsize, const TX_SIZE tx_size) { | 
|  | MACROBLOCKD *xd = &x->e_mbd; | 
|  | const struct macroblockd_plane *pd = &xd->plane[0]; | 
|  | struct macroblock_plane *const p = &x->plane[0]; | 
|  | assert(bsize < BLOCK_SIZES_ALL); | 
|  | const int num_4x4_w = mi_size_wide[bsize]; | 
|  | const int num_4x4_h = mi_size_high[bsize]; | 
|  | const int step = 1 << (tx_size << 1); | 
|  | const int block_step = (1 << tx_size); | 
|  | const int max_blocks_wide = | 
|  | num_4x4_w + (xd->mb_to_right_edge >= 0 ? 0 : xd->mb_to_right_edge >> 5); | 
|  | const int max_blocks_high = | 
|  | num_4x4_h + (xd->mb_to_bottom_edge >= 0 ? 0 : xd->mb_to_bottom_edge >> 5); | 
|  | int eob_cost = 0; | 
|  | const int bw = 4 * num_4x4_w; | 
|  | const int bh = 4 * num_4x4_h; | 
|  | const int num_blk_skip_w = num_4x4_w >> 1; | 
|  | const int sh_blk_skip = 1; | 
|  | // Keep the intermediate value on the stack here. Writing directly to | 
|  | // skippable causes speed regression due to load-and-store issues in | 
|  | // update_yrd_loop_vars. | 
|  | int temp_skippable = 1; | 
|  | int tx_wd = 0; | 
|  | switch (tx_size) { | 
|  | case TX_64X64: | 
|  | assert(0);  // Not implemented | 
|  | break; | 
|  | case TX_32X32: | 
|  | assert(0);  // Not used | 
|  | break; | 
|  | case TX_16X16: tx_wd = 16; break; | 
|  | case TX_8X8: tx_wd = 8; break; | 
|  | default: | 
|  | assert(tx_size == TX_4X4); | 
|  | tx_wd = 4; | 
|  | break; | 
|  | } | 
|  | this_rdc->dist = 0; | 
|  | this_rdc->rate = 0; | 
|  | aom_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride, | 
|  | pd->dst.buf, pd->dst.stride); | 
|  | // Keep track of the row and column of the blocks we use so that we know | 
|  | // if we are in the unrestricted motion border. | 
|  | DECLARE_BLOCK_YRD_BUFFERS() | 
|  | DECLARE_BLOCK_YRD_VARS() | 
|  | for (int r = 0; r < max_blocks_high; r += block_step) { | 
|  | for (int c = 0, s = 0; c < max_blocks_wide; c += block_step, s += step) { | 
|  | DECLARE_LOOP_VARS_BLOCK_YRD() | 
|  | scale_square_buf_vals(low_coeff, tx_wd, src_diff, diff_stride); | 
|  | av1_quantize_lp(low_coeff, tx_wd * tx_wd, p->round_fp_QTX, | 
|  | p->quant_fp_QTX, low_qcoeff, low_dqcoeff, p->dequant_QTX, | 
|  | eob, scan_order->scan, scan_order->iscan); | 
|  | assert(*eob <= 1024); | 
|  | update_yrd_loop_vars(x, &temp_skippable, step, *eob, low_coeff, | 
|  | low_qcoeff, low_dqcoeff, this_rdc, &eob_cost, | 
|  | (r * num_blk_skip_w + c) >> sh_blk_skip); | 
|  | } | 
|  | } | 
|  | this_rdc->skip_txfm = *skippable = temp_skippable; | 
|  | if (this_rdc->sse < INT64_MAX) { | 
|  | this_rdc->sse = (this_rdc->sse << 6) >> 2; | 
|  | if (temp_skippable) { | 
|  | this_rdc->dist = 0; | 
|  | this_rdc->dist = this_rdc->sse; | 
|  | return; | 
|  | } | 
|  | } | 
|  | // If skippable is set, rate gets clobbered later. | 
|  | this_rdc->rate <<= (2 + AV1_PROB_COST_SHIFT); | 
|  | this_rdc->rate += (eob_cost << AV1_PROB_COST_SHIFT); | 
|  | } | 
|  |  | 
|  | static INLINE void init_mbmi(MB_MODE_INFO *mbmi, PREDICTION_MODE pred_mode, | 
|  | MV_REFERENCE_FRAME ref_frame0, | 
|  | MV_REFERENCE_FRAME ref_frame1, | 
|  | const AV1_COMMON *cm) { | 
|  | PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; | 
|  | mbmi->ref_mv_idx = 0; | 
|  | mbmi->mode = pred_mode; | 
|  | mbmi->uv_mode = UV_DC_PRED; | 
|  | mbmi->ref_frame[0] = ref_frame0; | 
|  | mbmi->ref_frame[1] = ref_frame1; | 
|  | pmi->palette_size[0] = 0; | 
|  | pmi->palette_size[1] = 0; | 
|  | mbmi->filter_intra_mode_info.use_filter_intra = 0; | 
|  | mbmi->mv[0].as_int = mbmi->mv[1].as_int = 0; | 
|  | mbmi->motion_mode = SIMPLE_TRANSLATION; | 
|  | mbmi->num_proj_ref = 1; | 
|  | mbmi->interintra_mode = 0; | 
|  | set_default_interp_filters(mbmi, cm->features.interp_filter); | 
|  | } | 
|  |  | 
|  | #if CONFIG_INTERNAL_STATS | 
|  | static void store_coding_context(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx, | 
|  | int mode_index) { | 
|  | #else | 
|  | static void store_coding_context(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) { | 
|  | #endif  // CONFIG_INTERNAL_STATS | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | TxfmSearchInfo *txfm_info = &x->txfm_search_info; | 
|  |  | 
|  | // Take a snapshot of the coding context so it can be | 
|  | // restored if we decide to encode this way | 
|  | ctx->rd_stats.skip_txfm = txfm_info->skip_txfm; | 
|  |  | 
|  | ctx->skippable = txfm_info->skip_txfm; | 
|  | #if CONFIG_INTERNAL_STATS | 
|  | ctx->best_mode_index = mode_index; | 
|  | #endif  // CONFIG_INTERNAL_STATS | 
|  | ctx->mic = *xd->mi[0]; | 
|  | ctx->skippable = txfm_info->skip_txfm; | 
|  | av1_copy_mbmi_ext_to_mbmi_ext_frame(&ctx->mbmi_ext_best, &x->mbmi_ext, | 
|  | av1_ref_frame_type(xd->mi[0]->ref_frame)); | 
|  | } | 
|  |  | 
|  | static int get_pred_buffer(PRED_BUFFER *p, int len) { | 
|  | for (int i = 0; i < len; i++) { | 
|  | if (!p[i].in_use) { | 
|  | p[i].in_use = 1; | 
|  | return i; | 
|  | } | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static void free_pred_buffer(PRED_BUFFER *p) { | 
|  | if (p != NULL) p->in_use = 0; | 
|  | } | 
|  |  | 
|  | static INLINE int get_drl_cost(const PREDICTION_MODE this_mode, | 
|  | const int ref_mv_idx, | 
|  | const MB_MODE_INFO_EXT *mbmi_ext, | 
|  | const int (*const drl_mode_cost0)[2], | 
|  | int8_t ref_frame_type) { | 
|  | int cost = 0; | 
|  | if (this_mode == NEWMV || this_mode == NEW_NEWMV) { | 
|  | for (int idx = 0; idx < 2; ++idx) { | 
|  | if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) { | 
|  | uint8_t drl_ctx = av1_drl_ctx(mbmi_ext->weight[ref_frame_type], idx); | 
|  | cost += drl_mode_cost0[drl_ctx][ref_mv_idx != idx]; | 
|  | if (ref_mv_idx == idx) return cost; | 
|  | } | 
|  | } | 
|  | return cost; | 
|  | } | 
|  |  | 
|  | if (have_nearmv_in_inter_mode(this_mode)) { | 
|  | for (int idx = 1; idx < 3; ++idx) { | 
|  | if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) { | 
|  | uint8_t drl_ctx = av1_drl_ctx(mbmi_ext->weight[ref_frame_type], idx); | 
|  | cost += drl_mode_cost0[drl_ctx][ref_mv_idx != (idx - 1)]; | 
|  | if (ref_mv_idx == (idx - 1)) return cost; | 
|  | } | 
|  | } | 
|  | return cost; | 
|  | } | 
|  | return cost; | 
|  | } | 
|  |  | 
|  | static int cost_mv_ref(const ModeCosts *const mode_costs, PREDICTION_MODE mode, | 
|  | int16_t mode_context) { | 
|  | if (is_inter_compound_mode(mode)) { | 
|  | return mode_costs | 
|  | ->inter_compound_mode_cost[mode_context][INTER_COMPOUND_OFFSET(mode)]; | 
|  | } | 
|  |  | 
|  | int mode_cost = 0; | 
|  | int16_t mode_ctx = mode_context & NEWMV_CTX_MASK; | 
|  |  | 
|  | assert(is_inter_mode(mode)); | 
|  |  | 
|  | if (mode == NEWMV) { | 
|  | mode_cost = mode_costs->newmv_mode_cost[mode_ctx][0]; | 
|  | return mode_cost; | 
|  | } else { | 
|  | mode_cost = mode_costs->newmv_mode_cost[mode_ctx][1]; | 
|  | mode_ctx = (mode_context >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK; | 
|  |  | 
|  | if (mode == GLOBALMV) { | 
|  | mode_cost += mode_costs->zeromv_mode_cost[mode_ctx][0]; | 
|  | return mode_cost; | 
|  | } else { | 
|  | mode_cost += mode_costs->zeromv_mode_cost[mode_ctx][1]; | 
|  | mode_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK; | 
|  | mode_cost += mode_costs->refmv_mode_cost[mode_ctx][mode != NEARESTMV]; | 
|  | return mode_cost; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void newmv_diff_bias(MACROBLOCKD *xd, PREDICTION_MODE this_mode, | 
|  | RD_STATS *this_rdc, BLOCK_SIZE bsize, int mv_row, | 
|  | int mv_col, int speed, uint32_t spatial_variance, | 
|  | CONTENT_STATE_SB content_state_sb) { | 
|  | // Bias against MVs associated with NEWMV mode that are very different from | 
|  | // top/left neighbors. | 
|  | if (this_mode == NEWMV) { | 
|  | int al_mv_average_row; | 
|  | int al_mv_average_col; | 
|  | int row_diff, col_diff; | 
|  | int above_mv_valid = 0; | 
|  | int left_mv_valid = 0; | 
|  | int above_row = INVALID_MV_ROW_COL, above_col = INVALID_MV_ROW_COL; | 
|  | int left_row = INVALID_MV_ROW_COL, left_col = INVALID_MV_ROW_COL; | 
|  | if (bsize >= BLOCK_64X64 && content_state_sb.source_sad_nonrd != kHighSad && | 
|  | spatial_variance < 300 && | 
|  | (mv_row > 16 || mv_row < -16 || mv_col > 16 || mv_col < -16)) { | 
|  | this_rdc->rdcost = this_rdc->rdcost << 2; | 
|  | return; | 
|  | } | 
|  | if (xd->above_mbmi) { | 
|  | above_mv_valid = xd->above_mbmi->mv[0].as_int != INVALID_MV; | 
|  | above_row = xd->above_mbmi->mv[0].as_mv.row; | 
|  | above_col = xd->above_mbmi->mv[0].as_mv.col; | 
|  | } | 
|  | if (xd->left_mbmi) { | 
|  | left_mv_valid = xd->left_mbmi->mv[0].as_int != INVALID_MV; | 
|  | left_row = xd->left_mbmi->mv[0].as_mv.row; | 
|  | left_col = xd->left_mbmi->mv[0].as_mv.col; | 
|  | } | 
|  | if (above_mv_valid && left_mv_valid) { | 
|  | al_mv_average_row = (above_row + left_row + 1) >> 1; | 
|  | al_mv_average_col = (above_col + left_col + 1) >> 1; | 
|  | } else if (above_mv_valid) { | 
|  | al_mv_average_row = above_row; | 
|  | al_mv_average_col = above_col; | 
|  | } else if (left_mv_valid) { | 
|  | al_mv_average_row = left_row; | 
|  | al_mv_average_col = left_col; | 
|  | } else { | 
|  | al_mv_average_row = al_mv_average_col = 0; | 
|  | } | 
|  | row_diff = al_mv_average_row - mv_row; | 
|  | col_diff = al_mv_average_col - mv_col; | 
|  | if (row_diff > 80 || row_diff < -80 || col_diff > 80 || col_diff < -80) { | 
|  | if (bsize >= BLOCK_32X32) | 
|  | this_rdc->rdcost = this_rdc->rdcost << 1; | 
|  | else | 
|  | this_rdc->rdcost = 5 * this_rdc->rdcost >> 2; | 
|  | } | 
|  | } else { | 
|  | // Bias for speed >= 8 for low spatial variance. | 
|  | if (speed >= 8 && spatial_variance < 150 && | 
|  | (mv_row > 64 || mv_row < -64 || mv_col > 64 || mv_col < -64)) | 
|  | this_rdc->rdcost = 5 * this_rdc->rdcost >> 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int64_t model_rd_for_sb_uv(AV1_COMP *cpi, BLOCK_SIZE plane_bsize, | 
|  | MACROBLOCK *x, MACROBLOCKD *xd, | 
|  | RD_STATS *this_rdc, int start_plane, | 
|  | int stop_plane) { | 
|  | // Note our transform coeffs are 8 times an orthogonal transform. | 
|  | // Hence quantizer step is also 8 times. To get effective quantizer | 
|  | // we need to divide by 8 before sending to modeling function. | 
|  | unsigned int sse; | 
|  | int rate; | 
|  | int64_t dist; | 
|  | int i; | 
|  | int64_t tot_sse = 0; | 
|  |  | 
|  | this_rdc->rate = 0; | 
|  | this_rdc->dist = 0; | 
|  | this_rdc->skip_txfm = 0; | 
|  |  | 
|  | for (i = start_plane; i <= stop_plane; ++i) { | 
|  | struct macroblock_plane *const p = &x->plane[i]; | 
|  | struct macroblockd_plane *const pd = &xd->plane[i]; | 
|  | const uint32_t dc_quant = p->dequant_QTX[0]; | 
|  | const uint32_t ac_quant = p->dequant_QTX[1]; | 
|  | const BLOCK_SIZE bs = plane_bsize; | 
|  | unsigned int var; | 
|  | if (!x->color_sensitivity[i - 1]) continue; | 
|  |  | 
|  | var = cpi->ppi->fn_ptr[bs].vf(p->src.buf, p->src.stride, pd->dst.buf, | 
|  | pd->dst.stride, &sse); | 
|  | assert(sse >= var); | 
|  | tot_sse += sse; | 
|  |  | 
|  | av1_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bs], | 
|  | dc_quant >> 3, &rate, &dist); | 
|  |  | 
|  | this_rdc->rate += rate >> 1; | 
|  | this_rdc->dist += dist << 3; | 
|  |  | 
|  | av1_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bs], ac_quant >> 3, | 
|  | &rate, &dist); | 
|  |  | 
|  | this_rdc->rate += rate; | 
|  | this_rdc->dist += dist << 4; | 
|  | } | 
|  |  | 
|  | if (this_rdc->rate == 0) { | 
|  | this_rdc->skip_txfm = 1; | 
|  | } | 
|  |  | 
|  | if (RDCOST(x->rdmult, this_rdc->rate, this_rdc->dist) >= | 
|  | RDCOST(x->rdmult, 0, tot_sse << 4)) { | 
|  | this_rdc->rate = 0; | 
|  | this_rdc->dist = tot_sse << 4; | 
|  | this_rdc->skip_txfm = 1; | 
|  | } | 
|  |  | 
|  | return tot_sse; | 
|  | } | 
|  |  | 
|  | /*!\cond */ | 
|  | struct estimate_block_intra_args { | 
|  | AV1_COMP *cpi; | 
|  | MACROBLOCK *x; | 
|  | PREDICTION_MODE mode; | 
|  | int skippable; | 
|  | RD_STATS *rdc; | 
|  | }; | 
|  | /*!\endcond */ | 
|  |  | 
|  | /*!\brief Estimation of RD cost of an intra mode for Non-RD optimized case. | 
|  | * | 
|  | * \ingroup nonrd_mode_search | 
|  | * \callgraph | 
|  | * \callergraph | 
|  | * Calculates RD Cost for an intra mode for a single TX block using Hadamard | 
|  | * transform. | 
|  | * \param[in]    plane          Color plane | 
|  | * \param[in]    block          Index of a TX block in a prediction block | 
|  | * \param[in]    row            Row of a current TX block | 
|  | * \param[in]    col            Column of a current TX block | 
|  | * \param[in]    plane_bsize    Block size of a current prediction block | 
|  | * \param[in]    tx_size        Transform size | 
|  | * \param[in]    arg            Pointer to a structure that holds parameters | 
|  | *                              for intra mode search | 
|  | * | 
|  | * \remark Nothing is returned. Instead, best mode and RD Cost of the best mode | 
|  | * are set in \c args->rdc and \c args->mode | 
|  | */ | 
|  | static void estimate_block_intra(int plane, int block, int row, int col, | 
|  | BLOCK_SIZE plane_bsize, TX_SIZE tx_size, | 
|  | void *arg) { | 
|  | struct estimate_block_intra_args *const args = arg; | 
|  | AV1_COMP *const cpi = args->cpi; | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | MACROBLOCK *const x = args->x; | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | struct macroblock_plane *const p = &x->plane[plane]; | 
|  | struct macroblockd_plane *const pd = &xd->plane[plane]; | 
|  | const BLOCK_SIZE bsize_tx = txsize_to_bsize[tx_size]; | 
|  | uint8_t *const src_buf_base = p->src.buf; | 
|  | uint8_t *const dst_buf_base = pd->dst.buf; | 
|  | const int64_t src_stride = p->src.stride; | 
|  | const int64_t dst_stride = pd->dst.stride; | 
|  | RD_STATS this_rdc; | 
|  |  | 
|  | (void)block; | 
|  | (void)plane_bsize; | 
|  |  | 
|  | av1_predict_intra_block_facade(cm, xd, plane, col, row, tx_size); | 
|  | av1_invalid_rd_stats(&this_rdc); | 
|  |  | 
|  | p->src.buf = &src_buf_base[4 * (row * src_stride + col)]; | 
|  | pd->dst.buf = &dst_buf_base[4 * (row * dst_stride + col)]; | 
|  |  | 
|  | if (plane == 0) { | 
|  | block_yrd(x, &this_rdc, &args->skippable, bsize_tx, | 
|  | AOMMIN(tx_size, TX_16X16), 0); | 
|  | } else { | 
|  | model_rd_for_sb_uv(cpi, bsize_tx, x, xd, &this_rdc, plane, plane); | 
|  | } | 
|  |  | 
|  | p->src.buf = src_buf_base; | 
|  | pd->dst.buf = dst_buf_base; | 
|  | args->rdc->rate += this_rdc.rate; | 
|  | args->rdc->dist += this_rdc.dist; | 
|  | } | 
|  |  | 
|  | static INLINE void update_thresh_freq_fact(AV1_COMP *cpi, MACROBLOCK *x, | 
|  | BLOCK_SIZE bsize, | 
|  | MV_REFERENCE_FRAME ref_frame, | 
|  | THR_MODES best_mode_idx, | 
|  | PREDICTION_MODE mode) { | 
|  | const THR_MODES thr_mode_idx = mode_idx[ref_frame][mode_offset(mode)]; | 
|  | const BLOCK_SIZE min_size = AOMMAX(bsize - 3, BLOCK_4X4); | 
|  | const BLOCK_SIZE max_size = AOMMIN(bsize + 6, BLOCK_128X128); | 
|  | for (BLOCK_SIZE bs = min_size; bs <= max_size; bs += 3) { | 
|  | int *freq_fact = &x->thresh_freq_fact[bs][thr_mode_idx]; | 
|  | if (thr_mode_idx == best_mode_idx) { | 
|  | *freq_fact -= (*freq_fact >> 4); | 
|  | } else { | 
|  | *freq_fact = | 
|  | AOMMIN(*freq_fact + RD_THRESH_INC, | 
|  | cpi->sf.inter_sf.adaptive_rd_thresh * RD_THRESH_MAX_FACT); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #if CONFIG_AV1_TEMPORAL_DENOISING | 
|  | static void av1_pickmode_ctx_den_update( | 
|  | AV1_PICKMODE_CTX_DEN *ctx_den, int64_t zero_last_cost_orig, | 
|  | unsigned int ref_frame_cost[REF_FRAMES], | 
|  | int_mv frame_mv[MB_MODE_COUNT][REF_FRAMES], int reuse_inter_pred, | 
|  | BEST_PICKMODE *bp) { | 
|  | ctx_den->zero_last_cost_orig = zero_last_cost_orig; | 
|  | ctx_den->ref_frame_cost = ref_frame_cost; | 
|  | ctx_den->frame_mv = frame_mv; | 
|  | ctx_den->reuse_inter_pred = reuse_inter_pred; | 
|  | ctx_den->best_tx_size = bp->best_tx_size; | 
|  | ctx_den->best_mode = bp->best_mode; | 
|  | ctx_den->best_ref_frame = bp->best_ref_frame; | 
|  | ctx_den->best_pred_filter = bp->best_pred_filter; | 
|  | ctx_den->best_mode_skip_txfm = bp->best_mode_skip_txfm; | 
|  | } | 
|  |  | 
|  | static void recheck_zeromv_after_denoising( | 
|  | AV1_COMP *cpi, MB_MODE_INFO *const mi, MACROBLOCK *x, MACROBLOCKD *const xd, | 
|  | AV1_DENOISER_DECISION decision, AV1_PICKMODE_CTX_DEN *ctx_den, | 
|  | struct buf_2d yv12_mb[4][MAX_MB_PLANE], RD_STATS *best_rdc, | 
|  | BEST_PICKMODE *best_pickmode, BLOCK_SIZE bsize, int mi_row, int mi_col) { | 
|  | // If INTRA or GOLDEN reference was selected, re-evaluate ZEROMV on | 
|  | // denoised result. Only do this under noise conditions, and if rdcost of | 
|  | // ZEROMV on original source is not significantly higher than rdcost of best | 
|  | // mode. | 
|  | if (cpi->noise_estimate.enabled && cpi->noise_estimate.level > kLow && | 
|  | ctx_den->zero_last_cost_orig < (best_rdc->rdcost << 3) && | 
|  | ((ctx_den->best_ref_frame == INTRA_FRAME && decision >= FILTER_BLOCK) || | 
|  | (ctx_den->best_ref_frame == GOLDEN_FRAME && | 
|  | cpi->svc.number_spatial_layers == 1 && | 
|  | decision == FILTER_ZEROMV_BLOCK))) { | 
|  | // Check if we should pick ZEROMV on denoised signal. | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | RD_STATS this_rdc; | 
|  | const ModeCosts *mode_costs = &x->mode_costs; | 
|  | TxfmSearchInfo *txfm_info = &x->txfm_search_info; | 
|  | MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext; | 
|  |  | 
|  | mi->mode = GLOBALMV; | 
|  | mi->ref_frame[0] = LAST_FRAME; | 
|  | mi->ref_frame[1] = NONE_FRAME; | 
|  | set_ref_ptrs(cm, xd, mi->ref_frame[0], NONE_FRAME); | 
|  | mi->mv[0].as_int = 0; | 
|  | mi->interp_filters = av1_broadcast_interp_filter(EIGHTTAP_REGULAR); | 
|  | xd->plane[0].pre[0] = yv12_mb[LAST_FRAME][0]; | 
|  | av1_enc_build_inter_predictor_y(xd, mi_row, mi_col); | 
|  | unsigned int var; | 
|  | model_rd_for_sb_y(cpi, bsize, x, xd, &this_rdc, &var, 1, NULL); | 
|  |  | 
|  | const int16_t mode_ctx = | 
|  | av1_mode_context_analyzer(mbmi_ext->mode_context, mi->ref_frame); | 
|  | this_rdc.rate += cost_mv_ref(mode_costs, GLOBALMV, mode_ctx); | 
|  |  | 
|  | this_rdc.rate += ctx_den->ref_frame_cost[LAST_FRAME]; | 
|  | this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist); | 
|  | txfm_info->skip_txfm = this_rdc.skip_txfm; | 
|  | // Don't switch to ZEROMV if the rdcost for ZEROMV on denoised source | 
|  | // is higher than best_ref mode (on original source). | 
|  | if (this_rdc.rdcost > best_rdc->rdcost) { | 
|  | this_rdc = *best_rdc; | 
|  | mi->mode = best_pickmode->best_mode; | 
|  | mi->ref_frame[0] = best_pickmode->best_ref_frame; | 
|  | set_ref_ptrs(cm, xd, mi->ref_frame[0], NONE_FRAME); | 
|  | mi->interp_filters = best_pickmode->best_pred_filter; | 
|  | if (best_pickmode->best_ref_frame == INTRA_FRAME) { | 
|  | mi->mv[0].as_int = INVALID_MV; | 
|  | } else { | 
|  | mi->mv[0].as_int = ctx_den | 
|  | ->frame_mv[best_pickmode->best_mode] | 
|  | [best_pickmode->best_ref_frame] | 
|  | .as_int; | 
|  | if (ctx_den->reuse_inter_pred) { | 
|  | xd->plane[0].pre[0] = yv12_mb[GOLDEN_FRAME][0]; | 
|  | av1_enc_build_inter_predictor_y(xd, mi_row, mi_col); | 
|  | } | 
|  | } | 
|  | mi->tx_size = best_pickmode->best_tx_size; | 
|  | txfm_info->skip_txfm = best_pickmode->best_mode_skip_txfm; | 
|  | } else { | 
|  | ctx_den->best_ref_frame = LAST_FRAME; | 
|  | *best_rdc = this_rdc; | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_AV1_TEMPORAL_DENOISING | 
|  |  | 
|  | #define FILTER_SEARCH_SIZE 2 | 
|  |  | 
|  | /*!\brief Searches for the best interpolation filter | 
|  | * | 
|  | * \ingroup nonrd_mode_search | 
|  | * \callgraph | 
|  | * \callergraph | 
|  | * Iterates through subset of possible interpolation filters (EIGHTTAP_REGULAR, | 
|  | * EIGTHTAP_SMOOTH, MULTITAP_SHARP, depending on FILTER_SEARCH_SIZE) and selects | 
|  | * the one that gives lowest RD cost. RD cost is calculated using curvfit model. | 
|  | * Support for dual filters (different filters in the x & y directions) is | 
|  | * allowed if sf.interp_sf.disable_dual_filter = 0. | 
|  | * | 
|  | * \param[in]    cpi                  Top-level encoder structure | 
|  | * \param[in]    x                    Pointer to structure holding all the | 
|  | *                                    data for the current macroblock | 
|  | * \param[in]    this_rdc             Pointer to calculated RD Cost | 
|  | * \param[in]    inter_pred_params_sr Pointer to structure holding parameters of | 
|  | inter prediction for single reference | 
|  | * \param[in]    mi_row               Row index in 4x4 units | 
|  | * \param[in]    mi_col               Column index in 4x4 units | 
|  | * \param[in]    tmp_buffer           Pointer to a temporary buffer for | 
|  | *                                    prediction re-use | 
|  | * \param[in]    bsize                Current block size | 
|  | * \param[in]    reuse_inter_pred     Flag, indicating prediction re-use | 
|  | * \param[out]   this_mode_pred       Pointer to store prediction buffer | 
|  | *                                    for prediction re-use | 
|  | * \param[out]   this_early_term      Flag, indicating that transform can be | 
|  | *                                    skipped | 
|  | * \param[out]   var                  The residue variance of the current | 
|  | *                                    predictor. | 
|  | * \param[in]    use_model_yrd_large  Flag, indicating special logic to handle | 
|  | *                                    large blocks | 
|  | * \param[in]    best_sse             Best sse so far. | 
|  | * \param[in]    comp_pred            Flag, indicating compound mode. | 
|  | * | 
|  | * \remark Nothing is returned. Instead, calculated RD cost is placed to | 
|  | * \c this_rdc and best filter is placed to \c mi->interp_filters. In case | 
|  | * \c reuse_inter_pred flag is set, this function also outputs | 
|  | * \c this_mode_pred. Also \c this_early_temp is set if transform can be | 
|  | * skipped | 
|  | */ | 
|  | static void search_filter_ref(AV1_COMP *cpi, MACROBLOCK *x, RD_STATS *this_rdc, | 
|  | InterPredParams *inter_pred_params_sr, int mi_row, | 
|  | int mi_col, PRED_BUFFER *tmp_buffer, | 
|  | BLOCK_SIZE bsize, int reuse_inter_pred, | 
|  | PRED_BUFFER **this_mode_pred, | 
|  | int *this_early_term, unsigned int *var, | 
|  | int use_model_yrd_large, int64_t best_sse, | 
|  | int comp_pred) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | struct macroblockd_plane *const pd = &xd->plane[0]; | 
|  | MB_MODE_INFO *const mi = xd->mi[0]; | 
|  | const int bw = block_size_wide[bsize]; | 
|  | int dim_factor = | 
|  | (cpi->sf.interp_sf.disable_dual_filter == 0) ? FILTER_SEARCH_SIZE : 1; | 
|  | RD_STATS pf_rd_stats[FILTER_SEARCH_SIZE * FILTER_SEARCH_SIZE] = { 0 }; | 
|  | TX_SIZE pf_tx_size[FILTER_SEARCH_SIZE * FILTER_SEARCH_SIZE] = { 0 }; | 
|  | PRED_BUFFER *current_pred = *this_mode_pred; | 
|  | int best_skip = 0; | 
|  | int best_early_term = 0; | 
|  | int64_t best_cost = INT64_MAX; | 
|  | int best_filter_index = -1; | 
|  |  | 
|  | SubpelParams subpel_params; | 
|  | // Initialize inter prediction params at mode level for single reference | 
|  | // mode. | 
|  | if (!comp_pred) | 
|  | init_inter_mode_params(&mi->mv[0].as_mv, inter_pred_params_sr, | 
|  | &subpel_params, xd->block_ref_scale_factors[0], | 
|  | pd->pre->width, pd->pre->height); | 
|  | for (int i = 0; i < FILTER_SEARCH_SIZE * FILTER_SEARCH_SIZE; ++i) { | 
|  | int64_t cost; | 
|  | if (cpi->sf.interp_sf.disable_dual_filter && | 
|  | filters_ref_set[i].filter_x != filters_ref_set[i].filter_y) | 
|  | continue; | 
|  | mi->interp_filters.as_filters.x_filter = filters_ref_set[i].filter_x; | 
|  | mi->interp_filters.as_filters.y_filter = filters_ref_set[i].filter_y; | 
|  | if (!comp_pred) | 
|  | av1_enc_build_inter_predictor_y_nonrd(xd, inter_pred_params_sr, | 
|  | &subpel_params); | 
|  | else | 
|  | av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0, 0); | 
|  | unsigned int curr_var = UINT_MAX; | 
|  | if (use_model_yrd_large) | 
|  | model_skip_for_sb_y_large(cpi, bsize, mi_row, mi_col, x, xd, | 
|  | &pf_rd_stats[i], this_early_term, 1, best_sse, | 
|  | &curr_var, UINT_MAX); | 
|  | else | 
|  | model_rd_for_sb_y(cpi, bsize, x, xd, &pf_rd_stats[i], &curr_var, 1, NULL); | 
|  | pf_rd_stats[i].rate += av1_get_switchable_rate( | 
|  | x, xd, cm->features.interp_filter, cm->seq_params->enable_dual_filter); | 
|  | cost = RDCOST(x->rdmult, pf_rd_stats[i].rate, pf_rd_stats[i].dist); | 
|  | pf_tx_size[i] = mi->tx_size; | 
|  | if (cost < best_cost) { | 
|  | *var = curr_var; | 
|  | best_filter_index = i; | 
|  | best_cost = cost; | 
|  | best_skip = pf_rd_stats[i].skip_txfm; | 
|  | best_early_term = *this_early_term; | 
|  | if (reuse_inter_pred) { | 
|  | if (*this_mode_pred != current_pred) { | 
|  | free_pred_buffer(*this_mode_pred); | 
|  | *this_mode_pred = current_pred; | 
|  | } | 
|  | current_pred = &tmp_buffer[get_pred_buffer(tmp_buffer, 3)]; | 
|  | pd->dst.buf = current_pred->data; | 
|  | pd->dst.stride = bw; | 
|  | } | 
|  | } | 
|  | } | 
|  | assert(best_filter_index >= 0 && | 
|  | best_filter_index < dim_factor * FILTER_SEARCH_SIZE); | 
|  | if (reuse_inter_pred && *this_mode_pred != current_pred) | 
|  | free_pred_buffer(current_pred); | 
|  |  | 
|  | mi->interp_filters.as_filters.x_filter = | 
|  | filters_ref_set[best_filter_index].filter_x; | 
|  | mi->interp_filters.as_filters.y_filter = | 
|  | filters_ref_set[best_filter_index].filter_y; | 
|  | mi->tx_size = pf_tx_size[best_filter_index]; | 
|  | this_rdc->rate = pf_rd_stats[best_filter_index].rate; | 
|  | this_rdc->dist = pf_rd_stats[best_filter_index].dist; | 
|  | this_rdc->sse = pf_rd_stats[best_filter_index].sse; | 
|  | this_rdc->skip_txfm = (best_skip || best_early_term); | 
|  | *this_early_term = best_early_term; | 
|  | if (reuse_inter_pred) { | 
|  | pd->dst.buf = (*this_mode_pred)->data; | 
|  | pd->dst.stride = (*this_mode_pred)->stride; | 
|  | } else if (best_filter_index < dim_factor * FILTER_SEARCH_SIZE - 1) { | 
|  | if (!comp_pred) | 
|  | av1_enc_build_inter_predictor_y_nonrd(xd, inter_pred_params_sr, | 
|  | &subpel_params); | 
|  | else | 
|  | av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0, 0); | 
|  | } | 
|  | } | 
|  | #if !CONFIG_REALTIME_ONLY | 
|  | #define MOTION_MODE_SEARCH_SIZE 2 | 
|  |  | 
|  | static AOM_INLINE int is_warped_mode_allowed(const AV1_COMP *cpi, | 
|  | MACROBLOCK *const x, | 
|  | const MB_MODE_INFO *mbmi) { | 
|  | const FeatureFlags *const features = &cpi->common.features; | 
|  | const MACROBLOCKD *xd = &x->e_mbd; | 
|  |  | 
|  | if (cpi->sf.inter_sf.extra_prune_warped) return 0; | 
|  | if (has_second_ref(mbmi)) return 0; | 
|  | MOTION_MODE last_motion_mode_allowed = SIMPLE_TRANSLATION; | 
|  |  | 
|  | if (features->switchable_motion_mode) { | 
|  | // Determine which motion modes to search if more than SIMPLE_TRANSLATION | 
|  | // is allowed. | 
|  | last_motion_mode_allowed = motion_mode_allowed( | 
|  | xd->global_motion, xd, mbmi, features->allow_warped_motion); | 
|  | } | 
|  |  | 
|  | if (last_motion_mode_allowed == WARPED_CAUSAL) { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void calc_num_proj_ref(AV1_COMP *cpi, MACROBLOCK *x, MB_MODE_INFO *mi) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | const FeatureFlags *const features = &cm->features; | 
|  |  | 
|  | mi->num_proj_ref = 1; | 
|  | WARP_SAMPLE_INFO *const warp_sample_info = | 
|  | &x->warp_sample_info[mi->ref_frame[0]]; | 
|  | int *pts0 = warp_sample_info->pts; | 
|  | int *pts_inref0 = warp_sample_info->pts_inref; | 
|  | MOTION_MODE last_motion_mode_allowed = SIMPLE_TRANSLATION; | 
|  |  | 
|  | if (features->switchable_motion_mode) { | 
|  | // Determine which motion modes to search if more than SIMPLE_TRANSLATION | 
|  | // is allowed. | 
|  | last_motion_mode_allowed = motion_mode_allowed( | 
|  | xd->global_motion, xd, mi, features->allow_warped_motion); | 
|  | } | 
|  |  | 
|  | if (last_motion_mode_allowed == WARPED_CAUSAL) { | 
|  | if (warp_sample_info->num < 0) { | 
|  | warp_sample_info->num = av1_findSamples(cm, xd, pts0, pts_inref0); | 
|  | } | 
|  | mi->num_proj_ref = warp_sample_info->num; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void search_motion_mode(AV1_COMP *cpi, MACROBLOCK *x, RD_STATS *this_rdc, | 
|  | int mi_row, int mi_col, BLOCK_SIZE bsize, | 
|  | int *this_early_term, int use_model_yrd_large, | 
|  | int *rate_mv, int64_t best_sse) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | const FeatureFlags *const features = &cm->features; | 
|  | MB_MODE_INFO *const mi = xd->mi[0]; | 
|  | RD_STATS pf_rd_stats[MOTION_MODE_SEARCH_SIZE] = { 0 }; | 
|  | int best_skip = 0; | 
|  | int best_early_term = 0; | 
|  | int64_t best_cost = INT64_MAX; | 
|  | int best_mode_index = -1; | 
|  | const int interp_filter = features->interp_filter; | 
|  |  | 
|  | const MOTION_MODE motion_modes[MOTION_MODE_SEARCH_SIZE] = { | 
|  | SIMPLE_TRANSLATION, WARPED_CAUSAL | 
|  | }; | 
|  | int mode_search_size = is_warped_mode_allowed(cpi, x, mi) ? 2 : 1; | 
|  |  | 
|  | WARP_SAMPLE_INFO *const warp_sample_info = | 
|  | &x->warp_sample_info[mi->ref_frame[0]]; | 
|  | int *pts0 = warp_sample_info->pts; | 
|  | int *pts_inref0 = warp_sample_info->pts_inref; | 
|  |  | 
|  | const int total_samples = mi->num_proj_ref; | 
|  | if (total_samples == 0) { | 
|  | // Do not search WARPED_CAUSAL if there are no samples to use to determine | 
|  | // warped parameters. | 
|  | mode_search_size = 1; | 
|  | } | 
|  |  | 
|  | const MB_MODE_INFO base_mbmi = *mi; | 
|  | MB_MODE_INFO best_mbmi; | 
|  |  | 
|  | for (int i = 0; i < mode_search_size; ++i) { | 
|  | int64_t cost = INT64_MAX; | 
|  | MOTION_MODE motion_mode = motion_modes[i]; | 
|  | *mi = base_mbmi; | 
|  | mi->motion_mode = motion_mode; | 
|  | if (motion_mode == SIMPLE_TRANSLATION) { | 
|  | mi->interp_filters = av1_broadcast_interp_filter(EIGHTTAP_REGULAR); | 
|  |  | 
|  | av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0, 0); | 
|  | if (use_model_yrd_large) | 
|  | model_skip_for_sb_y_large(cpi, bsize, mi_row, mi_col, x, xd, | 
|  | &pf_rd_stats[i], this_early_term, 1, best_sse, | 
|  | NULL, UINT_MAX); | 
|  | else | 
|  | model_rd_for_sb_y(cpi, bsize, x, xd, &pf_rd_stats[i], NULL, 1, NULL); | 
|  | pf_rd_stats[i].rate += | 
|  | av1_get_switchable_rate(x, xd, cm->features.interp_filter, | 
|  | cm->seq_params->enable_dual_filter); | 
|  | cost = RDCOST(x->rdmult, pf_rd_stats[i].rate, pf_rd_stats[i].dist); | 
|  | } else if (motion_mode == WARPED_CAUSAL) { | 
|  | int pts[SAMPLES_ARRAY_SIZE], pts_inref[SAMPLES_ARRAY_SIZE]; | 
|  | const ModeCosts *mode_costs = &x->mode_costs; | 
|  | mi->wm_params.wmtype = DEFAULT_WMTYPE; | 
|  | mi->interp_filters = | 
|  | av1_broadcast_interp_filter(av1_unswitchable_filter(interp_filter)); | 
|  |  | 
|  | memcpy(pts, pts0, total_samples * 2 * sizeof(*pts0)); | 
|  | memcpy(pts_inref, pts_inref0, total_samples * 2 * sizeof(*pts_inref0)); | 
|  | // Select the samples according to motion vector difference | 
|  | if (mi->num_proj_ref > 1) { | 
|  | mi->num_proj_ref = av1_selectSamples(&mi->mv[0].as_mv, pts, pts_inref, | 
|  | mi->num_proj_ref, bsize); | 
|  | } | 
|  |  | 
|  | // Compute the warped motion parameters with a least squares fit | 
|  | //  using the collected samples | 
|  | if (!av1_find_projection(mi->num_proj_ref, pts, pts_inref, bsize, | 
|  | mi->mv[0].as_mv.row, mi->mv[0].as_mv.col, | 
|  | &mi->wm_params, mi_row, mi_col)) { | 
|  | if (mi->mode == NEWMV) { | 
|  | const int_mv mv0 = mi->mv[0]; | 
|  | const WarpedMotionParams wm_params0 = mi->wm_params; | 
|  | const int num_proj_ref0 = mi->num_proj_ref; | 
|  |  | 
|  | const int_mv ref_mv = av1_get_ref_mv(x, 0); | 
|  | SUBPEL_MOTION_SEARCH_PARAMS ms_params; | 
|  | av1_make_default_subpel_ms_params(&ms_params, cpi, x, bsize, | 
|  | &ref_mv.as_mv, NULL); | 
|  |  | 
|  | // Refine MV in a small range. | 
|  | av1_refine_warped_mv(xd, cm, &ms_params, bsize, pts0, pts_inref0, | 
|  | total_samples); | 
|  | if (mi->mv[0].as_int == ref_mv.as_int) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (mv0.as_int != mi->mv[0].as_int) { | 
|  | // Keep the refined MV and WM parameters. | 
|  | int tmp_rate_mv = av1_mv_bit_cost( | 
|  | &mi->mv[0].as_mv, &ref_mv.as_mv, x->mv_costs->nmv_joint_cost, | 
|  | x->mv_costs->mv_cost_stack, MV_COST_WEIGHT); | 
|  | *rate_mv = tmp_rate_mv; | 
|  | } else { | 
|  | // Restore the old MV and WM parameters. | 
|  | mi->mv[0] = mv0; | 
|  | mi->wm_params = wm_params0; | 
|  | mi->num_proj_ref = num_proj_ref0; | 
|  | } | 
|  | } | 
|  | // Build the warped predictor | 
|  | av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0, | 
|  | av1_num_planes(cm) - 1); | 
|  | if (use_model_yrd_large) | 
|  | model_skip_for_sb_y_large(cpi, bsize, mi_row, mi_col, x, xd, | 
|  | &pf_rd_stats[i], this_early_term, 1, | 
|  | best_sse, NULL, UINT_MAX); | 
|  | else | 
|  | model_rd_for_sb_y(cpi, bsize, x, xd, &pf_rd_stats[i], NULL, 1, NULL); | 
|  |  | 
|  | pf_rd_stats[i].rate += | 
|  | mode_costs->motion_mode_cost[bsize][mi->motion_mode]; | 
|  | cost = RDCOST(x->rdmult, pf_rd_stats[i].rate, pf_rd_stats[i].dist); | 
|  | } else { | 
|  | cost = INT64_MAX; | 
|  | } | 
|  | } | 
|  | if (cost < best_cost) { | 
|  | best_mode_index = i; | 
|  | best_cost = cost; | 
|  | best_skip = pf_rd_stats[i].skip_txfm; | 
|  | best_early_term = *this_early_term; | 
|  | best_mbmi = *mi; | 
|  | } | 
|  | } | 
|  | assert(best_mode_index >= 0 && best_mode_index < FILTER_SEARCH_SIZE); | 
|  |  | 
|  | *mi = best_mbmi; | 
|  | this_rdc->rate = pf_rd_stats[best_mode_index].rate; | 
|  | this_rdc->dist = pf_rd_stats[best_mode_index].dist; | 
|  | this_rdc->sse = pf_rd_stats[best_mode_index].sse; | 
|  | this_rdc->skip_txfm = (best_skip || best_early_term); | 
|  | *this_early_term = best_early_term; | 
|  | if (best_mode_index < FILTER_SEARCH_SIZE - 1) { | 
|  | av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0, 0); | 
|  | } | 
|  | } | 
|  | #endif  // !CONFIG_REALTIME_ONLY | 
|  |  | 
|  | #define COLLECT_PICK_MODE_STAT 0 | 
|  | #define COLLECT_NON_SQR_STAT 0 | 
|  |  | 
|  | #if COLLECT_PICK_MODE_STAT | 
|  | #include "aom_ports/aom_timer.h" | 
|  | typedef struct _mode_search_stat { | 
|  | int32_t num_blocks[BLOCK_SIZES]; | 
|  | int64_t total_block_times[BLOCK_SIZES]; | 
|  | int32_t num_searches[BLOCK_SIZES][MB_MODE_COUNT]; | 
|  | int32_t num_nonskipped_searches[BLOCK_SIZES][MB_MODE_COUNT]; | 
|  | int64_t search_times[BLOCK_SIZES][MB_MODE_COUNT]; | 
|  | int64_t nonskipped_search_times[BLOCK_SIZES][MB_MODE_COUNT]; | 
|  | int64_t ms_time[BLOCK_SIZES][MB_MODE_COUNT]; | 
|  | int64_t ifs_time[BLOCK_SIZES][MB_MODE_COUNT]; | 
|  | int64_t model_rd_time[BLOCK_SIZES][MB_MODE_COUNT]; | 
|  | int64_t txfm_time[BLOCK_SIZES][MB_MODE_COUNT]; | 
|  | struct aom_usec_timer timer1; | 
|  | struct aom_usec_timer timer2; | 
|  | struct aom_usec_timer bsize_timer; | 
|  | } mode_search_stat; | 
|  |  | 
|  | static mode_search_stat ms_stat; | 
|  |  | 
|  | static AOM_INLINE void print_stage_time(const char *stage_name, | 
|  | int64_t stage_time, | 
|  | int64_t total_time) { | 
|  | printf("    %s: %ld (%f%%)\n", stage_name, stage_time, | 
|  | 100 * stage_time / (float)total_time); | 
|  | } | 
|  |  | 
|  | static void print_time(const mode_search_stat *const ms_stat, | 
|  | const BLOCK_SIZE bsize, const int mi_rows, | 
|  | const int mi_cols, const int mi_row, const int mi_col) { | 
|  | if ((mi_row + mi_size_high[bsize] >= mi_rows) && | 
|  | (mi_col + mi_size_wide[bsize] >= mi_cols)) { | 
|  | int64_t total_time = 0l; | 
|  | int32_t total_blocks = 0; | 
|  | for (BLOCK_SIZE bs = 0; bs < BLOCK_SIZES; bs++) { | 
|  | total_time += ms_stat->total_block_times[bs]; | 
|  | total_blocks += ms_stat->num_blocks[bs]; | 
|  | } | 
|  |  | 
|  | printf("\n"); | 
|  | for (BLOCK_SIZE bs = 0; bs < BLOCK_SIZES; bs++) { | 
|  | if (ms_stat->num_blocks[bs] == 0) { | 
|  | continue; | 
|  | } | 
|  | if (!COLLECT_NON_SQR_STAT && block_size_wide[bs] != block_size_high[bs]) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | printf("BLOCK_%dX%d Num %d, Time: %ld (%f%%), Avg_time %f:\n", | 
|  | block_size_wide[bs], block_size_high[bs], ms_stat->num_blocks[bs], | 
|  | ms_stat->total_block_times[bs], | 
|  | 100 * ms_stat->total_block_times[bs] / (float)total_time, | 
|  | (float)ms_stat->total_block_times[bs] / ms_stat->num_blocks[bs]); | 
|  | for (int j = 0; j < MB_MODE_COUNT; j++) { | 
|  | if (ms_stat->nonskipped_search_times[bs][j] == 0) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | int64_t total_mode_time = ms_stat->nonskipped_search_times[bs][j]; | 
|  | printf("  Mode %d, %d/%d tps %f\n", j, | 
|  | ms_stat->num_nonskipped_searches[bs][j], | 
|  | ms_stat->num_searches[bs][j], | 
|  | ms_stat->num_nonskipped_searches[bs][j] > 0 | 
|  | ? (float)ms_stat->nonskipped_search_times[bs][j] / | 
|  | ms_stat->num_nonskipped_searches[bs][j] | 
|  | : 0l); | 
|  | if (j >= INTER_MODE_START) { | 
|  | total_mode_time = ms_stat->ms_time[bs][j] + ms_stat->ifs_time[bs][j] + | 
|  | ms_stat->model_rd_time[bs][j] + | 
|  | ms_stat->txfm_time[bs][j]; | 
|  | print_stage_time("Motion Search Time", ms_stat->ms_time[bs][j], | 
|  | total_time); | 
|  | print_stage_time("Filter Search Time", ms_stat->ifs_time[bs][j], | 
|  | total_time); | 
|  | print_stage_time("Model    RD   Time", ms_stat->model_rd_time[bs][j], | 
|  | total_time); | 
|  | print_stage_time("Tranfm Search Time", ms_stat->txfm_time[bs][j], | 
|  | total_time); | 
|  | } | 
|  | print_stage_time("Total  Mode   Time", total_mode_time, total_time); | 
|  | } | 
|  | printf("\n"); | 
|  | } | 
|  | printf("Total time = %ld. Total blocks = %d\n", total_time, total_blocks); | 
|  | } | 
|  | } | 
|  | #endif  // COLLECT_PICK_MODE_STAT | 
|  |  | 
|  | static void compute_intra_yprediction(const AV1_COMMON *cm, | 
|  | PREDICTION_MODE mode, BLOCK_SIZE bsize, | 
|  | MACROBLOCK *x, MACROBLOCKD *xd) { | 
|  | const SequenceHeader *seq_params = cm->seq_params; | 
|  | struct macroblockd_plane *const pd = &xd->plane[0]; | 
|  | struct macroblock_plane *const p = &x->plane[0]; | 
|  | uint8_t *const src_buf_base = p->src.buf; | 
|  | uint8_t *const dst_buf_base = pd->dst.buf; | 
|  | const int src_stride = p->src.stride; | 
|  | const int dst_stride = pd->dst.stride; | 
|  | int plane = 0; | 
|  | int row, col; | 
|  | // block and transform sizes, in number of 4x4 blocks log 2 ("*_b") | 
|  | // 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8 | 
|  | // transform size varies per plane, look it up in a common way. | 
|  | const TX_SIZE tx_size = max_txsize_lookup[bsize]; | 
|  | const BLOCK_SIZE plane_bsize = | 
|  | get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); | 
|  | // If mb_to_right_edge is < 0 we are in a situation in which | 
|  | // the current block size extends into the UMV and we won't | 
|  | // visit the sub blocks that are wholly within the UMV. | 
|  | const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); | 
|  | const int max_blocks_high = max_block_high(xd, plane_bsize, plane); | 
|  | // Keep track of the row and column of the blocks we use so that we know | 
|  | // if we are in the unrestricted motion border. | 
|  | for (row = 0; row < max_blocks_high; row += (1 << tx_size)) { | 
|  | // Skip visiting the sub blocks that are wholly within the UMV. | 
|  | for (col = 0; col < max_blocks_wide; col += (1 << tx_size)) { | 
|  | p->src.buf = &src_buf_base[4 * (row * (int64_t)src_stride + col)]; | 
|  | pd->dst.buf = &dst_buf_base[4 * (row * (int64_t)dst_stride + col)]; | 
|  | av1_predict_intra_block( | 
|  | xd, seq_params->sb_size, seq_params->enable_intra_edge_filter, | 
|  | block_size_wide[bsize], block_size_high[bsize], tx_size, mode, 0, 0, | 
|  | FILTER_INTRA_MODES, pd->dst.buf, dst_stride, pd->dst.buf, dst_stride, | 
|  | 0, 0, plane); | 
|  | } | 
|  | } | 
|  | p->src.buf = src_buf_base; | 
|  | pd->dst.buf = dst_buf_base; | 
|  | } | 
|  |  | 
|  | void av1_nonrd_pick_intra_mode(AV1_COMP *cpi, MACROBLOCK *x, RD_STATS *rd_cost, | 
|  | BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | MB_MODE_INFO *const mi = xd->mi[0]; | 
|  | RD_STATS this_rdc, best_rdc; | 
|  | struct estimate_block_intra_args args = { cpi, x, DC_PRED, 1, 0 }; | 
|  | const TxfmSearchParams *txfm_params = &x->txfm_search_params; | 
|  | const TX_SIZE intra_tx_size = | 
|  | AOMMIN(max_txsize_lookup[bsize], | 
|  | tx_mode_to_biggest_tx_size[txfm_params->tx_mode_search_type]); | 
|  | int *bmode_costs; | 
|  | PREDICTION_MODE best_mode = DC_PRED; | 
|  | const MB_MODE_INFO *above_mi = xd->above_mbmi; | 
|  | const MB_MODE_INFO *left_mi = xd->left_mbmi; | 
|  | const PREDICTION_MODE A = av1_above_block_mode(above_mi); | 
|  | const PREDICTION_MODE L = av1_left_block_mode(left_mi); | 
|  | const int above_ctx = intra_mode_context[A]; | 
|  | const int left_ctx = intra_mode_context[L]; | 
|  | bmode_costs = x->mode_costs.y_mode_costs[above_ctx][left_ctx]; | 
|  |  | 
|  | av1_invalid_rd_stats(&best_rdc); | 
|  | av1_invalid_rd_stats(&this_rdc); | 
|  |  | 
|  | init_mbmi(mi, DC_PRED, INTRA_FRAME, NONE_FRAME, cm); | 
|  | mi->mv[0].as_int = mi->mv[1].as_int = INVALID_MV; | 
|  |  | 
|  | // Change the limit of this loop to add other intra prediction | 
|  | // mode tests. | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | PREDICTION_MODE this_mode = intra_mode_list[i]; | 
|  |  | 
|  | // As per the statistics generated for intra mode evaluation in the nonrd | 
|  | // path, it is found that the probability of H_PRED mode being the winner is | 
|  | // very less when the best mode so far is V_PRED (out of DC_PRED and | 
|  | // V_PRED). If V_PRED is the winner mode out of DC_PRED and V_PRED, it could | 
|  | // imply the presence of a vertically dominant pattern. Hence, H_PRED mode | 
|  | // is not evaluated. | 
|  | if (cpi->sf.rt_sf.prune_h_pred_using_best_mode_so_far && | 
|  | this_mode == H_PRED && best_mode == V_PRED) | 
|  | continue; | 
|  |  | 
|  | this_rdc.dist = this_rdc.rate = 0; | 
|  | args.mode = this_mode; | 
|  | args.skippable = 1; | 
|  | args.rdc = &this_rdc; | 
|  | mi->tx_size = intra_tx_size; | 
|  | mi->mode = this_mode; | 
|  | av1_foreach_transformed_block_in_plane(xd, bsize, 0, estimate_block_intra, | 
|  | &args); | 
|  | const int skip_ctx = av1_get_skip_txfm_context(xd); | 
|  | if (args.skippable) { | 
|  | this_rdc.rate = x->mode_costs.skip_txfm_cost[skip_ctx][1]; | 
|  | } else { | 
|  | this_rdc.rate += x->mode_costs.skip_txfm_cost[skip_ctx][0]; | 
|  | } | 
|  | this_rdc.rate += bmode_costs[this_mode]; | 
|  | this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist); | 
|  |  | 
|  | if (this_rdc.rdcost < best_rdc.rdcost) { | 
|  | best_rdc = this_rdc; | 
|  | best_mode = this_mode; | 
|  | if (!this_rdc.skip_txfm) { | 
|  | memset(ctx->blk_skip, 0, | 
|  | sizeof(x->txfm_search_info.blk_skip[0]) * ctx->num_4x4_blk); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | mi->mode = best_mode; | 
|  | // Keep DC for UV since mode test is based on Y channel only. | 
|  | mi->uv_mode = UV_DC_PRED; | 
|  | *rd_cost = best_rdc; | 
|  |  | 
|  | #if CONFIG_INTERNAL_STATS | 
|  | store_coding_context(x, ctx, mi->mode); | 
|  | #else | 
|  | store_coding_context(x, ctx); | 
|  | #endif  // CONFIG_INTERNAL_STATS | 
|  | } | 
|  |  | 
|  | static AOM_INLINE int is_same_gf_and_last_scale(AV1_COMMON *cm) { | 
|  | struct scale_factors *const sf_last = get_ref_scale_factors(cm, LAST_FRAME); | 
|  | struct scale_factors *const sf_golden = | 
|  | get_ref_scale_factors(cm, GOLDEN_FRAME); | 
|  | return ((sf_last->x_scale_fp == sf_golden->x_scale_fp) && | 
|  | (sf_last->y_scale_fp == sf_golden->y_scale_fp)); | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void get_ref_frame_use_mask(AV1_COMP *cpi, MACROBLOCK *x, | 
|  | MB_MODE_INFO *mi, int mi_row, | 
|  | int mi_col, int bsize, | 
|  | int gf_temporal_ref, | 
|  | int use_ref_frame[], | 
|  | int *force_skip_low_temp_var) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | const struct segmentation *const seg = &cm->seg; | 
|  | const int is_small_sb = (cm->seq_params->sb_size == BLOCK_64X64); | 
|  |  | 
|  | // When the ref_frame_config is used to set the reference frame structure | 
|  | // then the usage of alt_ref is determined by the ref_frame_flags | 
|  | // (and not the speed feature use_nonrd_altref_frame). | 
|  | int use_alt_ref_frame = cpi->ppi->rtc_ref.set_ref_frame_config || | 
|  | cpi->sf.rt_sf.use_nonrd_altref_frame; | 
|  |  | 
|  | int use_golden_ref_frame = 1; | 
|  | int use_last_ref_frame = 1; | 
|  |  | 
|  | // When the ref_frame_config is used to set the reference frame structure: | 
|  | // check if LAST is used as a reference. And only remove golden and altref | 
|  | // references below if last is used as a reference. | 
|  | if (cpi->ppi->rtc_ref.set_ref_frame_config) | 
|  | use_last_ref_frame = | 
|  | cpi->ref_frame_flags & AOM_LAST_FLAG ? use_last_ref_frame : 0; | 
|  |  | 
|  | // frame_since_golden is not used when user sets the referene structure. | 
|  | if (!cpi->ppi->rtc_ref.set_ref_frame_config && use_last_ref_frame && | 
|  | cpi->rc.frames_since_golden == 0 && gf_temporal_ref) { | 
|  | use_golden_ref_frame = 0; | 
|  | } | 
|  |  | 
|  | if (use_last_ref_frame && cpi->sf.rt_sf.short_circuit_low_temp_var && | 
|  | x->nonrd_prune_ref_frame_search) { | 
|  | if (is_small_sb) | 
|  | *force_skip_low_temp_var = av1_get_force_skip_low_temp_var_small_sb( | 
|  | &x->part_search_info.variance_low[0], mi_row, mi_col, bsize); | 
|  | else | 
|  | *force_skip_low_temp_var = av1_get_force_skip_low_temp_var( | 
|  | &x->part_search_info.variance_low[0], mi_row, mi_col, bsize); | 
|  | // If force_skip_low_temp_var is set, skip golden reference. | 
|  | if (*force_skip_low_temp_var) { | 
|  | use_golden_ref_frame = 0; | 
|  | use_alt_ref_frame = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (use_last_ref_frame && | 
|  | (x->nonrd_prune_ref_frame_search > 2 || x->force_zeromv_skip_for_blk || | 
|  | (x->nonrd_prune_ref_frame_search > 1 && bsize > BLOCK_64X64))) { | 
|  | use_golden_ref_frame = 0; | 
|  | use_alt_ref_frame = 0; | 
|  | } | 
|  |  | 
|  | if (segfeature_active(seg, mi->segment_id, SEG_LVL_REF_FRAME) && | 
|  | get_segdata(seg, mi->segment_id, SEG_LVL_REF_FRAME) == GOLDEN_FRAME) { | 
|  | use_golden_ref_frame = 1; | 
|  | use_alt_ref_frame = 0; | 
|  | } | 
|  |  | 
|  | // Skip golden reference if color is set, on flat blocks with motion. | 
|  | // For screen: always skip golden (if color_sensitivity_sb_g is set) | 
|  | // except when x->nonrd_prune_ref_frame_search = 0. This latter flag | 
|  | // may be set in the variance partition when golden is a much better | 
|  | // reference than last, in which case it may not be worth skipping | 
|  | // golden completely. | 
|  | if (((cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN && | 
|  | x->nonrd_prune_ref_frame_search != 0) || | 
|  | (x->source_variance < 500 && | 
|  | x->content_state_sb.source_sad_nonrd > kLowSad)) && | 
|  | (x->color_sensitivity_sb_g[0] == 1 || x->color_sensitivity_sb_g[1] == 1)) | 
|  | use_golden_ref_frame = 0; | 
|  |  | 
|  | // For non-screen: if golden and altref are not being selected as references | 
|  | // (use_golden_ref_frame/use_alt_ref_frame = 0) check to allow golden back | 
|  | // based on the sad of nearest/nearmv of LAST ref. If this block sad is large, | 
|  | // keep golden as reference. Only do this for the agrressive pruning mode and | 
|  | // avoid it when color is set for golden reference. | 
|  | if (cpi->oxcf.tune_cfg.content != AOM_CONTENT_SCREEN && | 
|  | (cpi->ref_frame_flags & AOM_LAST_FLAG) && !use_golden_ref_frame && | 
|  | !use_alt_ref_frame && x->pred_mv_sad[LAST_FRAME] != INT_MAX && | 
|  | x->nonrd_prune_ref_frame_search > 2 && | 
|  | x->color_sensitivity_sb_g[0] == 0 && x->color_sensitivity_sb_g[1] == 0) { | 
|  | int thr = (cm->width * cm->height >= 640 * 360) ? 100 : 150; | 
|  | int pred = x->pred_mv_sad[LAST_FRAME] >> | 
|  | (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]); | 
|  | if (pred > thr) use_golden_ref_frame = 1; | 
|  | } | 
|  |  | 
|  | use_alt_ref_frame = | 
|  | cpi->ref_frame_flags & AOM_ALT_FLAG ? use_alt_ref_frame : 0; | 
|  | use_golden_ref_frame = | 
|  | cpi->ref_frame_flags & AOM_GOLD_FLAG ? use_golden_ref_frame : 0; | 
|  |  | 
|  | // For spatial layers: enable golden ref if it is set by user and | 
|  | // corresponds to the lower spatial layer. | 
|  | if (cpi->svc.spatial_layer_id > 0 && (cpi->ref_frame_flags & AOM_GOLD_FLAG) && | 
|  | x->content_state_sb.source_sad_nonrd < kHighSad) { | 
|  | const int buffslot_golden = | 
|  | cpi->ppi->rtc_ref.ref_idx[GOLDEN_FRAME - LAST_FRAME]; | 
|  | if (cpi->svc.buffer_time_index[buffslot_golden] == | 
|  | cpi->svc.current_superframe) | 
|  | use_golden_ref_frame = 1; | 
|  | } | 
|  |  | 
|  | use_ref_frame[ALTREF_FRAME] = use_alt_ref_frame; | 
|  | use_ref_frame[GOLDEN_FRAME] = use_golden_ref_frame; | 
|  | use_ref_frame[LAST_FRAME] = use_last_ref_frame; | 
|  | // For now keep this assert on, but we should remove it for svc mode, | 
|  | // as the user may want to generate an intra-only frame (no inter-modes). | 
|  | // Remove this assert in subsequent CL when nonrd_pickmode is tested for the | 
|  | // case of intra-only frame (no references enabled). | 
|  | assert(use_last_ref_frame || use_golden_ref_frame || use_alt_ref_frame); | 
|  | } | 
|  |  | 
|  | // Checks whether Intra mode needs to be pruned based on | 
|  | // 'intra_y_mode_bsize_mask_nrd' and 'prune_hv_pred_modes_using_blksad' | 
|  | // speed features. | 
|  | static INLINE bool is_prune_intra_mode(AV1_COMP *cpi, int mode_index, | 
|  | int force_intra_check, BLOCK_SIZE bsize, | 
|  | uint8_t segment_id, | 
|  | SOURCE_SAD source_sad_nonrd, | 
|  | uint8_t color_sensitivity[2]) { | 
|  | const PREDICTION_MODE this_mode = intra_mode_list[mode_index]; | 
|  | if (mode_index > 2 || force_intra_check == 0) { | 
|  | if (!((1 << this_mode) & cpi->sf.rt_sf.intra_y_mode_bsize_mask_nrd[bsize])) | 
|  | return true; | 
|  |  | 
|  | if (this_mode == DC_PRED) return false; | 
|  |  | 
|  | if (!cpi->sf.rt_sf.prune_hv_pred_modes_using_src_sad) return false; | 
|  |  | 
|  | const bool has_color_sensitivity = | 
|  | color_sensitivity[0] && color_sensitivity[1]; | 
|  | if (has_color_sensitivity && | 
|  | (cpi->rc.frame_source_sad > 1.1 * cpi->rc.avg_source_sad || | 
|  | cyclic_refresh_segment_id_boosted(segment_id) || | 
|  | source_sad_nonrd > kMedSad)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /*!\brief Estimates best intra mode for inter mode search | 
|  | * | 
|  | * \ingroup nonrd_mode_search | 
|  | * \callgraph | 
|  | * \callergraph | 
|  | * | 
|  | * Using heuristics based on best inter mode, block size, and other decides | 
|  | * whether to check intra modes. If so, estimates and selects best intra mode | 
|  | * from the reduced set of intra modes (max 4 intra modes checked) | 
|  | * | 
|  | * \param[in]    cpi                      Top-level encoder structure | 
|  | * \param[in]    x                        Pointer to structure holding all the | 
|  | *                                        data for the current macroblock | 
|  | * \param[in]    bsize                    Current block size | 
|  | * \param[in]    best_early_term          Flag, indicating that TX for the | 
|  | *                                        best inter mode was skipped | 
|  | * \param[in]    ref_cost_intra           Cost of signalling intra mode | 
|  | * \param[in]    reuse_prediction         Flag, indicating prediction re-use | 
|  | * \param[in]    orig_dst                 Original destination buffer | 
|  | * \param[in]    tmp_buffers              Pointer to a temporary buffers for | 
|  | *                                        prediction re-use | 
|  | * \param[out]   this_mode_pred           Pointer to store prediction buffer | 
|  | *                                        for prediction re-use | 
|  | * \param[in]    best_rdc                 Pointer to RD cost for the best | 
|  | *                                        selected intra mode | 
|  | * \param[in]    best_pickmode            Pointer to a structure containing | 
|  | *                                        best mode picked so far | 
|  | * \param[in]    ctx                      Pointer to structure holding coding | 
|  | *                                        contexts and modes for the block | 
|  | * | 
|  | * \remark Nothing is returned. Instead, calculated RD cost is placed to | 
|  | * \c best_rdc and best selected mode is placed to \c best_pickmode | 
|  | */ | 
|  | static void estimate_intra_mode( | 
|  | AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int best_early_term, | 
|  | unsigned int ref_cost_intra, int reuse_prediction, struct buf_2d *orig_dst, | 
|  | PRED_BUFFER *tmp_buffers, PRED_BUFFER **this_mode_pred, RD_STATS *best_rdc, | 
|  | BEST_PICKMODE *best_pickmode, PICK_MODE_CONTEXT *ctx) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | MB_MODE_INFO *const mi = xd->mi[0]; | 
|  | const TxfmSearchParams *txfm_params = &x->txfm_search_params; | 
|  | const unsigned char segment_id = mi->segment_id; | 
|  | const int *const rd_threshes = cpi->rd.threshes[segment_id][bsize]; | 
|  | const int *const rd_thresh_freq_fact = x->thresh_freq_fact[bsize]; | 
|  | const bool is_screen_content = | 
|  | cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN; | 
|  | struct macroblockd_plane *const pd = &xd->plane[0]; | 
|  |  | 
|  | const CommonQuantParams *quant_params = &cm->quant_params; | 
|  |  | 
|  | RD_STATS this_rdc; | 
|  |  | 
|  | int intra_cost_penalty = av1_get_intra_cost_penalty( | 
|  | quant_params->base_qindex, quant_params->y_dc_delta_q, | 
|  | cm->seq_params->bit_depth); | 
|  | int64_t inter_mode_thresh = | 
|  | RDCOST(x->rdmult, ref_cost_intra + intra_cost_penalty, 0); | 
|  | int perform_intra_pred = cpi->sf.rt_sf.check_intra_pred_nonrd; | 
|  | int force_intra_check = 0; | 
|  | // For spatial enhancement layer: turn off intra prediction if the | 
|  | // previous spatial layer as golden ref is not chosen as best reference. | 
|  | // only do this for temporal enhancement layer and on non-key frames. | 
|  | if (cpi->svc.spatial_layer_id > 0 && | 
|  | best_pickmode->best_ref_frame != GOLDEN_FRAME && | 
|  | cpi->svc.temporal_layer_id > 0 && | 
|  | !cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame) | 
|  | perform_intra_pred = 0; | 
|  |  | 
|  | int do_early_exit_rdthresh = 1; | 
|  |  | 
|  | uint32_t spatial_var_thresh = 50; | 
|  | int motion_thresh = 32; | 
|  | // Adjust thresholds to make intra mode likely tested if the other | 
|  | // references (golden, alt) are skipped/not checked. For now always | 
|  | // adjust for svc mode. | 
|  | if (cpi->ppi->use_svc || (cpi->sf.rt_sf.use_nonrd_altref_frame == 0 && | 
|  | cpi->sf.rt_sf.nonrd_prune_ref_frame_search > 0)) { | 
|  | spatial_var_thresh = 150; | 
|  | motion_thresh = 0; | 
|  | } | 
|  |  | 
|  | // Some adjustments to checking intra mode based on source variance. | 
|  | if (x->source_variance < spatial_var_thresh) { | 
|  | // If the best inter mode is large motion or non-LAST ref reduce intra cost | 
|  | // penalty, so intra mode is more likely tested. | 
|  | if (best_rdc->rdcost != INT64_MAX && | 
|  | (best_pickmode->best_ref_frame != LAST_FRAME || | 
|  | abs(mi->mv[0].as_mv.row) >= motion_thresh || | 
|  | abs(mi->mv[0].as_mv.col) >= motion_thresh)) { | 
|  | intra_cost_penalty = intra_cost_penalty >> 2; | 
|  | inter_mode_thresh = | 
|  | RDCOST(x->rdmult, ref_cost_intra + intra_cost_penalty, 0); | 
|  | do_early_exit_rdthresh = 0; | 
|  | } | 
|  | if ((x->source_variance < AOMMAX(50, (spatial_var_thresh >> 1)) && | 
|  | x->content_state_sb.source_sad_nonrd >= kHighSad) || | 
|  | (is_screen_content && x->source_variance < 50 && | 
|  | ((bsize >= BLOCK_32X32 && | 
|  | x->content_state_sb.source_sad_nonrd != kZeroSad) || | 
|  | x->color_sensitivity[0] == 1 || x->color_sensitivity[1] == 1))) | 
|  | force_intra_check = 1; | 
|  | // For big blocks worth checking intra (since only DC will be checked), | 
|  | // even if best_early_term is set. | 
|  | if (bsize >= BLOCK_32X32) best_early_term = 0; | 
|  | } else if (cpi->sf.rt_sf.source_metrics_sb_nonrd && | 
|  | x->content_state_sb.source_sad_nonrd <= kLowSad) { | 
|  | perform_intra_pred = 0; | 
|  | } | 
|  |  | 
|  | if (best_rdc->skip_txfm && best_pickmode->best_mode_initial_skip_flag) { | 
|  | if (cpi->sf.rt_sf.skip_intra_pred == 1 && best_pickmode->best_mode != NEWMV) | 
|  | perform_intra_pred = 0; | 
|  | else if (cpi->sf.rt_sf.skip_intra_pred == 2) | 
|  | perform_intra_pred = 0; | 
|  | } | 
|  |  | 
|  | if (!(best_rdc->rdcost == INT64_MAX || force_intra_check || | 
|  | (perform_intra_pred && !best_early_term && | 
|  | bsize <= cpi->sf.part_sf.max_intra_bsize))) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Early exit based on RD cost calculated using known rate. When | 
|  | // is_screen_content is true, more bias is given to intra modes. Hence, | 
|  | // considered conservative threshold in early exit for the same. | 
|  | const int64_t known_rd = is_screen_content | 
|  | ? CALC_BIASED_RDCOST(inter_mode_thresh) | 
|  | : inter_mode_thresh; | 
|  | if (known_rd > best_rdc->rdcost) return; | 
|  |  | 
|  | struct estimate_block_intra_args args = { cpi, x, DC_PRED, 1, 0 }; | 
|  | TX_SIZE intra_tx_size = AOMMIN( | 
|  | AOMMIN(max_txsize_lookup[bsize], | 
|  | tx_mode_to_biggest_tx_size[txfm_params->tx_mode_search_type]), | 
|  | TX_16X16); | 
|  | if (is_screen_content && cpi->rc.high_source_sad && | 
|  | x->source_variance > spatial_var_thresh && bsize <= BLOCK_16X16) | 
|  | intra_tx_size = TX_4X4; | 
|  |  | 
|  | PRED_BUFFER *const best_pred = best_pickmode->best_pred; | 
|  | if (reuse_prediction && best_pred != NULL) { | 
|  | const int bh = block_size_high[bsize]; | 
|  | const int bw = block_size_wide[bsize]; | 
|  | if (best_pred->data == orig_dst->buf) { | 
|  | *this_mode_pred = &tmp_buffers[get_pred_buffer(tmp_buffers, 3)]; | 
|  | aom_convolve_copy(best_pred->data, best_pred->stride, | 
|  | (*this_mode_pred)->data, (*this_mode_pred)->stride, bw, | 
|  | bh); | 
|  | best_pickmode->best_pred = *this_mode_pred; | 
|  | } | 
|  | } | 
|  | pd->dst = *orig_dst; | 
|  |  | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | const PREDICTION_MODE this_mode = intra_mode_list[i]; | 
|  | const THR_MODES mode_index = mode_idx[INTRA_FRAME][mode_offset(this_mode)]; | 
|  | const int64_t mode_rd_thresh = rd_threshes[mode_index]; | 
|  |  | 
|  | if (is_prune_intra_mode(cpi, i, force_intra_check, bsize, segment_id, | 
|  | x->content_state_sb.source_sad_nonrd, | 
|  | x->color_sensitivity)) | 
|  | continue; | 
|  |  | 
|  | if (is_screen_content && cpi->sf.rt_sf.source_metrics_sb_nonrd) { | 
|  | // For spatially flat blocks with zero motion only check | 
|  | // DC mode. | 
|  | if (x->content_state_sb.source_sad_nonrd == kZeroSad && | 
|  | x->source_variance == 0 && this_mode != DC_PRED) | 
|  | continue; | 
|  | // Only test Intra for big blocks if spatial_variance is small. | 
|  | else if (bsize > BLOCK_32X32 && x->source_variance > 50) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (rd_less_than_thresh(best_rdc->rdcost, mode_rd_thresh, | 
|  | rd_thresh_freq_fact[mode_index]) && | 
|  | (do_early_exit_rdthresh || this_mode == SMOOTH_PRED)) { | 
|  | continue; | 
|  | } | 
|  | const BLOCK_SIZE uv_bsize = get_plane_block_size( | 
|  | bsize, xd->plane[1].subsampling_x, xd->plane[1].subsampling_y); | 
|  |  | 
|  | mi->mode = this_mode; | 
|  | mi->ref_frame[0] = INTRA_FRAME; | 
|  | mi->ref_frame[1] = NONE_FRAME; | 
|  |  | 
|  | av1_invalid_rd_stats(&this_rdc); | 
|  | args.mode = this_mode; | 
|  | args.skippable = 1; | 
|  | args.rdc = &this_rdc; | 
|  | mi->tx_size = intra_tx_size; | 
|  | compute_intra_yprediction(cm, this_mode, bsize, x, xd); | 
|  | // Look into selecting tx_size here, based on prediction residual. | 
|  | block_yrd(x, &this_rdc, &args.skippable, bsize, mi->tx_size, 0); | 
|  | // TODO(kyslov@) Need to account for skippable | 
|  | if (x->color_sensitivity[0]) { | 
|  | av1_foreach_transformed_block_in_plane(xd, uv_bsize, 1, | 
|  | estimate_block_intra, &args); | 
|  | } | 
|  | if (x->color_sensitivity[1]) { | 
|  | av1_foreach_transformed_block_in_plane(xd, uv_bsize, 2, | 
|  | estimate_block_intra, &args); | 
|  | } | 
|  |  | 
|  | int mode_cost = 0; | 
|  | if (av1_is_directional_mode(this_mode) && av1_use_angle_delta(bsize)) { | 
|  | mode_cost += | 
|  | x->mode_costs.angle_delta_cost[this_mode - V_PRED] | 
|  | [MAX_ANGLE_DELTA + | 
|  | mi->angle_delta[PLANE_TYPE_Y]]; | 
|  | } | 
|  | if (this_mode == DC_PRED && av1_filter_intra_allowed_bsize(cm, bsize)) { | 
|  | mode_cost += x->mode_costs.filter_intra_cost[bsize][0]; | 
|  | } | 
|  | this_rdc.rate += ref_cost_intra; | 
|  | this_rdc.rate += intra_cost_penalty; | 
|  | this_rdc.rate += mode_cost; | 
|  | this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist); | 
|  |  | 
|  | if (is_screen_content && cpi->sf.rt_sf.source_metrics_sb_nonrd) { | 
|  | // For blocks with low spatial variance and color sad, | 
|  | // favor the intra-modes, only on scene/slide change. | 
|  | if (cpi->rc.high_source_sad && x->source_variance < 800 && | 
|  | (x->color_sensitivity[0] || x->color_sensitivity[1])) | 
|  | this_rdc.rdcost = CALC_BIASED_RDCOST(this_rdc.rdcost); | 
|  | // Otherwise bias against intra for blocks with zero | 
|  | // motion and no color, on non-scene/slide changes. | 
|  | else if (!cpi->rc.high_source_sad && x->source_variance > 0 && | 
|  | x->content_state_sb.source_sad_nonrd == kZeroSad && | 
|  | x->color_sensitivity[0] == 0 && x->color_sensitivity[1] == 0) | 
|  | this_rdc.rdcost = (3 * this_rdc.rdcost) >> 1; | 
|  | } | 
|  |  | 
|  | if (this_rdc.rdcost < best_rdc->rdcost) { | 
|  | *best_rdc = this_rdc; | 
|  | best_pickmode->best_mode = this_mode; | 
|  | best_pickmode->best_tx_size = mi->tx_size; | 
|  | best_pickmode->best_ref_frame = INTRA_FRAME; | 
|  | best_pickmode->best_second_ref_frame = NONE; | 
|  | best_pickmode->best_mode_skip_txfm = this_rdc.skip_txfm; | 
|  | if (!this_rdc.skip_txfm) { | 
|  | memcpy(ctx->blk_skip, x->txfm_search_info.blk_skip, | 
|  | sizeof(x->txfm_search_info.blk_skip[0]) * ctx->num_4x4_blk); | 
|  | } | 
|  | mi->uv_mode = this_mode; | 
|  | mi->mv[0].as_int = INVALID_MV; | 
|  | mi->mv[1].as_int = INVALID_MV; | 
|  | } | 
|  | } | 
|  | mi->tx_size = best_pickmode->best_tx_size; | 
|  | } | 
|  |  | 
|  | static AOM_INLINE int is_filter_search_enabled_blk( | 
|  | AV1_COMP *cpi, MACROBLOCK *x, int mi_row, int mi_col, BLOCK_SIZE bsize, | 
|  | int segment_id, int cb_pred_filter_search, InterpFilter *filt_select) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | // filt search disabled | 
|  | if (!cpi->sf.rt_sf.use_nonrd_filter_search) return 0; | 
|  | // filt search purely based on mode properties | 
|  | if (!cb_pred_filter_search) return 1; | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | int enable_interp_search = 0; | 
|  | if (!(xd->left_mbmi && xd->above_mbmi)) { | 
|  | // neighbors info unavailable | 
|  | enable_interp_search = 2; | 
|  | } else if (!(is_inter_block(xd->left_mbmi) && | 
|  | is_inter_block(xd->above_mbmi))) { | 
|  | // neighbor is INTRA | 
|  | enable_interp_search = 2; | 
|  | } else if (xd->left_mbmi->interp_filters.as_int != | 
|  | xd->above_mbmi->interp_filters.as_int) { | 
|  | // filters are different | 
|  | enable_interp_search = 2; | 
|  | } else if ((cb_pred_filter_search == 1) && | 
|  | (xd->left_mbmi->interp_filters.as_filters.x_filter != | 
|  | EIGHTTAP_REGULAR)) { | 
|  | // not regular | 
|  | enable_interp_search = 2; | 
|  | } else { | 
|  | // enable prediction based on chessboard pattern | 
|  | if (xd->left_mbmi->interp_filters.as_filters.x_filter == EIGHTTAP_SMOOTH) | 
|  | *filt_select = EIGHTTAP_SMOOTH; | 
|  | const int bsl = mi_size_wide_log2[bsize]; | 
|  | enable_interp_search = | 
|  | (bool)((((mi_row + mi_col) >> bsl) + | 
|  | get_chessboard_index(cm->current_frame.frame_number)) & | 
|  | 0x1); | 
|  | if (cyclic_refresh_segment_id_boosted(segment_id)) enable_interp_search = 1; | 
|  | } | 
|  | return enable_interp_search; | 
|  | } | 
|  |  | 
|  | static AOM_INLINE int skip_mode_by_threshold( | 
|  | PREDICTION_MODE mode, MV_REFERENCE_FRAME ref_frame, int_mv mv, | 
|  | int frames_since_golden, const int *const rd_threshes, | 
|  | const int *const rd_thresh_freq_fact, int64_t best_cost, int best_skip, | 
|  | int extra_shift) { | 
|  | int skip_this_mode = 0; | 
|  | const THR_MODES mode_index = mode_idx[ref_frame][INTER_OFFSET(mode)]; | 
|  | int64_t mode_rd_thresh = | 
|  | best_skip ? ((int64_t)rd_threshes[mode_index]) << (extra_shift + 1) | 
|  | : ((int64_t)rd_threshes[mode_index]) << extra_shift; | 
|  |  | 
|  | // Increase mode_rd_thresh value for non-LAST for improved encoding | 
|  | // speed | 
|  | if (ref_frame != LAST_FRAME) { | 
|  | mode_rd_thresh = mode_rd_thresh << 1; | 
|  | if (ref_frame == GOLDEN_FRAME && frames_since_golden > 4) | 
|  | mode_rd_thresh = mode_rd_thresh << (extra_shift + 1); | 
|  | } | 
|  |  | 
|  | if (rd_less_than_thresh(best_cost, mode_rd_thresh, | 
|  | rd_thresh_freq_fact[mode_index])) | 
|  | if (mv.as_int != 0) skip_this_mode = 1; | 
|  |  | 
|  | return skip_this_mode; | 
|  | } | 
|  |  | 
|  | static AOM_INLINE int skip_mode_by_low_temp( | 
|  | PREDICTION_MODE mode, MV_REFERENCE_FRAME ref_frame, BLOCK_SIZE bsize, | 
|  | CONTENT_STATE_SB content_state_sb, int_mv mv, int force_skip_low_temp_var) { | 
|  | // Skip non-zeromv mode search for non-LAST frame if force_skip_low_temp_var | 
|  | // is set. If nearestmv for golden frame is 0, zeromv mode will be skipped | 
|  | // later. | 
|  | if (force_skip_low_temp_var && ref_frame != LAST_FRAME && mv.as_int != 0) { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (content_state_sb.source_sad_nonrd != kHighSad && bsize >= BLOCK_64X64 && | 
|  | force_skip_low_temp_var && mode == NEWMV) { | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static AOM_INLINE int skip_mode_by_bsize_and_ref_frame( | 
|  | PREDICTION_MODE mode, MV_REFERENCE_FRAME ref_frame, BLOCK_SIZE bsize, | 
|  | int extra_prune, unsigned int sse_zeromv_norm, int more_prune) { | 
|  | const unsigned int thresh_skip_golden = 500; | 
|  |  | 
|  | if (ref_frame != LAST_FRAME && sse_zeromv_norm < thresh_skip_golden && | 
|  | mode == NEWMV) | 
|  | return 1; | 
|  |  | 
|  | if (bsize == BLOCK_128X128 && mode == NEWMV) return 1; | 
|  |  | 
|  | // Skip testing non-LAST if this flag is set. | 
|  | if (extra_prune) { | 
|  | if (extra_prune > 1 && ref_frame != LAST_FRAME && | 
|  | (bsize > BLOCK_16X16 && mode == NEWMV)) | 
|  | return 1; | 
|  |  | 
|  | if (ref_frame != LAST_FRAME && mode == NEARMV) return 1; | 
|  |  | 
|  | if (more_prune && bsize >= BLOCK_32X32 && mode == NEARMV) return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void set_color_sensitivity(AV1_COMP *cpi, MACROBLOCK *x, | 
|  | BLOCK_SIZE bsize, int y_sad, | 
|  | unsigned int source_variance, | 
|  | struct buf_2d yv12_mb[MAX_MB_PLANE]) { | 
|  | const int subsampling_x = cpi->common.seq_params->subsampling_x; | 
|  | const int subsampling_y = cpi->common.seq_params->subsampling_y; | 
|  | int factor = (bsize >= BLOCK_32X32) ? 2 : 3; | 
|  | int shift = 3; | 
|  | if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN && | 
|  | cpi->rc.high_source_sad) { | 
|  | factor = 1; | 
|  | shift = 6; | 
|  | } | 
|  | NOISE_LEVEL noise_level = kLow; | 
|  | int norm_sad = | 
|  | y_sad >> (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]); | 
|  | unsigned int thresh_spatial = (cpi->common.width > 1920) ? 5000 : 1000; | 
|  | // If the spatial source variance is high and the normalized y_sad | 
|  | // is low, then y-channel is likely good for mode estimation, so keep | 
|  | // color_sensitivity off. For low noise content for now, since there is | 
|  | // some bdrate regression for noisy color clip. | 
|  | if (cpi->noise_estimate.enabled) | 
|  | noise_level = av1_noise_estimate_extract_level(&cpi->noise_estimate); | 
|  | if (noise_level == kLow && source_variance > thresh_spatial && | 
|  | cpi->oxcf.tune_cfg.content != AOM_CONTENT_SCREEN && norm_sad < 50) { | 
|  | x->color_sensitivity[0] = 0; | 
|  | x->color_sensitivity[1] = 0; | 
|  | return; | 
|  | } | 
|  | const int num_planes = av1_num_planes(&cpi->common); | 
|  | for (int i = 1; i < num_planes; ++i) { | 
|  | if (x->color_sensitivity[i - 1] == 2 || source_variance < 50) { | 
|  | struct macroblock_plane *const p = &x->plane[i]; | 
|  | const BLOCK_SIZE bs = | 
|  | get_plane_block_size(bsize, subsampling_x, subsampling_y); | 
|  |  | 
|  | const int uv_sad = cpi->ppi->fn_ptr[bs].sdf( | 
|  | p->src.buf, p->src.stride, yv12_mb[i].buf, yv12_mb[i].stride); | 
|  |  | 
|  | const int norm_uv_sad = | 
|  | uv_sad >> (b_width_log2_lookup[bs] + b_height_log2_lookup[bs]); | 
|  | x->color_sensitivity[i - 1] = | 
|  | uv_sad > (factor * (y_sad >> shift)) && norm_uv_sad > 40; | 
|  | if (source_variance < 50 && norm_uv_sad > 100) | 
|  | x->color_sensitivity[i - 1] = 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void setup_compound_prediction(const AV1_COMMON *cm, MACROBLOCK *x, | 
|  | struct buf_2d yv12_mb[8][MAX_MB_PLANE], | 
|  | const int *use_ref_frame_mask, | 
|  | const MV_REFERENCE_FRAME *rf, | 
|  | int *ref_mv_idx) { | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | MB_MODE_INFO *const mbmi = xd->mi[0]; | 
|  | MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext; | 
|  | MV_REFERENCE_FRAME ref_frame_comp; | 
|  | if (!use_ref_frame_mask[rf[1]]) { | 
|  | // Need to setup pred_block, if it hasn't been done in find_predictors. | 
|  | const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_yv12_buf(cm, rf[1]); | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | if (yv12 != NULL) { | 
|  | const struct scale_factors *const sf = | 
|  | get_ref_scale_factors_const(cm, rf[1]); | 
|  | av1_setup_pred_block(xd, yv12_mb[rf[1]], yv12, sf, sf, num_planes); | 
|  | } | 
|  | } | 
|  | ref_frame_comp = av1_ref_frame_type(rf); | 
|  | mbmi_ext->mode_context[ref_frame_comp] = 0; | 
|  | mbmi_ext->ref_mv_count[ref_frame_comp] = UINT8_MAX; | 
|  | av1_find_mv_refs(cm, xd, mbmi, ref_frame_comp, mbmi_ext->ref_mv_count, | 
|  | xd->ref_mv_stack, xd->weight, NULL, mbmi_ext->global_mvs, | 
|  | mbmi_ext->mode_context); | 
|  | av1_copy_usable_ref_mv_stack_and_weight(xd, mbmi_ext, ref_frame_comp); | 
|  | *ref_mv_idx = mbmi->ref_mv_idx + 1; | 
|  | } | 
|  |  | 
|  | static void set_compound_mode(MACROBLOCK *x, int ref_frame, int ref_frame2, | 
|  | int ref_mv_idx, | 
|  | int_mv frame_mv[MB_MODE_COUNT][REF_FRAMES], | 
|  | PREDICTION_MODE this_mode) { | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | MB_MODE_INFO *const mi = xd->mi[0]; | 
|  | mi->ref_frame[0] = ref_frame; | 
|  | mi->ref_frame[1] = ref_frame2; | 
|  | mi->compound_idx = 1; | 
|  | mi->comp_group_idx = 0; | 
|  | mi->interinter_comp.type = COMPOUND_AVERAGE; | 
|  | MV_REFERENCE_FRAME ref_frame_comp = av1_ref_frame_type(mi->ref_frame); | 
|  | if (this_mode == GLOBAL_GLOBALMV) { | 
|  | frame_mv[this_mode][ref_frame].as_int = 0; | 
|  | frame_mv[this_mode][ref_frame2].as_int = 0; | 
|  | } else if (this_mode == NEAREST_NEARESTMV) { | 
|  | frame_mv[this_mode][ref_frame].as_int = | 
|  | xd->ref_mv_stack[ref_frame_comp][0].this_mv.as_int; | 
|  | frame_mv[this_mode][ref_frame2].as_int = | 
|  | xd->ref_mv_stack[ref_frame_comp][0].comp_mv.as_int; | 
|  | } else if (this_mode == NEAR_NEARMV) { | 
|  | frame_mv[this_mode][ref_frame].as_int = | 
|  | xd->ref_mv_stack[ref_frame_comp][ref_mv_idx].this_mv.as_int; | 
|  | frame_mv[this_mode][ref_frame2].as_int = | 
|  | xd->ref_mv_stack[ref_frame_comp][ref_mv_idx].comp_mv.as_int; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Prune compound mode if the single mode variance is lower than a fixed | 
|  | // percentage of the median value. | 
|  | static bool skip_comp_based_on_var( | 
|  | const unsigned int (*single_vars)[REF_FRAMES], BLOCK_SIZE bsize) { | 
|  | unsigned int best_var = UINT_MAX; | 
|  | for (int cur_mode_idx = 0; cur_mode_idx < RTC_INTER_MODES; cur_mode_idx++) { | 
|  | for (int ref_idx = 0; ref_idx < REF_FRAMES; ref_idx++) { | 
|  | best_var = AOMMIN(best_var, single_vars[cur_mode_idx][ref_idx]); | 
|  | } | 
|  | } | 
|  | const unsigned int thresh_64 = (unsigned int)(0.57356805f * 8659); | 
|  | const unsigned int thresh_32 = (unsigned int)(0.23964763f * 4281); | 
|  |  | 
|  | // Currently, the thresh for 128 and 16 are not well-tuned. We are using the | 
|  | // results from 64 and 32 as an heuristic. | 
|  | switch (bsize) { | 
|  | case BLOCK_128X128: return best_var < 4 * thresh_64; | 
|  | case BLOCK_64X64: return best_var < thresh_64; | 
|  | case BLOCK_32X32: return best_var < thresh_32; | 
|  | case BLOCK_16X16: return best_var < thresh_32 / 4; | 
|  | default: return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_FORCE_INLINE void fill_single_inter_mode_costs( | 
|  | int (*single_inter_mode_costs)[REF_FRAMES], const int num_inter_modes, | 
|  | const REF_MODE *reference_mode_set, const ModeCosts *mode_costs, | 
|  | const int16_t *mode_context) { | 
|  | bool ref_frame_used[REF_FRAMES] = { false }; | 
|  | for (int idx = 0; idx < num_inter_modes; idx++) { | 
|  | ref_frame_used[reference_mode_set[idx].ref_frame] = true; | 
|  | } | 
|  |  | 
|  | for (int this_ref_frame = LAST_FRAME; this_ref_frame < REF_FRAMES; | 
|  | this_ref_frame++) { | 
|  | if (!ref_frame_used[this_ref_frame]) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | const MV_REFERENCE_FRAME rf[2] = { this_ref_frame, NONE_FRAME }; | 
|  | const int16_t mode_ctx = av1_mode_context_analyzer(mode_context, rf); | 
|  | for (PREDICTION_MODE this_mode = NEARESTMV; this_mode <= NEWMV; | 
|  | this_mode++) { | 
|  | single_inter_mode_costs[INTER_OFFSET(this_mode)][this_ref_frame] = | 
|  | cost_mv_ref(mode_costs, this_mode, mode_ctx); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE bool is_globalmv_better( | 
|  | PREDICTION_MODE this_mode, MV_REFERENCE_FRAME ref_frame, int rate_mv, | 
|  | const ModeCosts *mode_costs, | 
|  | const int (*single_inter_mode_costs)[REF_FRAMES], | 
|  | const MB_MODE_INFO_EXT *mbmi_ext) { | 
|  | const int globalmv_mode_cost = | 
|  | single_inter_mode_costs[INTER_OFFSET(GLOBALMV)][ref_frame]; | 
|  | int this_mode_cost = | 
|  | rate_mv + single_inter_mode_costs[INTER_OFFSET(this_mode)][ref_frame]; | 
|  | if (this_mode == NEWMV || this_mode == NEARMV) { | 
|  | const MV_REFERENCE_FRAME rf[2] = { ref_frame, NONE_FRAME }; | 
|  | this_mode_cost += get_drl_cost( | 
|  | NEWMV, 0, mbmi_ext, mode_costs->drl_mode_cost0, av1_ref_frame_type(rf)); | 
|  | } | 
|  | return this_mode_cost > globalmv_mode_cost; | 
|  | } | 
|  |  | 
|  | // Set up the mv/ref_frames etc based on the comp_index. Returns 1 if it | 
|  | // succeeds, 0 if it fails. | 
|  | static AOM_INLINE int setup_compound_params_from_comp_idx( | 
|  | const AV1_COMP *cpi, MACROBLOCK *x, struct buf_2d yv12_mb[8][MAX_MB_PLANE], | 
|  | PREDICTION_MODE *this_mode, MV_REFERENCE_FRAME *ref_frame, | 
|  | MV_REFERENCE_FRAME *ref_frame2, int_mv frame_mv[MB_MODE_COUNT][REF_FRAMES], | 
|  | const int *use_ref_frame_mask, int comp_index, | 
|  | bool comp_use_zero_zeromv_only, MV_REFERENCE_FRAME *last_comp_ref_frame) { | 
|  | const MV_REFERENCE_FRAME *rf = comp_ref_mode_set[comp_index].ref_frame; | 
|  | *this_mode = comp_ref_mode_set[comp_index].pred_mode; | 
|  | *ref_frame = rf[0]; | 
|  | *ref_frame2 = rf[1]; | 
|  | assert(*ref_frame == LAST_FRAME); | 
|  | assert(*this_mode == GLOBAL_GLOBALMV || *this_mode == NEAREST_NEARESTMV); | 
|  | if (comp_use_zero_zeromv_only && *this_mode != GLOBAL_GLOBALMV) { | 
|  | return 0; | 
|  | } | 
|  | if (*ref_frame2 == GOLDEN_FRAME && | 
|  | (cpi->sf.rt_sf.ref_frame_comp_nonrd[0] == 0 || | 
|  | !(cpi->ref_frame_flags & AOM_GOLD_FLAG))) { | 
|  | return 0; | 
|  | } else if (*ref_frame2 == LAST2_FRAME && | 
|  | (cpi->sf.rt_sf.ref_frame_comp_nonrd[1] == 0 || | 
|  | !(cpi->ref_frame_flags & AOM_LAST2_FLAG))) { | 
|  | return 0; | 
|  | } else if (*ref_frame2 == ALTREF_FRAME && | 
|  | (cpi->sf.rt_sf.ref_frame_comp_nonrd[2] == 0 || | 
|  | !(cpi->ref_frame_flags & AOM_ALT_FLAG))) { | 
|  | return 0; | 
|  | } | 
|  | int ref_mv_idx = 0; | 
|  | if (*last_comp_ref_frame != rf[1]) { | 
|  | // Only needs to be done once per reference pair. | 
|  | setup_compound_prediction(&cpi->common, x, yv12_mb, use_ref_frame_mask, rf, | 
|  | &ref_mv_idx); | 
|  | *last_comp_ref_frame = rf[1]; | 
|  | } | 
|  | set_compound_mode(x, *ref_frame, *ref_frame2, ref_mv_idx, frame_mv, | 
|  | *this_mode); | 
|  | if (*this_mode != GLOBAL_GLOBALMV && | 
|  | frame_mv[*this_mode][*ref_frame].as_int == 0 && | 
|  | frame_mv[*this_mode][*ref_frame2].as_int == 0) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static AOM_INLINE bool previous_mode_performed_poorly( | 
|  | PREDICTION_MODE mode, MV_REFERENCE_FRAME ref_frame, | 
|  | const unsigned int (*vars)[REF_FRAMES], | 
|  | const int64_t (*uv_dist)[REF_FRAMES]) { | 
|  | unsigned int best_var = UINT_MAX; | 
|  | int64_t best_uv_dist = INT64_MAX; | 
|  | for (int midx = 0; midx < RTC_INTER_MODES; midx++) { | 
|  | best_var = AOMMIN(best_var, vars[midx][ref_frame]); | 
|  | best_uv_dist = AOMMIN(best_uv_dist, uv_dist[midx][ref_frame]); | 
|  | } | 
|  | assert(best_var != UINT_MAX && "Invalid variance data."); | 
|  | const float mult = 1.125f; | 
|  | bool var_bad = mult * best_var < vars[INTER_OFFSET(mode)][ref_frame]; | 
|  | if (uv_dist[INTER_OFFSET(mode)][ref_frame] < INT64_MAX && | 
|  | best_uv_dist != uv_dist[INTER_OFFSET(mode)][ref_frame]) { | 
|  | // If we have chroma info, then take it into account | 
|  | var_bad &= mult * best_uv_dist < uv_dist[INTER_OFFSET(mode)][ref_frame]; | 
|  | } | 
|  | return var_bad; | 
|  | } | 
|  |  | 
|  | static AOM_INLINE bool prune_compoundmode_with_singlemode_var( | 
|  | PREDICTION_MODE compound_mode, MV_REFERENCE_FRAME ref_frame, | 
|  | MV_REFERENCE_FRAME ref_frame2, const int_mv (*frame_mv)[REF_FRAMES], | 
|  | const uint8_t (*mode_checked)[REF_FRAMES], | 
|  | const unsigned int (*vars)[REF_FRAMES], | 
|  | const int64_t (*uv_dist)[REF_FRAMES]) { | 
|  | const PREDICTION_MODE single_mode0 = compound_ref0_mode(compound_mode); | 
|  | const PREDICTION_MODE single_mode1 = compound_ref1_mode(compound_mode); | 
|  |  | 
|  | bool first_ref_valid = false, second_ref_valid = false; | 
|  | bool first_ref_bad = false, second_ref_bad = false; | 
|  | if (mode_checked[single_mode0][ref_frame] && | 
|  | frame_mv[single_mode0][ref_frame].as_int == | 
|  | frame_mv[compound_mode][ref_frame].as_int && | 
|  | vars[INTER_OFFSET(single_mode0)][ref_frame] < UINT_MAX) { | 
|  | first_ref_valid = true; | 
|  | first_ref_bad = | 
|  | previous_mode_performed_poorly(single_mode0, ref_frame, vars, uv_dist); | 
|  | } | 
|  | if (mode_checked[single_mode1][ref_frame2] && | 
|  | frame_mv[single_mode1][ref_frame2].as_int == | 
|  | frame_mv[compound_mode][ref_frame2].as_int && | 
|  | vars[INTER_OFFSET(single_mode1)][ref_frame2] < UINT_MAX) { | 
|  | second_ref_valid = true; | 
|  | second_ref_bad = | 
|  | previous_mode_performed_poorly(single_mode1, ref_frame2, vars, uv_dist); | 
|  | } | 
|  | if (first_ref_valid && second_ref_valid) { | 
|  | return first_ref_bad && second_ref_bad; | 
|  | } else if (first_ref_valid || second_ref_valid) { | 
|  | return first_ref_bad || second_ref_bad; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Function to setup parameters used for inter mode evaluation. | 
|  | static AOM_FORCE_INLINE void set_params_nonrd_pick_inter_mode( | 
|  | AV1_COMP *cpi, MACROBLOCK *x, InterModeSearchStateNonrd *search_state, | 
|  | TileDataEnc *tile_data, PICK_MODE_CONTEXT *ctx, RD_STATS *rd_cost, | 
|  | int *force_skip_low_temp_var, int *skip_pred_mv, const int mi_row, | 
|  | const int mi_col, const int gf_temporal_ref, const unsigned char segment_id, | 
|  | BLOCK_SIZE bsize | 
|  | #if CONFIG_AV1_TEMPORAL_DENOISING | 
|  | , | 
|  | int denoise_svc_pickmode | 
|  | #endif | 
|  | ) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | TxfmSearchInfo *txfm_info = &x->txfm_search_info; | 
|  | MB_MODE_INFO *const mi = xd->mi[0]; | 
|  | const ModeCosts *mode_costs = &x->mode_costs; | 
|  | (void)ctx; | 
|  |  | 
|  | for (int idx = 0; idx < RTC_INTER_MODES; idx++) { | 
|  | for (int ref = 0; ref < REF_FRAMES; ref++) { | 
|  | search_state->vars[idx][ref] = UINT_MAX; | 
|  | search_state->uv_dist[idx][ref] = INT64_MAX; | 
|  | } | 
|  | } | 
|  |  | 
|  | x->color_sensitivity[0] = x->color_sensitivity_sb[0]; | 
|  | x->color_sensitivity[1] = x->color_sensitivity_sb[1]; | 
|  | init_best_pickmode(&search_state->best_pickmode); | 
|  |  | 
|  | estimate_single_ref_frame_costs(cm, xd, mode_costs, segment_id, bsize, | 
|  | search_state->ref_costs_single); | 
|  |  | 
|  | memset(&search_state->mode_checked[0][0], 0, MB_MODE_COUNT * REF_FRAMES); | 
|  |  | 
|  | txfm_info->skip_txfm = 0; | 
|  |  | 
|  | // initialize mode decisions | 
|  | av1_invalid_rd_stats(&search_state->best_rdc); | 
|  | av1_invalid_rd_stats(&search_state->this_rdc); | 
|  | av1_invalid_rd_stats(rd_cost); | 
|  | for (int i = 0; i < REF_FRAMES; ++i) { | 
|  | x->warp_sample_info[i].num = -1; | 
|  | } | 
|  |  | 
|  | mi->bsize = bsize; | 
|  | mi->ref_frame[0] = NONE_FRAME; | 
|  | mi->ref_frame[1] = NONE_FRAME; | 
|  |  | 
|  | #if CONFIG_AV1_TEMPORAL_DENOISING | 
|  | if (cpi->oxcf.noise_sensitivity > 0) { | 
|  | // if (cpi->ppi->use_svc) denoise_svc_pickmode = | 
|  | // av1_denoise_svc_non_key(cpi); | 
|  | if (cpi->denoiser.denoising_level > kDenLowLow && denoise_svc_pickmode) | 
|  | av1_denoiser_reset_frame_stats(ctx); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (cpi->ref_frame_flags & AOM_LAST_FLAG) | 
|  | find_predictors(cpi, x, LAST_FRAME, search_state->frame_mv, tile_data, | 
|  | search_state->yv12_mb, bsize, *force_skip_low_temp_var, | 
|  | x->force_zeromv_skip_for_blk); | 
|  |  | 
|  | get_ref_frame_use_mask(cpi, x, mi, mi_row, mi_col, bsize, gf_temporal_ref, | 
|  | search_state->use_ref_frame_mask, | 
|  | force_skip_low_temp_var); | 
|  |  | 
|  | *skip_pred_mv = | 
|  | x->force_zeromv_skip_for_blk || | 
|  | (x->nonrd_prune_ref_frame_search > 2 && x->color_sensitivity[0] != 2 && | 
|  | x->color_sensitivity[1] != 2); | 
|  |  | 
|  | // Start at LAST_FRAME + 1. | 
|  | for (MV_REFERENCE_FRAME ref_frame_iter = LAST_FRAME + 1; | 
|  | ref_frame_iter <= ALTREF_FRAME; ++ref_frame_iter) { | 
|  | if (search_state->use_ref_frame_mask[ref_frame_iter]) { | 
|  | find_predictors(cpi, x, ref_frame_iter, search_state->frame_mv, tile_data, | 
|  | search_state->yv12_mb, bsize, *force_skip_low_temp_var, | 
|  | *skip_pred_mv); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Function to check the inter mode can be skipped based on mode statistics and | 
|  | // speed features settings. | 
|  | static AOM_FORCE_INLINE bool skip_inter_mode_nonrd( | 
|  | AV1_COMP *cpi, MACROBLOCK *x, InterModeSearchStateNonrd *search_state, | 
|  | int64_t *thresh_sad_pred, int *force_mv_inter_layer, int *comp_pred, | 
|  | PREDICTION_MODE *this_mode, MV_REFERENCE_FRAME *last_comp_ref_frame, | 
|  | MV_REFERENCE_FRAME *ref_frame, MV_REFERENCE_FRAME *ref_frame2, int idx, | 
|  | int svc_mv_col, int svc_mv_row, int force_skip_low_temp_var, | 
|  | unsigned int sse_zeromv_norm, const int num_inter_modes, | 
|  | const unsigned char segment_id, BLOCK_SIZE bsize, | 
|  | bool comp_use_zero_zeromv_only, bool check_globalmv) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | const struct segmentation *const seg = &cm->seg; | 
|  | const SVC *const svc = &cpi->svc; | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | MB_MODE_INFO *const mi = xd->mi[0]; | 
|  |  | 
|  | if (idx >= num_inter_modes) { | 
|  | const int comp_index = idx - num_inter_modes; | 
|  | if (!setup_compound_params_from_comp_idx( | 
|  | cpi, x, search_state->yv12_mb, this_mode, ref_frame, ref_frame2, | 
|  | search_state->frame_mv, search_state->use_ref_frame_mask, | 
|  | comp_index, comp_use_zero_zeromv_only, last_comp_ref_frame)) { | 
|  | return true; | 
|  | } | 
|  | *comp_pred = 1; | 
|  | } else { | 
|  | *this_mode = ref_mode_set[idx].pred_mode; | 
|  | *ref_frame = ref_mode_set[idx].ref_frame; | 
|  | *ref_frame2 = NONE_FRAME; | 
|  | } | 
|  |  | 
|  | if (!*comp_pred && search_state->mode_checked[*this_mode][*ref_frame]) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (!check_globalmv && *this_mode == GLOBALMV) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #if COLLECT_PICK_MODE_STAT | 
|  | aom_usec_timer_start(&ms_stat.timer1); | 
|  | ms_stat.num_searches[bsize][*this_mode]++; | 
|  | #endif | 
|  | mi->mode = *this_mode; | 
|  | mi->ref_frame[0] = *ref_frame; | 
|  | mi->ref_frame[1] = *ref_frame2; | 
|  |  | 
|  | if (!search_state->use_ref_frame_mask[*ref_frame]) return true; | 
|  |  | 
|  | if (x->force_zeromv_skip_for_blk && | 
|  | ((!(*this_mode == NEARESTMV && | 
|  | search_state->frame_mv[*this_mode][*ref_frame].as_int == 0) && | 
|  | *this_mode != GLOBALMV) || | 
|  | *ref_frame != LAST_FRAME)) | 
|  | return true; | 
|  |  | 
|  | if (cpi->sf.rt_sf.prune_compoundmode_with_singlemode_var && *comp_pred && | 
|  | prune_compoundmode_with_singlemode_var( | 
|  | *this_mode, *ref_frame, *ref_frame2, search_state->frame_mv, | 
|  | search_state->mode_checked, search_state->vars, | 
|  | search_state->uv_dist)) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | *force_mv_inter_layer = 0; | 
|  | if (cpi->ppi->use_svc && svc->spatial_layer_id > 0 && | 
|  | ((*ref_frame == LAST_FRAME && svc->skip_mvsearch_last) || | 
|  | (*ref_frame == GOLDEN_FRAME && svc->skip_mvsearch_gf) || | 
|  | (*ref_frame == ALTREF_FRAME && svc->skip_mvsearch_altref))) { | 
|  | // Only test mode if NEARESTMV/NEARMV is (svc_mv_col, svc_mv_row), | 
|  | // otherwise set NEWMV to (svc_mv_col, svc_mv_row). | 
|  | // Skip newmv and filter search. | 
|  | *force_mv_inter_layer = 1; | 
|  | if (*this_mode == NEWMV) { | 
|  | search_state->frame_mv[*this_mode][*ref_frame].as_mv.col = svc_mv_col; | 
|  | search_state->frame_mv[*this_mode][*ref_frame].as_mv.row = svc_mv_row; | 
|  | } else if (search_state->frame_mv[*this_mode][*ref_frame].as_mv.col != | 
|  | svc_mv_col || | 
|  | search_state->frame_mv[*this_mode][*ref_frame].as_mv.row != | 
|  | svc_mv_row) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the segment reference frame feature is enabled then do nothing if the | 
|  | // current ref frame is not allowed. | 
|  | if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) && | 
|  | get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)(*ref_frame)) | 
|  | return true; | 
|  |  | 
|  | // For screen content: for base spatial layer only for now. | 
|  | if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN && | 
|  | cpi->svc.spatial_layer_id == 0) { | 
|  | // If source_sad is computed: skip non-zero motion | 
|  | // check for stationary (super)blocks. Otherwise if superblock | 
|  | // has motion skip the modes with zero motion for flat blocks, | 
|  | // and color is not set. | 
|  | // For the latter condition: the same condition should apply | 
|  | // to newmv if (0, 0), so this latter condition is repeated | 
|  | // below after search_new_mv. | 
|  | if (cpi->sf.rt_sf.source_metrics_sb_nonrd) { | 
|  | if ((search_state->frame_mv[*this_mode][*ref_frame].as_int != 0 && | 
|  | x->content_state_sb.source_sad_nonrd == kZeroSad) || | 
|  | (search_state->frame_mv[*this_mode][*ref_frame].as_int == 0 && | 
|  | x->content_state_sb.source_sad_nonrd != kZeroSad && | 
|  | ((x->color_sensitivity[0] == 0 && x->color_sensitivity[1] == 0) || | 
|  | cpi->rc.high_source_sad) && | 
|  | x->source_variance == 0)) | 
|  | return true; | 
|  | } | 
|  | // Skip NEWMV search for flat blocks. | 
|  | if (*this_mode == NEWMV && x->source_variance < 100) return true; | 
|  | // Skip non-LAST for color on flat blocks. | 
|  | if (*ref_frame > LAST_FRAME && x->source_variance == 0 && | 
|  | (x->color_sensitivity[0] == 1 || x->color_sensitivity[1] == 1)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (skip_mode_by_bsize_and_ref_frame( | 
|  | *this_mode, *ref_frame, bsize, x->nonrd_prune_ref_frame_search, | 
|  | sse_zeromv_norm, cpi->sf.rt_sf.nonrd_aggressive_skip)) | 
|  | return true; | 
|  |  | 
|  | if (skip_mode_by_low_temp(*this_mode, *ref_frame, bsize, x->content_state_sb, | 
|  | search_state->frame_mv[*this_mode][*ref_frame], | 
|  | force_skip_low_temp_var)) | 
|  | return true; | 
|  |  | 
|  | // Disable this drop out case if the ref frame segment level feature is | 
|  | // enabled for this segment. This is to prevent the possibility that we | 
|  | // end up unable to pick any mode. | 
|  | if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) { | 
|  | // Check for skipping GOLDEN and ALTREF based pred_mv_sad. | 
|  | if (cpi->sf.rt_sf.nonrd_prune_ref_frame_search > 0 && | 
|  | x->pred_mv_sad[*ref_frame] != INT_MAX && *ref_frame != LAST_FRAME) { | 
|  | if ((int64_t)(x->pred_mv_sad[*ref_frame]) > *thresh_sad_pred) return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check for skipping NEARMV based on pred_mv_sad. | 
|  | if (*this_mode == NEARMV && x->pred_mv1_sad[*ref_frame] != INT_MAX && | 
|  | x->pred_mv1_sad[*ref_frame] > (x->pred_mv0_sad[*ref_frame] << 1)) | 
|  | return true; | 
|  |  | 
|  | if (!*comp_pred) { | 
|  | if (skip_mode_by_threshold( | 
|  | *this_mode, *ref_frame, | 
|  | search_state->frame_mv[*this_mode][*ref_frame], | 
|  | cpi->rc.frames_since_golden, cpi->rd.threshes[segment_id][bsize], | 
|  | x->thresh_freq_fact[bsize], search_state->best_rdc.rdcost, | 
|  | search_state->best_pickmode.best_mode_skip_txfm, | 
|  | (cpi->sf.rt_sf.nonrd_aggressive_skip ? 1 : 0))) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void av1_nonrd_pick_inter_mode_sb(AV1_COMP *cpi, TileDataEnc *tile_data, | 
|  | MACROBLOCK *x, RD_STATS *rd_cost, | 
|  | BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | SVC *const svc = &cpi->svc; | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | MB_MODE_INFO *const mi = xd->mi[0]; | 
|  | struct macroblockd_plane *const pd = &xd->plane[0]; | 
|  | const MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext; | 
|  | const InterpFilter filter_ref = cm->features.interp_filter; | 
|  | const InterpFilter default_interp_filter = EIGHTTAP_REGULAR; | 
|  | MV_REFERENCE_FRAME ref_frame, ref_frame2; | 
|  | const unsigned char segment_id = mi->segment_id; | 
|  | int best_early_term = 0; | 
|  | int force_skip_low_temp_var = 0; | 
|  | unsigned int sse_zeromv_norm = UINT_MAX; | 
|  | int skip_pred_mv = 0; | 
|  | const int num_inter_modes = NUM_INTER_MODES; | 
|  | bool check_globalmv = cpi->sf.rt_sf.check_globalmv_on_single_ref; | 
|  | PRED_BUFFER tmp_buffer[4]; | 
|  | DECLARE_ALIGNED(16, uint8_t, pred_buf[3 * 128 * 128]); | 
|  | PRED_BUFFER *this_mode_pred = NULL; | 
|  | const int reuse_inter_pred = cpi->sf.rt_sf.reuse_inter_pred_nonrd && | 
|  | cm->seq_params->bit_depth == AOM_BITS_8; | 
|  | InterModeSearchStateNonrd search_state; | 
|  | av1_zero(search_state.use_ref_frame_mask); | 
|  |  | 
|  | const int bh = block_size_high[bsize]; | 
|  | const int bw = block_size_wide[bsize]; | 
|  | const int pixels_in_block = bh * bw; | 
|  | const int num_8x8_blocks = ctx->num_4x4_blk / 4; | 
|  | struct buf_2d orig_dst = pd->dst; | 
|  | const TxfmSearchParams *txfm_params = &x->txfm_search_params; | 
|  | TxfmSearchInfo *txfm_info = &x->txfm_search_info; | 
|  | #if COLLECT_PICK_MODE_STAT | 
|  | aom_usec_timer_start(&ms_stat.bsize_timer); | 
|  | #endif | 
|  | int64_t thresh_sad_pred = INT64_MAX; | 
|  | const int mi_row = xd->mi_row; | 
|  | const int mi_col = xd->mi_col; | 
|  | int svc_mv_col = 0; | 
|  | int svc_mv_row = 0; | 
|  | int force_mv_inter_layer = 0; | 
|  | bool comp_use_zero_zeromv_only = 0; | 
|  | int tot_num_comp_modes = NUM_COMP_INTER_MODES_RT; | 
|  | #if CONFIG_AV1_TEMPORAL_DENOISING | 
|  | const int denoise_recheck_zeromv = 1; | 
|  | AV1_PICKMODE_CTX_DEN ctx_den; | 
|  | int64_t zero_last_cost_orig = INT64_MAX; | 
|  | int denoise_svc_pickmode = 1; | 
|  | const int resize_pending = is_frame_resize_pending(cpi); | 
|  | #endif | 
|  | const ModeCosts *mode_costs = &x->mode_costs; | 
|  |  | 
|  | if (reuse_inter_pred) { | 
|  | for (int i = 0; i < 3; i++) { | 
|  | tmp_buffer[i].data = &pred_buf[pixels_in_block * i]; | 
|  | tmp_buffer[i].stride = bw; | 
|  | tmp_buffer[i].in_use = 0; | 
|  | } | 
|  | tmp_buffer[3].data = pd->dst.buf; | 
|  | tmp_buffer[3].stride = pd->dst.stride; | 
|  | tmp_buffer[3].in_use = 0; | 
|  | } | 
|  |  | 
|  | const int gf_temporal_ref = is_same_gf_and_last_scale(cm); | 
|  |  | 
|  | // If the lower spatial layer uses an averaging filter for downsampling | 
|  | // (phase = 8), the target decimated pixel is shifted by (1/2, 1/2) relative | 
|  | // to source, so use subpel motion vector to compensate. The nonzero motion | 
|  | // is half pixel shifted to left and top, so (-4, -4). This has more effect | 
|  | // on higher resolutions, so condition it on that for now. | 
|  | if (cpi->ppi->use_svc && svc->spatial_layer_id > 0 && | 
|  | svc->downsample_filter_phase[svc->spatial_layer_id - 1] == 8 && | 
|  | cm->width * cm->height > 640 * 480) { | 
|  | svc_mv_col = -4; | 
|  | svc_mv_row = -4; | 
|  | } | 
|  |  | 
|  | // Setup parameters used for inter mode evaluation. | 
|  | set_params_nonrd_pick_inter_mode( | 
|  | cpi, x, &search_state, tile_data, ctx, rd_cost, &force_skip_low_temp_var, | 
|  | &skip_pred_mv, mi_row, mi_col, gf_temporal_ref, segment_id, bsize | 
|  | #if CONFIG_AV1_TEMPORAL_DENOISING | 
|  | , | 
|  | denoise_svc_pickmode | 
|  | #endif | 
|  | ); | 
|  |  | 
|  | if (cpi->sf.rt_sf.use_comp_ref_nonrd && is_comp_ref_allowed(bsize)) { | 
|  | // Only search compound if bsize \gt BLOCK_16X16. | 
|  | if (bsize > BLOCK_16X16) { | 
|  | comp_use_zero_zeromv_only = | 
|  | cpi->sf.rt_sf.check_only_zero_zeromv_on_large_blocks; | 
|  | } else { | 
|  | tot_num_comp_modes = 0; | 
|  | } | 
|  | } else { | 
|  | tot_num_comp_modes = 0; | 
|  | } | 
|  |  | 
|  | if (x->pred_mv_sad[LAST_FRAME] != INT_MAX) { | 
|  | thresh_sad_pred = ((int64_t)x->pred_mv_sad[LAST_FRAME]) << 1; | 
|  | // Increase threshold for less aggressive pruning. | 
|  | if (cpi->sf.rt_sf.nonrd_prune_ref_frame_search == 1) | 
|  | thresh_sad_pred += (x->pred_mv_sad[LAST_FRAME] >> 2); | 
|  | } | 
|  |  | 
|  | const int use_model_yrd_large = get_model_rd_flag(cpi, xd, bsize); | 
|  |  | 
|  | // decide block-level interp filter search flags: | 
|  | // filter_search_enabled_blk: | 
|  | // 0: disabled | 
|  | // 1: filter search depends on mode properties | 
|  | // 2: filter search forced since prediction is unreliable | 
|  | // cb_pred_filter_search 0: disabled cb prediction | 
|  | InterpFilter filt_select = EIGHTTAP_REGULAR; | 
|  | const int cb_pred_filter_search = | 
|  | x->content_state_sb.source_sad_nonrd > kVeryLowSad | 
|  | ? cpi->sf.interp_sf.cb_pred_filter_search | 
|  | : 0; | 
|  | const int filter_search_enabled_blk = | 
|  | is_filter_search_enabled_blk(cpi, x, mi_row, mi_col, bsize, segment_id, | 
|  | cb_pred_filter_search, &filt_select); | 
|  |  | 
|  | #if COLLECT_PICK_MODE_STAT | 
|  | ms_stat.num_blocks[bsize]++; | 
|  | #endif | 
|  | init_mbmi(mi, DC_PRED, NONE_FRAME, NONE_FRAME, cm); | 
|  | mi->tx_size = AOMMIN( | 
|  | AOMMIN(max_txsize_lookup[bsize], | 
|  | tx_mode_to_biggest_tx_size[txfm_params->tx_mode_search_type]), | 
|  | TX_16X16); | 
|  |  | 
|  | fill_single_inter_mode_costs(search_state.single_inter_mode_costs, | 
|  | num_inter_modes, ref_mode_set, mode_costs, | 
|  | mbmi_ext->mode_context); | 
|  |  | 
|  | MV_REFERENCE_FRAME last_comp_ref_frame = NONE_FRAME; | 
|  |  | 
|  | // Initialize inter prediction params at block level for single reference | 
|  | // mode. | 
|  | InterPredParams inter_pred_params_sr; | 
|  | init_inter_block_params(&inter_pred_params_sr, pd->width, pd->height, | 
|  | mi_row * MI_SIZE, mi_col * MI_SIZE, pd->subsampling_x, | 
|  | pd->subsampling_y, xd->bd, is_cur_buf_hbd(xd), | 
|  | /*is_intrabc=*/0); | 
|  | inter_pred_params_sr.conv_params = | 
|  | get_conv_params(/*do_average=*/0, AOM_PLANE_Y, xd->bd); | 
|  |  | 
|  | for (int idx = 0; idx < num_inter_modes + tot_num_comp_modes; ++idx) { | 
|  | // If we are at the first compound mode, and the single modes already | 
|  | // perform well, then end the search. | 
|  | if (cpi->sf.rt_sf.skip_compound_based_on_var && idx == num_inter_modes && | 
|  | skip_comp_based_on_var(search_state.vars, bsize)) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | int rate_mv = 0; | 
|  | int is_skippable; | 
|  | int this_early_term = 0; | 
|  | int skip_this_mv = 0; | 
|  | int comp_pred = 0; | 
|  | unsigned int var = UINT_MAX; | 
|  | PREDICTION_MODE this_mode; | 
|  | RD_STATS nonskip_rdc; | 
|  | av1_invalid_rd_stats(&nonskip_rdc); | 
|  | memset(txfm_info->blk_skip, 0, | 
|  | sizeof(txfm_info->blk_skip[0]) * num_8x8_blocks); | 
|  |  | 
|  | // Check the inter mode can be skipped based on mode statistics and speed | 
|  | // features settings. | 
|  | if (skip_inter_mode_nonrd( | 
|  | cpi, x, &search_state, &thresh_sad_pred, &force_mv_inter_layer, | 
|  | &comp_pred, &this_mode, &last_comp_ref_frame, &ref_frame, | 
|  | &ref_frame2, idx, svc_mv_col, svc_mv_row, force_skip_low_temp_var, | 
|  | sse_zeromv_norm, num_inter_modes, segment_id, bsize, | 
|  | comp_use_zero_zeromv_only, check_globalmv)) | 
|  | continue; | 
|  |  | 
|  | // Select prediction reference frames. | 
|  | for (int i = 0; i < MAX_MB_PLANE; i++) { | 
|  | xd->plane[i].pre[0] = search_state.yv12_mb[ref_frame][i]; | 
|  | if (comp_pred) xd->plane[i].pre[1] = search_state.yv12_mb[ref_frame2][i]; | 
|  | } | 
|  |  | 
|  | mi->ref_frame[0] = ref_frame; | 
|  | mi->ref_frame[1] = ref_frame2; | 
|  | set_ref_ptrs(cm, xd, ref_frame, ref_frame2); | 
|  |  | 
|  | if (this_mode == NEWMV && !force_mv_inter_layer) { | 
|  | #if COLLECT_PICK_MODE_STAT | 
|  | aom_usec_timer_start(&ms_stat.timer2); | 
|  | #endif | 
|  | const bool skip_newmv = search_new_mv( | 
|  | cpi, x, search_state.frame_mv, ref_frame, gf_temporal_ref, bsize, | 
|  | mi_row, mi_col, &rate_mv, &search_state.best_rdc); | 
|  | #if COLLECT_PICK_MODE_STAT | 
|  | aom_usec_timer_mark(&ms_stat.timer2); | 
|  | ms_stat.ms_time[bsize][this_mode] += | 
|  | aom_usec_timer_elapsed(&ms_stat.timer2); | 
|  | #endif | 
|  | if (skip_newmv) { | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (PREDICTION_MODE inter_mv_mode = NEARESTMV; inter_mv_mode <= NEWMV; | 
|  | inter_mv_mode++) { | 
|  | if (inter_mv_mode == this_mode) continue; | 
|  | if (!comp_pred && search_state.mode_checked[inter_mv_mode][ref_frame] && | 
|  | search_state.frame_mv[this_mode][ref_frame].as_int == | 
|  | search_state.frame_mv[inter_mv_mode][ref_frame].as_int) { | 
|  | skip_this_mv = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (skip_this_mv && !comp_pred) continue; | 
|  |  | 
|  | // For screen: for spatially flat blocks with non-zero motion, | 
|  | // skip newmv if the motion vector is (0, 0), and color is not set. | 
|  | if (this_mode == NEWMV && | 
|  | cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN && | 
|  | cpi->svc.spatial_layer_id == 0 && | 
|  | cpi->sf.rt_sf.source_metrics_sb_nonrd) { | 
|  | if (search_state.frame_mv[this_mode][ref_frame].as_int == 0 && | 
|  | x->content_state_sb.source_sad_nonrd != kZeroSad && | 
|  | ((x->color_sensitivity[0] == 0 && x->color_sensitivity[1] == 0) || | 
|  | cpi->rc.high_source_sad) && | 
|  | x->source_variance == 0) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | mi->mode = this_mode; | 
|  | mi->mv[0].as_int = search_state.frame_mv[this_mode][ref_frame].as_int; | 
|  | mi->mv[1].as_int = 0; | 
|  | if (comp_pred) | 
|  | mi->mv[1].as_int = search_state.frame_mv[this_mode][ref_frame2].as_int; | 
|  |  | 
|  | if (reuse_inter_pred) { | 
|  | if (!this_mode_pred) { | 
|  | this_mode_pred = &tmp_buffer[3]; | 
|  | } else { | 
|  | this_mode_pred = &tmp_buffer[get_pred_buffer(tmp_buffer, 3)]; | 
|  | pd->dst.buf = this_mode_pred->data; | 
|  | pd->dst.stride = bw; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (idx == 0 && !skip_pred_mv) { | 
|  | // Set color sensitivity on first tested mode only. | 
|  | // Use y-sad already computed in find_predictors: take the sad with motion | 
|  | // vector closest to 0; the uv-sad computed below in set_color_sensitivity | 
|  | // is for zeromv. | 
|  | // For screen: first check if golden reference is being used, if so, | 
|  | // force color_sensitivity on if the color sensitivity for sb_g is on. | 
|  | if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN && | 
|  | search_state.use_ref_frame_mask[GOLDEN_FRAME]) { | 
|  | if (x->color_sensitivity_sb_g[0] == 1) x->color_sensitivity[0] = 1; | 
|  | if (x->color_sensitivity_sb_g[1] == 1) x->color_sensitivity[1] = 1; | 
|  | } else { | 
|  | int y_sad = x->pred_mv0_sad[LAST_FRAME]; | 
|  | if (x->pred_mv1_sad[LAST_FRAME] != INT_MAX && | 
|  | (abs(search_state.frame_mv[NEARMV][LAST_FRAME].as_mv.col) + | 
|  | abs(search_state.frame_mv[NEARMV][LAST_FRAME].as_mv.row)) < | 
|  | (abs(search_state.frame_mv[NEARESTMV][LAST_FRAME].as_mv.col) + | 
|  | abs(search_state.frame_mv[NEARESTMV][LAST_FRAME].as_mv.row))) | 
|  | y_sad = x->pred_mv1_sad[LAST_FRAME]; | 
|  | set_color_sensitivity(cpi, x, bsize, y_sad, x->source_variance, | 
|  | search_state.yv12_mb[LAST_FRAME]); | 
|  | } | 
|  | } | 
|  | mi->motion_mode = SIMPLE_TRANSLATION; | 
|  | #if !CONFIG_REALTIME_ONLY | 
|  | if (cpi->oxcf.motion_mode_cfg.allow_warped_motion) { | 
|  | calc_num_proj_ref(cpi, x, mi); | 
|  | } | 
|  | #endif | 
|  | // set variance threshold for compound more pruning | 
|  | unsigned int var_threshold = UINT_MAX; | 
|  | if (cpi->sf.rt_sf.prune_compoundmode_with_singlecompound_var && comp_pred && | 
|  | use_model_yrd_large) { | 
|  | const PREDICTION_MODE single_mode0 = compound_ref0_mode(this_mode); | 
|  | const PREDICTION_MODE single_mode1 = compound_ref1_mode(this_mode); | 
|  | var_threshold = | 
|  | AOMMIN(var_threshold, | 
|  | search_state.vars[INTER_OFFSET(single_mode0)][ref_frame]); | 
|  | var_threshold = | 
|  | AOMMIN(var_threshold, | 
|  | search_state.vars[INTER_OFFSET(single_mode1)][ref_frame2]); | 
|  | } | 
|  | // decide interpolation filter, build prediction signal, get sse | 
|  | const bool is_mv_subpel = | 
|  | (mi->mv[0].as_mv.row & 0x07) || (mi->mv[0].as_mv.col & 0x07); | 
|  | const bool enable_filt_search_this_mode = | 
|  | (filter_search_enabled_blk == 2) | 
|  | ? true | 
|  | : (filter_search_enabled_blk && !force_mv_inter_layer && | 
|  | !comp_pred && | 
|  | (ref_frame == LAST_FRAME || !x->nonrd_prune_ref_frame_search)); | 
|  | if (is_mv_subpel && enable_filt_search_this_mode) { | 
|  | #if COLLECT_PICK_MODE_STAT | 
|  | aom_usec_timer_start(&ms_stat.timer2); | 
|  | #endif | 
|  | search_filter_ref(cpi, x, &search_state.this_rdc, &inter_pred_params_sr, | 
|  | mi_row, mi_col, tmp_buffer, bsize, reuse_inter_pred, | 
|  | &this_mode_pred, &this_early_term, &var, | 
|  | use_model_yrd_large, | 
|  | search_state.best_pickmode.best_sse, comp_pred); | 
|  | #if COLLECT_PICK_MODE_STAT | 
|  | aom_usec_timer_mark(&ms_stat.timer2); | 
|  | ms_stat.ifs_time[bsize][this_mode] += | 
|  | aom_usec_timer_elapsed(&ms_stat.timer2); | 
|  | #endif | 
|  | #if !CONFIG_REALTIME_ONLY | 
|  | } else if (cpi->oxcf.motion_mode_cfg.allow_warped_motion && | 
|  | this_mode == NEWMV) { | 
|  | search_motion_mode(cpi, x, &search_state.this_rdc, mi_row, mi_col, bsize, | 
|  | &this_early_term, use_model_yrd_large, &rate_mv, | 
|  | search_state.best_pickmode.best_sse); | 
|  | if (this_mode == NEWMV) { | 
|  | search_state.frame_mv[this_mode][ref_frame] = mi->mv[0]; | 
|  | } | 
|  | #endif | 
|  | } else { | 
|  | mi->interp_filters = | 
|  | (filter_ref == SWITCHABLE) | 
|  | ? av1_broadcast_interp_filter(default_interp_filter) | 
|  | : av1_broadcast_interp_filter(filter_ref); | 
|  | if (force_mv_inter_layer) | 
|  | mi->interp_filters = av1_broadcast_interp_filter(EIGHTTAP_REGULAR); | 
|  |  | 
|  | // If it is sub-pel motion and cb_pred_filter_search is enabled, select | 
|  | // the pre-decided filter | 
|  | if (is_mv_subpel && cb_pred_filter_search) | 
|  | mi->interp_filters = av1_broadcast_interp_filter(filt_select); | 
|  |  | 
|  | #if COLLECT_PICK_MODE_STAT | 
|  | aom_usec_timer_start(&ms_stat.timer2); | 
|  | #endif | 
|  | if (!comp_pred) { | 
|  | SubpelParams subpel_params; | 
|  | // Initialize inter mode level params for single reference mode. | 
|  | init_inter_mode_params(&mi->mv[0].as_mv, &inter_pred_params_sr, | 
|  | &subpel_params, xd->block_ref_scale_factors[0], | 
|  | pd->pre->width, pd->pre->height); | 
|  | av1_enc_build_inter_predictor_y_nonrd(xd, &inter_pred_params_sr, | 
|  | &subpel_params); | 
|  | } else { | 
|  | av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0, | 
|  | 0); | 
|  | } | 
|  |  | 
|  | if (use_model_yrd_large) { | 
|  | model_skip_for_sb_y_large(cpi, bsize, mi_row, mi_col, x, xd, | 
|  | &search_state.this_rdc, &this_early_term, 0, | 
|  | search_state.best_pickmode.best_sse, &var, | 
|  | var_threshold); | 
|  | } else { | 
|  | model_rd_for_sb_y(cpi, bsize, x, xd, &search_state.this_rdc, &var, 0, | 
|  | &this_early_term); | 
|  | } | 
|  | #if COLLECT_PICK_MODE_STAT | 
|  | aom_usec_timer_mark(&ms_stat.timer2); | 
|  | ms_stat.model_rd_time[bsize][this_mode] += | 
|  | aom_usec_timer_elapsed(&ms_stat.timer2); | 
|  | #endif | 
|  | } | 
|  | // update variance for single mode | 
|  | if (!comp_pred) { | 
|  | search_state.vars[INTER_OFFSET(this_mode)][ref_frame] = var; | 
|  | if (search_state.frame_mv[this_mode][ref_frame].as_int == 0) { | 
|  | search_state.vars[INTER_OFFSET(GLOBALMV)][ref_frame] = var; | 
|  | } | 
|  | } | 
|  | // prune compound mode based on single mode var threshold | 
|  | if (comp_pred && var > var_threshold) { | 
|  | if (reuse_inter_pred) free_pred_buffer(this_mode_pred); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (ref_frame == LAST_FRAME && | 
|  | search_state.frame_mv[this_mode][ref_frame].as_int == 0) { | 
|  | sse_zeromv_norm = (unsigned int)(search_state.this_rdc.sse >> | 
|  | (b_width_log2_lookup[bsize] + | 
|  | b_height_log2_lookup[bsize])); | 
|  | } | 
|  |  | 
|  | if (cpi->sf.rt_sf.sse_early_term_inter_search && | 
|  | early_term_inter_search_with_sse( | 
|  | cpi->sf.rt_sf.sse_early_term_inter_search, bsize, | 
|  | search_state.this_rdc.sse, search_state.best_pickmode.best_sse, | 
|  | this_mode)) { | 
|  | if (reuse_inter_pred) free_pred_buffer(this_mode_pred); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | #if COLLECT_PICK_MODE_STAT | 
|  | ms_stat.num_nonskipped_searches[bsize][this_mode]++; | 
|  | #endif | 
|  |  | 
|  | const int skip_ctx = av1_get_skip_txfm_context(xd); | 
|  | const int skip_txfm_cost = mode_costs->skip_txfm_cost[skip_ctx][1]; | 
|  | const int no_skip_txfm_cost = mode_costs->skip_txfm_cost[skip_ctx][0]; | 
|  | const int64_t sse_y = search_state.this_rdc.sse; | 
|  | if (this_early_term) { | 
|  | search_state.this_rdc.skip_txfm = 1; | 
|  | search_state.this_rdc.rate = skip_txfm_cost; | 
|  | search_state.this_rdc.dist = search_state.this_rdc.sse << 4; | 
|  | } else { | 
|  | #if COLLECT_PICK_MODE_STAT | 
|  | aom_usec_timer_start(&ms_stat.timer2); | 
|  | #endif | 
|  | block_yrd(x, &search_state.this_rdc, &is_skippable, bsize, mi->tx_size, | 
|  | 1); | 
|  | if (search_state.this_rdc.skip_txfm || | 
|  | RDCOST(x->rdmult, search_state.this_rdc.rate, | 
|  | search_state.this_rdc.dist) >= | 
|  | RDCOST(x->rdmult, 0, search_state.this_rdc.sse)) { | 
|  | if (!search_state.this_rdc.skip_txfm) { | 
|  | // Need to store "real" rdc for possible future use if UV rdc | 
|  | // disallows tx skip | 
|  | nonskip_rdc = search_state.this_rdc; | 
|  | nonskip_rdc.rate += no_skip_txfm_cost; | 
|  | } | 
|  | search_state.this_rdc.rate = skip_txfm_cost; | 
|  | search_state.this_rdc.skip_txfm = 1; | 
|  | search_state.this_rdc.dist = search_state.this_rdc.sse; | 
|  | } else { | 
|  | search_state.this_rdc.rate += no_skip_txfm_cost; | 
|  | } | 
|  | if ((x->color_sensitivity[0] || x->color_sensitivity[1])) { | 
|  | RD_STATS rdc_uv; | 
|  | const BLOCK_SIZE uv_bsize = get_plane_block_size( | 
|  | bsize, xd->plane[1].subsampling_x, xd->plane[1].subsampling_y); | 
|  | if (x->color_sensitivity[0]) { | 
|  | av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, | 
|  | AOM_PLANE_U, AOM_PLANE_U); | 
|  | } | 
|  | if (x->color_sensitivity[1]) { | 
|  | av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, | 
|  | AOM_PLANE_V, AOM_PLANE_V); | 
|  | } | 
|  | const int64_t sse_uv = | 
|  | model_rd_for_sb_uv(cpi, uv_bsize, x, xd, &rdc_uv, 1, 2); | 
|  | search_state.this_rdc.sse += sse_uv; | 
|  | // Restore Y rdc if UV rdc disallows txfm skip | 
|  | if (search_state.this_rdc.skip_txfm && !rdc_uv.skip_txfm && | 
|  | nonskip_rdc.rate != INT_MAX) | 
|  | search_state.this_rdc = nonskip_rdc; | 
|  | if (!comp_pred) { | 
|  | search_state.uv_dist[INTER_OFFSET(this_mode)][ref_frame] = | 
|  | rdc_uv.dist; | 
|  | } | 
|  | search_state.this_rdc.rate += rdc_uv.rate; | 
|  | search_state.this_rdc.dist += rdc_uv.dist; | 
|  | search_state.this_rdc.skip_txfm = | 
|  | search_state.this_rdc.skip_txfm && rdc_uv.skip_txfm; | 
|  | } | 
|  | #if COLLECT_PICK_MODE_STAT | 
|  | aom_usec_timer_mark(&ms_stat.timer2); | 
|  | ms_stat.txfm_time[bsize][this_mode] += | 
|  | aom_usec_timer_elapsed(&ms_stat.timer2); | 
|  | #endif | 
|  | } | 
|  | PREDICTION_MODE this_best_mode = this_mode; | 
|  |  | 
|  | // TODO(kyslov) account for UV prediction cost | 
|  | search_state.this_rdc.rate += rate_mv; | 
|  | if (comp_pred) { | 
|  | const int16_t mode_ctx = | 
|  | av1_mode_context_analyzer(mbmi_ext->mode_context, mi->ref_frame); | 
|  | search_state.this_rdc.rate += | 
|  | cost_mv_ref(mode_costs, this_mode, mode_ctx); | 
|  | } else { | 
|  | // If the current mode has zeromv but is not GLOBALMV, compare the rate | 
|  | // cost. If GLOBALMV is cheaper, use GLOBALMV instead. | 
|  | if (this_mode != GLOBALMV && | 
|  | search_state.frame_mv[this_mode][ref_frame].as_int == | 
|  | search_state.frame_mv[GLOBALMV][ref_frame].as_int) { | 
|  | if (is_globalmv_better(this_mode, ref_frame, rate_mv, mode_costs, | 
|  | search_state.single_inter_mode_costs, | 
|  | mbmi_ext)) { | 
|  | this_best_mode = GLOBALMV; | 
|  | } | 
|  | } | 
|  |  | 
|  | search_state.this_rdc.rate += | 
|  | search_state | 
|  | .single_inter_mode_costs[INTER_OFFSET(this_best_mode)][ref_frame]; | 
|  | } | 
|  |  | 
|  | if (!comp_pred && search_state.frame_mv[this_mode][ref_frame].as_int == 0 && | 
|  | var < UINT_MAX) { | 
|  | search_state.vars[INTER_OFFSET(GLOBALMV)][ref_frame] = var; | 
|  | } | 
|  |  | 
|  | search_state.this_rdc.rate += search_state.ref_costs_single[ref_frame]; | 
|  |  | 
|  | search_state.this_rdc.rdcost = RDCOST(x->rdmult, search_state.this_rdc.rate, | 
|  | search_state.this_rdc.dist); | 
|  | if (cpi->oxcf.rc_cfg.mode == AOM_CBR && !comp_pred) { | 
|  | newmv_diff_bias( | 
|  | xd, this_best_mode, &search_state.this_rdc, bsize, | 
|  | search_state.frame_mv[this_best_mode][ref_frame].as_mv.row, | 
|  | search_state.frame_mv[this_best_mode][ref_frame].as_mv.col, | 
|  | cpi->speed, x->source_variance, x->content_state_sb); | 
|  | } | 
|  | #if CONFIG_AV1_TEMPORAL_DENOISING | 
|  | if (cpi->oxcf.noise_sensitivity > 0 && denoise_svc_pickmode && | 
|  | cpi->denoiser.denoising_level > kDenLowLow) { | 
|  | av1_denoiser_update_frame_stats(mi, sse_y, this_mode, ctx); | 
|  | // Keep track of zero_last cost. | 
|  | if (ref_frame == LAST_FRAME && | 
|  | search_state.frame_mv[this_mode][ref_frame].as_int == 0) | 
|  | zero_last_cost_orig = search_state.this_rdc.rdcost; | 
|  | } | 
|  | #else | 
|  | (void)sse_y; | 
|  | #endif | 
|  |  | 
|  | search_state.mode_checked[this_mode][ref_frame] = 1; | 
|  | search_state.mode_checked[this_best_mode][ref_frame] = 1; | 
|  |  | 
|  | if (check_globalmv) { | 
|  | int32_t abs_mv = | 
|  | abs(search_state.frame_mv[this_best_mode][ref_frame].as_mv.row) + | 
|  | abs(search_state.frame_mv[this_best_mode][ref_frame].as_mv.col); | 
|  | // Early exit check: if the magnitude of this_best_mode's mv is small | 
|  | // enough, we skip GLOBALMV check in the next loop iteration. | 
|  | if (abs_mv < 2) { | 
|  | check_globalmv = false; | 
|  | } | 
|  | } | 
|  | #if COLLECT_PICK_MODE_STAT | 
|  | aom_usec_timer_mark(&ms_stat.timer1); | 
|  | ms_stat.nonskipped_search_times[bsize][this_mode] += | 
|  | aom_usec_timer_elapsed(&ms_stat.timer1); | 
|  | #endif | 
|  | if (search_state.this_rdc.rdcost < search_state.best_rdc.rdcost) { | 
|  | search_state.best_rdc = search_state.this_rdc; | 
|  | best_early_term = this_early_term; | 
|  | search_state.best_pickmode.best_sse = sse_y; | 
|  | search_state.best_pickmode.best_mode = this_best_mode; | 
|  | search_state.best_pickmode.best_motion_mode = mi->motion_mode; | 
|  | search_state.best_pickmode.wm_params = mi->wm_params; | 
|  | search_state.best_pickmode.num_proj_ref = mi->num_proj_ref; | 
|  | search_state.best_pickmode.best_pred_filter = mi->interp_filters; | 
|  | search_state.best_pickmode.best_tx_size = mi->tx_size; | 
|  | search_state.best_pickmode.best_ref_frame = ref_frame; | 
|  | search_state.best_pickmode.best_second_ref_frame = ref_frame2; | 
|  | search_state.best_pickmode.best_mode_skip_txfm = | 
|  | search_state.this_rdc.skip_txfm; | 
|  | search_state.best_pickmode.best_mode_initial_skip_flag = | 
|  | (nonskip_rdc.rate == INT_MAX && search_state.this_rdc.skip_txfm); | 
|  | if (!search_state.best_pickmode.best_mode_skip_txfm) { | 
|  | memcpy(search_state.best_pickmode.blk_skip, txfm_info->blk_skip, | 
|  | sizeof(txfm_info->blk_skip[0]) * num_8x8_blocks); | 
|  | } | 
|  |  | 
|  | // This is needed for the compound modes. | 
|  | search_state.frame_mv_best[this_best_mode][ref_frame].as_int = | 
|  | search_state.frame_mv[this_best_mode][ref_frame].as_int; | 
|  | if (ref_frame2 > NONE_FRAME) { | 
|  | search_state.frame_mv_best[this_best_mode][ref_frame2].as_int = | 
|  | search_state.frame_mv[this_best_mode][ref_frame2].as_int; | 
|  | } | 
|  |  | 
|  | if (reuse_inter_pred) { | 
|  | free_pred_buffer(search_state.best_pickmode.best_pred); | 
|  | search_state.best_pickmode.best_pred = this_mode_pred; | 
|  | } | 
|  | } else { | 
|  | if (reuse_inter_pred) free_pred_buffer(this_mode_pred); | 
|  | } | 
|  | if (best_early_term && (idx > 0 || cpi->sf.rt_sf.nonrd_aggressive_skip)) { | 
|  | txfm_info->skip_txfm = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | mi->mode = search_state.best_pickmode.best_mode; | 
|  | mi->motion_mode = search_state.best_pickmode.best_motion_mode; | 
|  | mi->wm_params = search_state.best_pickmode.wm_params; | 
|  | mi->num_proj_ref = search_state.best_pickmode.num_proj_ref; | 
|  | mi->interp_filters = search_state.best_pickmode.best_pred_filter; | 
|  | mi->tx_size = search_state.best_pickmode.best_tx_size; | 
|  | memset(mi->inter_tx_size, mi->tx_size, sizeof(mi->inter_tx_size)); | 
|  | mi->ref_frame[0] = search_state.best_pickmode.best_ref_frame; | 
|  | mi->mv[0].as_int = | 
|  | search_state | 
|  | .frame_mv_best[search_state.best_pickmode.best_mode] | 
|  | [search_state.best_pickmode.best_ref_frame] | 
|  | .as_int; | 
|  | mi->mv[1].as_int = 0; | 
|  | if (search_state.best_pickmode.best_second_ref_frame > INTRA_FRAME) { | 
|  | mi->ref_frame[1] = search_state.best_pickmode.best_second_ref_frame; | 
|  | mi->mv[1].as_int = | 
|  | search_state | 
|  | .frame_mv_best[search_state.best_pickmode.best_mode] | 
|  | [search_state.best_pickmode.best_second_ref_frame] | 
|  | .as_int; | 
|  | } | 
|  | // Perform intra prediction search, if the best SAD is above a certain | 
|  | // threshold. | 
|  | mi->angle_delta[PLANE_TYPE_Y] = 0; | 
|  | mi->angle_delta[PLANE_TYPE_UV] = 0; | 
|  | mi->filter_intra_mode_info.use_filter_intra = 0; | 
|  |  | 
|  | #if COLLECT_PICK_MODE_STAT | 
|  | aom_usec_timer_start(&ms_stat.timer1); | 
|  | ms_stat.num_searches[bsize][DC_PRED]++; | 
|  | ms_stat.num_nonskipped_searches[bsize][DC_PRED]++; | 
|  | #endif | 
|  |  | 
|  | if (!x->force_zeromv_skip_for_blk) | 
|  | estimate_intra_mode(cpi, x, bsize, best_early_term, | 
|  | search_state.ref_costs_single[INTRA_FRAME], | 
|  | reuse_inter_pred, &orig_dst, tmp_buffer, | 
|  | &this_mode_pred, &search_state.best_rdc, | 
|  | &search_state.best_pickmode, ctx); | 
|  |  | 
|  | int skip_idtx_palette = | 
|  | (x->color_sensitivity[0] || x->color_sensitivity[1]) && | 
|  | x->content_state_sb.source_sad_nonrd != kZeroSad && | 
|  | !cpi->rc.high_source_sad; | 
|  |  | 
|  | // Check for IDTX: based only on Y channel, so avoid when color_sensitivity | 
|  | // is set. | 
|  | if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN && !skip_idtx_palette && | 
|  | !cpi->oxcf.txfm_cfg.use_inter_dct_only && !x->force_zeromv_skip_for_blk && | 
|  | is_inter_mode(search_state.best_pickmode.best_mode) && | 
|  | (!cpi->sf.rt_sf.prune_idtx_nonrd || | 
|  | (cpi->sf.rt_sf.prune_idtx_nonrd && bsize <= BLOCK_32X32 && | 
|  | search_state.best_pickmode.best_mode_skip_txfm != 1 && | 
|  | x->source_variance > 200))) { | 
|  | RD_STATS idtx_rdc; | 
|  | av1_init_rd_stats(&idtx_rdc); | 
|  | int is_skippable; | 
|  | this_mode_pred = &tmp_buffer[get_pred_buffer(tmp_buffer, 3)]; | 
|  | pd->dst.buf = this_mode_pred->data; | 
|  | pd->dst.stride = bw; | 
|  | av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0, 0); | 
|  | block_yrd_idtx(x, &idtx_rdc, &is_skippable, bsize, mi->tx_size); | 
|  | int64_t idx_rdcost = RDCOST(x->rdmult, idtx_rdc.rate, idtx_rdc.dist); | 
|  | if (idx_rdcost < search_state.best_rdc.rdcost) { | 
|  | // Keep the skip_txfm off if the color_sensitivity is set. | 
|  | if (x->color_sensitivity[0] || x->color_sensitivity[1]) | 
|  | idtx_rdc.skip_txfm = 0; | 
|  | search_state.best_pickmode.tx_type = IDTX; | 
|  | search_state.best_rdc.rdcost = idx_rdcost; | 
|  | search_state.best_pickmode.best_mode_skip_txfm = idtx_rdc.skip_txfm; | 
|  | if (!idtx_rdc.skip_txfm) { | 
|  | memcpy(search_state.best_pickmode.blk_skip, txfm_info->blk_skip, | 
|  | sizeof(txfm_info->blk_skip[0]) * num_8x8_blocks); | 
|  | } | 
|  | xd->tx_type_map[0] = search_state.best_pickmode.tx_type; | 
|  | memset(ctx->tx_type_map, search_state.best_pickmode.tx_type, | 
|  | ctx->num_4x4_blk); | 
|  | memset(xd->tx_type_map, search_state.best_pickmode.tx_type, | 
|  | ctx->num_4x4_blk); | 
|  | } | 
|  | pd->dst = orig_dst; | 
|  | } | 
|  |  | 
|  | int try_palette = | 
|  | !skip_idtx_palette && cpi->oxcf.tool_cfg.enable_palette && | 
|  | av1_allow_palette(cpi->common.features.allow_screen_content_tools, | 
|  | mi->bsize); | 
|  | try_palette = try_palette && | 
|  | is_mode_intra(search_state.best_pickmode.best_mode) && | 
|  | x->source_variance > 0 && !x->force_zeromv_skip_for_blk && | 
|  | (cpi->rc.high_source_sad || x->source_variance > 500); | 
|  |  | 
|  | if (try_palette) { | 
|  | const unsigned int intra_ref_frame_cost = | 
|  | search_state.ref_costs_single[INTRA_FRAME]; | 
|  |  | 
|  | av1_search_palette_mode_luma(cpi, x, bsize, intra_ref_frame_cost, ctx, | 
|  | &search_state.this_rdc, | 
|  | search_state.best_rdc.rdcost); | 
|  | if (search_state.this_rdc.rdcost < search_state.best_rdc.rdcost) { | 
|  | search_state.best_pickmode.pmi = mi->palette_mode_info; | 
|  | search_state.best_pickmode.best_mode = DC_PRED; | 
|  | mi->mv[0].as_int = 0; | 
|  | search_state.best_rdc.rate = search_state.this_rdc.rate; | 
|  | search_state.best_rdc.dist = search_state.this_rdc.dist; | 
|  | search_state.best_rdc.rdcost = search_state.this_rdc.rdcost; | 
|  | search_state.best_pickmode.best_mode_skip_txfm = | 
|  | search_state.this_rdc.skip_txfm; | 
|  | // Keep the skip_txfm off if the color_sensitivity is set. | 
|  | if (x->color_sensitivity[0] || x->color_sensitivity[1]) | 
|  | search_state.this_rdc.skip_txfm = 0; | 
|  | if (!search_state.this_rdc.skip_txfm) { | 
|  | memcpy(ctx->blk_skip, txfm_info->blk_skip, | 
|  | sizeof(txfm_info->blk_skip[0]) * ctx->num_4x4_blk); | 
|  | } | 
|  | if (xd->tx_type_map[0] != DCT_DCT) | 
|  | av1_copy_array(ctx->tx_type_map, xd->tx_type_map, ctx->num_4x4_blk); | 
|  | } | 
|  | } | 
|  |  | 
|  | #if COLLECT_PICK_MODE_STAT | 
|  | aom_usec_timer_mark(&ms_stat.timer1); | 
|  | ms_stat.nonskipped_search_times[bsize][DC_PRED] += | 
|  | aom_usec_timer_elapsed(&ms_stat.timer1); | 
|  | #endif | 
|  |  | 
|  | pd->dst = orig_dst; | 
|  | if (try_palette) mi->palette_mode_info = search_state.best_pickmode.pmi; | 
|  | mi->mode = search_state.best_pickmode.best_mode; | 
|  | mi->ref_frame[0] = search_state.best_pickmode.best_ref_frame; | 
|  | mi->ref_frame[1] = search_state.best_pickmode.best_second_ref_frame; | 
|  | txfm_info->skip_txfm = search_state.best_pickmode.best_mode_skip_txfm; | 
|  | if (!txfm_info->skip_txfm) { | 
|  | // For inter modes: copy blk_skip from best_pickmode, which is | 
|  | // defined for 8x8 blocks. If palette or intra mode was selected | 
|  | // as best then blk_skip is already copied into the ctx. | 
|  | if (search_state.best_pickmode.best_mode >= INTRA_MODE_END) | 
|  | memcpy(ctx->blk_skip, search_state.best_pickmode.blk_skip, | 
|  | sizeof(search_state.best_pickmode.blk_skip[0]) * num_8x8_blocks); | 
|  | } | 
|  | if (has_second_ref(mi)) { | 
|  | mi->comp_group_idx = 0; | 
|  | mi->compound_idx = 1; | 
|  | mi->interinter_comp.type = COMPOUND_AVERAGE; | 
|  | } | 
|  |  | 
|  | if (!is_inter_block(mi)) { | 
|  | mi->interp_filters = av1_broadcast_interp_filter(SWITCHABLE_FILTERS); | 
|  | } | 
|  |  | 
|  | if (reuse_inter_pred && search_state.best_pickmode.best_pred != NULL) { | 
|  | PRED_BUFFER *const best_pred = search_state.best_pickmode.best_pred; | 
|  | if (best_pred->data != orig_dst.buf && is_inter_mode(mi->mode)) { | 
|  | aom_convolve_copy(best_pred->data, best_pred->stride, pd->dst.buf, | 
|  | pd->dst.stride, bw, bh); | 
|  | } | 
|  | } | 
|  |  | 
|  | #if CONFIG_AV1_TEMPORAL_DENOISING | 
|  | if (cpi->oxcf.noise_sensitivity > 0 && resize_pending == 0 && | 
|  | denoise_svc_pickmode && cpi->denoiser.denoising_level > kDenLowLow && | 
|  | cpi->denoiser.reset == 0) { | 
|  | AV1_DENOISER_DECISION decision = COPY_BLOCK; | 
|  | ctx->sb_skip_denoising = 0; | 
|  | av1_pickmode_ctx_den_update( | 
|  | &ctx_den, zero_last_cost_orig, search_state.ref_costs_single, | 
|  | search_state.frame_mv, reuse_inter_pred, &search_state.best_pickmode); | 
|  | av1_denoiser_denoise(cpi, x, mi_row, mi_col, bsize, ctx, &decision, | 
|  | gf_temporal_ref); | 
|  | if (denoise_recheck_zeromv) | 
|  | recheck_zeromv_after_denoising( | 
|  | cpi, mi, x, xd, decision, &ctx_den, search_state.yv12_mb, | 
|  | &search_state.best_rdc, &search_state.best_pickmode, bsize, mi_row, | 
|  | mi_col); | 
|  | search_state.best_pickmode.best_ref_frame = ctx_den.best_ref_frame; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (cpi->sf.inter_sf.adaptive_rd_thresh && !has_second_ref(mi)) { | 
|  | THR_MODES best_mode_idx = | 
|  | mode_idx[search_state.best_pickmode.best_ref_frame] | 
|  | [mode_offset(mi->mode)]; | 
|  | if (search_state.best_pickmode.best_ref_frame == INTRA_FRAME) { | 
|  | // Only consider the modes that are included in the intra_mode_list. | 
|  | int intra_modes = sizeof(intra_mode_list) / sizeof(PREDICTION_MODE); | 
|  | for (int i = 0; i < intra_modes; i++) { | 
|  | update_thresh_freq_fact(cpi, x, bsize, INTRA_FRAME, best_mode_idx, | 
|  | intra_mode_list[i]); | 
|  | } | 
|  | } else { | 
|  | PREDICTION_MODE this_mode; | 
|  | for (this_mode = NEARESTMV; this_mode <= NEWMV; ++this_mode) { | 
|  | update_thresh_freq_fact(cpi, x, bsize, | 
|  | search_state.best_pickmode.best_ref_frame, | 
|  | best_mode_idx, this_mode); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #if CONFIG_INTERNAL_STATS | 
|  | store_coding_context(x, ctx, mi->mode); | 
|  | #else | 
|  | store_coding_context(x, ctx); | 
|  | #endif  // CONFIG_INTERNAL_STATS | 
|  |  | 
|  | #if COLLECT_PICK_MODE_STAT | 
|  | aom_usec_timer_mark(&ms_stat.bsize_timer); | 
|  | ms_stat.total_block_times[bsize] += | 
|  | aom_usec_timer_elapsed(&ms_stat.bsize_timer); | 
|  | print_time(&ms_stat, bsize, cm->mi_params.mi_rows, cm->mi_params.mi_cols, | 
|  | mi_row, mi_col); | 
|  | #endif  // COLLECT_PICK_MODE_STAT | 
|  |  | 
|  | *rd_cost = search_state.best_rdc; | 
|  | } |